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Shadow Banning in Browser-based
Volunteering Computing

Samuel Pélissier, Lucas Dupont, Dorian Lefeuvre, Nicolas Guillois

Abstract—Browser-based volunteering computing projects are mainly used to perform scientific computations in heterogeneous
clusters at a low cost. As for every community-driven approach, saboteurs can try to cheat the system for various reasons. In this
paper, we propose to study whether such solutions could improve their performance and resilience by using shadow banning instead of
a classic ban scheme. To do so, we have built a framework simulating a real system and studied the impact of shadow banning in
relation with task types, saboteur rates, and detection techniques such as majority, m-first and credibility-based voting. Results show
that shadow banning is overall more resilient, reducing the number of errors of detection by more than 33.5% in average. It also
improves the server-side performance in a significant manner for saboteur rates between 0 and 20%.

Index Terms—Volunteering computing, Security, Web browsers, Distributed systems.
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1 INTRODUCTION

A LTHOUGH supercomputers are used in science projects,
they require a lot of money to build, maintain and

operate. To counter these limitations and offer more open
solutions, alternatives such as volunteer computing have
been created.

As a part of a broader domain called citizen science
[1], these solutions use the machines of contributors to
perform distributed computations provided by scientists.
The most famous implementation of such system is BOINC
[2], where volunteers download a software and let it run in
the background.

Coincidentally, the rise of browsers as a core component
of every personal computer offers new and exciting possi-
bilities for volunteer computing. Opening up to the browser
world means accessing a huge number of devices such as
mobile phones and tablets, without requiring any other soft-
ware installation. Although their computing power is not
comparable to specialised computers, their cheer number
can outweigh the local lack of performance.

First using JavaScript [3] [4] [5] [6] [7], browser-based
volunteering computing (BBVC) now takes advantage of
new technologies such as the WebWorkers API1 to create
multiple threads. This helps unclog the main thread respon-
sible of the page display and reduces the visible impacts of
BBVC on visitors [8]. Another important breakthrough is the
possibility to run native code, such as C and C++, directly
in the browser. After various attempts at creating a durable
solution [9] [10], Web Assembly was created in 2017 [11] and
is since then widely supported. Although the performance
improvements of such technology can be nuanced [12], it is
still significantly better than JavaScript [13].

By essence, BBVC implies to run computation on
a stranger’s machine. This has two main consequences

• All authors are with Université de Bretagne Sud, more specifically study-
ing at the École Nationale Supérieure d’Ingénieurs de Bretagne Sud.

1. https://developer.mozilla.org/en-US/docs/Web/API/Web
Workers API

security-wise: the worker needs to trust the code running
on his computer and the system can not trust the worker.

Although a saboteur can operate on his own, collab-
orative attacks are also worth considering [8]. Likewise,
sybil attacks [14] are possible, given enough resources and
depending on the detection techniques used by the BBVC
system. For example, forging a new identity when the only
verification is a cookie is way easier than validating a
complex captcha [15]. However, BBVC systems usually aims
at a minimal entry difficulty for workers to join, excluding
complex identity management systems [16] [8]. No matter
the restrictions, a system should be resilient not to a unique
saboteur, but to a maximal percentage of them.

The simplest methods to discard incorrect results are
based on voting. After a task has been done multiple times
by different workers, the correct result is chosen with a vote.
The most famous voting variants are m-first voting [2] and
majority voting [17]. Although voting is easy to implement,
it induces a significant overhead [18], [19], [20].

To improve the performance of the detection system, a
new method named spot-checking has been proposed by
Sarmenta et al [19]. The server randomly sends a task whose
result is already known. If the worker returns a different
value than expected, it is identified as malicious. All its
previous results must be discarded and redone; this action is
called backtracking. Optionally, a saboteur can be banned to
ensure the next computation round will not contain as much
errors. Multiple projects use and improve this idea [20] [21]
[22].

In [19], spot-checking is actually not used alone but as
part of a broader technique called credibility-based fault
tolerance. This solution combines the benefits of voting
and spot-checking to mathematically guarantee the results’
correctness. Results are accepted only when their probability
of being correct is above a threshold ϑ defined as 1 − εacc
with εacc being an acceptable error rate.

In all these techniques, banning the saboteur and then
backtracking the potential erroneous results is necessary. An

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
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Fig. 1. High-level overview of a BBVC system

option not explored by the literature is based on shadow
banning2. This process is the act of banning an user without
them being aware of it [23]. A banned saboteur then inter-
acts with the system exactly the same as an honest worker.
This transparency reduces the incentive for a saboteur to
change their identity, as they would do if banned from
the system. Such control of the behavior of a saboteurs is
useful to contain spammers, but could also improve the
performance of BBVC systems.

We propose to study whether such solutions could im-
prove their performance and resilience by using shadow
banning instead of a classic ban scheme. To do so, we build
a framework simulating a real system and study the impact
of shadow banning in relation with task types, saboteur
rates, and detection techniques such as majority, m-first and
credibility-based voting.

One could argue this issue is also relevant to classic,
BOINC-based projects. Although this is true, we believe
BBVC has a bright future ahead of itself while facing some
key specific challenges. For example, even if there are more
available volunteers, their volatility is significantly higher.
Moreover, the dwell time of website visitors follows a
Weibull distribution which greatly impacts the system as
a whole [24]. Thus, we want to specifically address the
performance impacts of shadow ban in such settings.

2 PROPOSED APPROACH

There are various options when creating a BBVC system;
here, we provide an high-level overview of our approach.
We use a client-server architecture with three main elements
as seen in figure 1: a provider, at least one worker and a
distributor to connect them.

2.1 Provider
The provider assumes multiple functions in a centralized
manner. First, it stores the tasks, consisting of both code
and data to be processed. When a worker asks for a new
one, the provider uses a distribution algorithm to assign
it to them, for example a First In First Out queue. Then,
as computations results are received, a detection technique
is applied, for example majority voting. At the end of this
process, the provider knows if a worker is honest or a

2. Shadow banning is also known as ”selective invisibility”
and is linked to the usage of ”twit bit” in online com-
munities. See: https://ask.metafilter.com/117775/What-was-the-first-
website-to-hide-trolls-activity-to-everyone-but-the-troll-himself

saboteur so it can start to ban if necessary. As seen in
section 1, it implies backtracking the previous operations
and actually (shadow) banning the saboteur.

All these actions and the relevant data are saved inside
the provider’s database for later use, for example to keep
track of shadow banned users. Likewise, a centralized inter-
face allows us to easily monitor the system’s performance.

2.2 Worker
Honest workers and saboteurs interact with a BBVC system
quite similarly. Both retrieve tasks and return either correct
or falsified results to the provider. More specifically, coor-
dinated and sybil attacks are needed to study the impact
of shadow banning on detection techniques. A simpler
approach is to use uncoordinated saboteurs, but it reduces
the resilience of the system and is too far away from reality.
Thus, we approximate their behavior by assuming they:

• Coordinate their attacks;
• Try to cheat every single time;
• Automatically join the system again after a ban;
• Only join again if banned; saboteurs do not reset by

themselves.

2.3 Distributor
Finally, to connect workers and the provider together, a
third-party can act as a distributor. In a BBVC system, the
tasks are usually hosted by the provider, and the distrib-
utor only holds a minimal JavaScript snippet necessary to
retrieve them. To ensure a large number of workers, this
snippet is typically hosted by high-traffic websites.

The generic BBVC system presented previously allows
us to monitor the server-side performance of shadow ban-
ning by studying the server and the provider’s database.
Likewise, we can determine which detection technique
works best with shadow banning simply by changing a
module in the provider and observing the variations.

3 EXPERIMENTAL SETUP

In this section, we present the experimental setup for
the BBVC system described in section 2 and the various
technical problems we try to solve. We refer to the re-
sult provided by a worker for a specific task as a ”com-
putation”. For more low-level details and instructions to
deploy our solution, please refer to the following URL:
https://bob project.gitlab.io/provider/.

https://ask.metafilter.com/117775/What-was-the-first-website-to-hide-trolls-activity-to-everyone-but-the-troll-himself
https://ask.metafilter.com/117775/What-was-the-first-website-to-hide-trolls-activity-to-everyone-but-the-troll-himself
https://bob_project.gitlab.io/provider/
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3.1 General settings
In the proposed implementation, both distributor and
provider are hosted on the same physical server for the sake
of simplicity. Similarly, our distribution algorithm is a Fist In
First Out queue as it is the easiest to develop. More complex
architecture and more fine-tuned distribution algorithms
could be implemented but it should not influence the results
in a significant way.

We write the code of distributed tasks in C, compile it to
WebAssembly using the Emscripten toolchain3 before send-
ing it to the workers. C code converted to WebAssembly
is fairly small and we launch it in a background thread
thanks to WebWorkers. These measures only serve as perfor-
mance improvements and, along using WebSocket for client-
server status transfers, they can be viewed as following
web development best practices. However, BBVC aims at
exploiting the workers’ machine without deteriorating the
user experience [8] so any effort in this direction is worth
taking.

3.2 Orchestration
Selenium4 is used to automate visits on the distributor’s
website. This enables us to quickly start multiple workers
on our machines. As the client-side implementation of a
saboteur only requires to visit a specific URL, starting an
honest worker or a saboteur is quite trivial.

Saboteurs are distributed on all the available machines
used so they are not at an advantage or disadvantage
by running on a specific computer. Thus, we recreate an
heterogeneous cluster of a sufficient computing power. The
various clients used are listed in table 1. Using all threads
but one to keep an access on our systems, we reached 51
simultaneous threads or workers.

CPU Number of threads
i7-7500U 4
i5-8600K 6

i7-6700HQ 8
i7-8550U 8
i7-8550U 8
i7-8565U 8

Ryzen 7 2700 16
TABLE 1

Computers used to conduct the experiments

A complete session of tests requires approximately 8
hours to complete. In order to smooth the experiments’
results, we ran our tests 3 times. Although this is not enough
to conduct a statistical analysis, it helps reducing the local
spikes.

3.3 Metrics
There are multiple ways to judge the performance of
shadow banning. In our case, a centralized BBVC system
is used to reduce the infrastructure cost, so we monitor to
which extend shadow banning reduces the server’s load. As
shadow banning can also be seen as a security measure, we
further look at its impact on detection techniques. To do so,

3. https://emscripten.org
4. https://www.selenium.dev/

we collect various metrics; here, we only present the ones
relevant to this paper. You can access all the data in this
repository: https://gitlab.com/bob project/results.

First, we study the network cost for a job, which is the
sum of the data sent to workers, including the WebAssem-
bly code, and the data retrieved. With the total number of
computations sent to workers, it gives us an idea of the
overall efficiency of the system in various settings. Each
variation of configuration should influence these values,
allowing us to compare a classic ban scheme to shadow
banning. To further confront the two systems, we monitor
the number of false attributions - either detecting an honest
worker as a saboteur, or not detecting a saboteur. Finally,
we collect the number of computations done after a shadow
ban. All of these metrics help to study shadow banning
regarding to the types of tasks and the detection systems.

3.4 Parameters
After describing which metrics to monitor, we need to define
various parameters to test shadow banning in multiple
settings. Then, we will be able to determine the optimal
context to use it.

3.4.1 Type of detection
As the backtracking process changes based on the type of
detection, we want to test a number of them. For our project,
we selected three from the literature:

• Majority voting (5 replications);
• M-first voting (5 replications, first 3 results);
• Credibility-based voting and spot-checking, based on

the works of Sarmenta et al [19].

More specifically, our BBVC system is considered with-
out blacklisting as saboteurs can come back easily. Thus,
the credibility of workers and their results follows the basic
formula Cr = 1 − k

f with k the number of previous spot-
checks and f the fraction of saboteurs in the system. We
use a threshold of 0.98 and a probability of spot-check of
0.25; these values were found empirically to be the most
interesting for the dwell times of our project.

To determine the correct answer for a task, we compute
hashes identifying each computation results provided by
workers. These hashes are then used in one of the detection
system described above. Workers who gave a wrong result
are identified as saboteurs and are (shadow) banned; all of
their work must be backtracked. Although backtracking can
be adjusted to suit a specific type of detection, we opted for
the simplest solution. Each time a saboteur is detected, all
of the tasks they have been part of are reset and must be
computed again.

3.4.2 Temporal distribution of workers
In a BBVC system, workers are highly volatile. Computa-
tions sometimes can not end and it is hazardous to assume
a specific volunteer will stay connected. More specifically,
the dwell time of workers follows a Weibull distribution.
Based on [24], we create three categories of workers:

• Honest workers with a short dwell time (60 seconds);
• Honest workers with a long dwell time (300 sec-

onds);

https://emscripten.org
https://www.selenium.dev/
https://gitlab.com/bob_project/results
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• Saboteurs with a long dwell time (300 seconds).

To follow the Weibull distribution, 80% of workers be-
longs to the first category, while the others 20% are put in
the second one. Moreover, each saboteur has a fixed pool
of time; if they get banned before the timer ends, they
automatically come back for the remaining visit duration.
A smoother distribution could be used but the number of
workers for our project is limited. More specifically, we use
the data from table 2. Saboteur rates go from 0 to 50% but
not over it, as majority voting is not usable passed this
threshold.

Percentage of
saboteurs

Number of
saboteurs

Number of
long workers

Number of
short workers

0% 0 10 41
5.0% 2 10 39
10.0% 3 10 38
20.0% 6 9 36
30.0% 8 9 34
40.0% 12 8 31
50.0% 15 7 29

TABLE 2
Number of workers and saboteurs for each percentage of saboteurs

3.4.3 Type of tasks

Tasks are on a spectrum going from computing intensive
to network intensive; some require more processing power
while others need numerous round trips, and everything
in between. In our experiment, we choose to test only two
extreme scenarios to determine which setting fits a shadow
banning scheme best.

To do so, we first implement a hash comparison algo-
rithm using MD5 as a proof of concept. We send a hash
and an interval of strings to workers, for example ”aaaa”
to ”eeee”. Then, they compute all the corresponding hashes
and compare each one to the expected result. In this sce-
nario, saboteurs only compute half of the interval of strings
and return a falsified answer. By sending intervals of strings,
we can fine-tune the required computation time. Doing so
enables workers with a short dwell time to perform at least
one task. For this purpose, we find that intervals of 107

hashes suit our system best.
For network intensive tasks, we change the color of a 500

pixels by 500 pixels PNG image using libpng5. Whereas data
for hashes brute-force require around 30 bytes to transmit,
each of the images weights between 200 and 500Kb. To
visually demonstrate the good functioning of this proof of
concept, honest workers return a blue image and saboteurs
return a red one, each using the relevant RGB canal.

3.4.4 Saboteurs

As said in section 3.4.2, saboteurs stay on the page as long
as the honest workers. However, their proportion varies
from a test to another. Likewise, there can be a probability a
saboteur comes back after they are banned. For our tests, we
assumed a motivated saboteur would change their identity
and request computations again 100% of the time.

5. www.libpng.org/pub/png/pngdocs.html

4 RESULTS

In this section, we present our results, starting with the
server-side performance implications of shadow banning,
before studying its impact on detection techniques and
finishing with the relevancy of the type of tasks.

4.1 Server-side performance

From the server’s point of view, shadow banning works
best with a small number of saboteurs. A saboteur rate of
less than 30% provides a significant advantage over a classic
system, before being outclassed in the following rates.

More specifically, we present in figure 2 the evolution
of the network load for each saboteur rate during all the
tests, sorted by types of bans. For example, for a 10%
rate, around 140 × 106 bytes (140Mb) are transferred with
shadow banning versus 131× 106 bytes (131Mb) in a classic
banning scheme; this roughly represents a 6.4% increase.
This tendency is reversed in higher rates, as classic banning
requires 13×106 bytes less (13Mb) for a 40% rate, meaning a
10% decrease compared to shadow banning. This behavior
is directly linked to the number of computations sent to
workers, as seen in figure 3. In average, shadow banning
distributes around 14 computations less than classic ban-
ning for a 10% rate and 19 more for a 40% rate.

Fig. 2. Evolution of the network load for each saboteur rate

This can be explained by the quickness of distributing
tasks, as shadow banned saboteurs do not have to re-join
the computations after they are detected. Indeed, banned
users in a classic system need to spot the change, and then
log back in under a new identity. In our system, closing
then loading a new browser window takes enough time to
be noticeable and to induce these disparities.

This is particularly important, as the more time-
consuming it is to create a new identity, the greater the

www.libpng.org/pub/png/pngdocs.html
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Fig. 3. Evolution of the number of computations sent to workers for each
saboteur rate

difference of performance between classic and shadow ban-
ning will be. Although our solution requires only half a
dozen of seconds before reloading a saboteur, the period
of time could be greater in more complex systems requiring
to register a new account after a ban. However, a BBVC
system aims to be as open as possible to take advantage of
its numerous users. Using a complex and time-consuming
process to enroll might discourage some potential new
volunteers.

4.2 Synergy with detection techniques
Another interesting advantage of shadow banning is the
smaller number of false attributions when detecting sabo-
teurs, no matter the detection technique used. Figure 4
compares the number of times the provider falsely labels a
saboteur as an honest worker (false negative) for a classic
ban scheme and shadow banning. For example, shadow
banning generates around 2 false negatives less than classic
banning out of 2.5 for a 10% rate, and roughly 5 less out of
19.3 for a 40%. Studying the number of times the providers
falsely labels an honest worker as a saboteur (false positive)
in figure 5, we notice both systems are closer from each
other in lower rates, but shadow banning is still more
advantageous. Notably, for a 20% saboteur rate, only 7 false
positives are raised using shadow banning versus 12.4 with
a classic ban scheme. Overall, there are in average 35.83%
less false negatives and 33.50% less false positives in a
shadow banning system.

As shadow banned saboteurs do not try to rejoin the
system under a new identity, there are less instances where
they can be wrongly labelled. This is directly linked to the
number of backtracks necessary: a classic system requires
in average 8.7 operations more than shadow banning. Al-
though shadow banning does not imply a faster detection

Fig. 4. Number of false negatives based on the saboteur rate, for classic
and shadow banning systems

Fig. 5. Number of false positives based on the saboteur rate, for classic
and shadow banning systems

and thus less backtracks directly, it naturally helps as sabo-
teurs stay connected as long as long as possible. Hence, the
backtracking operations required are done once, after the
first and only detection.

Then, we study the number of false positives and false
negatives in the context of various detection techniques. To
do so, we subtract the number of false attributions with
shadow banning to the one in a classic ban scheme for
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each method: majority, m-first and credibility-based voting.
For example, a difference of 10 means a classic ban scheme
produces 10 more false attributions than shadow banning.

Fig. 6. Difference between the number of false positives in a classic and
shadow banning system

Fig. 7. Difference between the number of false negatives in a classic and
shadow banning system

The varying factor shown in figure 6 is the distribution
over various saboteur rates. For a 20% rate, majority and
m-first voting are close to a 8 false positives difference
out of 17.3 false positives for classic banning. However, it
greatly decreases for other rates. In comparison, credibility-
based detection is much more efficient starting from 30%
saboteur rate; there are around between 4 and 6 less false
positives using shadow banning with this technique. This
phenomenon is also prevalent for false negatives as seen in
figure 7. For higher saboteur rates, credibility-based voting
is clearly more efficient, with around 14 less false negatives
for 40%, whereas majority and m-first are close to their
classic banning counterparts.

As the detection in majority and m-first voting tech-
niques is based on the community of workers, a higher
number of saboteurs reduces their efficiency. On the con-
trary, spot-check tasks used for the credibility-based system
only depend on the studied worker. The number of false at-
tributions from 30% to 50% saboteur rate with a credibility-
based technique thus decreases compared to other detection
mechanisms. In other words, shadow banning crystallizes
the resilience of a detection technique.

4.3 Network or computing intensive tasks

Finally, we compare the two types of tasks used. Collected
data does not seem to show a direct link between their
nature - network or computing intensive - and shadow
banning. However, time plays an important role. The color
transformation of PNG images takes way less time than
hash brute-forcing. This led PNG tasks to complete much
faster, increasing the number of votes, detections and thus
computations done after a shadow ban, as seen in figure 8.
For example, for a 5% saboteur rate, there are in average 3.2
hash computations and 15.7 PNG computations done after
shadow bans. This gap greatly increases in higher rates; for
40%, there are roughly 9 hash computations and 52.4 PNG
computations. In average, 31 more computations were done
after a shadow ban for PNG compared to hash brute-forcing.

4.4 Discussion

In light of the previous results related to false attributions,
we can summarize the impact of shadow banning alongside
the various detection techniques. As stated in table 3, this
banning scheme suits majority and m-first voting best with
saboteur rates below 30%. For higher rates, credibility-based
detection proves to be more efficient. Thus, if the number of
false attributions is an important criteria, one could adapt
the detection mechanism based on the estimated saboteur
rate.

Lastly, we compare the overall server-side performance
of classic and shadow banning in table 4. Although the
number of false attributions is always in favor of shadow
banning, server-side performance heavily depends on the
saboteur rate. In lower rates, shadow banning is more
advantageous but this phenomenon is reversed after 30%.
Thus, if reducing the server load is imperative, one may
want to keep using a classic ban scheme in a highly unsafe
environment.

In table 3, a plus sign means the studied context benefits
from shadow banning whereas a minus sign means a classic
ban scheme is more interesting. Using multiple plus signs is
simply a way of comparing two or more criterion between
themselves. In table 4, a plus sign indicates which banning
scheme provides the best performance between the two.

Detection
technique

Saboteur
rate [0:30[ [30:50]

Majority ++ +
M-first ++ +
Credibility - ++

TABLE 3
Comparing the efficiency of detection techniques while using shadow

banning

Type
of ban

Saboteur
rate [0;30[ [30;50]

Classic banning - +
Shadow banning + -

TABLE 4
Comparing server-side performance for classic and shadow banning

schemes
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Fig. 8. Evolution of the number of computations done after a shadow ban, by type of tasks

5 LIMITS AND FUTURE RESEARCH

Although our model aims at recreating realistic settings, it is
far from being an actual representation of a BBVC system as
multiple parameters are approximated in order to conduct
the experiments.

First of all, despite our best efforts to increase the number
of workers, we could not come close to a realistic amount,
compared to a slightly famous website. Finding a more or-
ganic but still relevant audience is a challenge for small-scale
research projects and we settled for a repeatable approach.
Duplicating each tasks 5 times over a 51 workers cluster
reduces the precision of the results but is still close or higher
than other works in the literature [25] [26].

Additionally, the dwell time of workers follows the
Weibull distribution. This statistical analysis, while helpful
to automate visitors’ behavior, can vary from site to site.
In our experiments, we make sure even short visits would
be long enough to finish at least one computation. As even
them can greatly impact the results, it would be necessary
to adapt tasks to the actual minimal dwell time.

As stated in the section 2, we approximate the behavior
of saboteurs. Allowing coordinated attacks is interesting to
address as they do happen but it is quite overshadowed
by saboteurs cheating every single time. Indeed, [27] hy-
pothesizes that an attacker may want to alter a specific
information, for example a single line of log containing in-
criminating data. In a less extreme scenario, we can imagine
an attacker only sending false results from time to time. This
behavior can be way more difficult to detect and to emulate
without actual data to back the model up.

We also assume a saboteur automatically join the system
again after a ban and do not reset their connection by
themselves. This can also apply to honest workers, as they
may re-join the system if they are wrongfully banned, or
organically quit and come back later under a new iden-
tity. Based on our results, this is especially true, as honest

workers are quite often excluded with higher saboteur rates.
Again, a new analysis of field data may help the project
calibrate more effectively their behavior.

Finally, we use our machines and our internet con-
nections, which creates a somewhat heterogeneous cluster,
but does not represent an actual model. A more realistic
approach would be to follow field data for simulating the
percentage of mobile phones, tablets and computers. Other
than computing power, adapting the connection speed
could be interesting. Either way, it impacts the workers’
capacity to finish their computations in a timely fashion.
Another approach is to adjust the minimal time required
to the estimated power of the browser [8], also known as
resource-aware scheduling [28].

In the future, studying the turning point around the 30%
saboteur rate could be interesting. Although we have shown
shadow banning can be advantageous both performance-
wise and as a support to detection techniques, having a
better understanding of when it lacks power could help
improving it further. A more analytic study on the temporal
nature of tasks, in opposition of our network/computing in-
tensive classification, and their relation to shadow banning
could also be conducted. As our project focused on browser-
based computations, one could finally try shadow banning
in more usual volunteering systems such as BOINC. The
difference induced by the variation of dwell time in both
settings should be investigated.

6 CONCLUSION

Shadow banning is overall more resilient than a classic ban
scheme as it reduces the number of false attributions for all
detection techniques studied. It also improves the server-
side performance in a significant manner for saboteur rates
between 0 and 20%. Considering these results, it can be an
interesting alternative over conventional banning scheme in
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BBCV systems promising a large number of visitors and
thus low saboteur rates.
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