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A Riemannian Revisiting of
Structure–Function Mapping Based
on Eigenmodes
Samuel Deslauriers-Gauthier*, Mauro Zucchelli, Hiba Laghrissi and Rachid Deriche

Centre Inria d’Université Côte d’Azur, Valbonne, France

Understanding the link between brain structure and function may not only improve our

knowledge of brain organization, but also lead to better quantification of pathology.

To quantify this link, recent studies have attempted to predict the brain’s functional

connectivity from its structural connectivity. However, functional connectivity matrices

live in the Riemannian manifold of the symmetric positive definite space and a specific

attention must be paid to operate on this appropriate space. In this work we investigated

the implications of using a distance based on an affine invariant Riemannian metric in

the context of structure–function mapping. Specifically, we revisit previously proposed

structure–function mappings based on eigendecomposition and test them on 100

healthy subjects from the Human Connectome Project using this adapted notion of

distance. First, we show that using this Riemannian distance significantly alters the

notion of similarity between subjects from a functional point of view. We also show

that using this distance improves the correlation between the structural and functional

similarity of different subjects. Finally, by using a distance appropriate to this manifold, we

demonstrate the importance of mapping function from structure under the Riemannian

manifold and show in particular that it is possible to outperform the group average and

the so–called glass ceiling on the performance of mappings based on eigenmodes.

Keywords: brain structure-function mapping, functional connectivity, structural connectivity, eigenvalue

decomposition, Riemannian distance

1. INTRODUCTION

Current imaging technology allows us to observe the brain’s connectivity both from a functional
and structural point of view, for example using resting state functional magnetic resonance imaging
(MRI) and diffusion MRI tractography, respectively. These two views are not decoupled and
provide complementary information of the connectivity, and more general architecture, of the
brain. Indeed, a current representation of the brain is that of a network, where the white matter
substrates allows communication between distant brain regions (Sporns et al., 2005). Given this
perspective, it is natural to try to understand and quantify the link between brain structure and
function. One strategy to quantify this link is to predict, at least partially, the brain’s function
from its structure, so called structure–function mapping. In addition to the overarching goal of
understanding the brain’s organization, the ability to predict the brain’s function from its structure
has the potential to improve our understanding and quantification of brain pathologies (Wang
et al., 2017).
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Recently, many different strategies have been proposed
to predict functional brain connectivity from structural
connectivity. These range from sophisticated biophysical
models (Galán, 2008; Honey et al., 2009; Deco et al., 2011;
Deco and Jirsa, 2012; Messé et al., 2015a,b) to simpler
approaches that do not attempt direct physical modeling
(Deligianni et al., 2013; Abdelnour et al., 2014, 2018; Meier
et al., 2016; Saggio et al., 2016; Liang and Wang, 2017;
Becker et al., 2018; Nozari et al., 2020; Benkarim et al.,
2021)’. A subset of these models specifically rely on the
eigendecomposition of the structural connectivity matrix or
its Laplacian (Robinson et al., 2016; Preti and Van De Ville,
2019) with promising applications to pathology (Raj et al., 2012;
Abdelnour et al., 2021). Focusing on this type of approach,
our group recently showed that these mappings can be unified
under a general formulation (Deslauriers-Gauthier et al.,
2020), highlighting the relation between series expansion and
eigenmode approaches (Tewarie et al., 2020). This allowed
us to highlight the link between the different models and
directly compare them. While some models achieved high
prediction accuracy, we found that all current model based
on the eigendecomposition were outperformed by a simple
group average. A possible explanation for this result is that
the variability of the structural and functional connectivity is
not sufficient in healthy subjects to be captured by the models
(Deslauriers-Gauthier et al., 2020). A second possibility, the
focus of this work, is that the tools used to train the models
and evaluate their performance, i.e., the Frobenius norm
and Pearson correlation, are not adapted to the space of
functional connectivity matrices. By adapting the notion of
distance to the manifold of functional connectivity matrices,
it may be possible to improve the performance of existing
structure–function mappings.

In this work, we revisit existing structure–function
mapping models based on eigenmodes from a Riemannian
perspective. Instead of computing distances between functional
matrices in the vector space of symmetric matrices, we
instead propose to use an affine invariant metric inducing
a Riemannian distance. In addition to altering the objective
function used to identify the parameters of the different
mappings, this also changes the benchmark used to evaluate
them. In our previous work (Deslauriers-Gauthier et al.,
2020), we showed that a simple group average, which was
used as a reference model, outperformed all eigenmode
models. However, the use of a Riemannian distance for
positive define matrices leads to a unique and well defined
Fréchet mean (You and Park, 2021) which we propose as
a more appropriate reference over the direct mean used
previously. With this change of perspective, we demonstrate
the importance of mapping function from structure under
the Riemannian manifold, we improve the prediction of
functional connectivity from structural connectivity, and we
overcome the performance of the group average and the so–
called glass ceiling on the performance of mappings based
on eigenmodes.

2. MATERIALS AND METHODS

2.1. Structure–Function Mapping
The objective of structure–function mapping is to identify a
function f that minimizes the functional

L(f ) =
1

K

K
∑

k=1

d2(f (Sk), Fk) (1)

where Sk ∈ R
M×M and Fk ∈ R

M×M are the structural and
functional matrices of the kth subject and M is the number of
considered brain regions. The function f :RM×M → R

M×M is
the so called structure–function mapping whose parameters are
optimized by minimizing Equation (1). Note that f could be
defined indendently for each subject, but we focus here on the
situation where a single mapping is optimized across all subjects.
The function d(A,B) measures the distance between matrices A
and B. If the Frobenius norm is used, Equation (1) reduces to the
usual formulation of the problem which is to minimize

L(f ) =
1

K

K
∑

k=1

‖f (Sk)− Fk‖
2
F
. (2)

Once the parameters of the mapping f minimizing Equation (1)
have been identified, its performance can be assessed on a new set
of subjects by evaluating

E(f ) =
1

K ′ − K

N
∑

k=K+1

d2t (f (Sk), Fk) (3)

where dt is the testing function. Interestingly, while the Frobenius
norm or Euclidean distance is sometimes used, a more common
choice is to use the Pearson correlation (Becker et al., 2018).
In this case, the parameters of the mapping identified may
be suboptimal as the optimization criterion differs for the
evaluation criterion. However, optimizing the correlation directly
is challenging as it is scale invariant and thus does not have
a unique solution. In addition, the correlation is not a metric
as it does not satisfy the triangle inequality which may lead
to unintuitive comparison results. A metric can be calculated
from the correlation via its relation to the cosine similarity, but
there is no intrinsic justification for the use of angular distance
between functional matrices. When the Frobenius norm is used
for both optimization and evaluation, the model parameters
are optimal, but the notion of distance is not adapted to the
manifold of functional connectivity matrices as we discuss in the
following section.

2.2. Riemannian Structure–Function
Mapping
In the context of structure–function mapping, the functional
connectivity matrices are typically computed as the Pearson
correlation between the resting state BOLD fMRI signal of

Frontiers in Neuroimaging | www.frontiersin.org 2 May 2022 | Volume 1 | Article 850266

https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroimaging#articles


Deslauriers-Gauthier et al. Riemannian Structure-Function Mapping

different brain areas. Let D ∈ R
M×T be the data matrix

where each row contains the demeaned and normalized
time series of a brain area. The functional matrix can be
written as F = DDT whose singular value decomposition
is U62UT . Functional connectivity matrices are therefore
symmetric positive semidefinite. In practice, because the time
series of a brain area is unlikely to be expressed exactly as a
linear combination of the other areas, they are in fact symmetric
positive definite (SPD). The space of SPD matrices is a convex
smooth manifold of the Euclidean space, a convex half–cone in
the vector space of symmetric matrices. Because of this conical
structure, it is natural to consider Riemannian metrics on the
space of SPD matrices. In particular, affine–invariant metrics
have been suggested and induce a Riemannian distance

d2(A,B) = Tr(log2(A−1/2BA−1/2)) (4)

where log is the matrix logarithm and Tr is the trace. These
notions have been used in the context of brain connectivity to
classify connectivity matrices (Dodero et al., 2015) and regression
(Wong et al., 2018). The Riemannian nature of the problem
has also been observed by Benkarim et al. (2021), although
they rely on the Euclidean distance for optimization and the
correlation for evaluation. You and Park (2021) also re–visited
Riemannian geometry for functional connectivity matrices, but
they did not consider structure–function mapping specifically.
Using a Riemannian distance over the Euclidean distance or
correlation has several advantages. First, the distance is not
computed elementwise but rather considers the general structure
of the matrix (You and Park, 2021). This is consistent with
the notion that the structure–function relationship is not one
to one (Mišić et al., 2016) and instead operates on a network
level (Atasoy et al., 2016; Xie et al., 2021). Second, matrices
with non-positive or infinite eigenvalues are both infinitely far
from any SPD matrices (Lenglet et al., 2006; Pennec et al.,
2006), capturing the notion that they do not correspond to valid
functional connectivity matrices. Finally, this space is smooth
and allows the computation of a unique geodesic, and thus
a unique minimal distance, between any pair of functional
connectivity matrices. We thus propose to revisit the structure–
function mappings based on eigenmodes using the Riemannian
distance of Equation (4).

2.3. Reference Model
In our previous work (Deslauriers-Gauthier et al., 2020), we
argued that the performance of structure–function mappings
should be compared to a suitable reference model. A natural
benchmark is the Fréchet mean F̄ which minimizes

∑

k d
2(F̄, Fk)

and can thus be seen as a zeroth order mapping, one that does not
make use of structural information. When the Euclidean norm
is used to estimate model parameters, it can be computed as
the average of the functional matrices of the training set F̄E =
1
K

∑K
k=1 Fk. However, when the distance is given by Equation (4),

the Fréchet mean cannot be computed directly. It must instead be

estimated using the following iterative scheme

F̄t+1 = F̄
1/2
t exp(

1

K

K
∑

k=1

log(F̄
−1/2
t FkF̄

−1/2
t ))F̄

1/2
t (5)

which coverages to the unique value F̄R minimizing
∑

k d
2(F̄, Fk)

(Pennec et al., 2006). We use the definition above as a the
reference model for our proposed methodology.

2.4. Optimization Procedure
As was shown in our previous work (Deslauriers-Gauthier et al.,
2020), all existing mappings based on eigenmodes can be written
as

f (S) =

N−1
∑

n=0

g(λn)h(un)+ C (6)

where C ∈ R
N×N is a constant symmetric matrix and where

λn ∈ R and un ∈ R
N are the nth eigenvalue and eigenvector of S,

respectively. For example, to reproduce the spectral mapping of
Becker et al. (2018), we can define

g(λ) =

P
∑

m=0

apλ
p and h(un) = Runu

T
nR

T (7)

where am ∈ R and R is a rotation matrix. The formulation
in Equation (6) allows us to devise a general optimization
scheme for all existing mappings. The objective is to minimize
Equation (1) where the distance is given by Equation (4), that is

L(f ) =
1

K

K
∑

k=1

Tr(log2(F
−1/2
k

f (Sk)F
−1/2
k

)) (8)

By substituting the general form in Equation (6), we obtain

L(f ) =
1

K

K
∑

k=1

Tr(log2(F
−1/2
k

(

N−1
∑

n=0

g(λn)h(un)+ C

)

F
−1/2
k

))

=
1

K

K
∑

k=1

Tr(log2

(

N−1
∑

n=0

g(λn)h
′
k(un)+ C′

k

)

)

where

h′k = F
−1/2
k

h(un)F
−1/2
k

and C′
k = F

−1/2
k

CF
−1/2
k

. (9)

To minimize this functional, we iteratively minimize over the
parameters of each term g, h′, and C′ while keeping the others
fixed in amanner similar to the coordinate descent algorithm. For
the eigenmode weights g, the parameters were optimized using
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm via
scipy (Virtanen et al., 2020). For h′ and C′, the parameters were
optimized using Pymanopt1 to ensure the parameters remained
on themanifold of rotation and symmetric matrices, respectively.
In practice, the performance of all models converged after
approximately three iterations.

1https://github.com/pymanopt/pymanopt
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TABLE 1 | Definition of the structure–function mappings based on eigenmodes

and their number of degrees of freedom.

References Model Degrees of freedom

Abdelnour et al. (2014)
F (L) = e−βLt 1

Abdelnour et al. (2018)
F (L) = ae−αL + bI 3

Meier et al. (2016)
F (S) =

∑M
m=0 anS

m M+ 1

Becker et al. (2018)
F (S) = Q

(

∑M
m=0 am6m

)

QT M+ 1+ (N2 − N)/2

Deslauriers-Gauthier

et al. (2020)

F (S) = Q
(

∑M
m=0 am6m

)

QT + C M+ 1+ N2

For mappings whose input is L, the Laplacian of the structural connectivity matrix is

computed before fitting the model. The diagonal matrix 6 contains the eigenvalues of

the structural connectivity matrix S.

2.5. Evaluation
We evaluated the performance of the mappings proposed by
Abdelnour et al. (2014, 2018) and spectral mappings (Meier et al.,
2016; Becker et al., 2018; Deslauriers-Gauthier et al., 2020) which
were all implemented using the general model in Equation (6).
The specific form of the mappings is provided in Table 1. For
the specific cases of the diffusion mappings, the Laplacian of the
structural matrix, defined as L = I − D−1/2SD−1/2 where D is
the diagonal degree matrix, was used as input. For models relying
on spectral mapping, the maximum order was set toM = 6. For
each mapping, the parameters were learned using a leave-one-
out cross-validation strategy, meaning K ′ = 100 and K = 99
in Equation (3). The performance of each mapping was then
evaluated by measuring the distance between the predicted and
observed functional connectivity matrices using Equation (4) on
the left out subject. Finally, the performance of Fréchet mean
in Equation (5) was evaluated using the same strategy and
used as a benchmark.

2.6. Data and Data Processing
The data was provided by the Human Connectome Project2

(HCP) and our processing started from the minimally processed
data (Glasser et al., 2013) for both diffusion and functional MRI
data. The rest of pipeline is very similar to the one used in
our previous work (Deslauriers-Gauthier et al., 2020), which
we describe here again for completeness. For 100 unrelated
subjects provided by the HCP, the brain was extracted using
FSL bet (Smith, 2002) and the white matter, gray matter,
and cerebrospinal fluid were segmented using FSL fast (Zhang
et al., 2001). Using the FreeSurfer3 segmentation (Fischl, 2012)
and the diffusion weighted images, a single fiber response
function was computed for the white matter, gray matter, and
cerebrospinal fluid using MRtrix34 (Tournier et al., 2019).
These response function were then used to compute a fiber
orientation distribution function for each voxel using contrained
spherical deconvolution (Tournier et al., 2007). Five million

2https://www.humanconnectome.org
3https://surfer.nmr.mgh.harvard.edu/
4http://www.mrtrix.org

FIGURE 1 | Histogram of the distances between the functional matrices of

every subject using the Euclidean and Riemannian metrics. The nearest

neighbor, minimizing each distance, are also presented. Teal and blue

elements correspond to Euclidean and Riemannian nearest neighbors

respectively and yellow indicates agreement between the two metrics.

streamlines were generated using anatomically constrained
probabilistic tractography using a step of 0.3 mm, a maximum
length of 400 mm, and backtracking (Smith et al., 2012).
In an effort to make connectomes more quantitative and to
reduce the impact of false positive connections (Maier-Hein
et al., 2017) by re-establishing the biological interpretability of
streamline-based structural connections, the tractograms were
filtered using SIFT2 (Smith et al., 2015) assigning a weight
to each streamline representing its cross-sectional area. The
cortical surface extracted with FreeSurfer was parcelated using
the Schaefer atlas (Schaefer et al., 2018) into N = 200
regions. Given the parcellation and the streamlines, the structural
connectome was built by summing the SIFT2 weights of
streamlines connecting two cortical regions. The connectomes
were symmetrized by summing the (i, j) and (j, i) entries
of the connectome. Finally, the structural connectomes were
normalized by dividing by the sum of the off diagonal entries
and the diagonal set to zeros. While some authors removed weak

Frontiers in Neuroimaging | www.frontiersin.org 4 May 2022 | Volume 1 | Article 850266

https://www.humanconnectome.org
https://surfer.nmr.mgh.harvard.edu/
http://www.mrtrix.org
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroimaging#articles


Deslauriers-Gauthier et al. Riemannian Structure-Function Mapping

connections we followed the recommendations of Civier et al.
(2019) and omitted pruning thus keeping weak connections. The
rational is that weak connections have little impact on values
derived from connectivity matrices. It is therefore preferable
to simplify the processing pipeline and reduce the number of
arbitrary parameters by omitting this step.

The resting state functional MRI data provided by the HCP
offers two sessions each containing two acquisitions, one with
left to right encoding and one with right to left encoding. Here,
we made use of the first (REST1) session and preprocessed
the two acquisitions as follows. The time series were filtered
using a butterworth bandpass filter with critical frequencies
0.01 and 0.1 Hz (van den Heuvel and Hulshoff Pol, 2010).
The first 20 volumes of each acquisition were dropped and the
remaining volumes linearly detrended (Caballero-Gaudes and
Reynolds, 2017). The movement parameters and their derivatives
were regressed out and the data was motion scrubbed (Power
et al., 2012). After this preprocessing, we concatenated both
acquisitions to produce a single dataset per subject. The mean
signal for each parcel was computed and used to build the
functional connectivity matrix using Pearson correlation. To
preserve the SPD nature of the functional connectomes, the
negative entries of the matrices were preserved, in contrast to our
previous work.

3. RESULTS AND DISCUSSION

3.1. Riemannian vs. Euclidean Distances
First, we investigated the impact of measuring distances between
functional matrices using the Euclidean or Riemannian metrics.

To this end, we measured the distance between the functional
matrices for every pair of subjects using bothmetrics. In addition,
for each subject, we identified the other subject having the
closest functional matrix, i.e., the nearest neighbor, again for
both distances. The resulting distance and nearest neighbor
matrices are illustrated in Figure 1. The Riemannian distances
have a mean of 31.5 ∓ 2.3 with a range of 26.0 to 40.4 and the
Euclidean distribution has a mean of 51.4 ∓ 9.3 with a range
of 30.3 to 90.1. This change in distribution indicates that using
the Riemannian distance significantly changes the relationship
between functionalmatrices. To further confirm this observation,
we note that the nearest neighbors for each distances do not
agree. Indeed, only nine subjects had the same nearest neighbors
using both distances, while 91 subjects differed. From these
results, we conclude that the notion of similarity between subjects
is significantly altered by the change in metric. Consequently, the
relationship between structure and function will also be affect and
reflected in the structure–function mappings.

To investigate whether these changes improved the structure–
function relation, we additionally computed the distance between
structural matrices of every subject. Figure 2 illustrates the
functional distance as a function of the structural distance
for every subject. Both distances where converted to z-scores
before plotting. We can observe that subjects that have a short
structural distance are more likely to have a short functional
distance when measured with the Riemannian distance rather
than the Euclidean distance. To quantify this observation, we
computed the coefficient of determination R2 for each distance
and obtained 0.016 and 0.135 for the Euclidean and Riemannian
distances, respectively. In other words, subjects that have a

FIGURE 2 | Distances between the structural matrices as a function of the distance between functional matrices for every subject. Both distances where converted to

z-scores before plotting. On the (Left) plot, the distance between functional matrices is measured using the Euclidean metric and on the (Right) with the Riemannian

metric. The coefficients of determination R2 are 0.016 and 0.135 for the Euclidean and Riemannian distances, respectively.
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similar structural matrix also have a similar functionalmatrix, but
only when distances are measured using the Riemannian metric.
Note that these results are independent of any mapping strategy
and instead provide evidence in favor of Riemannian metric on a
more fundamental level. It is indeed expected that subjects with
a similar structure should also have a similar function, but the R2

score near zero obtained by the Euclidean metrics would instead
indicate a decorrelation between these two views of the brain.

To leverage this correlation between the structural and
functional distances, we devised an additional mapping and
included it in the following experiments. In this new mapping,
the predicted functional connectivity matrix is given the
Riemannian mean of the P training subjects whose structural
connectivity matrices are closest to that the of the new subject,
i.e., the P nearest structural neighbors. The rationale is that
subjects having a similar structure will also have a similar
function and averaging only the structural nearest neighbors will
lead to an improve functional estimation. In the following section
we refer to this mapping as the Riemannian nearest neighbors
mean and empirically choose P = 50.

3.2. Structure–Function Mapping
Figure 3 illustrates the performance of the different mappings
optimized using the procedure in Section 2.4. Notably, the
mapping devised in Deslauriers-Gauthier et al. (2020) by adding
a constant to the spectral mapping of Becker et al. (2018) obtains
a mean squared distance (MSD) of 449.9 and outperforms the
Riemannian mean which obtained a distance of 450.5. While the
performance gain is admittedly small, we found the differences in
errors to be statistically significant (p < 0.001). Another notable
change is the inversion of the performance between the diffusion
model of Abdelnour et al. (2018) and the spectral model of Meier
et al. (2016) with respect to our previous study (Deslauriers-
Gauthier et al., 2020). Using the Euclidean metric, the diffusion
model was outperformed by the spectral model, a result that
was justified by the parsimonious nature of the diffusion model.
Using the Riemannian metric, the diffusion model obtained
an MSD of 558.7 whereas the spectral model obtained 578.4.
Except for this change, the performance relationship between
previously proposedmapping strategies followed the same trends
as in our previous work. In general, mappings with more
degrees of freedom (see Table 1) provided better predictions,
but at the cost of increased complexity. Finally, the Riemannian
nearest neighbors mean mapping obtained the best performance
overall with a MSD of 448.9. This improvement in performance
illustrates that the correlation between structural and functional
distances, only observed using the Riemannian metric, can be
leveraged to improve our prediction of function from structure.

3.3. Limitations
One of the fundamental assumptions in structure–function
mapping is that changes in the structural connectivity of
subjects affects their functional connectivity. However, this study
considered healthy young adults, a very homogeneous cohort
with similar structural connectivity. As such, the structural
differences between subjects are subtle and may contribute to
the high prediction accuracy of the mean. A second limitation

FIGURE 3 | Mean squared Riemannian distance of five previously proposed

mapping based on eigenmodes, the reference mapping (Riemannian mean),

and the Riemannian nearest neighbors mean (P = 50).

is the use of existing mappings that were not explicitly designed
with the tools of Riemannian geometry. This may also contribute
to the high performance of the mean, which is optimal in
a Riemannian sense. An interesting avenue of research is the
design of mappings that leverage the topology of the space of
SPD matrices to improve the predictions performance. A simple
proof-of-concept for this approach is the Riemannian nearest
neighbors mean which obtained the lowest MSD, and thus the
best functional prediction.

It is also important to note that the impact of the different
processing steps on our ability to predict function from structure
in a Riemannian setting was not evaluated. Indeed, both
the functional and structural connectivity pipelines require
the selection of parameters which will modify the estimated
connectivity. For example, structural matrices can be constructed
by counting streamlines or by using a weighting strategy such
as COMMIT (Schiavi et al., 2020) or SIFT2 as was done
here. To investigate the importance of this specific choice,
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we reproduced the experiments using streamline counting
structural connectomes. The results obtained (available in
Supplementary Materials), are close to those produced by SIFT2
connectomes and do not alter the conclusions. However, this
may not be the case for every step of the pipelines and
an exhaustive search may lead to further improvement of
the predictions.

Finally, the structural connectivity matrices of this study
only considered white matter cortico-cortical connections. Other
connections, for example those including subcortical nodes
and superficial white matter fibers (Reveley et al., 2015),
are not encoded in the matrices. As such, it is unlikely
that functional connectivity can be completely predicted by
the structural matrices. Adding these missing connections
may very well improve the performance of structure-function
mappings, in addition to providing a more complete view of
structural connectivity.

4. CONCLUSIONS

In this work, we investigated the implications of using a distance
based on an affine invariant Riemannian metric in the context
of structure–function mapping. We argued that functional
matrices, if they are not thresholded, are symmetric positive
definite and therefore live in a convex half–cone in the vector
space of symmetric matrices. By using a distance appropriate to
this manifold, we showed that a previously proposed mapping
is able to outperform the group average, a result which was not
obtained with an Euclidean metric. While the improvement in
performance with respect to the mean was moderate, it should be
observed that the mappings were not specifically designed with
this manifold in mind and could thus be improved. In addition,
while we chose to focus on mappings based on eigenmodes, our
findings may also have interesting extensions to deep learning
approaches for structure-function mapping (Ji et al., 2021).
Indeed, the already promising performance of these approaches
may be further enhanced by the use of Riemannian geometry. In
conclusion, our results show that using the correct distance for

SPD matrices improved the performance of existing structure–
function mappings and may lead to better prediction with more
specific models.
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