
HAL Id: hal-03683733
https://hal.inria.fr/hal-03683733

Submitted on 31 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PROX-QP: Yet another Quadratic Programming Solver
for Robotics and beyond

Antoine Bambade, Sarah El-Kazdadi, Adrien Taylor, Justin Carpentier

To cite this version:
Antoine Bambade, Sarah El-Kazdadi, Adrien Taylor, Justin Carpentier. PROX-QP: Yet another
Quadratic Programming Solver for Robotics and beyond. RSS 2022 - Robotics: Science and Systems,
Jun 2022, New York, United States. �hal-03683733�

https://hal.inria.fr/hal-03683733
https://hal.archives-ouvertes.fr


ProxQP: Yet another Quadratic Programming Solver
for Robotics and beyond

Antoine Bambade∗†‡, Sarah El-Kazdadi∗†, Adrien Taylor∗†, Justin Carpentier∗†
∗Inria, Paris, France

†Département d’informatique de l’ENS, PSL Research University, Paris, France
‡ École des Ponts, Marne-la-Vallée, France

Corresponding author: antoine.bambade@inria.fr

Abstract—Quadratic programming (QP) has become a core
modelling component in the modern engineering toolkit. This is
particularly true for simulation, planning and control in robotics.
Yet, modern numerical solvers have not reached the level of
efficiency and reliability required in practical applications where
speed, robustness, and accuracy are all necessary. In this work,
we introduce a few variations of the well-established augmented
Lagrangian method, specifically for solving QPs, which include
heuristics for improving practical numerical performances. Those
variants are embedded within an open-source software which
includes an efficient C++ implementation, a modular API, as
well as best-performing heuristics for our test-bed. Relying on
this framework, we present a benchmark studying the practical
performances of modern optimization solvers for convex QPs on
generic and complex problems of the literature as well as on
common robotic scenarios. This benchmark notably highlights
that this approach outperforms modern solvers in terms of
efficiency, accuracy and robustness for small to medium-sized
problems, while remaining competitive for higher dimensions.

I. INTRODUCTION

Over the past decades, optimization has become an essential
component of robotics and a key enabler to simplify and
systematize the programming of complex robot movements.
Nowadays, many robotic problems – ranging from simulation,
control, planning and estimation – are framed as optimization
problems. An important class of such optimization problems is
that of convex quadratic problems, which allows dealing with,
among others, friction-less unilateral contact modelling [34],
constrained forward dynamics [3], inverse kinematics and
dynamics for task control [8, 17, 22], and legged locomo-
tion [42], to name a few. QPs are also commonly used
also as subroutines for solving more complex problems as
for instance in the context of constrained optimal control
problems [23, 19, 41].

Formally, a QP corresponds to the minimization of a con-
vex quadratic cost under some linear equality and inequality
constraints. It is mathematically described as:

min
x∈Rd

1

2
xTHx+ gTx

s.t.
{

Ax = b,
Cx ≤ u,

(QP)

where H ∈ Rd×d is a symmetric positive semi-definite matrix
(notation H ∈ Sd+), A ∈ Rne×d, C ∈ Rni×d, b ∈ Rne , and
u ∈ Rni . d is the so-called problem dimension, while ne and ni

are the numbers of equality and inequality constraints respec-
tively. In many scenarios, QP instances have to be solved at
very high-frequency (e.g., 1 kHz for inverse dynamics), under
various levels of accuracy depending on the application, and
potentially in relatively large dimension (e.g., model predictive
control). Reliable, accurate, fast and numerically robust solvers
are thus essential in modern robotic applications. Several
methods and their associated solvers have been developed
by the optimization community (e.g., qpOASES [9], Quad-
prog [12], OSQP [39], Gurobi [30], Mosek [28], BPMPD [26],
IPOPT [44], OOQP [10], etc.). Interestingly, in the robotics
community, Pandala et al. [31] have also proposed a dedicated
solver based on off-the-shelf interior-point methods combined
with adapted sparse routines, which has shown to operate
efficiently for generating different gaits on quadrupedal robots.

To the best of our knowledge, there is currently no numer-
ical QP solver meeting all the aforementioned requirements.
In this work, we propose a new approach, based on the well-
established augmented Lagrangian formalism [33, 18, 36], for
solving generic QPs, and provide a corresponding efficient
numerical C++ implementation. In this approach, we notably
propose to combine the bounded constraint Lagrangian (BCL)
globalization strategy with a (primal-dual) proximal method
of multipliers applied to (QP). These contributions pave the
way towards more advanced numerical methods for dealing
with complex optimization problems in robotics, with the
ambition of significantly reducing the computational burden,
increase the numerical robustness of the solver while also
lowering the need of manual tuning of the underlying hyper-
parameters. To validate our approach, we benchmark the
new solver against against its state-of-the-art competitors on
various problems ranging from randomly generated QPs to the
hard Maros-Mészàros [24] QPs of the optimization literature,
which includes classical robotic problems.

The paper is organized as follows. In Section II, we review
different commonly used methods for solving QPs. Section III
defines the different notations, reviews the classic augmented
Lagrangian techniques and introduces the proposed primal-
dual method for solving QPs. The core aspects of the method
are detailed in Section IV. The complete algorithm is depicted
in Section V. Finally, we benchmark the new solver against
the state-of-the-art in Section VI.



II. RELATED WORK

Generic constrained convex QPs are commonly solved with
iterative (or indirect) methods. These methods are traditionally
divided into two main families: (i) active-set methods, and
(ii) penalization methods. When the problem contains no
inequality constraint, direct methods can also be used, as
solving the corresponding QP can be done directly by solving
the corresponding (linear) Karush-Kuhn-Tucker (KKT) sys-
tem [29].

Iterative methods of both families typically aim at solving a
cascade of simpler intermediary optimization problems whose
solutions tend to those of the original problem.

1) Active-set methods: This family of methods, developed
in the 50s, aims at determining the set of active constraints at
an optimal point of (QP), see, e.g., [29, Section 16.5] for an
introduction. Once this set of active constraints is determined,
the constrained QP can be solved directly by considering a QP
with equality constraints only, and whose solution matches that
of the original QP. Popular active set-based convex QP solvers
include the open-source qpOASES [9], Quadprog [12], and the
QPA module in the open source software GALAHAD [13].

On the negative side, active-set methods typically suffer
from undesirable effects, such as “active-set cycling” [29,
sections 13.5 and 16.5]. This kind of phenomenon might slow
down the method when the QP at hand does not satisfy con-
straint qualification properties (such as the traditional “linear
independence constraint qualification” (LICQ), see, e.g., [29,
Definition 12.4]), that are sometimes hard to verify in practice
and are often not met.

On the positive side, warm-start strategies can easily be
incorporated within active-set methods. This is usually key
for solving cascades of similar QPs, which is common in
applications such as sequential quadratic programming (SQP)
and model predictive control (MPC).

2) Penalization methods: This family of methods transform
the original constrained problem into a sequence of problems
with either no constraints or very simple ones (such as sign
constraints on some variables). The new problems typically
have objectives that consist in two terms: (i) the objective of
the original problem, and (ii) a term for penalizing points not
being feasible for the original problem. There are two very
common types of penalization methods used in practice.

a) Interior-point methods: This family of penalization
methods forces through a barrier function the sequence of
intermediary optimization problems to have strictly feasible
solutions with respect to the domain of the original problem;
see, e.g., [29, Section 16.6] for an introduction. Primal-dual
interior-point methods [25, 43] became popular in the 90s
due to their good practical performances across a wide range
of problems. Standard solvers using an interior-point method
are commercial solvers Gurobi [30] and Mosek [28], closed-
source BPMPD [26], open-source solver OOQP [10] and
qpSWIFT [31].

Because of the homotopy-based structure of this family of
methods, one of their main drawbacks is the difficulty to use

them with warm-starting procedures, when solving a sequence
of related QPs (e.g., within SQP or MPC settings).

b) Augmented Lagrangian-type methods: This family of
methods is primarily based on the idea of Lagrangian relax-
ations with an additional quadratic penalization term (possibly
piecewise) for encouraging feasibility of the iterate (see, e.g.,
[29, Section 17.3]). This kind of techniques emerged in the 70s
through the works of Hestenes and Powell [33, 18] and then
later with those of Rockafellar [36] which tightly emphasized
their linked with the so-called “proximal-point method”. In-
deed, augmented Lagrangian-type methods naturally arise by
applying proximal-point methods on either the dual or saddle-
point formulations to (QP), thereby offering the advantage
of converging under relatively weak assumptions. Augmented
Lagrangian-type methods also have the advantageous property
of being able to exploit warm-start procedures. However, they
might exhibit slow convergence behaviors in practice. Standard
solvers based on augmented Lagrangians for solving QPs
include the recent OSQP [39] (via an alternating direction
method of multipliers) and QPALM [16].

III. PROXIMAL METHOD OF MULTIPLIERS FOR
QUADRATIC PROGRAMMING

This section introduces the main contribution of the paper:
a generic algorithm to solve QP problems of the form of (QP).
We start by recalling the optimality conditions related to (QP).
Then, we review the notions of augmented Lagrangian and
proximal-point algorithms in the simpler context of equality
constrained QPs. These concepts are then adapted to properly
handle QP problems composed of both equality and inequality
constraints. We conclude this section with a few practical con-
siderations for rendering the proposed approach numerically
more stable and practically more efficient.

A. Optimality conditions

The Lagrangian L associated to (QP) is defined by:

L(x, y, z) := 1
2x

THx+ gTx+ yT(Ax− b) + zT(Cx− u),
(1)

with x ∈ Rd, y ∈ Rne , z ∈ Rni
+ . For linearly constrained

convex optimization problems such as (QP), strong duality
holds and the associated KKT conditions are necessary and
sufficient for ensuring a primal-dual point (x, y, z) to be
optimal (see, e.g., [1, Section 5.2.3] and [39, Section 2, page
5] for more details). For (QP), the KKT system is given by
the set of equations:

Hx+ g +AT y + CT z = 0,
Ax− b = 0,
Cx ≤ u,
z ⊙ [Cx− u] = 0,

(KKT)

where ⊙ denotes the Hadamard product (i.e., for two vectors
u, v ∈ Rd, u⊙ v ∈ Rd is the vector whose ith entry is uivi).
In practice, we look for a triplet (x, y, z) satisfying these
optimality conditions (KKT) up to a certain level of predefined



accuracy ϵabs > 0 (dependent of the application), leading us
to the following natural absolute “stopping criterion”: ∥Hx+ g +AT y + CT z∥∞ ≤ ϵabs,

∥Ax− b∥∞ ≤ ϵabs,
∥[Cx− u]+∥∞ ≤ ϵabs.

(2)

The ℓ∞ norm is preferred to the ℓ2 norm as it is independent
of the problem dimensions. It is also common to consider rela-
tive convergence criteria for early-stopping, as absolute targets
might not be reached due to numerical issues [39, 28, 30].

B. Equality-constrained quadratic programs

In this section, we provide a high-level overview on the
proximal method of multipliers (PMM), which is at the heart
of our approach. PMM is closely related to the probably even
more famous augmented Lagrangian method (ALM), which
we review first in the context of equality-constrained QPs (i.e.,
when ni = 0).

a) Augmented Lagrangian: The ALM [36, Section 4]
relies on augmenting the standard Lagrangian L, defined in (1),
with a squared ℓ2 penalization of the linear constraints:

LA(x, y;µe) := L(x, y, 0) + 1
2µe
∥Ax− b∥22, (3)

where µe > 0 is a positive penalty parameter. The ALM
alternates between the minimization of LA with respect to
the primal variables x and a simple update rule for the dual
variables y:

xk+1 = argmin
x

LA(x, y
k;µe),

yk+1 = yk + 1
µe
(Axk+1 − b).

(4)

Using the expression of LA, one can obtain a more ex-
plicit expression for the iterations in the case of equality-
constrained QPs:

xk+1 = −
(
H + 1

µe
ATA

)−1

[g +AT (yk − µeb)],

yk+1 = yk + 1
µe
(Axk+1 − b).

(5)

At this stage, there are two conflicting goals to balance in this
iterative process. First, the smaller the value of µe the faster
the convergence: indeed, 1

µe
can be seen as a step-size of a

proximal point method applied on the dual of the QP, as (4)
can also be equivalently written as:

yk+1 = argmax
y

min
x
L(x, y, 0)− µe

2 ∥y − yk∥22, (6)

(see [36, Section 4] for details), and the xk+1 update might
be chosen as

xk+1 ∈ argmin
x

L(x, yk+1, 0)− µe

2 ∥y
k+1 − yk∥22. (7)

Second, as µe gets smaller, the conditioning of (H+ 1
µe
ATA)

gets worse, thereby limiting the numerical applicability of
the approach, particularly when the condition number of A,
thus the one of ATA (as cond(ATA) = cond(A)2), is already
potentially large [29, Section 17.1]. Such cases are typical in
robotics, for instance in the context of kinematic singularity
or redundant constraints, just to name a few.

b) Proximal method of multipliers: PMM is an alterna-
tive to ALM with an additional proximal term on the primal
variables [36, Equation 1.9], following the scheme:

(xk+1, yk+1) = argminmax
x,y

L(x, y, 0)− µe

2 ∥y − yk∥22

+ ρ
2∥x− xk∥22,

(8)

where ρ > 0 is an additional penalty parameter ( 1ρ corresponds
to a step-size for the primal proximal term). Explicit maxi-
mization with respect to the dual variable allows recovering a
method similar in spirit with the ALM formulation (4):{

xk+1 = argminx Φ
k
ρ(x),

yk+1 = yk + 1
µe
(Axk+1 − b),

(9)

where Φk
ρ(x) := LA(x, y

k;µe)+
ρ
2∥x−xk∥22 is often referred

to as the proximal augmented Lagrangian (PAL) [15]. In prac-
tice, one can directly solve (8) via its optimality conditions,
encoded in the following linear system of equations:[

H + ρI AT

A −µeI

] [
xk+1

yk+1

]
=

[
ρxk − g
b− µeyk

]
. (10)

It is worth mentioning that this linear system involves a matrix
that is always nonsingular thanks to the two regularization
terms ρ

2∥x − xk∥22 and µe

2 ∥y − yk∥22. In other words, the
problem (8) is always well-defined in the iterative process. As
a comparison, one can notice that the linear system depicting
optimality conditions for ALM might be singular, encoding the
fact that an acceptable xk+1 might not be unique in (7). As
a consequence, intermediary computations involved in PMM
are numerically more stable by construction. Yet, another
advantageous feature of PMM is that it is guaranteed to
converge to an optimal primal-dual pair (xk, yk)→ (x∗, y∗)
under relatively weak assumptions (existence of an optimal
primal-dual pair with zero duality gap; see [36, Theorem 7]).
Under similar weak assumptions (existence of an optimal dual
solution; see [36, Theorem 4]), ALM is only guaranteed to
converge on the dual variable yk → y∗. It is also worth
noticing that in the case of a QP involving only linear equality
constraints, one iteration of either ALM or PMM can be cast
as the solution of single linear system. We see in the next
section that the situation changes markedly with inequalities.

C. Inequality constrained quadratic programs

In the presence of inequality constraints in (QP), a natural
extension of (8) consists in iterating

(xk+1, yk+1, zk+1)

= argminmax
x,y,z≥0

L(x, y, z) + ρ
2∥x− xk∥22

− µe

2 ∥y − yk∥22 −
µi

2 ∥z − zk∥22.

(11)

By explicit maximization in (y, z), one can also reach an
equivalent formulation in terms of

xk+1 = argminx Φ
k
ρ(x),

yk+1 = yk + 1
µe
(Axk+1 − b),

zk+1 = [zk + 1
µi
(Cxk+1 − u)]+

(12)



where [.]+ stands for the (componentwise) nonnegative part,
and where the PAL Φk

ρ(x) is now defined using the augmented
Lagrangian formulation for the problem involving inequali-
ties [36, Eqs 1.4–1.5]:

LA(x, y,z;µe, µi) := L(x, y, 0) + 1
2µe
∥Ax− b∥22

+ 1
2µi

(∥∥[Cx− u+ µiz]+∥22 − ∥µiz∥22
)
,

(13)

Φk
ρ(x) := LA(x, y

k, zk;µe, µi) +
ρ
2∥x− xk∥22. (14)

One can note that this PAL is a piecewise quadratic function.
When only equality constraints are involved in the QP, the
PAL is a simple quadratic function, and the solution of the
intermediary subproblems are obtained by solving a single
linear system. The situation becomes a bit more subtle in the
context of inequality constraints. For this reason, the practical
algorithm that is proposed and investigated below is based on
an approximate version of PMM (first proposed in [36]):

(xk+1, yk+1, zk+1)

≈ϵk arg minmax
x,y,z≥0

L(x, y, z) + ρ
2∥x− xk∥22

− µe

2 ∥y − yk∥22 −
µi

2 ∥z − zk∥22

(15)

where ≈ϵk stands for requiring (xk+1, yk+1, zk+1) to be an
ϵk-approximate solution to the intermediate saddle-point sub-
problem. We control the accuracy level of this approximation
via the following condition:

∥rk(xk+1, yk+1, zk+1)∥∞ ≤ ϵk, (16)

where rk is some nonlinear operator gathering the KKT
conditions for the saddle-point subproblem at iteration k. In
others words ∥rk(x, y, z)∥∞ = 0 iff (x, y, z) is the solution
to (11). For more details on rk, see Section IV-B.

For going further, we must address two important remaining
aspects: (i) choosing appropriate rules for setting ϵk (large
values for ϵk will obviously not lead to convergence of
this numerical method) and µk

e and µk
i (appropriate tun-

ing of those step-size rules critically impacts the practical
performance of the method); (ii) computing suitable triplets
(xk+1, yk+1, zk+1) satisfying (16) in an efficient way.

In the next section, we review the BCL strategy (originating
from [4]) for dealing with (i). This strategy is key in our
practical implementation of the QP solver. The problem (ii) of
finding suitable approximations for the proximal subproblems
is handled in Section IV.

D. BCL globalization strategy

In this section, we explain our strategy for fixing the
hyper-parameters of the solver (tolerance on subproblems ϵk,
step-sizes µe and µi). We rely on BCL (see [4] and [29,
Algorithm 17.4]) which has been proved to perform well
in advanced optimization packages such as LANCELOT [5]
and also in robotics for solving constrained optimal control
problems [32, 7, 20]. For solving QPs, we propose to rely

on the combination of BCL with the proximal method of
multipliers from Section III-C.

The main idea underlying BCL consists in updating the
dual variables yk and zk obtained from (15) only when the
corresponding primal infeasibility (denoted by pk+1 hereafter)
is small enough. More precisely, we use a second sequence of
tolerances denoted by ϵkext (which we also tune within the BCL
strategy) and update the dual variables only when pk+1 ≤ ϵkext,
where pk+1 denotes the primal infeasibility as follows:

pk+1 :=max(∥Axk+1 − b∥∞, ∥[Cxk+1 − u]+∥∞). (17)

It remains to explain how the BCL strategy chooses appro-
priate values for the hyper-parameters ϵk, ϵkext, µi and µe. As
for the update of the dual variables, it proceeds in two stages:

• If pk+1 < ϵkext: the primal infeasibility is good enough,
we thus keep the constraint penalization parameters as is.

• Otherwise: the primal infeasibility is too large, we thus
increase quadratic penalizations terms on the constraints
for the subsequent proximal subproblems (15).

Concerning the accuracy parameters ϵk and ϵkext, the update
rules are more technical and the motivation underlying those
choices is to ensure global convergence: an geometric-decay
type update when primal infeasibility is good enough, and
see [4, Lemma 4.1] for when the infeasibility is too large.
The detailed strategy is summarized in Algorithm 1.

Remark 1 (Global convergence). The BCL strategy [4, Algo-
rithm 1 and Algorithm 2] was originally developed using an
augmented Lagrangian, as opposed to a proximal augmented
Lagrangian in our case. As a consequence, some of the origi-
nal convergence guarantees from [4] do not hold anymore. For
this reason, we introduced a safeguard parameter kmax ∈ N
enforcing the algorithm to ultimately always accept the candi-
dates multipliers from the PMM updates (15). This simple trick
allows to inherit some nice properties from PMM that include
convergence under mild assumptions [36, Theorem 4].

In the next section, we review the last missing piece in our
approach: a method for approximately solving the intermedi-
ary proximal subproblems (15).

IV. SOLVING THE PROXIMAL SUBPROBLEMS

For obtaining an approximate solution to (15), we intro-
duce a primal-dual merit function, originating and extend-
ing Gill and Robinson’s primal-dual augmented Lagrangian
(PDAL) [11] to the case of inequality constraints. We show
that associated semi-smooth Newton steps involve linear sys-
tems, whose structure is well-conditioned and similar to the
one presented for the equality constrained case (10).

In the next subsections, we first review the classic primal
PMM (IV-A), before providing details on the proposed primal-
dual approach (IV-B).

A. A primal semi-smooth approach

One possible instantiation of (15)-(16) consists in maximiz-
ing the PAL analytically w.r.t. the dual variables (y, z) and



minimizing it approximately w.r.t. the primal variable x:
xk+1≈ϵk argminx Φ

k
ρ(x),

yk+1 = yk + 1
µe
(Axk+1 − b),

zk+1 = [zk + 1
µi
(Cxk+1 − u)]+,

(18)

where ≈ϵk now stands for xk+1 to be an ϵk-approximate
solution in the following sense:

∥∇xΦ
k
ρ(x

k+1)∥∞ ≤ ϵk. (19)

The PAL function Φk
ρ is semi-smooth [27]. Hence its unique

minimum can be found in finite time using a semi-smooth
Newton method with exact line-search (see, e.g., convergence
proof in [40, Theorem 3] and algorithm in [15, Section IV.C]).
Practically speaking, the semi-smooth Newton method is ini-
tialized at x̂(0) := xk and generates a sequence x̂(1), x̂(2), . . .
via the update rule:

x̂(l+1) = x̂(l) + α∗dx, (20)

where the step-size α∗ is computed via an exact line-search:

α∗ := argmin
α≥0

Φk
ρ(x̂

(l) + αdx), (21)

(note that α −→ Φk
ρ(x̂

(l) + αdx) is a continuous piecewise
quadratic function with a finite number of breaking points),
and where dx is found by solving a linear system of equations:

H + ρI AT CT
Ik(x̂(l))

A −µeI 0
CIk(x̂(l)) 0 −µiI

dxdy
dz

 =

−∇xΦ
k
ρ(x̂

(l))
0
0

 ,

(22)
where Ik(x̂

(l)) := {i ∈ [1, ni] |Cix̂
(l) − ui + zki µi ≥ 0}

refers to the active set of the current subproblem, and CIk(x̂(l))

corresponds to a reduced version of the matrix C containing
the active rows indexed by Ik(x̂(l)).

This iterative process is repeated until reaching the accuracy
requirement (19); that is, as soon as ∥∇Φk

ρ(x̂
(l))∥∞ ≤ ϵk it

outputs xk+1 ← x̂(l) as an approximate solution.
One drawback of such strategy comes from the right hand

side term ∇xΦ
k
ρ(x). Indeed, similarly to (5), ∇xΦ

k
ρ(x) gath-

ers quadratics involving the constraint matrices A and C,
which ill-conditioning impact the whole accuracy in linear
system (22). It can lead to numerical saturation effects with ill-
conditioned problems when high precision is required. For this
reason, we have decided to investigate other merit functions
in order to solve better conditioned linear systems. It leads to
our primal-dual approach.

B. A primal-dual approach

In this section, we present a primal-dual approach to
solve (15). We introduce a primal-dual merit function, orig-
inating and extending Gill and Robinson PDAL to the case
of inequality constraints [11]. The associated semi-smooth
Newton steps involve better-conditioned linear systems with
a structure similar to the one presented in (10).

a) Optimality conditions: A triplet (x, y, z) is a solution
to (11) if and only if [6]: Hx+ g + ρ(x− xk) +AT y + CT z = 0,

µey − (Ax− b+ µey
k) = 0,

µiz − [Cx− u+ µiz
k]+ = 0.

(23)

Hence we define rk(x, y, z) as:

rk(x, y, z) :=

Hx+ g + ρ(x− xk) +AT y + CT z
µey − (Ax− b+ µey

k)
µiz − [Cx− u+ µiz

k]+

 . (24)

b) Generalized primal-dual augmented Lagrangian: Re-
injecting appropriately second and third equations of (23) in
the first one, one can notice, that (23) is equivalent to (25):

Hx+ g + ρ(x− xk) +AT ( 1
µe
(Ax− b) + yk))+

CT [ 1
µi
(Cx− u) + zk]+ + (Ax− b− µe(y − yk))

+([Cx− u+ µiz
k]+ − µiz) = 0,

µey − (Ax− b+ µey
k) = 0,

µiz − [Cx− u+ µiz
k]+ = 0.

(25)
Condition (25) correspond to KKT conditions for the follow-
ing primal-dual merit function Mk

µ,ρ:

Mk
µ,ρ(x, y, z) := Φk

ρ(x) +
1

2µe
∥Ax− b− µe(y − yk)∥22

+
1

2µi
∥[Cx− u+ µiz

k]+ − µiz∥22.
(26)

This merit function is strictly convex and continuously dif-
ferentiable. Hence, as for Φk

ρ in (IV-A), its unique minimum
can be found in finite time using a semi-smooth Newton
method with exact line-search [40, Theorem 3]. Thanks to
the equivalence between (23) and (25), rk can consequently
be used as a suitable stopping criterion for measuring solution
required inexactness:

∥rk(xk+1, yk+1, zk+1)∥∞ ≤ ϵk. (27)

Remark 2. Gill and Robinson introduced a generalized PDAL
function [11] (x, y) −→ Gkρ,µ(x, y) for first tackling equality
constrained problems. In the presence of inequalities, this
PDAL function can be framed in its equality constrained form
introducing a slack variable s satisfying the new equality
constraint:

Cx− u− s = 0. (28)

The minimization of Gkρ,µ w.r.t. variables x, y, z and s
commutes. Considering the problem structure and following
ideas from [6], it can be shown that s and z can be directly
deduced as functions of x or z. Consequently, the ordering of
variables used to minimize Gkρ,µ defines different merit func-
tions which may inherit from useful features of Gρ,µ in order
to build an iterative procedure for solving (15). For example,
minimizing Gkρ,µ w.r.t. the slack variable s and re-injecting its
optimal value s (depending of x and z) in the PDAL allows
obtaining the merit function used in QPDO solver [6]. Another
possibility, consists in minimizing Gkρ,µ w.r.t. z, y and then to s



and to re-inject all optimal values found (which are functions
of x). In the latter case one retrieves then the PAL merit
function introduced first by Rockafellar [36]. In the sequel,
in order to get better conditioned linear systems, we decide to
follow the same strategy but to relax optimal y and z values
found, which leads to the new merit function Mk

ρ,µ.

c) Primal-dual Newton semi-smooth steps: A semi-
smooth Newton step applied to Mk

µ,ρ, and initiated at
(x̂(0), ŷ(0), ẑ(0)) = (xk, yk, zk) involves finding for l ≥ 0
dw := (dx, dy, dz) such that:

∇2Mk
µ,ρ(x̂

(l), ŷ(l), ẑ(l))dw +∇Mk
µ,ρ(x̂

(l), ŷ(l), ẑ(l)) = 0,
(29)

where ∇2Mk
µ,ρ(x̂

(l), ŷ(l), ẑ(l)) stands for an element of its
generalized Hessian [35, section 23]. It reads equivalently:

H + ρI + 1
µe
ATA+ 1

µi
(Ĉ(l))T Ĉ(l) −AT −(Ĉ(l))T

−A µeI 0

−Ĉ(l) 0 µiI

dxdy
dz



=


−(∇xΦρ(x̂

(l)) +AT ( 1
µe
(Ax̂(l) − d) + yk − ŷ(l))

+CT ([ 1
µi
(Cx̂(l) − u) + zk]+ − ẑ(l))

Ax̂(l) − d− µe(ŷ
(l) − yk)

[Cx̂(l) − u+ µezk]+ − µiẑ
(l)

 ,

(30)
where Ik(x) is the active set of the current subproblem at x:

Ik(x) = {i ∈ [1, ni]|Cx− u+ µiz
k ≥ 0}, (31)

and Ĉ(l) is a short-hand for denoting the generalized Jacobian
of [Cx− u+ µiz

k]+ at x(l):

Ĉ
(l)
i :=

{
Ci if (Cx(l) − u+ µiz

k)i ≥ 0,
0 otherwise,

(32)

where Ci denotes the ith row of C. Remarking that for inactive
constraints, i.e., i /∈ Ik(x̂

(l)), we have:

dzi = −(ẑ(l))i, (33)

the linear system (30) can hence be equivalently formulated
as:

H + ρI AT CT
Ik(x̂(l))

A −µeI 0
CIk(x̂(l)) 0 −µiIIk(x̂(l))

 dx
dy

dzIk(x̂(l))

 =

−

Hx̂(l) + g + ρ(x̂(l) − xk) +AT ŷ(l) + CT
Ik(x̂(l))

ẑ
(l)

Ik(x̂(l))

Ax̂(l) − d− µe(ŷ
(l) − yk)

([Cx̂(l) − u+ µizk]+ − µiẑ
(l))Ik(x̂(l))

 ,

dzIc
k(x̂

(l))) = −ẑ
(l)

Ic
k(x̂

(l)))
,

(34)
where Ick(x) is defined as the set of inactive constraints
at x. Eq. (34) has the same structure as (10) in the equality
constrained case. The right hand side does not contain any
term involving square matrices. The main differences come
from the active set introduced byMk

ρ,µ, which filters the only
constraints that need to be taken into account in (34).

d) Primal-dual line-search procedure: Once a semi-
smooth Newton step (dx, dy, dz) has been obtained, the exact
line-search procedure consists in finding the unique α∗ such
that:

α∗ = argmin
α≥0

Mk
ρ,µ(x̂

(l) + αdx, ŷ(l) + αdy, ẑ(l) + αdz).

(35)
Similarly to (21) the function α → Mk

ρ,µ(x̂
(l) + αdx, ŷ(l) +

αdy, ẑ(l) +αdz) is a continuous piecewise quadratic function
with a finite number of breaking points. Hence, one can
compute α∗ exactly. Finally, the primal-dual semi-smooth
Newton method initiated at (x̂(0), ŷ(0), ẑ(0)) = (xk, yk, zk)
generates a sequence (x̂l, ŷl, ẑl) via the update rule:

x̂(l+1) = x̂(l) + α∗dx,
ŷ(l+1) = ŷ(l) + α∗dy,
ẑ(l+1) = ẑ(l) + α∗dz.

V. DETAILED APPROACH

The complete ProxQP procedure is provided in Algorithm 1.
It contains a few additional practical enhancements, which are
now detailed.

Preconditioning. ProxQP contains a preconditioning strategy,
enhancing the overall numerical stability and convergence
of the optimization process. The preconditioner used in our
current implementation is often referred to as the Ruiz equi-
libration [37]; see, e.g., [39, Algorithm 2].

Initialization. Motivated by the fact that equality constraints
are always active at an optimal solution, we use the following
initialization for primal and dual variables:[

xinit

yinit

]
=

[
H + ρI AT

A µeI

]−1 [−g
b

]
and zinit = 0, (36)

which corresponds to the (primal-dual) solution to the corre-
sponding QP where the inequality constraints were removed.
For the same reason, the default initial penalization is larger
for equality constraints than it is for inequality constraints.
The choice µe = µi/100 appears to perform well.

Cold restarts. To solve hard QPs to high precision, we use an
additional cold restart strategy. The idea consists in resetting
the penalization parameters µe and µi as soon as both primal
and dual feasibility appears to stall while the current values
for µe and µi are smaller than a certain threshold.

VI. RESULTS

In this section, we detail the software implementation of
Algorithm 1 and then benchmark the practical performance
of this new solver by comparing it to existing state-of-the-art
solvers on various problems ranging from randomly generated
problems to the harder Maros-Mészàros QPs [24], which
includes a few classic robotic problems.

Software implementation. Our solver, referred to as ProxQP,
is implemented in C++ and is extensively rooted on the
generic-purpose Eigen library [14] for linear algebra. The
current implementation is tailored for dense matrix operations,



Algorithm 1: ProxQP
Inputs:

• initial states: x0, y0, z0,
• initial parameters: ϵ0ext, ϵ

0, ϵabs, ρ, µe, µi > 0
• hyper-parameters: µf < 1, αbcl ∈ (0, 1), βbcl ∈ (0, 1),

kmax ∈ N, µi,min, µe,min > 0.
Initialization:

• preconditioning (see Section V)
• optional initialization (see Section V) of x0,y0, z0.

while Stopping criterion (2) not satisfied do
Compute (x̂, ŷ, ẑ) satisfying (16) (ϵk-approximation
to proximal subproblem (15)) using Section IV-B;
xk+1 = x̂
if pk+1 < ϵkext OR k ≥ kmax then

ϵk+1 = ϵkµi, ϵk+1
ext = ϵkextµ

βbcl

i

yk+1 = ŷ, zk+1 = ẑ
else

µi ←− max(µi,min, µfµi)
µe ←− max(µe,min, µfµe)
ϵk+1 = ϵ0µi, ϵk+1

ext = ϵ0extµ
αbcl
i

yk+1 = yk, zk+1 = zk

end
k ← k + 1
Apply cold restart if conditions are met

end
Output: A (xk, yk, zk) satisfying the
ϵabs-approximation criterion (2) for problem (QP).

and leverages recent CPU architectures providing advanced
vectorization mechanisms. Our new solver if freely available at
https://github.com/Simple-Robotics/proxsuite and comes with
an easy-to-use interface inspired from OSQP [39].

Additionally, we have developed a dedicated LDLT
Cholesky factorization to explicitly account for the spe-
cific features of the proposed approach. In particular, this
Cholesky factorization implements advanced update rou-
tines to efficiently accounting for the change of active sets
when solving (22) and (22), while lowering the overall
memory footprint to maximize the performances. The new
LDLT Cholesky is freely available within the same reposi-
tory https://github.com/Simple-Robotics/proxsuite and will be
hopefully integrated in Eigen.

Contrary to other solvers such as OSQP, qpSWIFT or
qpOASES, our current implementations only relies on dense
linear algebra routines (we plan to deeply exploit the sparsity
of sparse problems in future works). Overall, as highlighted by
the subsequent results, ProxQP performs better than modern
sparse solvers over relatively sparse problems ranging from
small to medium size (up to d = 1000) while remaining
competitive for larger dimensions.

Benchmark scenarios. We benchmark our implementation on
different types of QPs: equality and inequality constrained
QPs, degenerate QPs with only inequality constraints, non-

strictly convex QPs with only inequalities, as well as hard
QPs from the Maros-Mészàros dataset [24] with differ-
ent levels of sparsity and dimensions. We also benchmark
on typical QPs encountered in inverse kinematic and dy-
namic robotic problems. The benchmarks are available at
https://github.com/Bambade/proxqp benchmark with an easy-
to-use interface inspired from the one proposed by OSQP [39].

Our tests were carried in the following conditions:
• The level of accuracy required for termination is set

arbitrarily to ϵabs = 10−9 (see criterion in (2)) so that to
show across all these experiments which solvers manage
to be the most accurate, the fastest, and the most robust
within a large variety of QPs.

• A time limit of 1000 seconds has also been set as in
OSQP API [39] for benchmarks (if a problem is not
solved by a solver at such precision its “solving” time
is set to this value in order to draw test plots).

• For all the tests, we used the same set of parameters for
Algorithm 1: µe = 10−3, µi = 0.1, µf = 0.1, ρ = 10−6,
αbcl = 0.1, βbcl = 0.9, µi,min = 10−8, µe,min = 10−9.
Finally, ϵ0 and ϵ0ext follow the initialization procedure pro-
posed in [29, Algorithm 17.4], the safeguard kmax = 106

(not used in practice).

Remark 3 (Accuracy choice). Choosing a low ϵabs has
a few non-negligible advantages when comparing solvers.
Indeed, the fact a solver might not reach every desired
level of accuracy (within the available finite precision lim-
its) is typically due to either (i) an algorithm that has a
(very) slow convergence, or (ii) somehow “inappropriate”
underlying subroutines (including linear algebra ones) with a
limited working precision/stability range, worsening the effect
of finite precision. Hence, such low accuracy level reveals
which solvers provide on the same time (i) an algorithm
whose capabilities allow to reach high accuracy and (ii) a
set of underlying numerical routines allowing to reach high
precisions in reasonable times.

Benchmark setup. Benchmarks are performed with a standard
laptop equipped with a relatively old CPU (Core i5 - 5300U -
5th Generation @ 2,3 GHz processor) and, for some specific
benchmarks, also with a more recent CPU (Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHz) typically equipping clusters, illus-
trating potential gains of using a more recent architecture.

A. Random problems
Concerning random problems, three different levels of spar-

sity (0.15, 0.5, and 1) were used for generating the random
matrices H , A and C in the spirit of the benchmark API from
OSQP [39]. The dimensions of those problems were picked
from d = 10 to d = 1000. For each set of parameters (sparsity
levels and dimensions), we generated 5 problem instances
with different random seeds and averaged the running time
of each algorithm on 10 consecutive runs (to limit the impact
of loading costs). The results are provided in Figure 1 using
bar plots (including the median, the minimal and maximal
execution timings). We also report base statistics in Table I.

https://github.com/Simple-Robotics/proxsuite
https://github.com/Simple-Robotics/proxsuite
https://github.com/Bambade/proxqp_benchmark


101 102 103

d

10 5

10 4

10 3

10 2

10 1

100

101

102

103

Ti
m

in
gs

 (s
)

MOSEK
qpOASES
GUROBI
quadprog
OSQP
PROXQP

Fig. 1. Solving times for sparse equality and inequality constrained QPs
(Section VI-A), using a Core i5 - 5300U - 5th Generation @ 2,3 GHz
processor. For each set of executions, the median is shown with a dot.

osqp proxqp gurobi mosek qpoases quadprog

SGM [s] 4.6 1.0 1146.9 40891.4 305.6 18.8
FR (%) 0 0 16 80 0 0

TABLE I
SHIFTED GEOMETRIC MEANS (SGM) AND FAILURE RATES (FR) FOR

SPARSE EQUALITY AND INEQUALITY CONSTRAINED QPS
(SECTION VI-A).

In particular, Figure 1 shows that even in a sparse configu-
ration (we recall that our solver uses a dense back-end), our
solver is around 4 to 5 times faster than OSQP (the second best
solver from our test-bed) for examples of dimensions d ≈ 50
(which is representative of typical robotic applications). When
dimension grows to d ≈ 1000, the speed-up reaches almost
an order of magnitude.

The failure rates observed in Table I for MOSEK and
GUROBI solvers come from the fact they are not able to reach
the desired precision ϵabs = 10−9: solutions proposed are not
accurate enough. Consequently, it also impacts their geometric
means.

B. Degenerate pure inequality-constrained problems

Figure 2 provides the results of our numerical experiments
when generating pure inequality-constrained QPs where the
matrix H is positive definite but for which LICQ conditions
are no longer satisfied (by duplicating the constraints), a
common type of degeneracy. We observe from Figure 2 that
for problems of dimensions d ≈ 50 our solver is about 3
times faster than OSQP (the second best solver in this set of
experiments).

osqp proxqp gurobi mosek qpoases quadprog

SGM [s] 7.1 1.0 461.2 16065.0 118.5 3.7
FR (%) 0 0 14 76 0 0

TABLE II
SHIFTED GEOMETRIC MEANS (SGM) AND FAILURE RATES (FR) FOR

SPARSE DEGENERATE PURE INEQUALITY CONSTRAINED QPS
(SECTION VI-B).

101 102 103

d

10 5

10 4

10 3

10 2

10 1

100

101

102

103

Ti
m

in
gs

 (s
)

MOSEK
qpOASES
GUROBI
quadprog
OSQP
PROXQP

Fig. 2. Solving times for sparse degenerate pure inequality constrained
QPs (Section VI-B), using a Core i5 - 5300U - 5th Generation @ 2,3 GHz
processor. For each set of executions, the median is shown with a dot.

osqp proxqp gurobi mosek qpoases quadprog

SGM [s] 2.0 1.0 917.2 6446.9 70.1 NA
FR (%) 0 0 34 72 0 100

TABLE III
SHIFTED GEOMETRIC MEANS (SGM) AND FAILURE RATES (FR) FOR
SPARSE PURE INEQUALITY CONSTRAINED QPS WITH NON-STRICTLY

POSITIVE DEFINITE HESSIAN (SECTION VI-C).

We report base statistics in Table II. The failure rates
observed for MOSEK and GUROBI solvers come from the
fact, again, they are not able reaching the desired precision
ϵabs = 10−9, their outputted solutions being not accurate
enough.

C. Non-strongly convex problems

As before, in the spirit of the OSQP [39], we generate
random QPs for which the Hessian H is not strictly positive
definite. We can see in Figure 3 that when matrices have
15% of sparsity, OSQP and ProxQP have a similar speed for
d ≤ 200. For higher dimension, we observe that ProxQP is
approximately 1.8 times faster than OSQP. When sparsity is
about 50%, one can see in Figure 4 ProxQP is about 1.8 to
2 times faster for d ≈ 50. When d ≈ 1000, ProxQP is about
four times faster.

One can see on Figure 5 that when executed on a more
modern computer (see Benchmark setup), performance gains
are higher, i.e., for d ≥ 200 our solver is 2 to 3 times faster
than the second best solver (it was about about 1.8 times faster
before).

We report base statistics in Table III. The failure rates
observed for MOSEK and GUROBI solvers come from the
fact, again, their solutions not being precise enough.

D. Maros-Mészàros problems

The Maros-Mészàros test set [24] is composed of 138
“hard” QPs. Most of them are sparse and ill-conditioned
problems, and they contain up to 90597 variables and 180895
constraints. About 83% of the problems have a sparsity level



101 102 103

d

10 5

10 4

10 3

10 2

10 1

100

101

102

103
Ti

m
in

gs
 (s

)

MOSEK
qpOASES
GUROBI
OSQP
PROXQP

Fig. 3. Solving times for sparse pure inequality constrained QPs with non-
strictly positive definite Hessian (Section VI-C), using a Core i5 - 5300U -
5th Generation @ 2,3 GHz processor. For each set of executions, the median
is shown with a dot.

101 102 103

d

10 5

10 4

10 3

10 2

10 1

100

101

102

103

Ti
m

in
gs

 (s
)

MOSEK
qpOASES
GUROBI
OSQP
PROXQP

Fig. 4. Solving times for pure inequality constrained QPs with non-strictly
positive definite Hessian and 50% of sparsity (Section VI-C), using a Core i5
- 5300U - 5th Generation @ 2,3 GHz processor. For each set of executions,
the median is shown with a dot.

101 102 103

d

10 5

10 4

10 3

10 2

10 1

100

101

102

103

Ti
m

in
gs

 (s
)

OSQP
PROXQP

Fig. 5. Solving times for sparse pure inequality constrained QPs with non-
strictly positive definite Hessian (Section VI-C), using an Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHz. For each set of executions, the median is shown
with a dot.

osqp proxqp gurobi mosek qpoases quadprog

SGM [s] 13.4 1.0 47.6 164.5 4.7 96.4
FR (%) 32.3 4.8 58.1 83.9 14.5 72.6

TABLE IV
SHIFTED GEOMETRIC MEANS (SGM) AND FAILURE RATE (FR) FOR

MAROS-MÉSZÀROS PROBLEMS (SECTION VI-D).

lower than 10% for the Hessians H , as well as for the
constraint matrices A and C.

As we have currently implemented only a dense version
of our solver, we restrict the benchmark to problems whose
dimensions (constraints and variables) are below or equal to
103; that is, a subset of 62 problems of the Maros-Mészàros
test set (about 45% of the set), for which two thirds have a
sparsity level no larger than 20%.

On this set, we measure the ability of the different solvers to
tackle those ill-conditioned problems to high accuracy within
the predefined runtime limit (1000 seconds). We report a few
statistics for each solver under consideration below, including
the failure rate (FR), the sifted geometric means (SGM) as
well as the performance profile (see details in, e.g., [39, 16]).

a) Failure rates: Failure rates mostly come from satura-
tion effects (time limit reached mostly for OSQP, or outputted
solutions being not precise enough for others, in some cases
primal or dual infeasibility is detected [39, Section 5.1]). These
saturations come at different precision levels. Concerning
ProxQP, all proposed solutions are outputted within the time
limit of 1000 seconds. However, for three of them, unscaling
the scaled proposed solutions through reversed equilibration
procedure [39, Section 5.1]) makes them finally close to
ϵabs = 10−9 but just above the threshold (around ≈ 1.1×10−9

for example, whereas the scaled solutions satisfy the scaled
stopping criterion strictly below 10−9). For other solvers, the
situation can be close in some cases, but it has also been
observed that saturation effects appears often sooner at higher
precision levels (≈ 10−7 for MOSEK or GUROBI solvers for
example).

b) Shifted geometric means: Let ts,p denote the time
required for solver s to solve problem p. The shifted geometric
mean t̂s of the runtimes for solver s on problem set P is

t̂s : = |P|
√∏

p∈P
(ts,p + ζ)− ζ

= e
1

|P|
∑

p∈P log(ts,p+ζ) − ζ.

(37)

The second formulation is used in practice to prevent overflow
when computing the product. In this paper, runtimes are
expressed in seconds, and a shift of ζ = 10 is used, as in
the OSQP API for benchmarks [39]. As in [39], we employ
the convention that when a solver s fails to solve a problem p
(within the time limit of 1000 seconds), the corresponding ts,p
is set to the time limit for the computation. We report these
experimental results in Table IV for the Maros-Mészàros set.



100 101 102 103 104

Performance ratio 

0.0

0.2

0.4

0.6

0.8

1.0
Ra

tio
 o

f p
ro

bl
em

s s
ol

ve
d

PROXQP
OSQP
qpOASES
GUROBI
quadprog
MOSEK

Fig. 6. Performance profiles on small to medium-sized Maros-Mészàros
problems (see Section VI-D), using a Core i5 - 5300U - 5th Generation @
2,3 GHz processor. Target accuracy ϵabs = 10−9 (see criterion in (2)) and
time limit set to 1000 seconds. The higher the better.

c) Performance profiles: We report performance profiles
on Figure 6. Performance profiles correspond to the fraction
of problems solved as a function of certain runtime (measured
in terms of a multiple of the runtime of the fastest solver for
that problem). More precisely, if S is the set of solvers tested:

rs,p :=
ts,p

mins∈S ts,p
, (38)

denotes the performance ratio for solver s with respect to
problem p. The fraction of problems qs(τ) solved by s within
a multiple τ of the best runtime, is then given by

qs(τ) =
1

|P|
∑

p∈P,rs,p≤τ

1. (39)

Figure 6 shows the plot of qs(τ) curves for all the solvers s of
our test-bed, when executed in our subset of Maros-Mészàros
problems defined above. It turns out that our solver always
depicts the best performance profile, with only 3 unsolved
problems (see more details on it in paragraph VI-D0a), while
other solvers appear to be less efficient and output more
unsolved problems: either they reach the 103[s] time-out or
are unable to satisfy the desired accuracy.

E. Inverse kinematics and dynamics

Finally, we have benchmarked ProxQP against OSQP (the
second best solver of our previous tests bed) on the typical
inverse kinematics and dynamics settings. We consider the
task of controlling the center of mass of the TALOS humanoid
robot [38] (which should remain within the convex supporting
polygon), keeping the two feet on the ground while also
moving both arms to reach two random target placements. We
use the Pinocchio library [2] to compute the kinematic and
dynamic quantities associated to each task. ProxQP solves the
QP problems in 24 ± 7µs, while OSQP takes 167 ± 93µs.
For the inverse dynamic task, ProxQP solves it in 25 ± 6µs
while OSQP takes 441±193µs. Such performances may lead
to inverse kinematics or inverse dynamics controllers to be

run at very high frequency, an important feature for torque-
controlled robots [17] for instance.

VII. CONCLUSION

In this work, we have proposed a new algorithm for solving
generic QPs together with its numerical C++ implementation,
motivated by robotic applications. We notably propose to com-
bine the bounded constraint Lagrangian (BCL) globalization
strategy [4] with the solving of (primal-dual) Karush-Kuhn-
Tucker conditions associated to QP. The intermediary proximal
subproblems are solved via a primal semi-smooth Newton
method, potentially initiated at an educated guess that allows
to ultimately not requiring any Newton iteration when the
iterates get close enough to an optimal solution. We highlight
the numerical efficiency of our method on various sets of
standard QPs ranging from randomly generated problems
strongly inspired by the benchmark suite [39] to a subset
of the Maros-Mészàros problems [24]. Our solver turns out
to perform better than modern solvers of the literature on
small to medium-size problems (d ≤ 103), while remaining
competitive for larger dimensions. As future work, we plan to
extend our solver to also support the case of large-dimensional
sparse problems for enabling its use in larger-scale problem
setups (d≫ 103). This will make ProxQP a suitable, efficient
and reliable QP solver to operate on modern optimization
problems in robotics and beyond.

We also plan to generalize the exploitation of the primal-
dual augmented Lagrangian techniques to the context of
nonlinear problems (e.g. nonlinear optimal control of robotic
systems for solving locomotion and manipulation tasks, etc.)
following the approach proposed in [7] and recently extended
in [20] and [21]. From a software perspective, we plan to
extend our contribution to account for sparse and matrix-free
methods for large QP problems (d > 1000).

ACKNOWLEDGMENTS

This work was partly funded by the French government
under management of Agence Nationale de la Recherche
as part of the “Investissements d’avenir” program, reference
ANR-19-P3IA-0001 (PRAIRIE 3IA Institute), the European
Research Council (grant SEQUOIA 724063) and the Louis
Vuitton ENS Chair on Artificial Intelligence.

REFERENCES

[1] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004. ISBN 0521833787.
URL https://web.stanford.edu/∼boyd/cvxbook/.

[2] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel,
F. Lamiraux, O. Stasse, and N. Mansard. The pinocchio
c++ library: A fast and flexible implementation of rigid
body dynamics algorithms and their analytical deriva-
tives. In 2019 IEEE/SICE International Symposium on
System Integration (SII), pages 614–619. IEEE, 2019.
URL https://ieeexplore.ieee.org/document/8700380.

[3] J. Carpentier, R. Budhiraja, and N. Mansard. Proximal
and sparse resolution of constrained dynamic equations.

https://web.stanford.edu/~boyd/cvxbook/
https://ieeexplore.ieee.org/document/8700380


In Robotics: Science and Systems 2021, 2021. URL http:
//www.roboticsproceedings.org/rss17/p017.pdf.

[4] A. R. Conn, N. I. M. Gould, and Ph. Toint. A
globally convergent augmented lagrangian algorithm for
optimization with general constraints and simple bounds.
SIAM Journal on Numerical Analysis, 28(2):545–572,
1991. doi: 10.1137/0728030. URL https://doi.org/10.
1137/0728030.

[5] A. R. Conn, N. I. M. Gould, and P. L. Toint. Lancelot a
Fortran Package for Large-Scale Nonlinear Optimization
(Release A). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1992. ISBN 9783662122112 3662122111. URL
http://dx.doi.org/10.1007/978-3-662-12211-2.

[6] A. De Marchi. On a primal-dual Newton proximal
method for convex quadratic programs. Computa-
tional Optimization and Applications, 81(2):369–395,
2022. ISSN 0926-6003, 1573-2894. doi: 10.1007/
s10589-021-00342-y. URL https://link.springer.com/10.
1007/s10589-021-00342-y.

[7] S. El Kazdadi, J. Carpentier, and J. Ponce. Equality
Constrained Differential Dynamic Programming. In 2021
International Conference on Robotics and Automation
(ICRA), 2021. URL https://hal.inria.fr/hal-03184203/file/
equality-constrained-ddp.pdf.

[8] A. Escande, N. Mansard, and P.-B. Wieber. Hierarchical
quadratic programming: Fast online humanoid-robot
motion generation. The International Journal of
Robotics Research, 33(7):1006–1028, 2014. URL
https://gepettoweb.laas.fr/uploads/Publications/2014
escande ijrr.pdf.

[9] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock,
and M. Diehl. qpOASES: A parametric active-set
algorithm for quadratic programming. Mathematical
Programming Computation, 6(4):327–363, 2014. URL
http://mpc.zib.de/archive/2014/4/Ferreau2014 Article
QpOASESAParametricActive-setAl.pdf.

[10] E. M. Gertz and S. J. Wright. Object-oriented soft-
ware for quadratic programming. ACM Transac-
tions on Mathematical Software (TOMS), 29(1):58–81,
2003. URL https://pages.cs.wisc.edu/∼swright/papers/
p58-m gertz.pdf.

[11] Ph. E. Gill and Daniel P. Robinson. A primal-dual
augmented Lagrangian. Computational Optimization
and Applications, 51(1):1–25, 2021. ISSN 0926-6003,
1573-2894. doi: 10.1007/s10589-010-9339-1. URL
http://link.springer.com/10.1007/s10589-010-9339-1.

[12] D. Goldfarb and A. Idnani. A numerically stable
dual method for solving strictly convex quadratic pro-
grams. Mathematical Programming, 27:1–33, 1983.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.521.6352&rep=rep1&type=pdf.

[13] N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD
user documentation. GALAHAD, 2017. URL https://dl.
acm.org/doi/pdf/10.1145/962437.962438.

[14] G. Guennebaud, B. Jacob, et al. Eigen v3, 2010. URL
http://eigen.tuxfamily.org.

[15] B. Hermans, A. Themelis, and P. Patrinos. QPALM: A
Newton-type Proximal Augmented Lagrangian Method
for Quadratic Programs. 2019 IEEE 58th Conference on
Decision and Control (CDC), 2019. URL https://lirias.
kuleuven.be/retrieve/544118.

[16] B. Hermans, A. Themelis, and P. Patrinos. QPALM: A
Proximal Augmented Lagrangian Method for Nonconvex
Quadratic Programs, 2021. URL https://link.springer.
com/article/10.1007/s12532-022-00218-0.

[17] A. Herzog, N. Rotella, S. Mason, F. Grimminger,
S. Schaal, and L. Righetti. Momentum con-
trol with hierarchical inverse dynamics on a torque-
controlled humanoid. Autonomous Robots, 40(3):473–
491, 2016. URL http://www.cs.cmu.edu/∼cga/z/Herzog
AURO 2016.pdf.

[18] M. R. Hestenes. Multiplier and gradient methods.
Journal of Optimization Theory and Applications, 4(5):
303–320, 1969. URL https://link.springer.com/article/10.
1007/BF00927673.

[19] B. Houska, H. J. Ferreau, and M. Diehl. Acado
toolkit—an open-source framework for automatic
control and dynamic optimization. Optimal Control
Applications and Methods, 32(3):298–312, 2011. URL
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.493.2356&rep=rep1&type=pdf.

[20] W. Jallet, N. Mansard, and J. Carpentier. Implicit
differential dynamic programming. In 2022 International
Conference on Robotics and Automation (ICRA).

[21] W. Jallet, A. Bambade, N. Mansard, and J. Carpen-
tier. Constrained differential dynamic programming: A
primal-dual augmented lagrangian approach. 2022. URL
https://hal.archives-ouvertes.fr/hal-03597630/document.

[22] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela,
H. Dai, F. Permenter, T. Koolen, P. Marion, and
R. Tedrake. Optimization-based locomotion planning, es-
timation, and control design for the atlas humanoid robot.
Autonomous robots, 40(3):429–455, 2016. URL https://
www.cs.cmu.edu/∼cga/z/Kuindersma AURO 2016.pdf.

[23] D. B. Leineweber, I. Bauer, H. G. Bock, and J. P.
Schlöder. An efficient multiple shooting based re-
duced SQP strategy for large-scale dynamic process
optimization. part 1: theoretical aspects. Comput-
ers & Chemical Engineering, 27(2):157–166, 2003.
URL https://www.sciencedirect.com/science/article/abs/
pii/S0098135402001588.

[24] I. Maros and C. Mészaros. A repository of convex
quadratic programming problems. Optimization Methods
and Software, 11(1-4):671–681, 1999. URL http://www.
doc.ic.ac.uk/rr2000/DTR97-6.pdf.

[25] S. Mehrotra. On the implementation of a primal-dual
interior point method. SIAM Journal on optimization, 2
(4):575–601, 1992.

[26] C. Mészáros. The bpmpd interior point solver for convex
quadratic problems. Optimization Methods and Software,
11(1-4):431–449, 1999. URL https://www.tandfonline.
com/doi/abs/10.1080/10556789908805758.

http://www.roboticsproceedings.org/rss17/p017.pdf
http://www.roboticsproceedings.org/rss17/p017.pdf
https://doi.org/10.1137/0728030
https://doi.org/10.1137/0728030
http://dx.doi.org/10.1007/978-3-662-12211-2
https://link.springer.com/10.1007/s10589-021-00342-y
https://link.springer.com/10.1007/s10589-021-00342-y
https://hal.inria.fr/hal-03184203/file/equality-constrained-ddp.pdf
https://hal.inria.fr/hal-03184203/file/equality-constrained-ddp.pdf
https://gepettoweb.laas.fr/uploads/Publications/2014_escande_ijrr.pdf
https://gepettoweb.laas.fr/uploads/Publications/2014_escande_ijrr.pdf
http://mpc.zib.de/archive/2014/4/Ferreau2014_Article_QpOASESAParametricActive-setAl.pdf
http://mpc.zib.de/archive/2014/4/Ferreau2014_Article_QpOASESAParametricActive-setAl.pdf
https://pages.cs.wisc.edu/~swright/papers/p58-m_gertz.pdf
https://pages.cs.wisc.edu/~swright/papers/p58-m_gertz.pdf
http://link.springer.com/10.1007/s10589-010-9339-1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.521.6352&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.521.6352&rep=rep1&type=pdf
https://dl.acm.org/doi/pdf/10.1145/962437.962438
https://dl.acm.org/doi/pdf/10.1145/962437.962438
http://eigen.tuxfamily.org
https://lirias.kuleuven.be/retrieve/544118
https://lirias.kuleuven.be/retrieve/544118
https://link.springer.com/article/10.1007/s12532-022-00218-0
https://link.springer.com/article/10.1007/s12532-022-00218-0
http://www.cs.cmu.edu/~cga/z/Herzog_AURO_2016.pdf
http://www.cs.cmu.edu/~cga/z/Herzog_AURO_2016.pdf
https://link.springer.com/article/10.1007/BF00927673
https://link.springer.com/article/10.1007/BF00927673
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.493.2356&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.493.2356&rep=rep1&type=pdf
https://hal.archives-ouvertes.fr/hal-03597630/document
https://www.cs.cmu.edu/~cga/z/Kuindersma_AURO_2016.pdf
https://www.cs.cmu.edu/~cga/z/Kuindersma_AURO_2016.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0098135402001588
https://www.sciencedirect.com/science/article/abs/pii/S0098135402001588
http://www.doc.ic.ac.uk/rr2000/DTR97-6.pdf
http://www.doc.ic.ac.uk/rr2000/DTR97-6.pdf
https://www.tandfonline.com/doi/abs/10.1080/10556789908805758
https://www.tandfonline.com/doi/abs/10.1080/10556789908805758


[27] R. Mifflin. Semismooth and semiconvex
functions in constrained optimization. Siam
Journal on Control, 15:957–972, 1977. URL
https://web.archive.org/web/20170923012726id /http:
//pure.iiasa.ac.at/524/1/RR-76-021.pdf.

[28] Mosek. MOSEK optserver documentation. Mosek, 2022.
URL https://docs.mosek.com/9.3/opt-server.pdf.

[29] J. Nocedal and S. J. Wright. Numerical optimization.
Springer series in operations research and financial
engineering. Springer, 2nd edition, 2006. URL
https://www.math.uci.edu/∼qnie/Publications/
NumericalOptimization.pdf.

[30] Gurobi Optimization. GUROBI optimizer reference
manual. Gurobi Optimization, 2020. URL
https://www.gurobi.com/wp-content/plugins/hd
documentations/documentation/9.0/refman.pdf.

[31] A. G. Pandala, Y. Ding, and H.-W. Park. qpSWIFT: A
Real-Time Sparse Quadratic Program Solver for Robotic
Applications. IEEE Robotics and Automation Letters,
4(4):3355–3362, 2019. URL https://ieeexplore.ieee.org/
abstract/document/8754693.

[32] B. Plancher, Z. Manchester, and S. Kuindersma. Con-
strained unscented dynamic programming. In 2017 In-
ternational Conference on Intelligent Robots and Systems
(IROS), pages 5674–5680, 2017. URL https://agile.seas.
harvard.edu/files/agile/files/constrained-udp.pdf.

[33] M. J. D. Powell. A method for nonlinear constraints
in minimization problems. Optimization, pages 283–
298, 1969. URL https://www.semanticscholar.org/paper/
A-method-for-nonlinear-constraints-in-minimization-Powell/
192818e804f5b014dcf4d678795856594fb969b8.

[34] S. Redon, A. Kheddar, and S. Coquillart. Gauss least
constraints principle and rigid body simulations. In 2002
International Conference on Robotics and Automation
(ICRA), volume 1, pages 517–522. IEEE, 2002. URL
https://hal.archives-ouvertes.fr/hal-01147672/document.

[35] R. T. Rockafellar. Convex analysis. Princeton Mathe-
matical Series. Princeton University Press, Princeton, N.
J., 1970. URL https://www.degruyter.com/document/doi/
10.1515/9781400873173/html.

[36] R. T. Rockafellar. Augmented Lagrangians and Appli-
cations of the Proximal Point Algorithm in Convex Pro-
gramming. Mathematics of Operations Research, 1(2):

97–116, 1976. URL http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.298.6206&rep=rep1&type=pdf.

[37] D. Ruiz. A scaling algorithm to equilibrate both rows and
columns norms in matrices. Technical report, Rutherford
Appleton Laboratory, 2001. URL https://cds.cern.ch/
record/585592/files/CM-P00040415.pdf.

[38] O. Stasse, T. Flayols, R. Budhiraja, K. Giraud-
Esclasse, J. Carpentier, A. Del Prete, P. Souères,
N. Mansard, F. Lamiraux, J-P. Laumond, et al. Talos: A
new humanoid research platform targeted for industrial
applications. In IEEE-RAS 17th International Conference
on Humanoid Robotics (Humanoids), 2017. URL
https://homepages.laas.fr/ostasse/drupal/sites/homepages.
laas.fr.ostasse/files/ICHR17 0084 MS 0.pdf.

[39] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and
S. Boyd. OSQP: an operator splitting solver for quadratic
programs. Mathematical Programming Computation, 12
(4):637–672, 2020. URL https://web.stanford.edu/∼boyd/
papers/pdf/osqp.pdf.

[40] J. Sun. On piecewise quadratic Newton and trust re-
gion problems. Mathematical Programming, 76:451–
467, 1997. URL https://link.springer.com/article/10.
1007/BF02614393.

[41] Y. Tassa, N. Mansard, and E. Todorov. Control-
limited differential dynamic programming. In
2014 International Conference on Robotics and
Automation (ICRA), pages 1168–1175, 2014. URL
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.648.5032&rep=rep1&type=pdf.

[42] P.-B. Wieber. Trajectory free linear model predic-
tive control for stable walking in the presence of
strong perturbations. In 2006 International Confer-
ence on Humanoid Robots, pages 137–142. IEEE, 2006.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.411.6286&rep=rep1&type=pdf.

[43] S. J. Wright. Primal-dual interior-point methods. SIAM,
1997. URL https://archive.siam.org/books/swright/.

[44] A. Wächter and L.T. Biegler. On the imple-
mentation of a primal-dual interior point filter line
search algorithm for large-scale nonlinear program-
ming. Mathematical Programming, 106(1):25–57,
2006. URL http://users.iems.northwestern.edu/∼4er/
MehrotraNomination/Ref2ImplPrimalDualInterior.pdf.

https://web.archive.org/web/20170923012726id_/http://pure.iiasa.ac.at/524/1/RR-76-021.pdf
https://web.archive.org/web/20170923012726id_/http://pure.iiasa.ac.at/524/1/RR-76-021.pdf
https://docs.mosek.com/9.3/opt-server.pdf
https://www.math.uci.edu/~qnie/Publications/NumericalOptimization.pdf
https://www.math.uci.edu/~qnie/Publications/NumericalOptimization.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf
https://ieeexplore.ieee.org/abstract/document/8754693
https://ieeexplore.ieee.org/abstract/document/8754693
https://agile.seas.harvard.edu/files/agile/files/constrained-udp.pdf
https://agile.seas.harvard.edu/files/agile/files/constrained-udp.pdf
https://www.semanticscholar.org/paper/A-method-for-nonlinear-constraints-in-minimization-Powell/192818e804f5b014dcf4d678795856594fb969b8
https://www.semanticscholar.org/paper/A-method-for-nonlinear-constraints-in-minimization-Powell/192818e804f5b014dcf4d678795856594fb969b8
https://www.semanticscholar.org/paper/A-method-for-nonlinear-constraints-in-minimization-Powell/192818e804f5b014dcf4d678795856594fb969b8
https://hal.archives-ouvertes.fr/hal-01147672/document
https://www.degruyter.com/document/doi/10.1515/9781400873173/html
https://www.degruyter.com/document/doi/10.1515/9781400873173/html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.6206&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.6206&rep=rep1&type=pdf
https://cds.cern.ch/record/585592/files/CM-P00040415.pdf
https://cds.cern.ch/record/585592/files/CM-P00040415.pdf
https://homepages.laas.fr/ostasse/drupal/sites/homepages.laas.fr.ostasse/files/ICHR17_0084_MS_0.pdf
https://homepages.laas.fr/ostasse/drupal/sites/homepages.laas.fr.ostasse/files/ICHR17_0084_MS_0.pdf
https://web.stanford.edu/~boyd/papers/pdf/osqp.pdf
https://web.stanford.edu/~boyd/papers/pdf/osqp.pdf
https://link.springer.com/article/10.1007/BF02614393
https://link.springer.com/article/10.1007/BF02614393
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.648.5032&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.648.5032&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.6286&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.6286&rep=rep1&type=pdf
https://archive.siam.org/books/swright/
http://users.iems.northwestern.edu/~4er/MehrotraNomination/Ref2ImplPrimalDualInterior.pdf
http://users.iems.northwestern.edu/~4er/MehrotraNomination/Ref2ImplPrimalDualInterior.pdf

	Introduction
	Related Work
	Active-set methods
	Penalization methods


	Proximal Method of Multipliers for Quadratic Programming
	Optimality conditions
	Equality-constrained quadratic programs
	Inequality constrained quadratic programs
	BCL globalization strategy

	Solving the proximal subproblems
	A primal semi-smooth approach
	A primal-dual approach

	Detailed approach
	Results
	Random problems
	Degenerate pure inequality-constrained problems
	Non-strongly convex problems
	Maros-Mészàros problems
	Inverse kinematics and dynamics

	Conclusion

