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Abstract—Resource requirements for hardware acceleration of
neural networks inference is notoriously high, both in terms of
computation and storage. One way to mitigate this issue is to
quantize parameters and activations. This is usually done by
scaling and centering the distributions of weights and activations,
on a kernel per kernel basis, so that a low-precision binary integer
representation can be used. This work studies low-precision
logarithmic number system (LNS) as an efficient alternative.

Firstly, LNS has more dynamic than fixed-point for the same
number of bits. Thus, when quantizing MNIST and CIFAR
reference networks without retraining, the smallest format size
achieving top-1 accuracy comparable to floating-point is 1 to 3
bits smaller with LNS than with fixed-point. In addition, it is
shown that the zero bit of classical LNS is not needed in this
context, and that the sign bit can be saved for activations.

Secondly, low-precision LNS enables efficient inference archi-
tectures where 1/ multiplications reduce to additions; 2/ the
weighted inputs are converted to classical linear domain, but the
tables needed for this conversion remain very small thanks to the
low precision; and 3/ the conversion of the output activation back
to LNS can be merged with an arbitrary activation function.

The proposed LNS neuron is detailed and its implementation
on FPGA is shown to be smaller and faster than a fixed-point
one for comparable accuracy.

I. Introduction
Commodity hardware such as multi-core processors and

GPUs, although intrinsically very powerful, is not very power-
efficient in neural network inference. This is why the last
decade has seen a boom in the number of hardware accelera-
tors for inference tasks, applicable to both cloud and embedded
solutions [1]. These accelerators can be either computation
engines directly placed into processor pipelines, such as ARM
Scalable Vector Extensions [2] and Intel DL Boost [3], or
independent coprocessors such as Google TPU [4], Qualcomm
Cloud AI [5], or Kalray KaNN [6], to name a few. The chosen
strategy is a trade-off between mapping tools complexity, target
power efficiency, flexibility, ease of integration in existing
frameworks, and so on.

These accelerators typically use 8-bit integers instead of 32-
bit floating-point numbers for inference tasks. It has indeed
been demonstrated that 8-bit values entail only very small
inference accuracy loss for most application domains [7],
hence the generalization of 8-bit quantization as a "one size
fits all" solution. Furthermore, methods that efficiently map
floating-point network parameters (weights and biases learned
during training) onto the 256 available values do exist [8],
and are already available in the most popular frameworks for

Machine Learning (ML). The gain in memory bandwidth and
computational effort offered by 8-bit quantization is huge.

Still, the search for higher power efficiency has lead re-
searchers to study even smaller bit-widths, from both the algo-
rithmic and architectural point of view. At the extreme, binary
({−1, 1}) and ternary ({−1, 0, 1}) networks have drawn some
attention. Their neuron computations can be implemented as
a handful of logic gates, and the memory requirements can
hardly be smaller [9, 10]. Such networks can reach good
accuracy [11, 12, 13], and research is still active in improving
their training. However, to mitigate the accuracy loss due
to such extreme quantizations, it is customary to increase
the number of neurons and/or layers, at the cost of more
parameters, hence a full retraining of the network.

This seems to leave some room for quantization lower
than 8 bits, without changing the network structure, without
retraining, and without accuracy loss.

However, for this to work, we need to drop fixed-point for
a representation that offers a wider range for fewer bits. It the
present study, we consider low-precision Logarithmic Number
System (LNS) to that aim.

The paper is organized as follows. Section I gives some
background on LNS with a focus on its former and current
applications in ML. Using this representation and taking
into account the constraints on the values induced by ML,
Section III details the design and implementation of an "LNS
neuron". Section IV explores the design space covered by this
neuron, in particular the influence of its parameters on resource
usage and top-1 accuracy. Finally Section V summarizes the
results of this exploration, concluding that an LNS neuron is
is more efficient than a fixed-point one for the same inference

TABLE I: Notations used in this article

Symbol Meaning

b the base of logarithms used, usually b = 2
X , W , B, P real values of input, weight, bias and WX product
lgX , lgW , lgP their LNS representation, e.g. lgX = (zX , sX , LX)
LX , LW , LP signed fixed-point logarithms, LX ≈ logb |X|

sX a sign bit, sX = 1 when X < 0
zX a “isZero” bit, zX = 1 iff X = 0
m Most Significant Bit (MSB) of the fixed-point logarithm
ℓ Least Significant Bit (LSB) of the fixed-point logarithm
ℓ′ LSB of the fixed-point sum in linear domain
N number of terms to sum in the linear domain



accuracy.

II. Background and State of the Art
A. Logarithmic Number Systems (LNS)

LNS is best viewed as an alternative to floating-point where
the mantissa of a floating-point number is replaced with
fractional bits of the exponent [14]. A positive real X is
represented by its logarithm LX ≈ logb X in some base b
(usually b = 2 but other bases can be used [15]). LX is itself
represented in signed fixed point. X = 1 is represented by
LX = 0, negative LX represent numbers X < 1, positive LX

represent X > 1. To represent negative values of X , an LNS
system adds a sign bit sX . Finally, since logb(0) = −∞, the
value X = 0 needs a special encoding in lgX . The mainstream
approach is to use a “isZero” bit zX , but an encoding as a
special value of LX can also be used. All these notations are
summarized in Table I.

LNS is mathematically simpler and more elegant than
floating-point. For base-2 LNS (b = 2), if LX has i integer
bits and f fractional bits, the LNS system provides accuracy
and dynamic range comparable to that of binary floating-point
with i bits of exponent and f bits of significand fraction.

The main advantage of LNS arithmetic is that LNS multi-
plication of lgX by lgY resumes to the fixed-point addition of
LX and LY . Being a fixed-point addition, it is exact, without
any rounding error (contrary to floating-point multiplication
that entails some rounding). It can over/underflow, though.

The huge drawback of LNS is the cost of addition and
subtraction in this system. Without detailing it, let us just state
that the hardware complexity of an LNS adder scales poorly
with the precision [14, 16]. This has prevented its adoption as a
mainstream format for general-purpose computing. A common
option is to use approximate LNS adder/subtracters [17, 18,
19, 20]. The alternative approach proposed in this work is to
use very low precisions (less than 8 bits) for which accurate
LNS arithmetic is cheap. Here of course we mean: accurate
with respect to the format, not accurate in absolute terms since
the format precision itself is low. Indeed, for such precisions
it is possible to define arbitrary functions in extension, then
trust the synthesis tools to optimize their implementation. Thus
the elegance of the format is not nullified by the architectural
complexity [17, 14, 21, 16, 22, 18] of implementing it in
hardware.

More specifically, this work targets FPGAs whose fine-grain
structure is that of a 4- to 6-bits Look-Up Table (LUT), and the
present work aims at soft-spot formats that efficiently match
these architectural LUTs. For this, a contribution of this work
is to depart from off-the-shelf LNS formats, shaving as many
bits as possible to define a purely application-specific format
for machine learning inference.

B. LNS for machine learning
With the slide rule, logarithmic arithmetic predates elec-

tronic computers. It was studied for them very early [17, 23],
with pioneering works [24, 21] demonstrating than 12-bit LNS
could compete with floating-point in neural network training.
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Fig. 1: Artificial neurons using log-encoded data (in red)

In the era of deep learning, the potential of low precision
logarithmic encoding was again demonstrated [22] then put in
practice [18] with an architecture (Figure 1b) that keeps the
weights in the linear domain and implements multipliers as
bit shifts. The final conversion to the logarithmic domain is
approximated with a Leading One Detector (LOD). Another
approach is to replace a standard multiplier with an approxi-
mate one based on LNS arithmetic [19, 20].

Figure 1 describes the various ways logarithmic encoding
has been used in the recent literature. The approach we
advocate (Figure 1d) is a simplified version of the “somewhat
inaccurately named” (according to the author himself) Exact
Log-Linear Multiply-Add (ELMA) approach [25]. The term
“exact” emphasizes the fact that both the addition of the
logarithms and the summation of the product terms are exact,
since both are performed as fixed-point additions. However
there are still rounding errors in the log/linear conversions (in
the bx and ReLU+log boxes of Figure 1d).

C. Originality and contributions

In the ELMA approach [25], a product lgP may have integer
and fractional bits: LP = I + F with I a binary integer and
F ∈ [0, 1). In the present work, we make sure that 2 integer
bits are enough (see Section III). In this case, we claim that
with the wide LUTs of modern FPGAs, a plain tabulation of bx
is more area-efficient than a table+shift approach: the shifter
alone requires at least one FPGA LUT per output bit, just
like the plain table. Plain tabulation also greatly improves the
worst-case error, as in ELMA the bF rounding error may be
amplified by the shift. Compared to previous work using just
shifts [18] or a variant of Mitchell’s approximation [17, 21,
18], plain tabulation even ensures correctly rounded logs and
antilogs (i. e., as accurate as the format allows).



Finally, plain tabulation gives us the freedom to use the
same architecture with b ̸= 2, which has been shown to be
beneficial [15], although the present study doesn’t exploit this.

Similarly, in the trained data, the activation-weight products
are consistently smaller than 1, therefore their logarithm is al-
ways negative, and the sign bit of logarithms can be saved: the
fixed-point number stored in our approach for A ∈ {W,X,P}
is actually − logb A. We also show later how we can dispense
of the zero bit (and the MUXes that manage it) by making
sure that some of the log values will be rounded to 0 for the
summation by the bx box.

There are other complications in ELMA, such as tapered
encoding and a few more architecture parameters. ELMA is
also essentially a multiply-and-add operator that has to be
used iteratively in an inference architecture. In our work the
operator is a much coarser neuron, inputting in parallel N
activation/weight pairs. Depending on the available resources
and external memory bandwidth, the number of neurons and
their number of inputs can be chosen so as to optimize the
operational intensity [26] for a given FPGA. This allows
supporting networks much larger than the considered FPGA
can hold, at the price of external memory accesses and
somewhat complex scheduling schemes [27]. The value of
N can also be chosen to directly match the needs of the
various layers of small to medium neural networks and fits
a mid-range FPGA — N = 784 allows for a fully parallel
MNIST, N = 1152 allows for an efficient implementation of
most layers in a reference CIFAR-100 implementation. This
massive parallelism is available in current FPGAs (including
the internal bandwidth needed to store intermediate activations
and buffer the weights read from high-speed external DRAM),
in particular when all values in use fit on few bits.

This approach enables a more area-efficient summation (the
Σ box) thanks to the recent advances in bit array compression

[28]. It is also more accurate thanks to a global error analysis.
Altogether, in ELMA the sizes of lgW and lgX are 8 bits,

and the sum size is 38 bits, whereas the formats we use are
respectively 4 and 9 bits.

We have mentioned accuracy twice. It should be clear to the
reader that the purpose of computing accurately is to reduce
the size of the data format needed. It also helps avoiding the
need for retraining.

Indeed, we do not address training in this work: we take
networks pre-trained in floating-point [29] and quantize them
to our application-specific format, building upon the observa-
tion by Lee et al.[18] that “Retraining of weights is necessary
to enable a good model in linear 4 bits, but unnecessary for
log2 4 bits (...)”. Of course, quantization-aware training can
only improve the result, but this is left for future work.

III. Neuron design and implementation

A. LNS and sum of products

In both convolutional or fully connected layer, the mathe-
matical operation performed by the neuron is the same: a sum
of products. The main difference between these layer types
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Fig. 2: The proposed low-precision LNS neuron

is the way they match inputs with weights, but in the end it
always comes down to computing:

B +

N∑
i=1

Xi ×Wi

For a linear layer, N is simply the number of neurons in the
previous layer. For a convolutional layer, N is the number of
weights in the kernel for this layer multiplied by the number of
input channels (e.g.: 28×28 = 784 in the first layer of a Multi-
Layer Perceptron (MLP) for MNIST, up to 3×3×512 = 4608
for a convolutional net on CIFAR). The scope of this work is
focused on presenting a cheap hardware implementation of this
operator (the so-called LNS neuron) that can be used in either
layer type.

As mentioned before, focusing on FPGAs and low-bitwidth
operands allows us to efficiently use the LUTs by tabu-
lating complex functions. Three such functions are shown
in figure 1d: bx , ReLU , log . They can be fairly costly
to implement and the activation function (ReLU here) can
change between networks (e.g.: sigmoid, tanh, ...). Tabulating
them achieves a low implementation cost and flexibility and
adaptability in the design. To minimize the cost of translating
back and forth between log and linear domain, we fused the
log block to the ReLU since they happen consecutively: the

function tabulated is ⌊logb (ReLU (x))⌉.
Figure 2 shows an overview of a complete neuron architec-

ture with its parameters. The next sections will explain the
chosen encoding for each step of the process.
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Fig. 3: ReLU (left) and ReLU1 (right) activation functions

B. Distribution of weights and activations in deep learning

We consider networks which consist of a sequence of
convolutional or fully connected layers, possibly with max-
pooling layers between them. We ignore the latter as the
encoding of activations is irrelevant in their operation (and
they cost very little) and focus on the neural layers themselves
(convolutional or fully connected). We evacuate the batch
normalization layers, useful in training, as they can be removed
for inference and their coefficients merged in the weights of
the preceding layers (an approach suggested by the inventors of
batch normalization [30] and used in other studies, e.g. [25]).

A few observations can be made on their trained weights
and runtime activations.

Firstly, as already noted in [22], the output of a ReLU is
always positive. As all the activations (except in the input layer)
come from a ReLU unit, they are positive (Figure 3). The
activations in the input layers can be rescaled and shifted arbi-
trarily, in particular to ensure they are positive, too. Therefore
there is no need to store a sign bit in lgX . Weights remain
signed and need a sign bit (Figure 4).

We now show how to ensure that all the weights and
activations remain smaller than 1 in magnitude, so that we can
also spare the sign bits of their logarithmic encoding (the log
of a value smaller than 1 is always negative). The constraints
|Xi| < 1 and |Wi| < 1 would be relatively easy to integrate
in the training, but we observe that it can also be ensured on
trained networks by simple affine transformations of the inputs
and weights, thanks to the fact that ReLU is piecewise affine.

Of course, any activation coming from a ReLU1 verifies
0 < X < 1 by design (Figure 3). If the network was trained
with ReLU instead (currently more common case), the batch
normalization is designed to force the mean and variance of
each layer’s output equal to 0 and 1 respectively, so large
values of Wi are very unlikely (see Figure 5). Now assume
that a layer ensures Xi < 1 (again this is easy to ensure for
the input layer). The worst case run-time situation would be
a neuron with all the activations equal to 1 for the positive
Wi, whereas activations for negative Wi would all be zero (or
the opposite case). In other words, the worst-case activation
in absolute value is max(−

∑
Wi<0 Wi,

∑
Wi>0 Wi).

This sum can be computed after training. In the networks
we have studied, it does not exceed 25. It is thus possible to
divide all the weights of the layer by a small power of two (in
practice 8, 16 or 32) to ensure that the activations in the next
layer will not exceed 1. In the logarithmic domain, this will
consist in adding a small constant to all the LW . The biases

LW = −⌊logb |W |⌉ = w−1w0w1w2 sW

LX = −⌊logb X⌉ = x−1x0x1x2

LP = −⌊logb |P |⌉ = p−1p0p1p2p3 sW

binary weight 2−120212223

Fig. 4: Logarithmic representation for inputs and product (here
for MSB m = 2 and LSB ℓ = −1)

have to be updated as well. All this preprocessing is performed
in floating-point and only changes the weights and biases. It
has no runtime cost, and no impact on classification accuracy
since negative sums remain negative and positive ones remain
positive, so the ReLU threshold is unchanged.

Another option would be to cap all the activations to 1 by
replacing the ReLU with a ReLU1 (see [31, Figure 3] for the
effect of a ReLU1 on the activations of a layer without batch
norm). This will require retraining, though.

C. Ad-hoc LNS formats for the weights and activations
With these observations, we have only negative logarithms

for the weights and activations, and we may store the negated
logarithm as an unsigned fixed-point format. The proposed
logarithmic format for weights and activations is shown in
Figure 4. It still has two parameters, the MSB m and the LSB
ℓ of the parametric representation. LW is the correct rounding
to the nearest of the exact logarithm of W (after the previous
affine transformations). The ReLU+log component will also
tabulate correctly rounded values.

With these formats, it should be clear on this figure that
the product is computed exactly in the logarithmic domain
as LP = LX + LW . The overflow bit is kept. Remember
that we store negated logarithms: an overflow in this addition
corresponds to the product of a very small X by a very small
W that leads to an even smaller P . If this multiplication was
performed in fixed point, it would be rounded to zero. If it
was performed in floating-point, it would be rounded but the
correct order of magnitude would be kept in the exponent of
the result. In LNS, the encoding of the exact product of the
input data costs only one bit more than these inputs.

It has been observed that weights can use smaller bitwidths
than activations [32]. With the proposed approach, it will not
save computation hardware (the addition hardware is the size
of the wider format, and the smaller one must be padded with
zero), but it may save memory and memory bandwidth.

D. Ad-hoc linear format for the exact sum
Some rounding will still be inflicted to our exact product,

however, and this takes place in the bx box. Its output is
again a fixed-point format with an MSB and an LSB. Since the
product P is smaller than 1, the MSB is trivially 0. Actually,



Fig. 5: Quantization indices for m = 2 and ℓ = −1.

since the network has been preprocessed to guarantee that the
output activations is smaller than 1 (in absolute value), the
MSB of the sum itself is a sign bit at position 1 (weight 21).

The LSB, however, noted ℓ′ in Figure 2, is kept open as a
third parameter of the proposed approach.

E. Encoding of zeroes

LNS formats in the literature usually carry a zero bit, since
logb(0) is not defined, all the more as 0 is an important
value in neural networks, widespread across weights and
activations. However, a good choice of the ℓ′ parameter will
allow us to discard that extra bit from our LNS encoding,
for both lgX and lgW . Let us take an example to illustrate
this: we will pick m = 2 and ℓ = −1, just as shown in
Figure 4. The largest value that can be encoded in LX is
then (111.1)2 = (7.5)10. In base b = 2, it is the encoding
of x = 2−7.5 = (0,000 000 010 110...)2. The first significant
bit happens at position -8. It means that for ℓ′ ≥ −7, the bx

function will round 2−(111.1)2 to 0. Referring to Figure 2, we
can also tell that if LX = (111.1)2 or LW = (111.1)2, then
LP ≥ (111.1)2 ensuring that it will be rounded to 0 as well.

In a nutshell, the largest LNS value is in practice an
encoding of 0, since when it is used, it will entail that the
linear-domain product P is zero. Obviously, the higher ℓ′, the
bigger the rounding errors in the bx conversion, negatively
affecting the classification accuracy. However, picking ℓ′ lower
than or equal to the previous threshold also degrades the
accuracy, since every 0 in the network now gets rounded to
a small value, which leads to accumulation and classification
errors, while costing more to implement.

F. Discussion on the impact of the format parameters

Figure 5 shows a histogram of the weights by layer of a
(300, 100, 10)-MLP trained against MNIST. We can see that
the |W | < 1 assumption is well met. The graph hints a normal
distribution centered on 0. The vertical bars indicate where
the LNS quantization would happen. We will later use the
histogram of the first layer in other illustrations as it has the
highest weight count and so the best visual representation of
that distribution. We keep the parameters used in the examples
so far because they are a good fit for this application.

(a) zoom on fig. 5, left (b) adding 1 to MSB m (c) subtracting 1 to LSB ℓ

Fig. 6: Influence of parameters on quantization.

Notice that since X = 2−LX , the quantization gets tighter
around 0, but there is a gap with no value between 2−(2m+1−2ℓ)

(Figure 6 (left) is a zoom on the center).
Let us now take a closer look on the impact of m and ℓ

on this quantization. Adding a bit of representation obviously
doubles the number of available quantized values, but in a not
so obvious way because of the LNS. Figure 6 highlights in red
the additional values added to the quantization when adding
one bit to:

• m (center): all the new values are located inside the gap
previously mentioned. (Because LX = −⌊logb X⌉ =, so
bigger LX means smaller X)

• ℓ (right): similar to a standard linear quantization, it adds
a value in between existing ones, with no influence on
the central gap.

IV. Experiments
A. Setup

This work primarily relies on 2 frameworks:
• flopoco, an open-source VHDL generator written in

C++, to produce the hardware design;
• pytorch, an open-source Python machine-learning

framework with a high-level interface.
A neuron operator was added to flopoco. The classification
accuracy of this neuron was evaluated with pytorch. A
problem was that these frameworks are not fully available in
the same language (pytorch offers some C++ helpers but
only a portion of the interface is available). With the help of
the pytorch’s cpp extension, we wrote a wrapper to execute
C++ code in a python environment. This way, the same C++
emulation function may be used by pytorch to compute the
neuron output in a bit-accurate simulation, and by flopoco
to build test benches for the VHDL neuron.

The first experiment was to implement a regular MLP
to evaluate the proposed design on the MNIST benchmark
(digit classification). This MLP consisted in 3 fully connected
(FC) layers of 300, 100 and 10 neurons with no bias. The
activation function for all hidden layers was ReLU1. The
network was trained in standard 32 bits floating-point precision
with pytorch against the MNIST dataset, split into a 60 000



TABLE II: VGG-like convolutional network

layer index layer type

(1) LNSConv(3, 128) + ReLU1()
(2) LNSConv(128, 128) + ReLU1()
(3) MaxPool2d(2, 2)
(4) LNSConv(128, 256) + ReLU1()
(5) LNSConv(256, 256) + ReLU1()
(6) MaxPool2d(2, 2)
(7) LNSConv(256, 512) + ReLU1()
(8) LNSConv(512, 512) + ReLU1()
(9) MaxPool2d(2, 2)

(10) LNSConv(512, 1024) + ReLU1()
(11) MaxPool2d(2, 2)
(12) LNSLinear(1024, 10)

samples training set and a 10 000 samples validation set. The
learned parameters and input values were then converted to
our custom LNS. We ran the bit-accurate simulation of the
proposed LNS neuron against the validation set to evaluate the
classification accuracy with pytorch. We also generated the
VHDL code for the largest neurons of the network (in the first
layer with 28× 28 = 784 input pairs), and its implementation
cost was obtained with Vivado 2021.2 for the target Kintex-7
7k70tfbv484-3 FPGA.

In a second experiment, we implemented a standard convo-
lutional network for the CIFAR-10 image classification bench-
mark. This standard VGG-like network has been used in other
works as baseline for quantization [33], and pretrained weights
for this architecture were found in the Pytorch Playground
[29]. It consists in a succession of convolution layers with
3 × 3 kernels, batch norm and max-pool layers, and a final
linear classifier. We merged the activation function in the
neuron as previously described, and also merged the batch-
norm layers into the weights (as suggested in [30]). The
modified architecture used here is detailed in table II.

There was one small issue: the original training used the
ReLU activation function, which does not provide the hard
cap at 1 that we expect for activations. To solve this without
retraining, we statically computed the maximum activation
amax achievable in the entire network with its set of weights.
Assuming that the inputs are bounded by 1, amax is simply
the maximum between the sum of the positive values of the
weights and the sum of the negative values of the weights.
Then we modified the floating-point weights and biases to be
sure the output activations would be scaled down by amax. In
the input layer, it required scaling both weights and bias:

a

amax
=

B

amax
+
∑
i

Wi

amax
×Xi . (1)

In the hidden and output layers, only the bias requires scaling,
since their inputs were already scaled down:

a

amax
=

B

amax
+
∑
i

Wi ×
Xi

amax
. (2)

All this was performed on the pretrained weights, before
conversion to LNS.

Fig. 7: Influence of parameters on MNIST accuracy

Fig. 8: Zoom on m = 2 and m = 3 (notice the vertical scale)

B. Classification accuracy

Figure 7 and 8 plot the classification accuracy achieved by
the MLP on MNIST for several parameter configurations. The
accuracy ratio metric displayed on the graph is the ratio of top-
1 accuracies between the quantized version of the network, and
the original floating point network.

We explored three different values for m. As m = 1
yields significantly lower accuracy, it was not considered
further. This poor accuracy is understandable considering the
associated representation space. Indeed, with ℓ being negative,
the maximum value for LX or LW becomes 22−2ℓ ≈ 4, hence
X ≈ 2−4 = 0.0625. It means that the proposed encoding
rounds every weight and activation in the ]− 0.0625, 0.0625[



TABLE III: Synthesis results for accuracy-equivalent parallel
neurons. (m, ℓ) = (2,−1) means that weights fit on 5 bits and
activations fit on 4 bits (see Fig.4).

benchmark parameters top-1 accuracy cost latency
(m, ℓ), (1, ℓ′) abs. ratio in LUTs in ns

MNIST float32 98.03 100 - -
MNIST (2, -1), (1, -6) 97.64 99.6 12491 10.3
MNIST (2, -1), (1, -7) 97.83 99.8 13790 10.9
MNIST 6-bit linear 97.93 99.9 36658 10.2

CIFAR10 float32 93.74 100 - -
CIFAR10 6-bit linear 90.83 96.9 51910 13.0
CIFAR10 (3, -1), (1, -11) 91,40 97.5 30632 12.8
CIFAR10 (2, -2), (1, -10) 92.33 98.5 28652 12.4
CIFAR10 8-bit linear 93.55 99.8 83522 13.4

interval to 0. This is a poor match to the weight distribution
shown in figure 5, especially in the first layer.

Figure 8 shows that m = 3 is not much better in terms of
accuracy than m = 2, however its hardware cost is significantly
higher (see Figure 9).

C. Hardware implementation
Figure 9 shows how the area evolves with the neuron

parameters, using a simple model that estimates the cost of
a 2p × q table (as used for the bx and ReLU+log blocks)
as 2p−6 × q LUT, and counts 0.55 LUT per bit added in the
summation (see [28] for the adder tree implementation details).
This model is quite accurate, for instance Vivado synthesized
the ((2, -1), (1, -6)) LNS neuron in 12,491 LUTs where our
estimations were 12,890 LUTs. Further comparisons showed
that the estimation is about 3% larger than the synthesis. Since
the synthesis is computationally demanding, the plot shows the
estimated area.

These figures can help us chose the best parameter con-
figuration for our application. In our case for MNIST, we
wanted to reduce the number of bits required for the weights
and activations as much as possible to help with the memory
bandwidth issue, while keeping an acceptable accuracy. This
lead us to pick m = 2, ℓ = −1 and ℓ′ = −6 for our previous
examples.

Table III provides some actual synthesis results on Kintex7
using Vivado. We also merged here some of the best classi-
fication accuracies we could achieve and their configuration.
The hardware cost of the lines referred to as "x-bit linear"
relies on a standard integer multiplier that feeds its output to
the same summation operator than the one used in our LNS
neuron. Their associated classification accuracy is obtained
with [29], and the number presented here is the top-1 accuracy
ratio. This way we can compare to accuracy equivalent linear
quantization. The results clearly shows that LNS neurons can
achieve a similar accuracy with fewer bits, and a much cheaper
hardware cost.

Since this work does not yet provide a complete neural
network accelerator, the purpose of this table is merely to show
that the proposed neuron fits the target FPGA.

Fig. 9: Parameters influence on hardware cost of a neuron
for N = 784 (the smallest Virtex-7 FPGA contains more than
360,000 LUTs).

V. Conclusion and future work
This work proposes a low-bitwidth LNS representation

specifically designed for ML inference. With a simple weight
conversion without retraining, the accuracy loss compared
to the float32 reference can be negligible, using smaller bit-
widths than when using fixed-point formats. This enables an
efficient FPGA implementation: thanks to the small number of
bits, the difficult computations can be tabulated and densely
packed into FPGA lookup tables. Compared to a fixed-point
neuron with comparable classification accuracy, the proposed
LNS neuron features lower resource usage.

As a next step, we plan to build a complete accelerator and
to study low-bitwidth LNS-aware training. A simple retraining
approach giving encouraging results for a small number of
bits has been proposed by [18]. Several other authors have
proposed full training strategies [22, 20, 34, 35], but for bit-
counts over 8. [36] proposes an approach using 4 bits, but
fixes the representation, while our neuron is parametric, which
will offer more flexibility. For such a study, the proposed
approach also has the potential to use a different base b and an
arbitrary activation function, provided that the training ensures
that weights and activations remain below 1.
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