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Abstract: In recent years, reversibility in concurrent settings has attracted interest thanks to its
diverse applications in areas such as error recovery, debugging, and biological modeling. Also, it has
been studied in many formalisms, including Petri nets, process algebras, and programming languages
like Erlang. However, most attempts made so far suffer from the same limitation: they define
their reversible semantics in an ad-hoc fashion. To address this limit, Lanese et al. have recently
proposed a novel general method to derive a concurrent reversible semantics from a non-reversible
one. However, in most interesting instances the method relies on infinite sets of reductions, making
doubtful its practical usability. We bridge the gap between theory and practice by implementing it
in Maude. The key insight is that infinite sets of reductions can be captured by a small number
of schemas in many relevant cases. This happens indeed for our application: the functional and
concurrent fragment of Erlang. We extend the framework with a general rollback operator, allowing
one to undo an action far in the past, including all and only its consequences. We can thus use our
framework, e.g., as an oracle against which to test the reversible debugger CauDEr for Erlang, or
as an executable specification for new reversible debuggers.

Key-words: Debugging, Maude, Programming languages, Erlang, Concurrent systems

∗ Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, France
† Focus Team, Univ. of Bologna/INRIA, Italy



Generation de une sémantique reversible pour Erlang en
Maude

Résumé : Récemment, la réversibilité dans les systèmes concurrents a été mise à profit dans
plusieurs applications tirées de domaines différents comme le débogage, la reprise sur erreurs et la
modélisation des systèmes biologiques. La réversibilité a été étudiée dans plusieurs formalismes,
comme les réseaux de Petri, les algèbres de processus et différents langages de programmation.
Néanmoins, tous les travaux visant à développer une variante réversible de ces formalismes
souffrent de la même limitation: les sémantiques ont toujours été définies de manière ad-hoc. Très
récemment, Lanese et al. ont proposé une méthode générale pour définir une sémantique réversible
concurrente, de manière automatique, à partir d’une sémantique opérationnelle non réversible.
Cette méthode n’avait cependant pas été instrumentée. Le but de ce papier est d’en proposer
une implantation, prouvée correcte, dans l’environnement de logique de réécriture Maude, et de
l’appliquer à un cas d’étude: le langage de programmation Erlang.

Mots-clés : Débogage, Maude, langages de programmation, Erlang, systèmes concurrents
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4 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

1 Introduction

Reversible computing studies computational models which have both a (standard) forward and
a backward notions of execution. Reversibility has attracted interest thanks to its diverse
applications in areas such as debugging [6, 5, 12, 7], robotics [13], biological modeling [4], and
error-recovery [18]. In sequential systems reversibility is well understood: intuitively it corresponds
to undo actions in reverse order of execution. In concurrent settings, more care is required. In
2004 Danos and Krivine proposed the notion of causal-consistent reversibility [3], tailored for
concurrent systems. With causal consistency undoing an action in a parallel execution needs only
to undo the causal consequences of that action. Actions which have been temporally interleaved
with these consequences but are causally independent can be left alone. Thus causal consistency
ensures only the strictly necessary events in a parallel execution need to be undone which is
useful to explore concurrent programs which can be prone to state explosion. Causal-consistent
reversibility has then been studied in several formalisms such as process calculi [3, 20, 2, 11],
Petri nets [19, 15], and the Erlang programming language [5, 12, 7]. It also leads to interesting
practical applications, the most prominent example being as a debugging technique as proposed
in [6] and then implemented in the CauDEr debugger for Erlang [5, 12, 7].

Most of the reversible semantics above have been devised ad-hoc for a specific formalism. The
process is usually composed of three phases: i) definition of causal dependencies between events; ii)
extension of the non-reversible semantics so that enough information is kept while going forward;
iii) creation of a backward semantics that allows one to undo actions in a causal-consistent manner
and restore past states. Performing this process manually is time-consuming, error-prone and
lacks generality.

Recently Lanese and Medic proposed a general method to automate the production of reversible
semantics [9]. The method generalizes the ad-hoc approaches above and works as follows. First,
causal dependencies are defined in terms of resources consumed and produced. Without focusing
on the details, let us consider the following Erlang example.

〈p1, θ, p2 ! hello,me〉 → 〈p1, θ, hello,me〉 | 〈p1, p2, hello〉 (1)

On the left, a process p1 is ready to send a message hello. When the reduction is executed the
process is consumed to produce the message 〈p1, p2, hello〉 and the evolution of the process itself
after the send. We say that the reduction consumes the process and produces the continuation
and the message. Then, the non-reversible semantics taken in input is extended so that each entity
is tagged with a unique key, and memories are produced each time a forward step is performed.
Memories are the extra pieces of information required to restore past states of the system and
together with keys they also keep track of the causal dependencies. Finally, a causal-consistent
backward semantics, symmetric to the forward one, is generated.

Contributions The general method in [9] was only described theoretically and the semantics
taken in input is assumed to be a (possibly infinite) set of ground rules, making it not immediately
clear that an implementation could exist. In this paper we provide such an implementation in
Maude, bridging the gap between theory and practice by using schemas to represents the ground
rules. A schema is a parameterized rule whose variables can be instantiated to obtain a ground
rewriting rule (allowing the representation of an infinity of such rules). We then use the tool to
derive a causal-consistent reversible semantics for the Erlang programming language, which can
compare to the ones previously produced by hand.

Finally, we further extend Lanese et al. ideas by devising a causal-consistent rollback operator
defined on top of the reversible semantics, which is a key primitive for a concurrent causal-
consistent debugger as described in [6]. In the literature we can find examples of causal-consistent

Inria
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rollback operators, like [5, 12, 7], nonetheless these examples were always designed in an ad-hoc
fashion suffering the same limits as the reversible semantics. In contrast, our rollback operator is
able to cope with all the reversible semantics produced by the general approach, thanks to their
uniformity. This is beneficial and desirable as one can change or update the underlying semantics
without the need to change the rollback one.

To sum up, the main contributions of this work are:

• a novel formalization of Erlang using Maude;

• a tool that derives a reversible semantics starting from a non reversible one.

• a novel automatic causal-consistent rollback semantics built on top of the reversible semantics

Paper organization We provide the reader with the required background in Section 2. In
Section 3 we present the formalization of the Erlang semantics in Maude and in Section 4 we
discuss how the reversible semantics is generated. In Section 5 we show the correctness of the
reversible semantics. In Section 6 we present a rollback semantics built on top of the reversible
semantics automatically generated. Finally, in Section 7 we give some conclusion and we hint at
possible future directions.

All the code discussed in this paper is publicly available at [21].

2 Background

2.1 Erlang: Syntax and Semantics

Erlang is a functional and concurrent programming language. First introduced in 1986 by
Ericsson, it has gained quite a lot of popularity since then. Today it is widely used and mostly
appreciated because it is easy to learn, provides useful abstractions for concurrent and distributed
programming, and because of its support for highly-available systems. Erlang implements the
actor model [8], a concurrency model based on message passing. In the actor model, each process
is an actor that can interact with other actors only through the exchange of messages, no memory
is shared. Indeed, central in Erlang are the send, receive and spawn operations, to, respectively,
send a message, receive a message, and create a new actor. Actors are identified by a unique
pid (process identifier) and have a queue of messages which have arrived but have not yet been
processed. An actor evaluates an expression, and has an environment to store variable bindings.

The rest of this section provides the reader with a basic understanding of the Erlang program-
ming language. We begin by illustrating its syntax, depicted in Fig. 11.

An Erlang program can be seen as a collection of modules, where a module is a sequence
of function definitions. Each function is uniquely identified by its name and by the number of
formal parameters. Each function may be specified by cases via multiple definitions. The correct
definition for each invocation is selected by pattern matching on parameters. The body of each
definition is represented by a sequence of expressions. In the following we denote an expression
with e and sequences of expressions as e1, . . . , en - sequences of other syntactical elements are
represented in the same manner.

Ground values in Erlang are: atoms (which are identifiers that either begin with a lowercase
or are enclosed by quotes), integers and strings, as well as compositions of values using tuple and
list constructs. We range over ground values using v. Tuples are denoted as {v1, . . . , vn} and lists
are denoted as [v1|v2], where v1 is the head and v2 the tail.

1We support the functional and concurrent fragment of the Erlang language.

RR n° 9468



6 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

program ::= mod1 . . .modn
mod ::= fun def1 . . . fun defn

fun def ::= Atom([patterns])→ exprs.
pat ::= b value | V ar | ′{′[patterns]′}′ | ′[′[patterns|patterns]′]′

patterns ::= pat {′,′ patterns}
exprs ::= expr {′,′ exprs}
expr ::= b value | V ar | ′{′[exprs]′}′ | ′[′[exprs|expr]′]′

| case expr of clseq end | receive clseq end | expr ! expr
| pat = expr | [Mod:]expr([exprs])

b value ::= Atom | Char | Float | Integer | String
clseq ::= pat→ exprs {′;′ pat→ exprs}

Figure 1: Language syntax

Variables can store ground values. Variables, e.g., X,Age, start with a capital letter and are not
enclosed in quotes. Patterns, denoted by pat, are like the ground values, but also admit the presence
of variables. Patterns are used for pattern matching in the following contexts: (i) in the matching
operation e1 = e2, (ii) in case statements case e of pat1 → exprs1; . . . ; patn → exprsn end
to choose the branch to evaluate according to the shape of the incoming data, (iii) in receive
statements receive pat1 → exprs1; . . . ; patn → exprsn end, to analyze the shape of the received
message, and (iv) in function definitions, to give values to the formal parameters.

We start by explaining the match operation, e1 = e2. First, the expression e2 on the right-hand
side is evaluated until it becomes a ground value, occurrences of free variables, if any, raise an
exception (however we do not support exception propagation and management in this work).
Then, the expression on the left-hand side, e1, is evaluated until it becomes a pattern, or a ground
value in case no free variables occur in it. Then the two elements are matched against each
other. Each free variable of the left-hand side is bound to the corresponding ground value of the
right-hand side, ground values in corresponding position should coincide: if a mismatch occurs
then an exception is raised. If no mismatch occurs then the operation evaluates to the ground
value of the right-hand side and the environment is updated with the new bindings.

In the case construct, the expression e must evaluate to a ground value, then it is matched
against the patterns, from top to bottom, until one that matches is found. When a match is
found the environment is enriched with the new bindings and the corresponding sequence of
expressions evaluated, if no match is found an exception is raised.

The behavior of the receive is similar to the one of the case, with the only difference that
messages in the queue of the process are tried as ground values till the match succeeds. When a
match is found the corresponding branch is selected. Contrary to the case, if no match is found
then the process suspends.

Despite being - mostly - functional Erlang admits some imperative operations that produce
side-effects, like the receive above, spawning a new process, and sending a message.

The syntax of message send is e1!e2, where e1 must evaluate to the pid of the receiver process
and e2 must evaluate to the ground value that represents the payload of the message. The
expression itself evaluates to the payload and, as a side-effect, the message is sent.

The spawn primitive creates a new process; it takes as argument the function f that the new
process will execute, together with the parameters for f - if any. The spawn returns the (fresh)
pid of the newly created process and, as a side effect, the new process is created.

Finally, the function self returns the pid of the process who invoked it.

Inria
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fmod BOOL is

sort Bool .

op true : -> Bool [ctor] .

op false : -> Bool [ctor] .

op _and_ : Bool Bool -> Bool [assoc comm prec 55] .

op _or_ : Bool Bool -> Bool [assoc comm prec 59] .

op not_ : Bool -> Bool [prec 53] .

vars A B C : Bool .

eq true and A = A .

eq false and A = false .

eq A and A = A .

eq not false = true .

eq not true = false .

eq A or B = not A and not B .

eq not not A = A .

endfm

Figure 2: Maude module for Booleans

2.2 Maude

Maude [14] is a programming language that efficiently implements rewriting logic [16]. Formally,
a rewriting logic is a tuple (Σ, E,R), where Σ represents a collection of typed operators, E a set
of equations among the operators, and R a set of semantics rules.

Using a rewriting logic is quite convenient to formalize the semantics of a language as it
provides the benefits of using both an equational theory and rewriting rules.

On the one hand, the equational side of rewriting logic is well-suited to define the deterministic
part of the model, where we define equivalence classes over terms. More precisely we say that two
terms v and u are equivalent if under a set of equations E we can prove E ` v = u. Equations
can be conditional and conditions can be either the membership of the term to some kind or
other equations.

On the other hand, the rewriting rules are well-suited to define the concurrent (non-deterministic)
part of the programming language semantics. The set of rules R specifies how to rewrite a (pa-
rameterized) term t to another term t′. Rewriting rules, like equations, can be conditional and
conditions can be memberships, equations, as well as other rewriting rules.

In other words the equational theory specifies which terms define the same states of a system,
only using different syntactical elements, while the rewriting rules define how the system can
evolve and transit from one state to another.

Let us now consider the module in Fig. 2, that is an example of a Maude module that
implements Booleans together with their classic operations.

First, the sort Bool is declared. Then, the values true and false are declared as two constant
operators of sort Bool. Successively, the classic operations are defined as functions that take in
input some Bools and produce a Bool as a result. For example, _and_ : Bool Bool -> Bool

defines the and operator that takes in input two Bools and produces a Bool. Finally, the
semantics of these operators is given by the equational theory defined at the bottom of the
module. Equations are used from left to right to normalize terms. For instance, the first equation,

RR n° 9468



8 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

eq true and A = A. is used to evaluate the and operator when the first argument has been
normalized to true. For simplicity, this example does not include rewriting rules, memberships
nor conditional equations.

As an additional example, we show a rewriting rule generating the Erlang reduction (1) from
the Introduction:

< 1 | exp: 2 ! ’hello’, env: {}, me: _ > =>

< 1 | exp : ’hello’, env: {}, me: _ > ||

< sender: 1, receiver: 2, payload: ’hello’ >

Labels exp (for the expression under evaluation), env (for the environment) and me (for the
module environment, containing function definitions), and similarly for messages, give names to
fields. Also, the first argument in each process is the pid (pids are integers in our implementation),
the special notation highlights that it can be used as identifier for the tuple. Character _ means
that the actual value is not shown.

We will define the generation of the reversible semantics as a program that takes in input the
modules of the non-reversible semantics and produces new modules, which define the reversible
semantics.

2.3 Derivation of the Reversible Semantics

The following of this section summarizes the main ideas of [9] where Lanese et al. propose a
methodology to automatically derive a causal-consistent reversible semantics starting from a
non-reversible one. The approach requires that the latter is modeled as a reduction semantics
which satisfies some syntactic conditions.

2.3.1 Format of the Input Reduction Semantics

We now describe the shape that the reduction semantics taken as input must have.

The syntax must be divided in two levels: a lower level of entities on which there are no
restrictions, and an upper level of systems of the following form:

S ::= P | opn(S1, . . . , Sn) | 0

where 0 is the empty system, P any entity of the lower level and opn(S1, . . . , Sn) any n-ary
operator to compose entities. An entity of the lower level could be, for example, a process of the
system or a message traveling the network. Among the operators we always assume a binary
parallel operator | .

The rules defining the operational semantics must fit the format in Fig. 3. The format contains
rules to: i) allow entities to interact with each other (Scm-Act); ii) exploit a structural congruence
(Eqv); iii) allow single entities to execute inside a context (Scm-Opn); iv) execute two systems
in parallel (Par). Notably, while (Eqv) and (Par) are rules that must belong to the semantics,
(Scm-Act) and (Scm-Opn) are schemas, and the semantics may contain any number of instances
of the schemas. Actually, rule (Par) is an instance of schema (Scm-Opn), highlighting that such
an instance is required. As another example, reduction (1) from the Introduction is an instance
of schema (Scm-Act). Also, notice that a notion of structural congruence on systems is assumed.
We refer to [9] for more details on the definition of structural congruence. This is of limited
relevance here, since the only structural congruence needed for Erlang is that parallel composition
forms a commutative monoid, which translates to the same property in the reversible semantics.

Inria
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(Scm-Act)
P1 | . . . | Pn � T [Q1, . . . , Qm]

(Eqv)
S ≡c S

′ S � S1 S1 ≡c S
′
1

S′ � S′1

(Scm-Opn)
Si � S′i

opn(S0, . . . , Si, . . . , Sn)� opn(S0, . . . , S
′
i, . . . , Sn)

(Par)
S � S′

S | S1 � S′ | S1

Figure 3: Required structure of the semantics in input; Scm- rules are schemas

(F-Scm-Act)
j1, . . . , jm are fresh keys

k1 : P1 | . . . | kn : Pn � T [j1 : Q1, . . . , jm : Qm] | [k1 : P1 | . . . | kn : Pn ;T [j1 : •1, . . . , jm : •m]]

(F-Scm-Opn)
Ri � R′i (keys(R′i) \ keys(Ri)) ∩ (keys(R0, . . . , Ri−1, Ri+1, . . . , Rn) = ∅

opn(R0, . . . , Ri, . . . , Rn)� opn(R0, . . . , R
′
i, . . . , Rn)

(F-Eqv)
R ≡c R

′ R � R1 R1 ≡c R
′
1

R′ � R′1

Figure 4: Forward rules of the uncontrolled reversible semantics

2.3.2 Methodology

To obtain a forward reversible semantics, we need to track enough history and causality informa-
tion to allow one to define a backward semantics exploiting it. First, the syntax of the systems is
updated as follows:

R ::= k : P | opn(R1, . . . , Rn) | 0 | [R ;C]

C ::= T [k1 : •1, . . . , km : •m]

Two modifications have been done. First, each entity of the system is tagged with a key k.
Keys are used to distinguish identical processes with a different history. Second, the syntax is
updated with another production: memories. Memories have the shape µ = [R;C], where R is
the configuration of the system that gave rise to a forward step and C is a context describing
the structure of the system resulting from the forward step. C acts as a link between R and the
actual final configuration. In other words, memories link different states of the entities. Moreover,
they keep track of past states of the system so that they can be restored.

Then, the forward reversible semantics is defined by decorating the rules of the non-reversible
reduction semantics as depicted in Fig. 4. Now each time a forward step is performed each
resulting entity is tagged with a fresh key, and a memory, connecting the old configuration
with the new one, is produced. E.g., the forward rule corresponding to reduction (1) from the
Introduction is:

k : 〈p1, θ, p2 ! hello,me〉� k1 : 〈p1, θ, hello,me〉 | k2 : 〈p1, p2, hello〉 |
[k : 〈p1, θ, p2 ! hello,me〉 ; k1 : •1 | k2 : •2]

Notice that the approach allows one to manage different rules since the transformation is
defined in terms of the format they must fit.

The backward rules, depicted in Fig. 5, are symmetric to the forward ones: if a memory
µ = [R ;C] and the entities tagged with the keys in C are both available then a backward step

RR n° 9468



10 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

(B-Scm-Act)
µ = [k1 : P1 | . . . | kn : Pn ;T [j1 : •1, . . . , jm : •m]]

T [j1 : Q1, . . . , jm : Qm] | µ k1 : P1 | . . . | kn : Pn

(B-Scm-Opn)
R′i Ri

opn(R0, . . . , R
′
i, . . . , Rn) opn(R0, . . . , Ri, . . . , Rn)

(B-Eqv)
R ≡c R

′ R R1 R1 ≡c R
′
1

R′ R′1

Figure 5: Backward rules of the uncontrolled reversible semantics

can be performed and the old configuration R can be restored. E.g., the backward rule undoing
the reduction (1) from the Introduction is:

k1 : 〈p1, θ, hello,me〉 | k2 : 〈p1, p2, hello〉 |
[k : 〈p1, θ, p2 ! hello,me〉 ; k1 : •1 | k2 : •2] k : 〈p1, θ, p2 ! hello,me〉

The reversible semantics produced by this approach captures causal dependencies in terms of
resources produced and consumed, since, thanks to the memory, a causal link is created each
time some entities are rewritten. We refer to [9] for the formal proof of the causal-consistency
and of other relevant properties of the reversible semantics. We also remark that the semantics
produced is uncontrolled [10], i.e., if multiple (forward and/or backward) steps are enabled at the
same time there is no policy on which one to choose.

3 Formalizing Erlang in Maude

In this section we present the formalization of the semantics of Erlang in Maude. We mostly
follow the semantics defined in [7]. Technically, we used as starting point the formalization of
Core Erlang [1] in Maude presented in [17], which was aimed at model checking. While our
formalization is quite different from the one they presented (the most notable differences are that
we formalize a fragment of Erlang instead of one of Core Erlang and the use of labels), we were
still able to re-use some of their modules and some of their ideas, like the internal representation
of ground values, which greatly simplified the formalization task.

As in [7], our semantics of Erlang has two layers: one for expressions and one for systems. This
division is quite convenient for the formalization in Maude, as we can formalize the expression
level as an equational theory and then use rewriting rules to describe the system level.

The system level comprises a rewriting rule for each concurrent feature and a rewriting rule τ
(actually two, for efficiency reasons) for sequential operations. While it would have been possible
to define the sequential operations as an equational theory also at the system level, we take a
different approach. Indeed, using rule τ is the only way to evaluate expressions (relying on the
equational theory), but it forces evaluation to stop when some base cases are reached. This is
more suitable to define the behavior of a (reversible) debugger, which is our intended application.
Notably, also a different semantics where expressions are fully evaluated could be made reversible
using the approach we describe in the next section.

Before presenting the rewriting logic, let us discuss the entities that compose an Erlang system.
Processes are defined as tuples of the form:

〈p, θ, e,me〉

where p is the process pid, θ is the environment binding variables to values2, e is the expression

2Actually θ is a stack of environments, later on we will clarify why.

Inria



Generation of a Reversible Semantics for Erlang in Maude 11

currently under evaluation and me is the module environment, which contains the definitions of
the functions declared in the module, that p can invoke or spawn. Messages instead are defined
as tuples of the form:

〈p, p′, v〉

where p is the pid of the sender, p′ is the pid of the receiver and v is the payload. In the scope of
this work processes and messages are entities in the lower level of the semantics. We denoted
them as P in Section 2.3.

A running system is composed of messages and processes, using the parallel operator.
Now, let us analyze in detail the shape of the corresponding rewriting logic by first analyzing

the equational theory for expressions.

3.1 Equational Theory

The theory is defined as a set of equations which have one of the following generic forms:

eq : [equation− name]
〈l, θ, e〉 = 〈l′, θ′, e′〉

ceq : [equation− name]
〈l, θ, e〉 = 〈l′′, θ′′, e′′〉
if 〈l′, θ′, e′〉 := op(l, θ, e) ∧ 〈l′′, θ′′, e′′〉 := 〈l′, θ′, e′〉

As we can see from above, to evaluate an expression we also need two additional items: an
environment θ and a label l. The environment binds each variable to its value, if any. The label
plays two roles: i) it communicates the kind of side effect performed by the expression, if any; ii)
it communicates information of the details of the side effect back and forth between the expression
level and the system level. Examples of this mechanism are presented below.

Two kinds of equations are used: conditional ones, featuring an if clause, and unconditional
ones. Unconditional equations define a simple reduction of the expression and change the label to
the appropriate one.

Example 3.1 (Equation for self). The unconditional equation below describes the behavior of
self at the expression level.

eq [self] :

< self(pid(INT)), ENVSTACK, atom("self")() > =

< tau, ENVSTACK, int(INT) > .

It reads roughly as follows: if the system level asks to check whether a self can be performed,
communicating that the pid of the current process is INT (via self(pid(INT))) and the expression
is actually a self (atom("self")()) then the expression reduces to the pid (int(INT)) and the
label becomes tau, denoting successful evaluation of a sequential step.

Conditional equations can: either define a single step, that requires some side condition
(e.g., binding a variable to its value), or perform some intermediate operation (e.g., selecting
an inner expression to evaluate) and then use recursively other equations (with the clause
〈l′′, θ′′, e′′〉 := 〈l′, θ′, e′〉) to reach a canonical form.

Example 3.2 (Conditional equation for receive). Figure 6 describes the conditional equation
for receive. It reads roughly as follows. If the system level asks whether a message with a
given payload can be received (req-receive(PAYLOAD)) and the current expression is a receive
(receive CLSEQ end) then one tries to match the body CLSEQ of the receive against the payload
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ceq [receive] :

< req-receive(PAYLOAD), ENV : ENVSTACK, receive CLSEQ end> =

< received, ENV’ : (ENV : ENVSTACK), begin EXSEQ end>

if #entityMatchSuccess(EXSEQ | ENV’) :=

#entityMatch(CLSEQ | PAYLOAD | ENV ) .

Figure 6: Conditional equation for receive

crl [sys-send] :

< P | exp: EXSEQ, env-stack: ENV, ASET > =>

< P | exp: EXSEQ’, env-stack: ENV’, ASET > ||

< sender: P, receiver: DEST, payload: GVALUE >

if < DEST ! GVALUE, ENV’, EXSEQ’ > :=

< req-gen, ENV, EXSEQ > .

Figure 7: System rule send

using the environment ENV. If the match succeeds (that is the result of applying the operator
#entityMatch matches the pattern #entityMatchSuccess(EXSEQ | ENV’)) then it returns the
selected clause of the receive EXSEQ as well as the environment enriched with the bindings from
the match ENV’. In this case the expression can reduce to EXSEQ and will be evaluated in the new
environment. Label received denotes successful reception.

3.2 Rewriting Rules

Let us now focus on rewriting rules, which have the following general shape:

crl : [rule− name]
〈p, θ, e,me〉 | E => 〈p, θ′, e′,me〉 | op(l′, 〈p, θ, e,me〉, E)
if 〈l′, θ′, e′〉 := 〈l, θ, e〉

In the schema above E captures other entities of the system, if any, that may have an impact
on the reduction, in particular a message that may be received. Rewriting rules are always
conditional, as we always rely on the expression semantics to understand which action the selected
process is ready to perform. Finally, we use op to apply side effects to E, determined by the label
l′ produced by the expression level and by the information on the process. Examples 3.3 and 3.4
below show some sample rewriting rules.

Example 3.3. Let us consider the conditional rewriting rule in Fig. 7, which is used to send a
message. In the conditional part of the rule we use the equational theory to check which kind
of reduction the current expression EXSEQ can perform. If it can perform a send of a GVALUE to
DEST, then the process evolves so to evaluate the new expression EXSEQ’ in the new environment
ENV’, and the new message is added to the system. Note that P is the pid of the process (as
already mentioned, Maude needs a unique identifier for this notation), and ASET includes other
elements of the process which are not relevant here (currently, only the module environment).
With respect to the general schema described above, here E on the left-hand side is empty, and
on the right-hand side op will add the message to E. This exemplifies how the label serves to
communicate information from the expression level to the system one. Using this information,
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crl [sys-receive] :

< P | exp: EXSEQ, env-stack: ENV, ASET > ||

< sender: SENDER, receiver: P, payload: GVALUE > =>

< P | exp: EXSEQ’, env-stack: ENV’, ASET >

if < received, ENV’, EXSEQ’ > :=

< req-receive(GVALUE), ENV, EXSEQ > .

Figure 8: System rule receive

side effects (in this case the send of a message) are performed at the system level. Note that the
rewriting rule in Section 2.2 is an instance of the one above.

Example 3.4. Let us consider rule sys− receive in Fig. 8, which is applied when a process
receives a message. In the rule, if there is a message targeting the process, we use the equational
theory (see Example 3.2) to check whether the message can be received in the current state. If
this is the case then the state is updated and the message is removed from the system. This rule
shows how the label can be used to bubble up information from the system level to the expression
one.

3.3 Management of Environments

One of the difficulties of formalizing Erlang lies in the manipulation of expressions. In fact, a
naive management could produce unwanted results or illegal expressions.

For example, consider the function invocation

X = pow and sub(N,M) (2)

where
pow and sub(N,M)→ Z = N ∗N,Z −M.

Simply replacing the function call with its body would produce

X = Z = N ∗N,Z −M.

which is a syntactically correct Erlang expression, but which would not have the desired effect, as
the variable X would assume the value N ∗N instead of Z −M as desired.

Constructs that produce a sequence of expressions may also produce illegal terms. Consider,
e.g., the following Erlang expression:

case pow and sub(N,M) of . . . (3)

Simply replacing the function call with its body would produce

case Z = N ∗N,Z −M of . . .

which is illegal and would be refused by an Erlang compiler.
The solution that we adopted to solve both the problems consists in wrapping the produced

sequence of expressions with the construct begin_end, which turns a sequence of expressions into
a single expression. For instance, in (2) the produced expression would be

X = begin Z = N ∗N,Z −M end.
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mod SYSTEM is

...

sort Sys .

subsort Entity < Sys .

op #empty-system : -> Sys [ctor] .

op _||_ : Sys Sys -> Sys [ctor assoc comm .. ] .

...

endm

Figure 9: Extract of the system module for Erlang.

and in this case X is correctly bound to the result of Z −M . This solution indeed produces the
desired effect also in a real Erlang environment.

In statement (3) the produced expression is:

case begin Z = N ∗N,Z −M end of . . .

which is a correct Erlang term, accepted by the compiler.
Adding begin_end blocks requires us to properly manage the environment corresponding

to each block of code. So, rather than having a single environment inside each process, we
have a stack of environments, hence what we previously denoted as θ actually has the shape
θ1 : . . . : θn. To sum up, whenever an expression e that produces a sequence of expressions
e1, . . . , en is evaluated, we wrap the sequence as begin e1, . . . , en end and we push on the stack of
environments the appropriate environment to evaluate e1, . . . , en.

If e is a function call then the appropriate environment has to bind the formal parameters of
the function to the actual ones, while if e is a case or a receive statement then the appropriate
environment is the previous one enriched with the bindings obtained from pattern matching.

Finally, once the subcomputation terminates producing an expression of the shape begin v end,
we simply replace it with the value v and we pop one environment from the stack.

4 Generating the Reversible Semantics

We decided to define the generation of the reversible semantics in Maude, for two main reasons.
First, Maude is well-suited to define program transformations thanks to its META-LEVEL
module, which contains facilities to meta-represent a module and to manipulate it. Second, since
we defined Erlang’s semantics in Maude, we do not need to define a parser for it as it can be
easily loaded and meta-represented by taking advantage of Maude’s facilities.

4.1 Format of the Non-Reversible Semantics

As in [9], the input semantics must follow a given format so that the approach can be applied.
Let us describe such format. First, the formalization must include a module named SYSTEM which
defines the system level. As an example, Fig. 9 depicts the system module for the Erlang language.
We omit elements that are not interesting in this context (import of other modules and auxiliary
functions needed to customize the translation between the module and its meta-representation).

The module defines the operators of the system level, as discussed in Section 2.3. In the case
of Erlang, we just have parallel composition || and the empty system.
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Generation of a Reversible Semantics for Erlang in Maude 15

Both inputs and outputs of all the operators inside the module SYSTEM must be of sort Sys.
The subsort relation Entity < Sys must be declared as well, to specify that entities of the lower
level can be used as systems. To this end, the sorts of the lower level (in Erlang, messages and
processes) must be subsorts of Entity.

The rewriting rules of the rewriting theory that defines the single steps of the reduction
semantics must be defined under the module TRANSITIONS. We have discussed sample rules in
Figures 7 and 8.

4.2 Transformation to the Syntax

We describe here how to transform a non-reversible syntax as described above into a reversible
syntax, as described in [9] and recalled in Section 2.3. Roughly, we need to add keys and memories.

Keys are a sort, and we also define the sort EntityWithKey composing an entity and a key
using operator *. The subsort relation EntityWithKey < Sys is added to the module, so that
now all system-level operators can deal with entities with key.

To define memories, first we declare a new sort Placeholder, together with an operator @ to
create a Placeholder from a key. Then, memories are added by defining the sort Memory and by
defining an operator that builds a memory by combining the interacting entities with key with
the final configuration, where the entities have been replaced by their placeholders. E.g., the
memory created by the reversible version of the reduction in Section 2.2 is:

[ < 1 | exp: 2 ! ’hello’, env: {}, me: _ > * key 0 ;

@: key 0 0 || @: key: 1 0 ]

The final transformation concerning the system module updates the equations to translate
entities between their representation and their meta-representation so to work on entities with
key.

4.3 Generating the Reversible Semantics

The transformation to be performed over the rewriting rules is the one described in Section 2.3.2,
rephrased in Maude notation. Thus, rules must be extended to deal with entities with key, and
each time a forward step is taken the resulting entities must be tagged with fresh keys and the
appropriate memory must be created.

The transformation is mostly straightforward, the only tricky part concerns the generation of
fresh keys. Indeed, we must have a ’distributed’ way to compute them, as passing around a key
generator would produce spurious causal dependencies. To solve the problem we resorted to the
following idea. Keys are lists of integers. Each time we need to produce a fresh key, to tag a new
entity on the right-hand side of a rule, we take the key L of the first entity on the left-hand side
of the rule, and we tag each of the new entities with L concatenated with a number corresponding
to the position of the entity on the right-hand side. Furthermore, we create the required memory.

Fig. 11 recalls rule send and shows the corresponding reversible rule. In the latter, on the
left-hand side, the process is initially tagged with a key key(L), then the new entities on the
right-hand side are tagged with fresh keys key(0 L) and key(1 L), built from key(L). Moreover,
the rule also produces a memory binding the old and the new states.

The production of the backward semantics is easy: to produce a backward rule it is enough to
swap the left- and the right-hand side of the corresponding forward reversible rule and to drop
the conditional branch. Indeed, the latter is not required any more because if the process has
performed the forward step, as proved by the existence of a memory for it, then it can always
perform the backward one. One has only to check that all the consequences of the action have
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crl [sys-send] :

< P | exp: EXSEQ, env-stack: ENV, ASET > =>

< P | exp: EXSEQ’, env-stack: ENV’, ASET > ||

< sender: P, receiver: DEST, payload: GVALUE >

if < DEST ! GVALUE, ENV’, EXSEQ’ > :=

< req-gen, ENV, EXSEQ > .

crl [label sys-send]:

< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L)

=> < sender: P, receiver: DEST, payload: GVALUE > * key(0 L) ||

< P | exp: EXSEQ’, env-stack: ENV’, ASET > * key(1 L) ||

[< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L) ;

@: key(0 L) || @: key(1 L)]

if < DEST ! GVALUE, ENV’, EXSEQ’ > := < req-gen, ENV, EXSEQ > .

Figure 10: Original and forward reversible rule send

rl [label sys-send]:

< sender: P, receiver: DEST,payload: GVALUE > * key(0 L) ||

< P | exp: EXSEQ’, env-stack: ENV’, ASET > * key(1 L) ||

[< P | ASET, exp: EXSEQ, env-stack: ENV > * key L ;

@: key(0 L) || @: key(1 L)]

=> < P | ASET, exp: EXSEQ, env-stack: ENV > * key L

Figure 11: Reversible backward rule send

been already undone. This is ensured by the presence of the entities bound by the placeholders
inside the memory.

The backward rule for send is shown in Figure 11.

5 Correctness

This section is dedicated to prove the correctness of the generated reversible semantics. This
requires to close the gap between the format of the rules expected by the general method from [9]
and the actual format of the rules provided in input. In fact, the schema of the general method
allows for an arbitrary number of rules, potentially infinitely many, describing the system evolution.
Obviously, to efficiently describe a system, we cannot exploit infinitely many rules. Thus, in the
formalization of the semantics we resorted to schemas, and we used the expression level semantics
so to select only a subset of the possible instances.

For example, let us consider the following processes:

〈p, θ, 2 ! ′hello′, 〉 〈p′, θ′, case 2 ! ′hello′ of . . . , 〉 〈p′′, θ′′, X = 2 ! ′hello′, 〉

The three processes above are all ready to perform the same send action, even though they have
a different shape, nonetheless thanks to the expression level semantics we are able to formalize
their behavior in one single rewriting rule.

However, we need to prove that the instances of the corresponding reversible rules coincide
with the set of reversible instances defined by the approach in [9]. We also need to show that
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Sch R-Sch this paper

Ins R-Ins [9]

→I,E

 s

 g→φ

→I,E

Figure 12: Schema of the proof of correctness.

by generating the reversible semantics of the schemas, as we do here, and then instantiating, we
obtain the same set of instances obtained by first instantiating the original schema and then
generating their we need to show that the diagram in Fig. 12 commutes.

This result is needed also to ensure that our reversible semantics, defined over schemas, by
construction enjoys the same desirable properties, e.g., loop lemma, as the reversible semantics
defined over ground rules following [9].

Let us begin by discussing the functions on the sides of the square. First, function s takes as
input a set of non-reversible rule schemas of the form t→ t′ if C and generates the corresponding
set of reversible (forward and backward) rule schemas. Formally function  s is defined by the
rules in Fig. 13. The rules make use of a number of auxiliary functions, let us analyze them. First,
function kl(t, L) given a term t proceeds recursively to tag each entity of the term with the key
variable L (L is the same in all the rules, we put it anyway as a parameter to highlight that the
same variable is used also on the right-hand side as described below). At each recursive call L is
concatenated with an ′. This ensures key variables on the left-hand side are all distinct. Function
kr(t, L) given a term t proceeds recursively to tag each entity of the term with the variable L
prefixed by the entity position within the term.
Finally, function ctx(tr) given a reversible term, i.e., composed only of entities tagged with keys,
proceeds recursively to substitute each entity with a • so to create a context for tr.

Then, →I,E takes as input a set of (reversible or non-reversible) rule schemas and generates
all possible instances using substitutions in I, providing all the possible values for variables, and
an equational theory E, allowing one to check whether the side condition C is satisfied. The side
condition is then dropped. Notably, substitutions i ∈ I instantiate also key variables to lists of
integers. Function →I,E is undefined if there is some i ∈ I which is not defined on some variables
of the schemas. Also, we expect the substitution to produce well-typed rules (however, we do not
discuss typing here). Formally function  I,E computes the set of instances generated by the
following inference rule:

t→ t′ if C i ∈ I E ` i(C)

i(t)→ i(t′)

With E ` i(C) we denote that side condition C, instantiated using substitution i, holds according
to the equational theory E.

The following example shows how starting from a schema by using relation  I,E we can
obtain a ground instance of the schema.

Example 5.1 (Schema instantiation). Let us consider the rewriting rule tau below, which lifts a
sequential step from the equation level to the system level, and the equation about matching.

crl [sys-tau] :

< P | exp: EXSEQ, env-stack: ENV, ASET > =>

< P | exp: EXSEQ’, env-stack: ENV’, ASET >
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if < tau, ENV’, EXSEQ’ > :=

< req-gen, ENV, EXSEQ > .

eq [match] :

< REQLABEL, ENVSTACK, GVALUE = GVALUE > =

< tau, ENVSTACK, GVALUE > .

Then let us consider the following i ∈ I:

{(EXSEQ 7→ true = true), (EXSEQ’ 7→ true), (P 7→ 2), (ENV 7→ {}), (ENV’ 7→ {})}

For the sake of simplicity we ignore the components of a process inside ASET, as they are not
relevant for this example (ASET currently only contains the definitions of the functions that the
process is allowed to invoke).

After substituting the variables with ground values we obtain a rule with the following shape.

crl [sys-tau] :

< 2 | exp: true = true, env-stack: {}, _ > =>

< 2 | exp: true, env-stack: {}, _ >

if < tau, {}, true > :=

< req-gen, {}, true = true > .

Then, we can use the equational theory (in this example the match equation depicted above)
to check the validity the conditional branch. Finally, since the equation in the conditional branch
is valid in the equational theory, we can drop the conditional branch and obtain the following
ground rule.

< 2 | exp: true = true, env-stack: {}, _ > =>

< 2 | exp: true, env-stack: {}, _ >

Function  g models the general approach defined in [9]. Intuitively,  g works like  s,
but it takes only instances of rule schemas. Also, it adds concrete keys instead of key variables.
Formally function  g is defined by the rules in Fig. 14. The rules are quite similar to the ones
in Fig. 13, only they deal with ground instances of schemas and also the function used to tag
terms is different. Indeed, while for schemas we need to follow a precise algorithm to select key
variables matching the approach in this paper, the general approach from [9] picks keys from
an arbitrary set - what is modeled here by kg. The selection policy is left implicit in [9]. Here,
for simplicity, we assume distinct keys are used in different rules. This is not restrictive since in
order to be applied keys need anyway to be α-converted, the keys on the left-hand side of rules
to match keys on the running system, and the keys on the right-hand side to ensure freshness.

Function →φ is a function mapping keys in [9], which are taken from an arbitrary set, to keys
in our approach, which are lists of integers.

We are now ready to prove our main result.

Theorem 1 (Correctness). Given functions  g,  sand →I,E in Fig. 12 such that each i ∈ I is
injective on key variables, there exists a total function →φ, injective on key variables belonging
to the same rule, s.t. the square in Fig. 12 commutes, i.e.,  s→I,E= →I,E g→φ

Proof. We refine the commuting square in Fig 15, adding sample elements of the sets at each
corner. The thesis follows by showing that the equality on the bottom-right corner holds, namely
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t→ t′ if C tr = kl(t, L) t′r = kr(t
′, L) c = ctx(t′r)

tr → t′r | [tr; c] if C

t→ t′ if C tr = kl(t, L) t′r = kr(t
′, L) c = ctx(t′r)

t′r | [tr; c]→ tr

Figure 13: Schemas transformation

gt→ gt′ gtr = kg(gt,Kl) gt′r = kg(gt
′,Kr) c = ctx(gt′r) Kl ∩ Kr = ∅

gtr → gt′r | [gtr; c]

gt→ gt′ gtr = kg(gt,Kl) gt′r = kg(gt
′,Kr) c = ctx(gt′r) Kl ∩ Kr = ∅

gt′r | [gtr; c]→ gtr

Figure 14: Ground rules transformation

that there exists a total function →φ, injective on key variables belonging to the same rule, so
that for each term t

i(kx(t, L)) = φ(kg(i(t),Kx))

where x ∈ {l, r}. We proceed by case analysis on x.

Case x = l.
We must prove that i(kl(t, L)) = φ(kg(i(t),Kl)).
We begin by observing that, on the left-hand side, kl tags the entities of the term t with meta-keys,
which will be initialized by the seed given in input, i.e., L. Successively, i will instantiate all the
variables to ground values, obtaining so a ground rule. On the right-hand side, i instantiates
the variables of t to ground values, the same as the left hand-side, and then kg proceeds to tag
entities with fresh keys picked from Kl. Notice that at this point the terms will be the same but
for possibly the keys. However, all keys of a single instance are distinct both in the instances
from our approach and in the ones from [9] (also thanks to injectivity of i on key variables). Also,
we assumed that keys of different instances in [9] are distinct, hence we can define →φ so to map
each key from [9] to the key in the corresponding position in our approach. By construction this
is total and injective on key variables belonging to the same rule, as desired.

Case x = r.
The argument is similar to the one presented above.

Example 5.2 (Commutativity of the diagram). Here, we show an example, based on the rule in
Example 5.1, of how by following the two paths of Fig. 15 we get the same result.

First, starting from the top-left, we can make the schema reversible by following the horizontal
arrow ( s), getting the following reversible schemas.

< P | exp: EXSEQ, env-stack: ENV, ASET > * key(L) =>

< P | exp: EXSEQ’, env-stack: ENV’, ASET > key(0 L) ||

[< P | exp: EXSEQ, env-stack: ENV, ASET > * key(L) ; @: key(0 L)]

if < tau, ENV’, EXSEQ’ > :=

< req-gen, ENV, EXSEQ > .

< P | exp: EXSEQ’, env-stack: ENV’, ASET > key(0 L) ||

[< P | exp: EXSEQ, env-stack: ENV, ASET > * key(L) ; @: key(0 L)] =>

< P | exp: EXSEQ, env-stack: ENV, ASET > * key(L)
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t→ t′ if C
kl(t)→ kr(t

′) | [kl(t) ; ctx(kr(tr)] if C,
kr(t

′) | [kl(t) ; ctx(kr(tr))]→ kl(t)
this paper

i(t)→ i(t′)

(i(kl(t))→ (i(kr(t
′))) | [(i(kl(t))), ctx((i(kr(tr))))]),

(i(kr(t
′))) | [(i(kl(t))) ; ctx((i(kr(tr))))]→ (i(kl(t)))

=
φ(kg(i(t)))→ φ(kg(i(t

′))) | [φ(kl(i(t))) ; ctx(φ(kg(i(t
′))))],

φ(kg(i(t
′))) | [φ(kg(i(t))) ; ctx(φ(kg(i(t

′))))]→ φ(kl(i(t)))

[9]

→I,E

 s

 g→φ

→I,E

Figure 15: Schema of the proof of correctness. Seeds for kl, kr and kg have been omitted for simplicity.

We can take as i:

{(EXSEQ 7→ true = true), (EXSEQ’ 7→ true), (P 7→ 2), (ENV 7→ {}), (ENV’ 7→ {}), (L 7→ 0)}

W.r.t. Example 5.1 we now provide a binding for L as well. This would make no difference in
Example 5.1 since L did not occur in the term. By instantiating the two schemas with i we obtain
the two following ground rules.

< 2 | exp: true = true, env-stack: {}, _ > * key(0) =>

< 2 | exp: true, env-stack: {}, _ > * key(0 0) ||

[< 2 | exp: true = true, env-stack: {}, _ > * key(0) ; @: key(0 0) ]

< 2 | exp: true, env-stack: {}, _ > * key(0 0) ||

[< 2 | exp: true = true, env-stack: {}, _ > * key(0) ; @: key(0 0) ]

=> < 2 | exp: true = true, env-stack: {}, _ > * key(0)

Now, let us resume the result in Example 5.1, where we showed how by following first the
vertical arrow (→I,E) we get a ground rule. By following the horizontal arrow ( g) we can
transform

< 2 | exp: true = true, env-stack: {}, _ > =>

< 2 | exp: true, env-stack: {}, _ >

into

< 2 | exp: true = true, env-stack: {}, _ > * key(a) =>

< 2 | exp: true, env-stack: {}, _ > * key(b) ||

[< 2 | exp: true = true, env-stack: {}, _ > * key(a) ; @: key(b) ]

< 2 | exp: true, env-stack: {}, _ > * key(b) ||

[< 2 | exp: true = true, env-stack: {}, _ > * key(a) ; @: key(b) ]

=> < 2 | exp: true = true, env-stack: {}, _ > * key(a)

i.e., in its corresponding forward and backward version. Notice that since the general approach
does not impose any constraint on keys (except freshness) here we decided to represent them as
lists of characters.
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Finally, let us choose as φ:

{(key(a) 7→ key(0)), (key(b) 7→ key(0 0)), }

Thanks to →φ we can replace keys to recover the ones chosen by our approach, so to get

< 2 | exp: true = true, env-stack: {}, _ > * key(0) =>

< 2 | exp: true, env-stack: {}, _ > * key(0 0) ||

[< 2 | exp: true = true, env-stack: {}, _ > * key(0) ; @: key(0 0) ]

< 2 | exp: true, env-stack: {}, _ > * key(0 0) ||

[< 2 | exp: true = true, env-stack: {}, _ > * key(0) ; @: key(0 0) ]

=> < 2 | exp: true = true, env-stack: {}, _ > * key(0)

as desired.

6 Rollback Semantics

In this section we discuss an automatic causal-consistent rollback semantics built on top of the
reversible backward semantics.

A causal-consistent rollback semantics is a semantics that reverts automatically the system
back to a past state by undoing all and only the actions that have a causal link with such state.
The user is selects a state that the system has visited by specifying one of the -potentially many-
unique keys of such state and then the rollback semantics undoes automatically all the actions
until such state is restored.

For the rollback semantics to work we must have a method to perform controlled backward
steps. Here, controlled means that we can specify which process has to perform the backward
step. Fortunately, Maude provides a way to rewrite systems that fits our needs: the MetaXApply

function. MetaXApply takes in input seven elements:

• a theory R

• a term t

• a rule name l

• a substitution φ

• a lower bound n

• an upper bound b

• a natural number m

Then, once invoked, MetaXApply works as follow:

• normalizes the term t with the equations in R

• matches the normalized term t with the first m + 1 rules that matches l on which the
substitution φ has been applied and discards the first m matches

• fully reduces the normalized term t with the m+ 1 rule that matched

• returns the rewritten term
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dep(S, k) when M := getMem(S, k)→
Kc := contextKeys(M)
R = ∅
for ki in Kc

R := R ∪ dep(S, ki)
R ∪ {k}

dep(S, k)→
∅

Figure 16: Dependencies operator

The lower bound n and the upper bound b define boundaries for the nesting level of the term
that will be rewritten, to have no boundaries, like we desire for our case, it is enough to set n to
be 0 and b to be the constant unbounded.

Now that we have a way to perform single step back we need a way to uniquely identify them.
One possibility is to rely on the keys involved in the corresponding forward step. Each forward
rule describes how the system transitions from the term on the left-hand side to the one on the
right-hand one and the keys used to tag both terms are always unique. This means that each
forward step is uniquely identified by the keys that it involves, hence those keys also uniquely
identify the corresponding backward step. To perform a controlled backward step is enough to
know one of the keys used to tag the initial configuration that gave rise to the forward step as
there will exist only one backward ground instance of a schema that involves such key.

Operatively, to undo a transition, it suffices to feed to MetaXApply the backward rules theory
(R), the current system (t), the appropriate backward rule (l), and the selected key that has to
be instantiated in the rule (σ), set b and n to have no boundaries (i.e., the rewriting can happen
anywhere) and set m to 0.

Finally, given a state in input, we need to compute the set of actions that have a causal link
with it. To do so we rely on the dependencies operator, depicted in Fig. 16, which works as follow.

Given a key k and a system configuration S we have two possibilities:

• the system contains a memory with an entity in the initial configuration tagged with k.
This means that some consequences of the state are still acting on the system, to undo
them we call recursively the procedure on the set of keys of the context and eventually we
add to the set of computed request also k;

• the system does not contain a memory having in the initial configuration an entity tagged
with k; this means no consequences of such action are acting on S.

In the definition of dep we find two auxiliary functions, let us discuss them. First, getMem,
given a system configuration and a key, returns the memory that contains an entity tagged with
such key, if it is found, while contextKeys given a memory returns the set of keys used in the
context.

Once the set of backward steps (i.e., a set of keys) has been computed it suffices to non-
deterministically choose a key so that MetaXApply can successfully perform a rewrite and continue
until the set is emptied. When all the backward steps have been done the system will be in the
desired state.

In the past other causal-consistent rollback semantics have been proposed, we find examples
in [5, 12, 7]. The three rollback semantics all worked on different subsets of the Erlang language,
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but they all followed the same principles. A system in rollback mode is identified as a system
with a stack of requests - i.e., backward steps - to be satisfied. If the request on top can be
undone then it is undone, otherwise some consequences of the action are still in place so we first
need to undo them. The new requests are always computed ad-hoc, according to the shape of the
system and of the entities involved. In our case the flavor is more general, indeed we are agnostic
of the underlying system. Moreover, we also have a finer semantics, indeed thanks to the fact
that we identify states through keys we can rollback to any state of the system whereas in the
cited rollback semantics it is only possible to reach certain labeled states.

The automatic rollback semantics presented in this work can be thought as a base on which
to build more human-friendly semantics, like the ones in [5, 12, 7], in which states are identified
through labels. The advantage of having an automatic rollback semantics is that each time that
the reduction semantics given in input is changed we do not need to update the rollback semantics
but we only need to generate a new backward reversible one.

7 Conclusion

We presented a new formalization of the Erlang language using Maude. Having a mechanized
version of the Erlang semantics makes it much easier to debug it and to become confident that
the semantics correctly captures the behavior of the language. Indeed, to test the semantics, in
our work, one can load an Erlang module and actually run an arbitrary program (as long as the
program uses supported primitives) and the states traversed can be compared against an actual
execution to make sure that the two agree.

Concretely, defining an executable semantics of a language poses also some challenges that
do not rise for arbitrary semantics. For instance, the semantics in [7] resorts to the existence of
suitable contexts to identify the redex inside an expression, while we need to explicitly give an
inductive definition to find the redex.

We also implemented a program able to transform a non-reversible semantics into a reversible
one, providing an implementation of the general method described in [9]. Again, ensuring that
the method can be actually executed poses some challenges. E.g., [9] just declares that keys are
generated fresh, while we had to provide a concrete and distributed algorithm to generate keys
ensuring their freshness.

Finally, we presented a causal-consistent rollback semantics build on top of the backward
semantics. Rollback semantics have been proved of interest for debugging techniques, we find
examples in [5, 12, 7]. The rollback semantics presented here differs from the ones presented in
the past as it is agnostic of the underlying formalism and it is finer, as it allows the user to reach
every state that the system traversed.

Let us now discuss possible future improvements for the presented work. First, one could
investigate ways to optimize the implementation of the semantics, so to be able to simulate more
computationally expensive Erlang computations. For instance, right now the top-level environment
also includes the bindings from the lower levels, and this increases the needed memory. Second,
one could support further primitives to widen the set of executable programs. In doing so it is
important to make sure that the causal-dependencies captured by the producer-consumer model
used in [9] are appropriate - for example the model is not well-suited to capture dependencies
due to shared memory.
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