
HAL Id: hal-03688784
https://hal.inria.fr/hal-03688784

Submitted on 5 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BINMETA: a new Java package for meta-heuristic
searches

Antonio Mucherino

To cite this version:
Antonio Mucherino. BINMETA: a new Java package for meta-heuristic searches. Lecture Notes
in Computer Science 13127, Proceedings of Large-Scale Scientific Computations, Jun 2021, Sozopol,
Bulgaria. pp.242-249. �hal-03688784�

https://hal.inria.fr/hal-03688784
https://hal.archives-ouvertes.fr

BINMETA: a new Java package

for meta-heuristic searches

Antonio Mucherino

IRISA, University of Rennes 1, Rennes, France.

Email: antonio.mucherino@irisa.fr

Abstract. We present a new Java package, named BINMETA, for the develop-

ment and the study of meta-heuristic searches for global optimization. The so-

lution space for our optimization problems is based on a discrete representation,

but it does not restrict to combinatorial problems, for every representation on

computer machines finally reduces to a sequence of bits. We focus on general

purpose meta-heuristics, which are not tailored to any specific subclass of prob-

lems. Although we are aware that this is not the first attempt to develop one

unique tool implementing more than one meta-heuristic search, we are motivated

by the following three main research lines on meta-heuristics. First, we plan to

collect several implementations of meta-heuristic searches, developed by several

programmers under the common interface of the package, where a particular at-

tention is given to the common components of the various meta-heuristics. Sec-

ond, the discrete representation for the solutions that we employ allows the user

to perform a preliminary study on the degrees of freedom that is likely to give

a positive impact on the performance of the meta-heuristic searches. Third, the

choice of Java as a programming language is motivated by its flexibility and the

use of a high-level objective-oriented paradigm. Finally, an important point in

the development of BINMETA is that a meta-heuristic search implemented in the

package can also be seen as an optimization problem, where its parameters play

the role decision variables.

1 Introduction

Meta-heuristic searches are general purpose methods for global optimization [10, 14],

which are generally inspired by the observation of the nature, or of animal behavior,

including the social behavior of human beings [6]. Among the most “famous” meta-

heuristics we can cite the family of Generic Algorithms [13], and swarm intelligence ap-

proaches such as Ant Colony Optimization [4]. The BINMETA package that we present

for the first time in this article is intended for collecting the implementations of sev-

eral of the meta-heuristic searches that have been proposed in the scientific literature in

recent years.

We plan our BINMETA package to be the instrument for a wide comparison among

different methods and strategies implemented in various meta-heuristic searches, that

can potentially be complementary and complete each other under the common inter-

face provided by the package. One main idea is to keep the implementations rather

“simple”, while remaining effective, and very modular, so that the involvement of other

A. Mucherino

researchers in the development of the package is encouraged. In other words, the main

approach for the development of this Java package is the so-called incremental build

approach [11]. The initial versions of the package have already been deposited on the

GitHub1, in a public repository. We make reference in the following to the 13th commit

(code: 2007aa2) to this repository.

We make the choice to represent the solution space of all considered optimization

problems in a combinatorial space, so that the implemented meta-heuristic searches can

work in a discrete space. A discrete representation is naturally accommodated for com-

binatorial problems, but we do not aim to limit, with this choice for the representation of

the solutions, our package to solely combinatorial problems. In fact, the solutions to ev-

ery optimization problem need to admit a suitable discrete representation (in practice,

a representation as a bit string) in order to be treated by digital machines. Moreover,

we pay particular attention to having optimal discrete representations for the solutions

of our optimization problems, where we intend optimality in terms of the degrees of

freedom for the solutions.

BINMETA is developed in Java. The choice of a high-level and object-oriented pro-

gramming language comes first of all for encouraging a wide collaboration in its devel-

opment (as already mentioned above). Moreover, Java allows us to develop the different

parts of the package (optimization problems, meta-heuristic searches) under a common

interface, where every part can be easily related to the others. One initial advantage

of this flexibility is given by the fact that meta-heuristic searches are implemented so

that they are compatible with the interface describing the objective functions of the opti-

mization problems. The selection of the “optimal” parameters for a given meta-heuristic

search for the solution of a given optimization problem can in this way be seen as an-

other optimization problem, where the parameters of the meta-heuristic search play the

role of decision variables. The solution to this parameter tuning problem can therefore

be attempted with our Java package.

We point out that this is not the first software project on meta-heuristic searches.

There exist in fact several implementations of single (or of particular subgroups of)

meta-heuristic searches; the more one meta-heuristic search is studied and used in the

scientific community, the more there are implementations available. Other software

tools may not focus on meta-heuristics but they may contain some of their implemen-

tations for tackling some specific problems (examples can be found in [14]). Finally,

other software projects collecting several meta-heuristics include the software tool PAR-

ADISEO [2] (written in C++), as well as the software tool JMETAL [5], written in Java

and mainly focused on multi-objective optimization. To the best of our knowledge,

apart from the main features already pointed out above (data representation and opti-

mization, organization of class interfaces), BINMETA is the first software project whose

development strictly follows an incremental programming approach, and it encourages

the participation of several developers.

The rest of the paper is organized as follows. In Section 2, we will give the details

of the binary representations that will be employed for the possible solutions to our op-

timization problems. Section 3 will present some of the optimization problems that are

currently available in the BINMETA package, while Section 4 will describe the very first

1 https://github.com/mucherino/binMeta

BINMETA: a new Java package for meta-heuristic searches

meta-heuristic searches that have been implemented in the package. Finally, Section 5

will present some preliminary experiments, and Section 6 will conclude the paper.

2 Representation of the solutions

Some meta-heuristic searches were originally conceived and developed to admit a dis-

crete representation of the solutions. For example, in Ant Colony Optimization (ACO)

[1], the solutions are vertices of a given graph, where the involved ants move by step-

ping from one vertex to another where an edge exists between the two. The search space

is therefore discrete and admits representations of the entire set of potential solutions

in a combinatorial space. Other meta-heuristics, instead, are strongly based on contin-

uous representations of the solutions: one example is the recent Spiral Optimization

meta-heuristics [15], where the constructed spirals admit continuous representations in

Euclidean spaces. Even if initially conceived for a discrete or continuous representation

of the solutions, the implementation adaptations of meta-heuristic searches from one to

the other representation have been attempted in previous works (see for example [3]).

In our Java package, the choice to represent the solutions to all optimization prob-

lems in a combinatorial space comes from the observation that all suitable representa-

tions on a computer machine need to be discrete (and finite). Even continuous prob-

lems with real-valued variables, for example, need to have their variables represented

on computer machines in a binary format, which essentially corresponds to a well-

formatted “bit string” (the floating-point representation is for example the proper for-

mat for the real-valued variables). Instead of using these generally provided standard

data types, BINMETA gives the user the possibility to develop ad-hoc and specific bi-

nary representation for the involved variables. If a given variable can take up to four

different values, for example, then 2 bits are sufficient to represent it. If solutions of the

problem at hand are sets of variables that can each take up to four values, these solu-

tions can be represented in binary format as a unique bit string concatenating the 2 bits

necessary for the representation of each variable.

We point out that the use of one unique bit string for the representation of the so-

lutions is much more efficient than considering arrays of single variables. In fact, in

the previous example, we would have an array of variables of type byte, each covering

8 bits in the computer memory. However, only four values can be taken by each variable

stored in the byte, and therefore 6 out of the 8 bits are actually not used. Moreover, if

they were used, they would correspond to values that are not feasible for these vari-

ables, so that constraints need to be included and verified for a correct use of the array

of bytes. These two issues are immediately overcome when employing one unique bit

string representation.

3 The first optimization problems

We give in this section some examples of optimization problems that are currently im-

plemented in our Java package BINMETA. Some of them are simple problems, which

A. Mucherino

were included in the package with the only aim to performing simple tests on the meta-

heuristic searches, before attempting the solution of harder problems. Some of our op-

timization problems are classical problems arising in the field of Operational Research

[18]. Our current package version includes the SUBSET SUM PROBLEM, the NUMBER

PARTITION PROBLEM and the KNAPSACK PROBLEM.

In the following sections, we will focus instead on two other optimization prob-

lems that we have included in the package mainly for testing and presentation purposes

(Sections 3.1 and 3.2). Finally, in Section 3.3, we will briefly discuss the possibility to

solve optimization problems where the objective function provides, for a given set of

parameters’ values, the performance of the implemented meta-heuristic searches (that

we will discuss in Section 4).

3.1 The Pi objective

This objective is related to an optimization problem that can be considered as an easy

problem: we decided to describe it in details for giving an example of simple problem

with a set of real-valued variables that can be encoded as a unique bit string having

fixed length.

The basic idea is to find the positions on a unit circle (lying in the two-dimensional

Euclidean space) of n points xi such that the objective

Pi({x1,x2, . . . ,xn}) =
n

∑
i=1

||xi − xi+1||

is maximized, where it is supposed that xi+1 coincides with x1, and where || · || repre-

sents the Euclidean norm. Finding the set of n points that maximizes the value of the Pi

function is equivalent to improving the approximation of the number π that is obtained.

As mentioned above, this is not a hard problem: if every point xi is constrained to

take positions in a portion of circle that is in size proportional to 1/n, then the optimal

solution can be simply identified by local optimization. However, we did not impose

this constraint in the implementation of the objective in our BINMETA package.

The precision of the point positions, in terms of number of bits used their repre-

sentation, can naturally have an important impact on the obtained approximation of π.

Since every xi belongs to the unit circle, we can represent it with only one real value (a

vector angle); a discrete set of possible values for this angle can then be represented by

a bit sub-string having a predefined length (which will correspond to the precision of

the representation). Finally, one possible solution to the problem can be represented by

the bit string concatenating all sub-strings related to the points xi.

3.2 The Fermat objective

Fermat’s last theorem states that no solutions for the equation xn + yn = zn exist when

x, y and z are positive integers larger than 1, when the value of n is fixed and is greater

than 2. This theorem was proved in 1995 by Sir. Andrew Wiles [17], about 350 years

after the formulation of the theorem by Pierre de Fermat. We consider the following

objective:

F(x,y,z) = |zn − xn − yn |,

BINMETA: a new Java package for meta-heuristic searches

which basically measures the violation of the Fermat equation for a fixed value of n,

and for three possible integers x, y and z. If we attempt the minimization of F when

n = 2, we know that there exist solutions where the value of the function can be zero.

However, if we could find a triplet (x̂, ŷ, ẑ) for which the value of this objective is zero

when n > 2, this would correspond to find a counterexample to Fermat’s last theorem.

Differently from the problem in the previous section, optimizing the Fermat objec-

tive is NP-hard. This can be easily proved by noticing that the problem is equivalent to

a SUBSET SUM instance where, in the set of all positive integers of the type xn smaller

than a given upper bound, and which also contains their opposites −xn, it is necessary

to verify whether there exist a subset whose element sum is zero, with the additional

constraint that the cardinality of the subset must be 3. Two copies of xn may be included

in the initial set to consider equations where x = y.

This objective allows us to point out the importance of the choice of the binary

representation (the final bit string) for the possible solutions to the problem. We can

remark, first of all, that by inverting x and y in the original equation, the solution does

not change. Therefore, half of the possible solutions (which are symmetric w.r.t. other

solutions) can be removed by imposing the constraint x ≤ y. Moreover, we can also

remark that the values that z can take are also constrained by the values assigned to the

other two integers.

Once the number of bits for the integer representations is selected (equivalent to

giving an upper bound on the values of the integers), the final bit string representing

a possible solution to the Fermat problem is the concatenation of the three sub-strings

encoding the three integers x, y and z. However, for the reasons given above, only x

is represented in absolute value, while the difference y− x is encoded by the second

sub-string, and the difference z− y is encoded by the third sub-string.

3.3 Meta-heuristic searches as objective functions

Recent works have been focusing on the problem of setting up automatically the pa-

rameters involved in meta-heuristic searches [12]. In our Java package, a special class

of optimization problems is given by the set of implemented meta-heuristic searches,

where the objective functions provide a measure of their performance when invoked to

solve a certain problem. The decision variables are in this case the set of parameters

that are used to invoke the meta-heuristic search, represented as a bit string in our im-

plementations. The main idea is to find the parameters that allow the search to achieve

the best performance when dealing with a specific problem (or a particular class of

problems). In BINMETA, the meta-heuristic search A may be used for optimizing the

parameters of the meta-heuristic search B in the attempt to solve the optimization prob-

lem C. The situation where A = B is also feasible from a technical point of view in our

Java package.

4 The first meta-heuristic searches

We focus in this section on one of the first meta-heuristic searches that have been im-

plemented in our Java package BINMETA, the Wolf Search meta-heuristics (see Sec-

A. Mucherino

tion 4.1). Notice however that a Random Walk meta-heuristics has also been imple-

mented, as well as a local optimization procedure inspired by the gradient descent

method but acting directly on the binary representations of our solutions.

4.1 Wolf Search

Wolves can hunt individually or in a group. These groups of wolves are however local,

they do not comprise the entire set of wolves in a given area. A wolf moving individually

in search for food would alternate its efforts in catching a new prey by itself, and in

verifying whether a near wolf has been luckier in its searches and eventually join it. The

risk for a threat, given by the presence of other predators, can potentially make the wolf

decide to leave its current search, in order to escape in a safer area. We implemented

the Wolf Search as described in [16], because well adapted to the spirit of our Java

package; we remark that a more sophisticated meta-heuristic search, that is also based

on the hunting behavior of wolves, was subsequently proposed in [7].

The Wolf Search meta-heuristics is based on the following three main steps. First of

all, every wolf in the group attempts to perform an individual move in the search space,

with the aim of finding better hunting conditions (more food, more preys, represented

by a solution with better objective function values). The new solution is accepted only if

it does improve the objective function value, and only if it was not recently considered

(for this second criterium, we suppose that the wolves are equipped with an ephemeral

memory containing previously explored solutions). In our implementation, the wolf

initially looks randomly in its range of vision, and then tries to improve its current

solution by performing a local search.

If the individual search does not lead to any new better solutions, then the wolf looks

around itself to verify whether other wolves had been luckier in the search. To simulate

locality, only the wolves positioned in solutions that are close in distance to the current

wolf’s solution are taken into consideration. The current wolf can therefore decide to

join another wolf when this other one is in its range of vision, and if this other wolf is

currently carrying a better solution. Joining another wolf corresponds to standing in the

solution it is carrying, or in a very near solution.

Finally, every wolf has a given risk probability for a threat, which will imply a

random movement in the search space, but limited to the wolf’s range of vision. This

movement is completely independent from the current value of the objective function;

since the wolf behavior may make the wolves escape from good quality solutions, these

solutions are not included in the ephemeral memory when escaping, in a way that these

wolves may come back exploring the same part of the search space when the threat has

disappeared.

5 Preliminary experiments

We propose some preliminary computational experiments, where the Random Walk and

Wolf Search meta-heuristics (see Section 4.1) are employed for solving the optimization

problems represented by the objective function Pi (see Section 3.1) and Fermat (see

Section 3.2).

BINMETA: a new Java package for meta-heuristic searches

n #digits #bits Random Walk Wolf Search

P
i

10 3 30 -3.0880 -3.0901

25 4 100 -3.1192 -3.1325

50 5 250 -3.1202 -3.1321

n #digits #bits Random Walk Wolf Search

F
er

m
a

t

2 10 30 1.0 0.0

3 12 36 16353.0 1.0

3 15 45 1849940.0 2.0

Table 1. Every meta-heuristic run for 1 second, on a standard computer laptop. Since our meta-

heuristics are implemented to solve minimization problems, a negative sign is assigned to every

evaluation of the Pi objective.

On the left-hand side of Table 1, we report some solutions found when optimizing

the Pi objective. The value of n indicates the number of points on the unit circle, while

#digits indicates the number of bits used for the representation of their corresponding

angle. The total number of bits (#bits) is a consequence of the previous two values. The

experiments show that better results can be obtained with larger values for both n and

#digits. As expected, Wolf Search performs better than Random Walk.

On the right-hand side of Table 1, some experiments concerning the Fermat objec-

tive are proposed. In this case, n is the exponent in the Fermat equation, while #digits

is the number of bits used in the representation of each integer x, y and z (and therefore

the total number of bits corresponds to 3 times this value). When n = 2, Wolf Search

is able to find a solution for which the objective is zero: in this solution, x = 3, y = 5

and z = 10. In the other two experiments, solutions to the equation are not supposed to

exist.

6 Conclusions

We introduced the new BINMETA package, a Java package for the implementation and

the study, under a common interface, of several meta-heuristic searches for global op-

timization. Future works will consist in extending the number of objectives, as well as

the number of meta-heuristic searches, that are implemented, so that BINMETA can be-

come one of the main references for the study of meta-heuristic searches. We also plan

to introduce the concept of meta-heuristic environment in our package, as described in

[9]. Finally, we point out again the importance in choosing the binary representation

for the solutions: this is an important point that was studied for example in [8] for the

distance geometry problem, which we plan to include in the near future in our package.

Acknowledgments

Throughout the entire article, the reader may have noticed that the plural form is em-

ployed even if there is only one author. This author actually needs to thank the collabo-

ration of some Master students that worked on this software package in the framework

of course projects. The identity of the students that gave the most important contribu-

tions appear (in different forms) in the source files (see GitHub repository).

This work is partially supported by the international project MULTIBIOSTRUCT

funded by the ANR French funding agency (ANR-19-CE45-0019).

A. Mucherino

References

1. V. Atanassova, S. Fidanova, I. Popchev, P. Chountas, Generalized Nets, ACO-Algorithms and

Genetic Algorithm. In: “Monte Carlo Methods and Applications”, K.K. Sabelfeld, I. Dimov,

De Gruyter, 39–46, 2012.

2. S. Cahon, N. Melab, E-G. Talbi, ParadisEO: A Framework for the Reusable Design of Par-

allel and Distributed Metaheuristics, Journal of Heuristics 10, 357–380, 2004.

3. B. Crawford, R. Soto, G. Astorga, J. Garcı́a, C. Castro, F. Paredes, Putting Continuous Meta-

heuristics to Work in Binary Search Spaces, Complexity 2017, article ID8404231, 19 pages,

2017.

4. M. Dorigo, M. Birattari, Ant Colony Optimization. In: “Encyclopedia of Machine Learning”,

C. Sammut, G.I. Webb (Eds.), Springer, 36–39, 2010.

5. J.J. Durillo, A.J. Nebro, jMetal: a Java Framework for Multi-Objective Optimization, Ad-

vances in Engineering Software 42, 760–771, 2011.

6. I. Fister Jr, X-S. Yang, I. Fister, J. Brest, D. Fister, A Brief Review of Nature-Inspired Algo-

rithms for Optimization, Elektrotehniski Vestnik 80(3), 1–7, 2013.

7. S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey Wolf Optimizer, Advances in Engineering Soft-

ware 69, 46–61, 2014.

8. A. Mucherino, An Analysis on the Degrees of Freedom of Binary Representations for Solu-

tions to Discretizable Distance Geometry Problems. To appear in “Recent Advances in Com-

putational Optimization”, S. Fidanova (Ed.), Studies in Computational Intelligence, 2021.

9. A. Mucherino, S. Fidanova, M. Ganzha, Ant Colony Optimization with Environment

Changes: an Application to GPS Surveying, IEEE Conference Proceedings, Federated Con-

ference on Computer Science and Information Systems (FedCSIS15), Workshop on Compu-

tational Optimization (WCO15), Lodz, Poland, 495–500, 2015.

10. A. Mucherino, O. Seref, Modeling and Solving Real Life Global Optimization Problems

with Meta-Heuristic Methods. In: “Advances in Modeling Agricultural Systems”, Springer

Optimization and Its Applications 25, P.J. Papajorgji, P.M. Pardalos (Eds.), 403–420, 2008.

11. R.S. Pressman, B.R. Maxim, Software Engineering: A Practitioner’s Approach. McGraw-

Hill Education, 9th edition, 704 pages, 2019.

12. D. Pukhkaiev, Y. Semendiak, S. Götz and U. Aßmann, Combined Selection and Parameter

Control of Meta-heuristics, IEEE Conference Proceedings, Symposium Series on Computa-

tional Intelligence (SSCI20), Canberra, Australia, 3125–3132, 2020.

13. S. Sivanandam S. Deepa, Introduction to Genetic Algorithms, Springer, Berlin, Heidelberg,

442 pages, 2008.

14. K. Sörensen, F. Glover, Metaheuristics, Encyclopedia of Operations Research and Manage-

ment Science 62, 960–970, 2013.

15. K. Tamura, K. Yasuda, Spiral Optimization Algorithm Using Periodic Descent Directions,

SICE Journal of Control, Measurement, and System Integration 9(3), 134–143, 2016.

16. R. Tang, S. Fong, X.S. Yang, S. Deb, Wolf Search Algorithm with Ephemeral Memory, IEEE

Proceedings, 7th International Conference on Digital Information Management (ICDIM

2012), Macau, 165–172, 2012.

17. A. Wiles, Modular Elliptic Curves and Fermat’s Last Theorem, Annals of Mathematics

141(3), 443–551, 1995.

18. G.J. Woeginger, Exact Algorithms for NP-hard Problems: A Survey. In: “Combinatorial Op-

timization – Eureka, You Shrink!”, Springer, Berlin, Heidelberg, 185–207, 2003.

