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Abstract. The degrees of freedom in special binary representations for instances

of the Discretizable Distance Geometry Problem (DDGP) are studied in this note

article. The focus is on DDGP instances where the underlying graphs, together

with their associated vertex orders, are able to satisfy the so-called consecutivity

assumption. This additional assumption, in fact, makes it possible to group to-

gether subsets of consecutive binary variables, which turn out to strongly depend

on each other, so that they can actually be replaced by a smaller subset of binary

variables. As a consequence, new binary representations, with reduced degrees

of freedom w.r.t the trivial binary representations for DDGP instances, can be

introduced and potentially be exploited in DDGP solution methods.

1 Introduction

Given a positive integer K, the Discretizable Distance Geometry Problem (DDGP) [5]

asks whether a weighted undirected graph G = (V,E,d) satisfying the following as-

sumptions:

(a) G[{1,2, . . . ,K}] is a clique;

(b) ∀v ∈ {K + 1, . . . , |V |}, there exist u1,u2, . . . ,uK ∈V such that

(b.1) u1 < v, u2 < v, . . . , uK < v;

(b.2) {{u1,v},{u2,v}, . . . ,{uK ,v}} ⊂ E;

(b.3) VS(u1,u2, . . . ,uK)> 0 (if K > 1),

admits a realization x : v ∈ V −→ xv ∈ R
K such that, for all {u,v} ∈ E , the distance

constraints ||x(u)−x(v)||= d(u,v) are satisfied (the symbol || · || indicates the Euclidean

norm). The vertices u1,u2, . . . ,uK , for every selected vertex v > K, are referred to as

reference vertices, and the corresponding distances d(u1,v), d(u2,v), . . . , d(uK ,v) are

generally referred to as reference distances. Notice that G[·] is the subgraph induced

by a subset of vertices of V , and VS(·) is the volume of the simplex generated by a

valid realization of the vertices u1,u2, . . . ,uK . Notice that a total vertex ordering on the

vertices of the graph is implicitly given.

By exploiting the discretization assumptions (a) and (b), it is possible to construct a

search tree containing all solutions to the DDGP. This work is focused on DDGPs where

the distance information can be considered as exact, which is: “extremely precise”, and

consequence of this fact is that the search tree is binary. The DDGP is an NP-hard
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subclass [1] of the graph embeddability problem, which was proved to belong to the

NP-hard class by Saxe in [8].

Over the last years, several variants of the DDGP have been proposed in the sci-

entific literature [2]. The variant which was introduced with the acronym DMDGP1 is

based on an additional assumption on G, where it is required that the reference vertices

are the ones that immediately precede the current vertex v in the given vertex ordering.

In some previous publications, this additional assumption is named the consecutivity

assumption. When this assumption is satisfied, it is possible to define a sequence of

(K + 1)-cliques of G which admit an overlap of K vertices [4]. Every clique groups

together every vertex v > K with its reference vertices u1, u2, . . . , uK , so that the fea-

sibility of each of them can be verified independently, with an overall computational

complexity which is polynomial.

The focus of this contribution is on binary representations for solutions to DDGPs

where the consecutivity assumption is satisfied. Actually, it is rather trivial to verify

that all instances of the DDGP admit a binary representation, because the paths over

the branches of the binary trees that are employed for the representation of the DDGP

search domain can be simply identified by vectors of binary variables [6]. In addition to

this, however, the consecutivity assumption is exploited in this work to group together

subsets of consecutive vertices which are not independent, so that the actual number of

degrees of freedom in the binary representations can be reduced. To this aim, a theo-

retical result previously presented in [3] is exploited. Although the current work may

seem a rather light contribution to the research on the DDGP, the use, in any solution

methods, of the proposed binary representations can potentially give important benefits

for the solution of DDGP instances.

After a short review on solution methods for the DDGP (see Section 2), binary

representations for DDGP solutions will be studied in Section 3. Finally, Section 4 will

conclude this note article with some future works.

2 Current DDGP solution methods

The majority of proposed methods for the DDGP are based on a standard branch-and-

prune (BP) algorithmic framework [2]. As mentioned in the Introduction, the discretiza-

tion assumptions make it possible to represent solutions to DDGP instances as a dis-

crete (and finite) domain having the structure of a tree. The idea therefore, in all BP

frameworks, is to explore such a tree in a depth-first fashion by exploiting the distance

information which is ensured by the discretization assumptions; any additional distance

information is subsequently used for pruning infeasible tree branches: the distances

used to perform this “pruning” action are generally named pruning distances. When a

leaf node of the search tree is reached, one solution to the instance is given by the path

over the tree edges leading from the tree root node to the current leaf node [7].

Several methods based on this algorithmic framework have been proposed over the

last years [2]. In none of these methods, however, the pruning distances are exploited to

perform a reduction on the degrees of freedom for the binary representation associated

1 The additional “M” stands for Molecular and it reminds that this class of problems seemed,

when introduced, to be particularly suitable to structural biology problems.
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to the solutions. When the BP framework is implemented, the depth-first search is sup-

posed to perform its exploration layer by layer, without using possible local information

about subgroups of vertices that may have already been explored in previous steps. The

reduction on the degrees of freedom is actually possible when this “local information”

is exploited (see next section).

3 A binary representation for DDGP solutions

The search domain for a DDGP instance with exact distances is a binary tree [5]. One

solution to the problem can be represented as a path from the root to one of its leaf

nodes, where layer by layer, the path has only two possible “ways to go”: either it may

take the left-handed branch, or the right-handed one. A vector of binary variables bi can

therefore be employed to represent one possible solution to a given DDGP instance [7]:

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 . . . . . . bn

where bi corresponds to the vertex vi, and where the indices i reflect the vertex order

associated to the graph G. An immediate observation is that, since the initial clique is

generally fixed in solution methods (see assumption (a) in the Introduction), the first

K binary variables in this binary representation are actually not necessary. Moreover,

all DDGP instances admit search trees where a symmetry is present at layer K + 1: if

the instance is feasible, both binary options 0 and 1 are feasible for the variable bK+1,

so that it can actually be neglected (once solutions have been found with bK+1 = 0, all

others can be obtained by changing its value to 1).

The following representation is therefore more convenient (the example is given for

K = 3):

b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 . . . . . . bn

There are |V |−K−1 degrees of freedom in this representation, corresponding to 2|V |−K−1

potential solutions to be explored by DDGP solution methods. This initial result is not

new and is valid for any kind of DDGP instance.

When the DDGP instance satisfies the consecutivity assumption, every subsequence

of consecutive K + 1 vertices corresponds to a (K + 1)-clique of G, where the first K

vertices play the role of reference when constructing the possible positions for the ver-

tex which is the last, in the given vertex ordering, in the clique (see Introduction). The

feasibility of all these cliques can be verified in advance: given a binary representa-

tion, the only infeasibility that can be detected is related to possible violations on the

“pruning distances”.

Suppose now that there exists such a pruning distance between the vertex v6 and

v12 of the example above (which is, between the binary variables b6 and b12). Conse-

quence of the consecutivity assumption is the possibility to state that the sub-instance

G[{v6, . . . ,v12}] is itself a DDGP instance satisfying the consecutivity assumption. More-

over, this sub-instance has a special property: its first and last vertex (in the vertex or-

dering inherited from G) are connected by a pruning distances. The symmetry results

in [3] indicate therefore that there exist only two (symmetric) solutions to the sub-

instance G[{v6, . . . ,v12}]. Thus, once this sub-instance is solved independently and its
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two solutions are encoded by a binary representation, say c9(0) = (b̂9, b̂10, b̂11, b̂12) and

c9(1) = ¬c9(0) = (¬b̂9,¬b̂10,¬b̂11,¬b̂12), the new binary representation for the origi-

nal instance is:

b5 b6 b7 b8 c9 b13 b14 . . . . . . bn

which replaces 4 binary variables with only one. In fact, the binary variables b6, b7 and

b8 are not replaced (recall that K = 3 in the example), because they represent the given

set of values for the initial clique of the sub-instance.

In general, this kind of manipulation on the binary representations makes it possible

to perform a reduction on the degree of freedom by combining subsets of consecutive

vertices that depend on each other. For every degree of freedom that is removed from

the representation, there is a consequent reduction of one order of magnitude on the

number of total DDGP solutions that can be represented. If m > K + 1 is the number

of vertices forming the sub-instance, the degrees of freedom become equal to |V |−m

after the first modification, so that 2m−K−1 undesired solutions are “erased” from the

search tree. Moreover, this operation can be performed for all pruning distances in the

DDGP instance, starting from the ones defining smaller sub-instances, up to the larger

ones. Even if it remains exponential, the reduction of the corresponding computational

complexity can become important, so that any solution method for the DDGP can find

a great benefit in using these new binary representations.

It is important to remark that this complexity reduction is possible because every

sub-instance delimited by a pruning distance is solved in advance. Naturally, the solu-

tion of all these sub-instances introduces an extra computational cost. However, when

the overall complexity is computed, one needs to sum up all these complexities, for each

identified sub-instance, as well as for the final representation of the original instance.

This is different from the computation of the complexity associated to the trivial rep-

resentation consisting of only bi’s variables, where all these single complexities would

need to be multiplied by each other to obtain the total complexity.

4 Conclusions and perspectives

This short contribution shows that the properties of DDGP instances satisfying the con-

secutivity assumption can be exploited to reduce the degrees of freedom in suitable

binary representations of its solutions, and in turn decrease the size of the search space

that is explored by solution methods. This short article is presented in a simple style by

making reference to a running example: future works will be aimed at a formalization

of the content of this article, as well as at the possible extension of (at least a part of)

these results to DDGPs instances for which the consecutivity assumption is not satis-

fied. An analysis on DDGP instances where not all its distances can be considered as

“exact” will also be investigated.
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