
HAL Id: hal-03689606
https://hal.inria.fr/hal-03689606

Submitted on 7 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transparent rendering and slicing of integral surfaces
using per-primitive interval arithmetic

Melike Aydinlilar, Cédric Zanni

To cite this version:
Melike Aydinlilar, Cédric Zanni. Transparent rendering and slicing of integral surfaces using per-
primitive interval arithmetic. Eurographics 2022 - Short Papers, Apr 2022, Reims, France. �hal-
03689606�

https://hal.inria.fr/hal-03689606
https://hal.archives-ouvertes.fr

EUROGRAPHICS 2022/ N. Pelechano and D. Vanderhaeghe Short Paper

Transparent rendering and slicing of integral surfaces using
per-primitive interval arithmetic

M. Aydinlilar1, C. Zanni1

1Université de Lorraine, CNRS, Inria, LORIA

Abstract
We present a method for efficient incorporation of integral surfaces within existing robust processing methods such as interval
arithmetic and segment-tracing. We based our approach on high-level knowledge of the field function of the primitives. We show
application to slicing and transparent rendering of integral surfaces based on interval arithmetic.

1. Introduction

Implicit volumes are defined as the set of points where f (p) ≥ c
with f a scalar field and c a given iso-value. They have many valu-
able properties for modeling and fabrication with additive manufac-
turing technologies. They allow defining effortlessly smooth vol-
umes with arbitrary topology and provide a simple way to query
whether a given point in space is inside or outside the volume.

In this work, we consider skeleton-based implicit surfaces,
namely convolution surfaces [BS91] and scale-invariant integral
surfaces [ZBQC13] which are both defined by integrating a ker-
nel along a skeleton. These definitions allow representing a wide
variety of geometry ranging from artistic shapes to lattices and
microstructures. Recent research [PRZ17, LLZ∗21] have shown
that skeleton-based implicit representations provide good proper-
ties both for modeling self-supporting structures (which is essential
for fabrication) and decreasing the stress concentration due to the
blended shape at joints between the trusses of a lattice.

One of the core operations to prepare a model for 3D printing is
called slicing. It consists of computing cross-sections of the model
within horizontal planes. This can be done straightforwardly with
implicit volumes by sampling field values on a regular grid defined

Figure 1: Transparent rendering results for micro-structures (left)
and an artistic model (right).

in a given slicing plane. The same algorithm can be used both for
slicing and transparent rendering [Lef13]. Such a strategy can help
to reduce the number of required field evaluations.

One of the challenges with the usage of integral surfaces is the ef-
ficient incorporation in existing robust processing methods for slic-
ing and rendering such as interval arithmetic [Mit90] and segment-
tracing [GGPP20]. This is due to the complex closed-form expres-
sions of the integrals defining the field.

We propose using both high-level knowledge on the integral sur-
face’s primitives and analysis of the field variation to incorporate
them more efficiently in algorithms based on either segment-tracing
or interval arithmetic. Namely, we present a way to compute pre-
cise inverval bounds for field values and directional derivatives (i.e.
directional Lipschitz constant). We use these contributions inside a
ray-tracing algorithm used for both rendering and slicing. In addi-
tion to robust processing, this would allow their use in a broader
context (e.g., combining them with other implicit representations).

Scale-invariant integral surface In this work, we focus on scale-
invariant integral surfaces [ZBQC13] which provide simple radius
control, self-similarity of blending at all scales, and limited blur-
ring of details with summation blending. Similarly to convolution
surfaces [BS91], they are defined by integration of a kernel along a
skeleton :

f (p) =
∫

q∈S

1
τS(q)

k
(
∥p−q∥

τS(q)

)
dq (1)

where S is a line segment with associated linearly varying radius τS
and k is a kernel function. In this study, we focus on compact sup-
port kernels that provide localized field evaluation :

k(d) = N
(

1−
(

d
σ

)2
) n

2

i f d < σ ,0 otherwise. (2)

where n is the degree of the kernel, σ is a constant impacting the vi-
sual smoothness of blends and N is a normalization factor. For this
kernel, with n even, both the field f and its gradient have closed-
form expressions (see [ZBQC13]).

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

M. Aydinlilar & C. Zanni / Transparent rendering and slicing of integral surfaces using per-primitive interval arithmetic

2. Previous work

We will first discuss the general methods for ray-tracing of implicit
surfaces then the slicing methods, most of them relying on the same
methodology as ray-tracing approaches.

Ray-tracing is one of the ways to visualize implicit volumes. For
each pixel of an image, intersections between a ray r(t) = o+ t d
and the implicit surface need to be computed. This is equivalent
to solving f ◦ r(t)− c = 0 where c is the iso-value of interest. For
opaque rendering, only the first root has to be localized, while all
roots need to be computed for transparent rendering.

This is a long-studied problem, for which two prominent families
of techniques have been introduced : the approaches relying on self-
validating numerical methods like interval arithmetic [Moo66] and
the ones relying on Lipschitz bounds like sphere-tracing [Har96].

On the one hand, interval arithmetic-based methods for ray-
tracing implicits [Mit90, CHMS00] replace arithmetic operations
on floating points with operations on intervals of floating points.
They then use bisection for root localization on these intervals. Ex-
tensions of these methods include the usage of revised-affine arith-
metic [FPC10] and efficient evaluation on GPU [Kee20]. However,
for integral surface representation, error accumulation due to the
complexity of the expression makes these methods impractical (see
supplemental material for evidence).

On the other hand, sphere-tracing [Har96] relies on the knowl-
edge of a Lipschitz bound, e.g., an upper bound on the norm
of the field gradient, in order to compute a sphere free of any
iso-surface around a given point. This allows stepping along the
ray without ever passing through the surface and converging to-
ward the iso-surface. A notable extension of sphere-tracing is
segment-tracing [GGPP20] which computes local directional Lip-
schitz bound on the ray to increase the step size. Computing trans-
parency with this family of methods requires careful algorithm
parametrization as roots are fixed points for the algorithm. Until
now, no directional Lipschitz bounds have been derived for integral
surfaces.

Note that a dedicated ray-tracing method for scale-invariant inte-
gral surfaces exists [AZ21], however, while providing fast render-
ing, it only supports opaque rendering, does not provide guarantees
and do not allow the combination of this type of surface with other
implicit representations.

Slicing A first strategy to slice implicit volumes consists in cat-
egorizing all voxels of a given slice by computing field value at
voxel centers [LLZ∗21]. As discussed in [Lef13], it is also possible
to slice implicit volumes by relying on transparent rendering algo-
rithms. Once all roots have been computed along rays associated to
voxel lines, the voxels in/out status can easily be deduced by jointly
iterating over the roots and the voxels. This is the approach we use
in this paper.

Another recent approach relies on a variant of interval and re-
vised affine arithmetic, such as relying on space subdivision using
quadtrees [PMF∗20].

Acceleration structure for field query An orthogonal problem of
integral surfaces is the efficient selection of skeleton primitives that

influence a given area in space. Lists of primitives sorted by support
entry point (given an input direction) have been used for this pur-
pose both for rendering (per-pixel linked-list [Bru19, AZ21]) and
slicing (single global list of primitives based on the slicing direc-
tion [LLZ∗21]). In the present paper, we combine both approaches.

3. Our method

Our objective is to efficiently use integral surface segment prim-
itives with linearly varying radius inside existing robust methods
such as interval arithmetic and segment-tracing. We first present a
simple and efficient way to compute field bounds for use in inter-
val arithmetic on a per-primitive basis. Then we study directional
Lipschitz bounds that allow improvement of our bounds in specific
interval configurations and provide a way to use integral surface
within the segment-tracing algorithm. Finally, as an application of
our method, we present a transparent rendering algorithm that can
be used for rendering and slicing.

3.1. Per-primitive field bounds for interval arithmetic

In order to use integral surfaces inside interval arithmetics-based
algorithms, we need to derive field value bounds given an interval
[t0, t1] along a ray, e.g., finding an interval [f−, f+] such that:

f ◦ r([t0, t1]) ∈ [f−, f+]

For the line segment primitives with linearly varying radius, given
an input ray direction, the field is always monotonously increasing
and then decreasing.

Monotonous intervals can be detected by checking the sign of
the derivatives at the interval end-points. With this observation,
for monotonous intervals, the interval inclusion is trivial (see Fig-
ure 2(Left)). We can directly use the endpoint values as bounds:

[f−, f+] = [min(f ◦ r(t0), f ◦ r(t1)),max(f ◦ r(t0), f ◦ r(t1))]

For ambiguous intervals where we have both positive and negative
derivatives (increasing and decreasing values), we can either use
infinite values as upper bound :

[f−, f+] = [min(f ◦ r(t0), f ◦ r(t1)),+∞] ,

or calculate a bound on the absolute value of directional deriva-
tive and extrapolate field values based on the maximal derivative
and the field values at the interval endpoints. We can then com-
pute the upper bound as the intersection between two lines (see
Figure 2(Right)). We describe the calculation of Lipschitz bound in
the next section. This calculation allows us to bound the field val-
ues robustly. The resulting per-primitive intervals can then be used
in classical interval arithmetics evaluation.

Figure 2: Ranges on two intervals, monotonous (left) and ambigu-
ous (right).

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

M. Aydinlilar & C. Zanni / Transparent rendering and slicing of integral surfaces using per-primitive interval arithmetic

3.2. Directional Lipschitz bound calculation

In order to provide tighter bounds on the intervals containing a
maximum, we derive a directional Lipschitz bound on a per prim-
itive basis. To do so, we study the absolute value of the derivative
of f ◦ r, which is defined by :

|∇ f (p)T d|=

∣∣∣∣∣
∫

q∈S

1
τ2

S(q)
k′
(
∥p−q∥

τS(q)

)
dT p−q

∥p−q∥ dq

∣∣∣∣∣ (3)

This formula could be bounded by studying the integral of the
absolute value. However, we can obtain a tighter bound by separat-
ing the integral into two parts, the one where the integrand is pos-
itive and the one where it is negative, then taking the sub-integral
with the largest absolute value. The segmentation is defined by a
linear inequality (p−q)T d > 0 (see Figure 3).

As described in [AZ21], we can compute the range [s0,s1] of
skeleton points which support intersects the ray, as well as the
argmin of ∥p− q∥/τS(q). Using these two informations, we can
bound the first two terms within the integral. As τS appears in
the denominator of the integrand, we bound it by the minimum of
τS(s0) and τS(s1). For the term using k′, we adopt a similar strategy
as in [GGPP20]. We use knowledge on the kernel to select either
the global bound of k′ if it is in range :

n√
n−1

(
1− 1

n−1

) n
2 −1 N

σ
,

otherwise, the maxima that is reached at one of the interval end-
points. Then, we only have to compute a bound on a simpler inte-
gral, e.g. for the positive domain:∫

q∈S/(p−q)T d>0
dT p−q

∥p−q∥ dq

By bounding the positive and negative domains based on both
the range of interest [t0, t1] and the range [s0,s1]∩ [0,1](see Fig-
ure 3), it is possible to show that upper bound (positive domain)
and lower bound (negative domain) can be computed by evaluating
the integral with the newly defined larger domain at the end of the
range (e.g., in t0 and t1 respectively).

We can then obtain the global bound by taking the maximum

0

1

t

s

t0 t1

smax

smin

(p-q)Td=0

k((p(t)-q(s)) / 𝜏(s))>0

+ -

Figure 3: Clipping-space for ray/primitive intersection. The prim-
itive is parametrized with s ∈ [0,1]. Input range for Lipschitz bound
query is t ∈ [t0, t1]. The support of a primitive can be divided into
two halves based on the sign of (p−q)T d. The blue half (resp. red)
has a positive (resp. negative) contribution to the derivative.

Figure 4: Progressive range computation for two primitives (pur-
ple) along a ray. The blended field (summation) is displayed in or-
ange. The ray is initially segmented in three (one cut per-primitive).

of both absolute values. While the integral admit a closed-form ex-
pression, the formula is numerically instable when the minimal dis-
tance between the ray line and segment line tend toward zero. We
instead bound the integrand on the domain of interest which also
has the advantage of being less costly to evaluate (details are pro-
vided in supplemental material).

4. Slicing and rendering : ray processing

As an application, we present ray-processing for both transparent
rendering and slicing of integral surfaces blended with summation
blending, i.e. f (p) = ∑ fi(p). For slicing, we use the methodology
described in [Lef13].

First, in order to process rays efficiently, we use both the same
per-pixel linked-list of primitives as well as the ray segmentation
procedure described in [AZ21]. The per-pixel linked list provides
empty space skipping based on kernel supports without any field
evaluation. A given ray is pre-segmented using the point where
the minimal distance between a ray and line-segment is reached
(e.g., where the kernel function is maximized). This segmenta-
tion allows us to have intervals close to the ideal behavior where
they would be either monotonously increasing or decreasing. Dur-
ing ray-processing, per-primitive interval ranges are combined with
regular interval arithmetic to obtain the interval range of the global
field. In all our examples, we use summation blending only. This
can be extended to other blending operations as long as an interval
inclusion can be found for them.

After ray segmentation, the core of the processing loop is similar
to other interval methods such as [FPC10]. We check whether an
intersection is possible, then either discard the interval or bisect
until the required precision is reached (see Figure 4). Resolution
used for slicing is the half the size of a voxel.

For transparent rendering implementation, we also use polyno-
mial interpolation as soon as we have small enough intervals, this
reduces the number of field evaluations in comparison to bisection.

5. Results

We compare both our bound computation to regular interval arith-
metic methods (e.g. using directional derivative computed from
closed form gradient for the Lipschitz bound). We observe large
improvements in bound quality (see supplemental material). In or-
der to demonstrate the usefulness of our method, we present appli-
cations to both slicing and transparent rendering, both relying on
the same ray-processing methodology.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

M. Aydinlilar & C. Zanni / Transparent rendering and slicing of integral surfaces using per-primitive interval arithmetic

Figure 5: Detail on micro-structure with smooth blending (left) and
a slice produced for additive manufacturing (right).

[LLZ∗21] [LLZ∗21] Our
Bucket 642 Bucket 642

jellyfish 27.2s / 55.4s 11.1s / 21.9s 2.9s / 3.5s
microstructure 201s / 414s 5.1s / 10.3s 6.9s / 8.0s

Table 1: Slicing models into respectively 512 and 1024 slices with
an XY resolution of 512×512 voxels.

Ray-tracing Our ray-tracing implementation was done in
OpenGL. Our runtimes are measured on an NVIDIA GeForce
GTX 1650 graphics card with a resolution of 700x700. The
jellyfish model (Figure 1(right)), consisting of 154 line segment
primitives, was rendered using an average of 431.4 ms per frame.
The micro-structure model (Figure 1(left)), consisting of 2895
primitives was rendered with an average of 1037.1 ms per frame.

Note that the memory requirement for the stack used in recursive
processing is limited thanks to the initial ray segmentation. De-
pending on the application, computational time could be reduced
by stopping the ray processing loop based on the level of opacity
reached instead of capturing all transparent layers.

Slicing When using the method for slicing, we use the same ac-
celeration structure as in [LLZ∗21] with the notable exception that
we create one linked-list of primitives per bucket of pixels instead
of a single linked-list for the full space. This can dramatically im-
pact runtime for complex skeletons sliced at high resolution. We
compare our slicing runtime with the method of [LLZ∗21] in Ta-
ble 1. Comparisons were run on an Intel Corei7-8850H (2.60GHz,
single-core used). Due to the bucketing strategy’s major positive
impact, we applied it to both methods. We observe larger runtime
improvements when the resolution required along the ray direction
increases. Indeed adding more slices does not require additional
field evaluations in our case (only the generation of the voxel image
from the computed roots is increased). Note that the ray direction is
always the printing direction in our implementation, but this could
be modified based on input models.

Our directional Lipschitz bound also allows the use of integral
surfaces within the segment-tracing algorithm. From our experi-
ments, bisection-based approach tends to be more efficient when
computing all the roots (see supplemental material).

5.1. Conclusion

We have presented a simple way to use scale-invariant integral
surfaces inside both interval arithmetic framework and segment-
tracing algorithm. For interval arithmetic, we only rely on simple
observation of the field behavior. A similar approach could also

apply to a broader range of primitives. For the derivation of di-
rectional Lipschitz bound, we rely on careful analysis of the field
integral to provide efficient bound computation. We provide ap-
plications of our methodology to both slicing and transparent ren-
dering. Contrary to previously dedicated algorithms, the proposed
approach would allow incorporation of integral surfaces in more
general frameworks and allow their use with other representations
or more complex blending.

While applied to scale-invariant integral surfaces, our methodol-
ogy can also be applied to other integral surfaces with linearly vary-
ing weights. Several improvements are worth investigating, such as
the adaptation to interval arithmetic queries on volumes and tighter
bound computation. The latter requires a careful trade-off between
the tightness of the computed bound and the required amount of
computation to obtain them.

Acknowledgments

This work was supported by the ANR IMPRIMA(ANR-18-CE46-
0004). We thank Nathaniel Seyler for his help with bucketing.

References
[AZ21] AYDINLILAR M., ZANNI C.: Fast ray tracing of scale-invariant

integral surfaces. Computer Graphics Forum (2021). 2, 3

[Bru19] BRUCKNER S.: Dynamic visibility-driven molecular surfaces.
In Computer Graphics Forum (2019), vol. 38(2), pp. 317–329. 2

[BS91] BLOOMENTHAL J., SHOEMAKE K.: Convolution surfaces. In
Proceedings SIGGRAPH ’91 (1991), ACM, pp. 251–256. 1

[CHMS00] CAPRANI O., HVIDEGAARD L., MORTENSEN M., SCHNEI-
DER T.: Robust and efficient ray intersection of implicit surfaces. Reli-
able Computing 6, 1 (2 2000), 9–21. 2

[FPC10] FRYAZINOV O., PASKO A., COMNINOS P.: Fast reliable inter-
rogation of procedurally defined implicit surfaces using extended revised
affine arithmetic. Computers & Graphics 34, 6 (2010), 708–718. 2, 3

[GGPP20] GALIN E., GUÉRIN E., PARIS A., PEYTAVIE A.: Segment
Tracing Using Local Lipschitz Bounds. Computer Graphics Forum
(2020). 1, 2, 3

[Har96] HART J. C.: Sphere tracing: a geometric method for the an-
tialiased ray tracing of implicit surfaces. The Visual Computer 12, 10
(Dec 1996), 527–545. 2

[Kee20] KEETER M. J.: Massively parallel rendering of complex closed-
form implicit surfaces. ACM Trans. Graph. 39, 4 (jul 2020). 2

[Lef13] LEFEBVRE S.: Icesl: A gpu accelerated csg modeler and slicer.
In 18th European Forum on Additive Manufacturing (AEFA’13) (2013).
1, 2, 3

[LLZ∗21] LIU S., LIU T., ZOU Q., WANG W., DOUBROVSKI E. L.,
WANG C. C.: Memory-efficient modeling and slicing of large-scale
adaptive lattice structures. Journal of Computing and Information Sci-
ence in Engineering 21, 6 (2021). 1, 2, 4

[Mit90] MITCHELL D. P.: Robust ray intersection with interval arith-
metic. In Proceedings on Graphics Interface ’90 (CAN, 1990), Canadian
Information Processing Society, p. 68–74. 1, 2

[Moo66] MOORE R.: Interval Analysis. Prentice-Hall series in automatic
computation. Prentice-Hall, 1966. 2

[PMF∗20] POPOV D., MALTSEV E., FRYAZINOV O., PASKO A.,
AKHATOV I.: Efficient contouring of functionally represented objects
for additive manufacturing. Computer-Aided Design 129 (2020). 2

[PRZ17] PANETTA J., RAHIMIAN A., ZORIN D.: Worst-case stress relief
for microstructures. ACM Transactions on Graphics 36, 4 (2017). 1

[ZBQC13] ZANNI C., BERNHARDT A., QUIBLIER M., CANI M.-P.:
SCALe-invariant Integral Surfaces. Computer Graphics Forum 32
(2013). 1

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

