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Rendez-vous Based Drift Diagnosis Algorithm

For Sensor Networks Towards In Situ Calibration

Florentin Delaine, Bérengère Lebental, and Hervé Rivano∗†‡

June 9, 2022

Abstract

In recent years, low-cost sensors have raised strong interest for envi-
ronmental monitoring applications. These instruments often suffer from
degraded data quality. Notably, they are prone to drift. It can be miti-
gated with costly periodic calibrations. To reduce this cost, in situ cali-
bration strategies have emerged, enabling the recalibration of instruments
while leaving them in the field. However, they rarely identify which in-
struments actually need a calibration because of drift, so that in situ
calibration may instead degrade performances. Therefore, a novel drift
detection algorithm is presented in this work, exploiting the concept of
rendez-vous between measuring instruments. Its originality lies mainly
in the comparisons of values determining the state of the instruments,
for which the quality of the measurement results is taken into account.
It defines the concept of compatibility between measurement results. A
case study is developed, showing an accuracy of 88% for correct detec-
tion of drifting instruments. The results of the diagnosis algorithm are
then combined with calibration approaches. Results show a significant
improvement of the measurement results. Notably, an increase of 15% of
the coefficient of determination of the linear regression between their true
values and the measured values is observed with the correction and the
error on the slope and on the intercept respectively is reduced by 50% and
60% at least.

Abstract

[Note to practitioners] In this paper, we investigate the problem of
drift detection in sensor networks. This work was motivated by the fact
that faulty nodes are rarely detected in existing in situ calibration al-
gorithm prior to the correction of the instruments. Moreover, existing
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fault diagnosis algorithms for sensor networks do not specifically target
drift and are often applicable to either (dense) static or mobile sensor
networks but not both. We propose an algorithm designed for the de-
tection of drift faults regardless of the type of sensor network and of the
measurand. Specific attention is paid to the metrological quality of the
measurement results used to carry out the diagnosis. The output of the
algorithm provides information that can be exploited for the recalibration
of faulty instruments. In future work, we will aim at providing tools and
recommendations for the adjusment of the parameters of the diagnosis
algorithm but also more elaborated approaches based on the results of
our diagnosis algorithm to calibrate faulty nodes.

1 Introduction

Low-cost sensor networks have raised a strong interest in the past years, notably
for air pollution monitoring [1, 2, 3]. The deployment of large sensor networks
at reasonable cost to provide information at high spatial resolution can now
be envisioned, although several issues have yet to be tackled [4, 5]. Among the
multiple challenges for these technologies, the improvement of their data quality
is a major one [4, 6]. Reports on their performances [7, 8] show that drift is an
important issue, although it is a well-known one. Measuring instruments and
notably their sensors are subject to changes in their characteristics (sensitivity,
linearity, repeatability, hysteresis...) over time due to ageing or to the conditions
under which they operate for instance. Periodic calibration usually enables
to mitigate its effect [9]. The traditional approach to calibration consists in
exposing the devices to calibrate to standard values or to co-locate them next
to a reference instrument. It is usually carried out in a controlled facility. Even
when conducted in the field [10], this operation is often expensive compared to
the cost of the instruments themselves, especially in the case of low-cost sensors.
Various in situ calibration strategies have been developed in response to this
issue [11, 12, 13]. They enable calibration to be carried out while leaving the
sensors deployed in the field and without any physical intervention.

In previous work [13], we observed that most strategies perform the calibra-
tion of all instruments without evaluating first whether they really need it. It
actually results in performance degradation for some sensors. Some calibration
algorithms are providing this identification, notably in [14, 15]. In these two
publications, the algorithm determines first whether an instrument has drifted
since the last time step. If it is the case, it gives the identity of the instrument
that has drifted and correct it with the help of all the other instruments. How-
ever, if more than one instrument is drifting at a time, the algorithm raises an
error. This is problematic as such a case is very likely in practice.

In this paper, we investigate drift detection for measuring instruments in
sensor networks with the help of measurement results from other devices. Our
contribution is a drift diagnosis algorithm exploiting the concept of rendez-vous
[16, 17]. They are used to determining if an instrument needs to be recalibrated.
Their validity is studied beforehand, e.g. the measurements of one of the instru-
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ments involved in a rendez-vous must be trustworthy for instance, so that only
relevant rendez-vous are used to determine the state of an instrument. We ap-
ply this algorithm on a case study and show its efficiency for drift detection. In
addition, the rendez-vous used to determine that an instrument is faulty can be
exploited for its recalibration. Thus, two calibration approaches are combined
with the diagnosis algorithm afterwards. The coefficient of determination of the
linear regression between the measured values and their true values is notably
increased by 15% on average with the correction and the error on the slope and
on the intercept are lowered of 50% and 60% at least respectively. This gives
promising results for the in situ calibration of sensor networks.

Roadmap. First, the related works are reviewed in Section 2. Then, con-
cepts and notations used for the design of the diagnosis algorithm are introduced
in Section 3, prior to its presentation in Section 4. A case study applying the
diagnosis algorithm is developed in Section 5 before its combination with cali-
bration approaches in Section 6. Finally, Section 7 gives a conclusion.

2 Related work

2.1 Overview on fault diagnosis algorithms for sensor net-
works

In the literature, the question of drift diagnosis in sensor network is generally
encapsulated in the main theme of fault diagnosis in sensor networks. Various
surveys [18, 19, 20, 21] reported multiple contributions on this subject, providing
several insights.

First of all, the existing diagnosis algorithms are often targeting multiple
faults. In [19], the 15 algorithms cited that could be able to address the drift
fault (it was divided there between calibration, gain, and offset faults), detect
stuck-at or out-of-range faults at the same time as drift without differentiating
between faults.

Secondly, the diagnosis approaches reported target mainly static sensor net-
works. Mahapatro et al. [18] listed eight algorithms that can be applied both
to static and mobile sensor networks. Zhang et al. [20] reported two references
explicitly dealing with mobile sensor networks [22, 23]. They also stated that
approaches designed for static networks behave poorly when applied to mobile
ones. This indicates that algorithms exploiting specificities related to mobile
networks have not been deeply investigated so far.

Finally, the methods used to carry out the diagnosis of any fault in sensor
networks are diverse in terms of concepts and tools on which they are based on.
Methods rely on comparisons between instruments, statistics and probabilities,
as well as machine learning models (regressors, classifiers...). While dense sensor
networks are envisioned nowadays, an approach performing direct comparisons
of values measured by different instruments to track drift faults is straightfor-
ward. The concept of rendez-vous we want to exploit is a general frame to define
the validity of such comparisons. Thus, we investigate in the following section
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the algorithms compatible with this idea.

2.2 Diagnosis algorithms detecting faults through com-
parison of values

First, Chen et al. [24] introduced a faulty sensor detection algorithm consisting
of four steps of evaluation. First, each instrument compares its measured value
at the instant of diagnosis with the measured values of its neighbours. In a sec-
ond step, each instrument determines if it is likely correct or faulty depending on
the number of positive comparisons and its number of neighbours, and shares it
with its neighbours. Then, based on its likely correct neighbours, an instrument
determines if it is actually correct or not. The final step is dedicated to the man-
agement of the remaining undetermined instruments. Xu et al. [25] proposed
an extension of this work dealing with the particular case of tree-like networks
to reduce the number of communications. To avoid intermittent faults, they
also proposed to compute the initial test result based on multiple comparisons
of values between two instruments, instead of a unique comparison. Saha et al.
[26] developed a similar algorithm but with comparisons for multiple quantities
(measurand and remaining energy). A major drawback of these works is the
need for a known sensor network structure, limiting their applicability to static
sensor networks. Also, the decision on the state of the instrument is build on
only one measured value per instrument, which is likely to generate false results
considering drift fault. Finally, the question of the validity of the comparisons
is not addressed, e.g. what has to be done when the value of a neighbour (or its
own one) is out of the measurement range and may not be reliable. Note that
this is also the case in the other works reported afterwards.

Ssu et al. [27] proposed an approach to diagnosis faults based on commu-
nications from source nodes to sink ones. The main idea is to send a request
through two paths and to compare the results obtained at the sink node. If
the results are different, then at least one faulty path exists. The algorithm
tries to identify this path with the help of a third path and a majority voting
procedure, but the faulty paths cannot always be identified. Such a method is
particularly relevant to diagnose communication or hardware-related faults, but
does not appear to be appropriate to track drift.

Lee et al. [28] presented a distributed algorithm to isolate faulty nodes.
Initially, the nodes are all assumed as faulty. A comparison is made between
the measured values of neighbouring nodes and if the result is higher than a
threshold, then the test is positive. If less than a predefined number of positive
tests has been obtained, or if the test with a non-faulty node is negative, then
the diagnosed instrument is non-faulty. The algorithm works either based on
single comparisons between neighbours or with comparisons repeated multiple
times, which is more relevant to track drift. However, the structure of the sensor
network has also to be known in this case.

Mahapatro et al. [29, 30] introduced a clustering-based diagnosis algorithm.
The clustering part is used for the definition of the neighbours around cluster
heads, the cluster heads being the instruments with the highest residual energy
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levels. They also compare the measured values between instruments of a cluster
and a majority voting strategy is used to determine the state of the nodes. The
clustering part is overcoming the limitation of the work of Chen et al. [24] but
in this algorithm, the decision on the state of the instrument is based again on
one measured value only per instrument.

Chanak et al. [22] developed a comparison-based scheme using a reference
mobile sink node moving between the static nodes of the network. When it is
close to a node, several diagnoses are performed to detect hardware and software
faults. This also enables a lower consumption of energy for the transmission
of the measurement results, as it is no longer necessary to communicate with
a distant gateway. The core of this contribution lies in the determination of
an optimal path to meet with each node. While this approach of adding a
mobile node is interesting for static sensor networks where the nodes cannot
be considered as neighbours, it demands to have either the mobile node co-
located long enough next to an instrument to detect drift or to add another
layer of diagnosis combining the observations of multiple co-locations between
the instruments. In general terms, this approach has to be generalized to more
complex sensor networks with multiple mobile nodes and a specific protocol to
track drift.

Luo et al. [31] proposed an approach using the concept of average consensus.
Each instrument estimates first its state regarding the average consensus value
built from the values of its neighbours. Each instrument also estimates the
states of its neighbours. Then, the decisions of all the instruments are merged
to make the final decision. While the concept at the core of this method if
different from the previous ones, it remains in similar to the work of Chen et al.
[24] and the derived ones. Thus, it has the same drawbacks.

In reaction to contributions computing the average value of the neighbours of
an instrument by weighting their values with the inverse of the distance between
them, Xiao et al. [32] argued that the distance does not control alone the rela-
tionship between the values of two instruments, notably if a closer one is actually
faulty. Thus, they propose to take into account an indicator of trustworthiness
computed for each node of the network. This confidence value is used in the
voting procedures that are then used to determine the states of instruments.
Ji et al. [33] also developed their algorithm around a weighted average of the
values measured by an instrument and its neighbours. The weights represent a
confidence level associated to each instrument. The difference between the mea-
sured value of an instrument and the average is compared to a threshold. If it
is greater than the threshold, the confidence level of the instrument is decreased
and once it reaches zero, the instrument is reported as faulty. These two works
are among the firsts to add an idea of validity of the measured values used in
diagnosis algorithms, but they have again similar drawbacks compared to the
methods reported previously: the structure of the network has to be known and
one value only per instrument is considered.

More generally, the idea of trust between instruments has been extensively
studied, for instance in [34]. The trust model proposed is based on direct com-
parisons between instruments but also on recommendations from third parties,
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with concerns on the security of the communications between the instruments.
This trust framework is also adapted for mobile sensor networks. Wang et al.
[35] later exploited Petri nets to introduce a trust-based formal model aimed at
detecting faults in sensor networks. Although the subject is major in the context
of the Internet of Things, such complex trust frameworks are quite high-level
and should encapsulate algorithms like drift diagnosis.

Sharma et al. [36] also exploited the idea of confidence in a method similar
to the one of Chen et al. [24]. The main difference with Chen et al. is that in
a first step, each instrument analyses its own behaviour and that a confidence
level is associated to the states determined for the instruments.

Feiyue et al. [37] proposed to combine the information resulting of a self-
evaluation and of comparisons with the neighbours of each instrument. In a first
step, the reliable nodes are determined through a majority voting procedure.
Then, various metrics are computed and combined to make the decisions for the
instruments that were not considered reliable in the first step.

Fu et al. [38] defined a lightweight fault detection strategy based on trend
correlation and median values analysed against neighbouring nodes. The ap-
proach is distributed in terms of calculation to reduce the detection latency.
However, all the nodes are assumed to be stationary.

2.3 Outcomes of the review

In general, fault diagnosis algorithms address multiple types of faults, concerning
various aspects of measuring systems, but drift is not specifically targeted in
existing works. Algorithms exploiting the same principle we want to rely our
algorithm on, e.g. comparisons of measurement results between instruments,
have been already presented in the literature. In addition, static sensor networks
have been widely studied while mobile sensor networks have been much less
covered. More generally, no algorithm can target both static and mobile sensor
networks efficiently. A diagnosis algorithm not requiring any assumptions on
the type of sensor network and its structure would be interesting.

Overall, the validity of the comparisons is rarely discussed from a metrolog-
ical perspective in the literature. Moreover, the diagnosis is performed based
on single values from a given set of instruments measured at the same time
in most cases. Taking a decision on a short time range may not be correct if
drift is targeted. Build a decision on the states of the instruments with long
sequences of measured values over time, should be more appropriate to track
drift faults. Finally, it would be valuable to take into account the quality of the
measurement results and instead of exploiting the measured values only.

The algorithm we propose afterwards is built in response to these observa-
tions.
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3 Concepts for a drift diagnosis algorithm based
on rendez-vous

3.1 General definitions

A sensor network represented by a set of instruments S is considered. si or sj
denotes nodes of the network, e.g. measuring instruments. m(si, t) is a mea-
surement result obtained by si at t. M(si, (t,∆t) is the set of measurement
results for si, over the time range [t−∆t; t]. In this work, a measurement result
m(si, t) is composed of a measured value v(si, t), and of a measurement
uncertainty ∆v(si, t). vtrue(si, t) is the true value that should be measured by
si at t if it were an ideal instrument.

In a sensor network, the instruments can be of different qualities, resulting
in different levels of accuracy. Thus, c(si) is the accuracy class (or class) of si
and Sk is the set of measuring instruments where c(si) = k.

In addition, we introduce the notion of validity for measurement results.
Indeed, a measuring instrument cannot measure all the values of a quantity. It
has a bounded measuring interval which is the set of values of a quantity ”that
can be measured by a given measuring instrument or measuring system with
specified instrumental measurement uncertainty, under defined conditions” [9].
In addition, it cannot work properly under any operating conditions. Therefore,
a measurement result with a value outside an instrument’s measuring interval
or which has been obtained outside of the normal conditions of operation of a
device, may not be valid.

The conditions under which measurement results are valid are specific to
each type of instrument. In practice, they are usually provided in the technical
documentation or it is possible to determine them experimentally.

M∗(si, (t,∆t)) refers to the set of measurement results for si, over the time
range [t−∆t; t] that are metrologically valid.

3.2 Compatibility of measurement results

Consider si ∈ S. A measurement result m(si, t) is compatible with true
value if vtrue(si, t) ∈ [v(si, t) ± ∆v(si, t)]. m(si, t) is non-compatible with
true value if vtrue(si, t) /∈ [v(si, t) ± ∆v(si, t)]. The set of measurement re-
sults compatible with true values of si obtained during [t − ∆t; t] is noted
M≈(si, (t,∆t)). These definitions can be extended for the comparison of mea-
surement results between different instruments. Consider si and sj ∈ S. m(si, t)
is compatible with m(sj , t

′) if [v(si, t)±∆v(si, t)]∩ [v(sj , t
′)±∆v(sj , t

′)] 6= ∅.
It is noted m(si, t) ≈ m(sj , t

′). m(si, t) is non-compatible with m(sj , t
′) if

[v(si, t)±∆v(si, t)]∩ [v(sj , t
′)±∆v(sj , t

′)] = ∅. The set of measurement results
of si obtained during [t−∆t; t] compatible with sj is noted M≈(si → sj , (t,∆t)).
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3.3 Rendez-vous

Two instruments si and sj ∈ S are considered in rendez-vous when they are in
a spatiotemporal vicinity so that their measurement results can be compared.
In practice, it means for both their measurement results m(si, t) and m(sj , t

′)
that the instruments were spatially close enough and the difference between the
instants of measurement t and t′ was small enough to actually measure the same
quantity value.

si being in a rendez-vous at t with sj is noted ϕ(si → sj , t). Respectively sj
being in a rendez-vous at t′ with si is noted ϕ(sj → si, t

′).
The set of the rendez-vous encountered by si with sj during [t−∆t; t] is noted

Φ(si → sj , (t,∆t)). By extension, Φ(si → S, (t,∆t)) is the set of rendez-vous
between si and any other instrument of S during [t−∆t; t].

The concept of compatibility between measurement results can be extended
to the concept of rendez-vous. Consider a rendez-vous ϕ(si → sj , t). By joining
together the definitions of compatible measurement results, a rendez-vous of si
with sj at t is stated as compatible if m(si, t) ≈ m(sj , t

′). Otherwise it is
stated as non-compatible. Consequently, Φ≈(si → sj , (t,∆t)) is the set of
compatible rendez-vous.

In practice, this general definition for rendez-vous can be applied in different
ways. For instance, the condition of spatial vicinity can be a maximal distance
between the instruments. Alternately, using the concept of representativity area
[39], e.g. the area around the location of a measurement where different mea-
surements provide identical (or similar) results, a rendez-vous may occur when
there is a non-null intersection of the representativity areas for two measure-
ments of two instruments. This latter definition may yield better results in
practice than the one based on a distance as the area of representativity usually
include the geometry of the area in which the instruments are, like buildings and
crossings in an urban environment, but it requires an accurate derivation of the
area of representativity, which may not be straightforward. More generally, the
choice of how to define rendez-vous should depend on the measurand, the sensor
network and its context of deployment. This is in fact a general requirement
when designing sensor networks [40]. Thus, the diagnosis algorithm proposed
in the following section considers only a conceptual definition of rendez-vous.

4 Algorithm for the diagnosis of drifts in a sen-
sor network

4.1 General idea

The general purpose of a diagnosis algorithm is to determine whether if a system
is faulty (F) or non-faulty (NF), a measuring instrument in the present case.

The predicted state of an instrument si at t is noted Ω̂(si, t). Ideally, Ω̂(si, t) is
equal to the true state of the instrument, Ω(si, t), which is unknown in practice.

To determine if instruments are correctly calibrated, the proposed approach
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Figure 1: Example where the measurement results m(si, t) and m(sj , t
′) are

compatible with each other but where m(si, t) is not compatible with its true
value

consists in using the concept of rendez-vous introduced in Section 3.3. Consider
two instruments si and sj in rendez-vous. Suppose that one of the instruments,
sj for instance, is known as non-faulty and consider m(si, t) and m(sj , t

′), the
measurement results involved in a rendez-vous ϕ(si → sj , t). If both results
are metrologically valid, it means that m(sj , t

′) can be seen as a reference value
for si: it is a known value with an associated uncertainty. Thus, if m(si, t) ≈
m(sj , t

′), it means that si is correctly calibrated according to sj . It invites to
set its predicted state to non-faulty. Otherwise, it invites to predict it as faulty.
As sj helps to predict the state of si, it is called a diagnoser of si.

Predicting the state of an instrument based on only one value often leads to
false predictions because drift is a fault having usually a longer characteristic
time than others, such as spike faults. For instance, if spikes are not correctly
removed before carrying out a diagnosis, it is possible that m(si, t) > m(sj , t

′)
or that m(si, t) < m(sj , t

′), e.g. the measurement results m(si, t) and m(sj , t
′)

are not compatible, whereas the true state of si, Ω(si, t) is actually equal to
non-faulty from a calibration perspective. Hence, the use of multiple rendez-
vous with sj and also with other instruments to predict the state of si can
reduce the impact of these particular cases. Moreover, if the class of si is such
as c(si)� c(sj), predicting the state of si based on sj , even if Ω̂(sj , t

′) = NF ,
may not be advisable. Indeed, it is possible that m(si, t) ≈ m(sj , t

′) but with
m(si, t) not compatible with its true value as shown in Figure 1. A solution to
that is to allow only instruments of a higher class than the one of si to take
part in the prediction of its state. This minimal class is noted cDmin(si) and is
defined by:

cDmin(si) = c(si) + ∆cDmin(c(si))

where ∆cDmin(k) is the relative difference of class required between instru-
ments of class k and the instruments allowed to be their diagnosers.

Thus, to determine the state of an instrument si at td, the following set of
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valid rendez-vous Φv(si → S, (td,∆t)) is used:

Φv(si → S, (td,∆t)) =

{ϕ(si → sj , t) ∈ Φ(si → S, (td,∆t)), such as

sj /∈ SD (sj is not an instrument to diagnose),

Ω̂(sj , t
′) = NF (sj is non-faulty),

c(sj) ≥ cDmin(si) (The class of sj is higher or equal to

the minimal class allowed to diagnose si),

m(si, t) ∈M∗(si, (td,∆t)) (The measurement result of

si is valid),

m(sj , t
′) ∈M∗(sj , (td,∆t)) (The measurement result of

sj is valid)}

It is also possible that the input information of a diagnosis algorithm is not
sufficient to choose between F and NF states. Thus, a third option for the
predicted state of a system is ambiguous (A).1 In the present case, it is when
Φv(si → S, (td,∆t)) does not contain enough rendez-vous to allow a prediction
with enough confidence. This minimal size for a set of valid rendez-vous for any
instrument is noted |Φv|min.

Based on the definition of Φv(si → S, (td,∆t)), an algorithm can be designed
to determine the states of all the instruments in a sensor network.

4.2 Procedure for the diagnosis of all the instruments in
a sensor network

Consider a diagnosis procedure d that occurs at td, and ∆t such as [td −∆t; td]
is the time range on which the diagnosis procedure is carried out. The measure-
ment results obtained and the rendez-vous that occurred during [td−∆t; td] are
used to predict the states of the instruments of S. This forms a scene as defined
by [17].

Scmax is the set of instruments of class cmax. All the instruments in Scmax

are assumed as non-faulty. Thus, at the beginning of a diagnosis procedure, the
set of instruments to diagnose SD is equal to S \ Scmax .

Then, the predicted states Ω̂(si, td) for each si ∈ S are initialised. The
predicted states of the instruments in Scmax are set to non-faulty and those of
the instruments in SD are initially set to ambiguous.

Afterwards the predicted states of all the instruments, noted Ω̂(S, td), are

actualised. These actualised states are noted Ω̃(S, td).
They are determined by iteration until the predicted state of each instrument

si ∈ SD remains unchanged. First, if |Φ(si → S, (td,∆t))| < |Φv|min, it means
that during [td −∆t; td], si did not meet other instruments enough times to be
able to diagnose its state, whatever the predicted states of the other instruments.

1The true state of an instrument cannot be ambiguous. It is either faulty or non-faulty.
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Therefore, it is not possible to actualise its predicted state with another value
than ambiguous, which is already the value of Ω̃(si, td), and si is removed from
SD.

Otherwise, the set of valid rendez-vous Φv(si → S, (td,∆t)) is determined. If
its size is lower than |Φv|min, the actualised predicted state of si stays equal to
ambiguous and si remains in SD as the size of Φv(si → S, (td,∆t)) may change
in a future iteration.

If |Φv(si → S, (td,∆t))| ≥ |Φv|min, the actualised predicted state can be
determined between non-faulty and faulty.

To do so, we compute r≈Φv
(si, (td,∆t)), the rate of compatible rendez-vous

in the set of valid rendez-vous of si over the time range [td −∆t; td]. It is equal
to

r≈Φv
(si, (td,∆t)) =

|Φ≈v (si, (td,∆t))|
|Φv(si, (td,∆t))|

Based on (r≈Φv
)min, which is the minimal tolerated value associated to the

rate r≈Φv
(si, (td,∆t)), if the condition r≈Φv

(si → S, (td,∆t))) < (r≈Φv
)min is true,

then Ω̃(S, td) is equal to faulty. Otherwise Ω̃(si, td) is set to non-faulty. In the
end, si is removed from SD.

After all the instruments in SD are treated, if Ω̂(S, td) = Ω̃(S, td), it means
that no states of the instruments in SD changed. Consequently, the states of
the instruments of the network at td, Ω̂(S, td), are determined and the diag-

nosis procedure ends. Otherwise Ω̂(S, td) takes the values of Ω̃(S, td) and the
actualised states are determined again for each instrument si ∈ SD.

The pseudo-code of this algorithm is provided in Algorithm 1.

4.3 Relevance of the algorithm depending on the type of
sensor network and the characteristics of the instru-
ments

In this section, no assumption is made on the type of the sensor network (with
or without reference instruments, with or without mobile nodes [13]). Indeed,
according to the general definition of a rendez-vous, there is no reason that any
of the instruments should be mobile or static. In the following sections, this
concept is applied to sensor networks with mobile nodes, but as long as the
conditions regarding the spatiotemporal vicinity are respected as exposed in
Section 3.3, rendez-vous can happen, even for sensor networks with static nodes
only.

In addition, the algorithm does not determine the best way to identify the
state of the instruments, e.g. a list of instruments that can be compared consec-
utively to determine their state, that could exploit the structure of the sensor
network. Instead, it takes into account all the rendez-vous the instruments had
with others on a given time range, regardless of any possible underlying rela-
tionship between the nodes. Then, it investigates iteratively per instrument
which rendez-vous are valid, e.g. notably those with instruments which are
known to be non-faulty (due to the initial assumption on the instruments of the
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Algorithm 1 Algorithm of the diagnosis procedure proposed for the detection
of drift in sensor networks

procedure Diagnosis(S, Φ(S → S, (td,∆t)), |Φv|min, ∆cDmin)
# Initiate the set of instruments to diagnose
SD ← S \ Scmax

# Initiate the predicted states
Ω̂(Scmax , td), Ω̂(SD, td)← NF, A
# Initiate the actualised states

Ω̃(SD, td)← Ω̂(SD, td)

# Ignore the instruments that cannot have enough valid rendez-vous
for si ∈ SD do

if |Φ(si → S, (td,∆t))| < |Φv|min then
SD ← SD \ {si}

end if
end for

# In this main loop, the state of each instrument to diagnose is predicted
repeat
# The actualised states are now the predicted states

Ω̂(S, td)← Ω̃(S, td)

for si ∈ SD do
cDmin(si)← c(si) + ∆cDmin(c(si))

# Build the current set of valid rendez-vous

Φv(si → S, (td,∆t))←
{ϕ(si → sj , t) ∈ Φ(si → S, (td,∆t)),

such as sj /∈ SD, Ω̂(sj , t
′) = NF ,

c(sj) ≥ cDmin(si),

m(si, t) ∈M∗(si, (td,∆t)),
m(sj , t

′) ∈M∗(sj , (td,∆t))}

# If si have enough valid rendez-vous, then compute the different
rates to actualize its state

if |Φv(si → S, (td,∆t))| ≥ |Φv|min then

r≈Φv
(si → S, (td,∆t))← |Φ≈v (si→S,(td,∆t))|

|Φv(si→S,(td,∆t))|

# If the condition on the rate is met, then the actualised state
of si is set to faulty, otherwise, it is set to non-faulty

if r≈Φv
(si → S, (td,∆t))) < (r≈Φv

)min then

Ω̃(si, td)← F
else

Ω̃(si, td)← NF
end if
SD ← SD \ {si} # si is diagnosed so it can be removed from

SD

end if
end for

# The main loop is repeated until there is no difference between the
predicted and actualised states

until Ω̂(S, td) = Ω̃(S, td)

return Ω̂(S, td)
end procedure

12



highest class in the network and the preceding iterations of the main loop of the
algorithm) and builds its decision if enough valid rendez-vous were encountered.

Finally, no assumption is also made on the characteristics of the instruments
such as the way they drift or their uncertainty for instance. Their characteristics
are used to determine if a measurement result is valid and if two measurement
results are compatible but for instance, it is not necessary to have instruments
drifting linearly. Such a feature is not exploited by the algorithm.

For these reasons, the proposed algorithm can be applied to any sensor
network with instruments without specific characteristics as long as:

• a practical definition for rendez-vous allowing their observation is chosen,
followed by the choice of an acceptable minimal size for sets of valid rendez-
vous.

• characteristics of the instruments allowing to determine the validity and
compatibility of measurement results are known.

• a requirement can be exploited to determine notably the criterion to use
to derive the states of instruments based on their sets of valid rendez-vous,
in our case the minimal tolerated value (r≈Φv

)min associated to the rate of
compatible rendez-vous in the set of valid rendez-vous of si over the time
range [td −∆t; td].

2

• instruments of class cmax can be assumed as non-faulty. This is a sig-
nificant assumption, but it is a completely realistic one, which in the
future could be added as design principle for sensor networks if drift of
performances is expected. For instance, in the context of air pollution
monitoring in cities, there are already multiple monitoring stations used
for regulatory purposes (see Airparif’s website for the city of Paris for in-
stance). Indeed, due to the applicable European Directives in Europe [41],
these stations have to be maintained (and thus calibrated) regularly to
keep their certification. Beyond the field of air pollution monitoring, con-
sidering the usually high investment, deployment and maintenance costs
of large sensor networks, adding to the network the cost of acquisition and
maintenance of a single high-quality measuring instrument can be easily
envisioned. By contrast, the maintenance of hundreds of instruments is
not for both technical and economic reasons.

These are the only requirements and assumption necessary to put in practice
the presented algorithm. Although, a performance level is not guaranteed by
design.

2Alternate manners to determine the predicted state of an instrument according to com-
patible and non-compatible valid rendez-vous could be chosen. For instance, the value of the
predicted state could be chosen according to the number of compatible and non-compatible
valid rendez-vous. Thus, (r≈Φv

)min would be replaced by a minimal number of compatible

rendez-vous regarding |Φ≈v (si → S, (td,∆t))|.
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5 Application of the diagnosis algorithm

To showcase how to apply the diagnosis algorithm, this section provides a case
study based on simulation with an analysis of its performances.

5.1 Definition of the case study

5.1.1 Sensor network

A sensor network of 10 instruments is considered. The class of one of them is
equal to 1, the others being of class zero. Thus, cmax = 1 in this case.

The instruments of class k = 0 move randomly in a discrete space of 100
positions at discrete time. The positions of the instruments are geometrically
defined according to a grid of 10× 10 with a 100m step, and centered on (0, 0)
as shown in Figure 2. At each time step a new position is chosen randomly
for each instrument following a uniform law. Instruments may remain in place
and multiple instruments may share a single position. Two instruments are in
rendez-vous when they are at the same position at the same time. In addition,
the instrument of class cmax is static. Its position is randomly drawn among
the 100 positions.

As the case study is based on simulation, the time step has no actual physical
meaning. To ease the comprehension of the study, the time step represents 10
min and the case study lasts 265 days.

5.1.2 Instruments

Instruments are assumed to be initially calibrated. In this case study, the instru-
ment of class cmax is assumed as perfect, e.g. it does not drift. The instruments
of class zero all follow a random gain and offset increase (RGOI) drift model
[42]. Gain G(si, t) and offset O(si, t) drift of instrument si are computed at
each time step following:

G(si, t) =

{
1 if t < tstart drift

G(si, t− 1) + δG(si, t) if t ≥ tstart drift

with ∀t, δG(si, t) drawn following the uniform law U(0, δGmax), and:

O(si, t) =

{
0 if t < tstart drift

O(si, t− 1) + δO(si, t) if t ≥ tstart drift

with ∀t, δO(si, t) drawn following U(0, δOmax).
δGmax and δOmax are respectively the maximal gain and offset possible

increase per time step.
Measured values are expressed following:

v(si, t) = G(si, t) · vtrue(si, t) +O(si, t)

The instruments start to drift at t = 0.
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Table 1: Values of the parameters of the case study. The values of δGmax and
δOmax are displayed as a fraction of (24 ∗ 6 ∗ 30) min for the sake of clarity, e.g.
the numerator is the maximal drift of the gain and of the offset per 30 days.

Parameter Value Unit

Class 1
∆rv 1 %
vmin 0.752 µg m−3

Class 0
δGmax 2/(24*6*30) %/10min
δOmax 18.8/(24*6*30) µg/m3/10min
∆rv 30 %
vmin 37.6 µg m−3

True values model
Amax 200 µg m−3

σmax 3826 m

Each measured value v(si, t) is associated to a constant relative uncertainty
∆rv(ci) depending on the class of the instrument such as

∆v(si, t)

v(si, t)
= ∆rv(ci)

A detection limit vmin(ci) is also defined to balance the effect of high un-
certainties for low measured values. All the measurement results that have a
measured value below the detection limit are not considered valid.

All the values of the parameters were defined according to information avail-
able in actual instrument datasheets. The following devices were considered to
provide the values: AC32M Nitrogen oxides analyser (analyser, high quality),
Cairsens NO2 (low-cost measuring instrument), NO2-B43F Nitrogen Dioxide
Sensor (low-cost sensor). However, the actual drift model is in general not pro-
vided in such datasheets; we chose an arbitrary, realistic drift model compatible
with the outcomes of the considered documents. Nevertheless, though it was
not validated, the drift model is similar to other ones that can be found out in
the literature [43, 44].

Finally, relative uncertainty, limit of detection, gain drift and offset drift were
used to model the behaviour of measuring instruments. Other characteristics
could have been considered to assess the validity of the measurement results
or to better model them, but this question is out of scope of this paper and
shall be managed along with the adjustment of the parameters of the diagnosis
algorithm to provide fine guidelines for sensor network designers.

The values used for the parameters considered in this case study are listed
in Table 1.
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Figure 2: Map of the 100 positions available for the instruments in the case
study. It is a 10× 10 grid with a 100m step.

5.1.3 True values

To model the true values of the instruments, a pollutant source is considered
at the center of the area of study. The concentration of pollutant, C, at the
instant t and position (x, y), is modelled as:

C(x, y, t) = A(t) exp

(
− x2 + y2

σ(t)2

)
It is a 2D Gaussian function with an equal spread σ for x and y. This

model is not very realistic but has been used in other papers [45] for its ease of
implementation. An example of a pollution map is displayed in Figure 3.

A(t) and σ(t) are drawn randomly at each time step following the uniform
laws U(0, Amax) and U(0, σmax) respectively. The values of Amax and σmax are
reported in Table 1.

5.2 Configuration of the diagnosis algorithm

We aim at performing a diagnosis every 15 days. Thus, for d ∈ D, td =
(d+ 1)× 15 days, with D = [0..16].

The goal of this diagnosis is to detect when an instrument has provided
at least 25% of measurement results non-compatible with their true
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Figure 3: Example of concentration map used following C(x, y, t) = A(t) exp

(
−

x2 + y2

σ(t)2

)
for A = 100µg m−3 and σ = 637m

values over the past 15 days. According to this specification, we choose
∆t = 15 days and the rate threshold (r≈Φv

)min is set to 25%.
The minimal number of valid rendez-vous to conclude with a predicted state

different from ambiguous |Φv|min is set to 10.

5.3 Definition of the true state of an instrument

As it is a simulation, it is possible to know the true state of an instrument.
Indeed, its measured values and the true values are accessible, and therefore,
it can be determined if 25% of measurement results non-compatible with their
true values were obtained or not during a period of 15 days.

rtrue(si, (t,∆t)) is the rate of measurement results compatible with true
values of si over [t−∆t; t]. It is equal to

rtrue(si, (t,∆t)) =
|M≈(si, (t,∆t))|
|M(si, (t,∆t))|

In this case, if rtrue(si, (t,∆t)) < 0.75, then Ω(si, t) = F . Otherwise, Ω(si, t) =
NF .
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5.4 Metrics for the evaluation of performances of the di-
agnosis algorithm

To estimate the performance of the algorithm, vocabulary and metrics that are
used to evaluate binary classifiers [46, 47] are appropriate but must be adapted
as the predicted states can take three values instead of two.

Regarding the possible true states and predicted states, there are six cases:

• A non-faulty state predicted for an instrument which true state is non-
faulty is a true negative (TN)

• A faulty state predicted for an instrument which true state is non-faulty
is a false negative (FN)

• An ambiguous state predicted for an instrument which true state is non-
faulty is a non-determined negative (NDN)

• A non-faulty state predicted for an instrument which true state is faulty
is a false positive (FP)

• A faulty state predicted for an instrument which true state is faulty is a
true positive (TP)

• An ambiguous state predicted for an instrument which true state is faulty
is a non-determined positive (NDP)

To these primary metrics, P and N are added, which are respectively the
number of positives (faulty true state) and the number of negatives (non-
faulty true state). Metrics derived from the primary metrics are defined in Table
2 to facilitate the analysis of the results.

For the computation of the metrics, only the instruments in S \ Scmax are
considered. The instruments of class cmax being always assumed as non-faulty
and being not drifting in the following sections, taking them into account would
bias the metrics.

Another metric added is the delay of first positive detection for an
instrument si, noted ∆D(si). It is the difference between the index of the
diagnosis procedure d where the true state Ω(si, td) changes from NF to F and

the index of the diagnosis procedure d′ where the predicted state Ω̂(si, td′) = F
for the first time. Thus:

∆D(si) = d− d′

This value can be positive or negative as there can be early or late positive
detection. In the following results, the average and the standard deviation of
this metric over S \ Scmax are considered.
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Table 2: Metrics derived from P , N , TP , TN , FP , FN , NDP and NDN

Name Expression Proportion of:

Prevalence Prev = P
P+N

- positive cases.

True positive rate TPR = TP
P

- positive cases correctly de-
tected.

True negative rate TNR = TN
N

- negative cases correctly
detected.

False positive rate FPR = FP
N

- positive cases incorrectly
detected.

False negative rate FNR = FN
P

- negative cases incorrectly
detected.

Non-determined
positive rate

NDPR = NDP
P

- positive cases detected as
ambiguous.

Non-determined
negative rate

NDNR = NDN
N

- negative cases detected as
ambiguous.

Non-determined
rate

NDR = NDP+NDN
P+N

- all cases detected as am-
biguous.

Positive predictive
value

PPV = TP
TP+FP

- correctly detected positive
cases per positive call.

False discovery
rate

FDR = FP
TP+FP

- incorrectly detected posi-
tive cases per positive call.

Negative predic-
tive value

NPV = TN
TN+FN

- correctly detected nega-
tive cases per negative call.

False omission rate FOR = FN
TN+FN

- incorrectly detected nega-
tive cases per negative call.

Accuracy ACC = TP+TN
P+N

- correct detection.
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Figure 4: Evolution of the true state and of the predicted state for several
instruments

5.5 Results

5.5.1 Observations from the results of different instruments

In Figure 4, the evolution of the true and predicted states over time are rep-
resented for different instruments. It shows that the diagnosis algorithm can
produce different results over the instruments:

• The state of the instrument at each diagnosis procedure is often correctly
predicted, except for a delay right after it becomes faulty (Figures 4a and
4b)

• There are predicted states equal to ambiguous (Figures 4b and 4c)

• Changing decisions happen, e.g. an instrument predicted as faulty may
be predicted as non-faulty later (Figure 4c)

In all these particular cases, false results are observed, e.g. for instance an
instrument is predicted as non-faulty when it is faulty. This is what happens at
t ≈ 14k for s8 in Figure 5: the value of r≈Φv

is not coherent with rtrue because of
valid rendez-vous issues. It is expected because the true state of an instrument
is based on all its measurement results against the true values on the
considered time range according to its definition in Section 5.3, whereas its
predicted state is based on the measurement results of its valid rendez-
vous with other devices. Thus, instruments which are actually non-faulty
can be predicted as faulty and vice versa because the sets of measurement results
used to compute the true and predicted state of an instrument are different.

5.5.2 Overall performances

Globally, the values of the metrics computed over all the diagnosis procedures
are listed in Table 3. In this study, the prevalence of positive cases, e.g. the
proportion of cases where the instruments are actually faulty over all the di-
agnosis procedures, is equal to 76%, for 153 cases (9 instruments diagnosed 17
times each).
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Table 3 shows that:

• Most of the predicted states are true negatives (36 cases) and true positives
(98 cases)

• Few predicted states are false negatives (17 cases) and non-determined
positives (2 cases)

• No non-determined negative and false positive are predicted

Consequently, the TNR is equal to 1 and the FPR is equal to zero whereas
the TPR is important (0.84) and the FNR is moderate (0.15). Moreover, the
NDNR is equal to zero and the NDPR is equal to 0.02, thus NDR = 1% of
ambiguous predictions were made which is low.

However, it appears that the algorithm is mostly correct when it predicts that
instruments are faulty (PPV = 1, FDR = 0). It is often wrong when it predicts
that instruments are non-faulty, about one third of the time (NPV = 0.68,
FOR = 0.32). According to Figure 4, there is a delay when an instrument
actually becomes faulty and the first prediction as faulty. It confirmed by the
statistics of the delay of positive detection ∆D in Table 3: the average value is
negative and in fact it is always lower or equal to zero according to the maximal
value of this metric. Nevertheless, the accuracy is equal to 88% which shows
that there are mostly correct predictions overall.
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Figure 6: Evolution of the metrics computed for each diagnosis procedure as a
function of the current diagnosis procedure id

5.5.3 Evolution over time of the metrics

The values of the metrics given in the previous subsection are representative of
the results for all the diagnosis 17 procedures. They do not allow understanding
how this overall result is achieved over the case study. Therefore, we study here
their evolution.

Figure 6 shows the evolution of the metrics as a function of the index of the
diagnosis procedure. Each curve gives the values obtained for the corresponding
metric at the diagnosis d with the results of the nine instruments, where d is
the index of the diagnosis procedure.

Figure 6a shows that first there are only non-faulty instruments (curve of
N), and faulty ones appear at the 5th diagnosis (d = 4). After the 6th diagnosis,
all the instruments of class zero are faulty (curve of P ). The transition is quite
abrupt, but this is expected because all the instruments of class zero follow the
same drift model with the same parameters. The curves of the true positives
TP and true negatives TN follow mostly the ones of P and N respectively. The
false positives or negatives are in fact occurring around the transition where
instruments of class zero become faulty. This behaviour is more clearly repre-
sented in Figures 6b and 6c with the curves of the TPR and FNR, and the
curves of the NPV and FOR respectively. Finally, with Figure 6d, we observe
that the global accuracy, initially equals to one, decreases until the transition
phase and then increase again, converging to 1.

To conclude, this particular study of the evolution of the metrics allowed to
understand the global results over the 17 diagnosis procedures: the false results
occur mainly when the instruments actually become faulty and the more there
are instruments actually predicted as faulty, the more the number of predicted
states equal to ambiguous increases. Thus, on the first hand, worse overall
results could have been displayed by considering the results of few diagnosis
procedures around the transition phase. On the other hand, better results
would be obtained by increasing the number of diagnosis procedures in the case
study, without changing any parameter of the algorithm, e.g. by increasing the
duration of the case study. However, this would not reduce the number of false
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Table 3: Confusion matrix of states-related metrics and statistics of the delay
of positive detection ∆D for the case study

True state

Non-faulty Faulty Prevalence Accuracy

N = 36 P = 117 0.76 0.88

P
re

d
ic

te
d

st
a
te Non-faulty

TN FN NPV FOR

36 17 0.68 0.32

Ambiguous
NDN NDP

0 2

Faulty
FP TP FDR PPV

0 98 0.00 1.00

TNR FNR

1.00 0.15

NDNR NDPR NDR

0.00 0.02 0.01

FPR TPR

0.00 0.84

Delay of positive detection

µ σ min max

−1.6 1.2 −3 0

that may happen in absolute terms.

5.6 Complementary studies

Based on these first results, multiple studies can be conducted to better under-
stand the behaviour of our algorithm and identify its parameters of influence.
A detailed in-depth study is the object of future work, but we present here two
complementary results on the influence over the diagnosis performances of the
model of the measurand and of the fault model used to derive the measured
values.

5.6.1 Influence of the model of the measurand

The 2D Gaussian function used for the case study produces concentration fields
that are quite homogeneous. To determine the behaviour of our algorithm with
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a more variable measurand, the same case study was conducted by replacing
only the model of the measurand with a random draw of the true values at each
time step and at each position following the uniform law U(0, 400). A draw is
represented in Figure 7. The results are reported in Table 4. We observe the
results are similar to those of Table 3: mainly correct detections (TN , TP ),
a few false results but mainly false negatives. PPV , NPV , TNR and TPR
have the same order of magnitude as previously and consequently so does their
complementary metrics. The differences are a bit more significant for the delay
of positive detection and its statistics. On average, it is better regarding its
mean (−0.5 instead of −1.6 for the previous single study) and worse for its
maximal value (1.9 instead of 0). The other metrics (min and σ) are equivalent
on average. However, the most interesting result lies in the standard deviations
of each metric. They are all close to zero, demonstrating that whatever the
values drawn, it does not influence significantly the performance of the diagnosis
algorithm.

Thus, through the comparison of the average results obtained with a uni-
form law as model for the true values, against the results obtained with a 2D
Gaussian function as model for the true values, we observed first that the model
chosen for the true values does not seem to have a significant effect on the re-
sults. In a second step, as the case study was repeated 100 times, we observed
by studying the standard deviations of the metrics that similar results were ob-
tained whatever the draw. Thus, the true values themselves also do not have a
major influence on the results.

We explain this behaviour by the use of the concept of rendez-vous: only the
values measured when instruments meet count, regardless of the general spa-
tial and temporal variability of the measurand as long as the spatio-temporal
conditions are respected for instruments to be in rendez-vous. Although these
conditions are very simple in the present case study (instruments are in rendez-
vous when they are at the same position at the same time) and easy to meet
through simulation, it highlights once again that the choice of the practical defi-
nition for rendez-vous allowing their observation is major for the well-behaviour
of our algorithm. Nevertheless, further studies are required to identify if there
are conditions under which the true values or the behaviour of the measurand
have an influence on the results.

5.6.2 Robustness of the algorithm

In the first place, only drift was added to true values to simulate the measured
values. In practice, other faults like noise or spikes would be present in the
measurement results, if not detected and corrected before the application of the
drift diagnosis algorithm. It may have a major influence on the results as mea-
surement results affected by other faults are likely to generate non-compatible
measurement results with their true values. We can expect that such measure-
ment results, if involved in valid rendez-vous, would generate non-compatible
valid rendez-vous, influencing the value of the rate r≈Φv

. This should likely gen-
erate positive results, e.g. the instruments are predicted as faulty earlier than
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Figure 7: Example map of drawn values following the uniform law U(0, 400) at
each measuring instrument’s possible position

expected.
To illustrate this, spikes and noise were added to the measured values. The

noise is modelled as a random variable following a normal law. For each instru-
ment si, the value of the noise ε(si, t) is drawn from N (0, εmax) at each time
step, with εmax = 20 here. For spikes, they occur depending on the random
variable pψ(si, t) that follows U(0, 1). If pψ(si, t) < 0.05, a spike is added to
the measured value v(si, t). The value of the spike is equal to (ψ · v)(si, t), with
ψ(si, t) following U(−1, 1).

Thus, the measured values of an instrument si are equal to:

v(si, t) =


G(si, t) · vtrue(si, t) +O(si, t)

+ε(si, t) if pψ(si, t) ≥ 0.05

(G(si, t) + ψ(si, t)) · vtrue(si, t) +O(si, t)

+ε(si, t) if pψ(si, t) < 0.05

The results are given in Table 5. We observe that N is lower and P is
higher than in Table 3. Therefore, the instruments should be considered as
faulty earlier. Regarding all the other metrics, their values are still good and
similar to the results of Table 3. Thus, it appears that the supplementary
faulty measured values are not affecting significantly the results of the diagnosis
algorithm. More importantly, despite a slightly higher standard deviation than
in Table 3, the average delay of positive detection is close to zero and even
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Table 4: Confusion matrix of states-related metrics and statistics of the delay of
positive detection ∆D with true values drawn from the uniform law U(0, 400),
repeated 100 times

True state

Non-faulty Faulty Prevalence Accuracy

µ σ µ σ µ σ µ σ

63.34 0.59 89.66 0.59 0.59 0.00 0.83 0.03

P
re

d
ic

te
d

st
a
te N

.-
F

au
lt

y TN FN NPV FOR

µ σ µ σ µ σ µ σ

60.87 1.50 22.63 3.46 0.73 0.03 0.27 0.03

A
m

b
ig

. NDN NDP

µ σ µ σ

0.00 0.00 0.17 0.38

F
au

lt
y FP TP FDR PPV

µ σ µ σ µ σ µ σ

2.47 3.39 66.86 3.39 0.04 0.02 0.97 0.02

TNR FNR

µ σ µ σ

0.96 0.02 0.18 0.03

NDNR NDPR NDR

µ σ µ σ µ σ

0.00 0.00 0.00 0.00 0.00 0.00

FPR TPR

µ σ µ σ

0.04 0.02 0.75 0.04

Statistics on the delays of positive detection over the 100 draws

µ σ min max

∆D mean −0.5 0.5 −1.4 1.2

∆D std dev 1.6 0.4 0.7 2.6

∆D min −3.1 0.9 −5.0 −1.0

∆D max 1.9 1.0 0.0 4.0

positive. Its maximal value is also positive. It indicates that the prediction of
instruments as faulty happens earlier as expected.

To conclude, the proposed diagnosis algorithm targeting initially drift faults
is robust to other faults. Although instruments are predicted as faulty more
times, regardless if such a prediction is true or false, it is less harmful than false
negative results in the context of drift diagnosis. Indeed, it calls for an earlier
maintenance of the devices in this case instead of a late one.

5.7 Summary and outcomes of the case studies

In this section, a case study was conducted to put in practice the algorithm of
diagnosis presented in Section IV. It provides satisfying results regarding the
initial specification, with a few false or ambiguous results (only false negatives
and non-determined positives). The overall accuracy shows a large majority of
correct predictions (88%). It is worth mentioning that results cannot be extrap-
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Table 5: Confusion matrix of states-related metrics and statistics of the delay
of positive detection ∆D with spikes and noise added to the measured values

True state

Non-faulty Faulty Prevalence Accuracy

N = 23 P = 130 0.85 0.90

P
re

d
ic

te
d

st
a
te Non-faulty

TN FN NPV FOR

20 11 0.65 0.35

Ambiguous
NDN NDP

0 2

Faulty
FP TP FDR PPV

3 117 0.03 0.97

TNR FNR

0.87 0.08

NDNR NDPR NDR

0.00 0.02 0.01

FPR TPR

0.13 0.90

Delay of positive detection

µ σ min max

0.2 1.7 −2 3

olated directly to another case study as this case study is rather elementary in
terms of sensor network, measurand and rendez-vous conditions. A prospect
of this work is to provide automated means to adjust the parameters of the
algorithm depending on the specific features of the use case. Two additional
case studies are provided to give insights on the sensitivity of the method to
case study parameters: we showed first that the spatio-temporal variability of
the measurand has no influence on the diagnosis results, as long as the condi-
tions for instruments to be in rendez-vous are well-defined and respected. In a
second step, we showed that the algorithm is robust to other faults like spikes
or noise, the only side effect being an earlier prediction of the instruments as
faulty, generating false positives that are less harmful than false negatives in
this case.

The diagnosis algorithm is primarily oriented toward detecting when instru-
ments require calibration. Considering that it would be combined to a cali-
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(a) With recalibration based on an oracle
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(b) With recalibration based on linear re-
gression with the set of valid rendez-vous
used at the diagnosis instant

Figure 8: Evolution of the true values, of the measured values without and with
recalibration for different choices of calibration approach for s8. The true and
predicted states are plotted to show when recalibrations are triggered. The true
and predicted states for the case without recalibration corresponds to those of
Figure 4c. A rolling averaging of the values over 24 h was performed to make
the graph easier to read.

Table 6: Mean (µ) and standard deviation (σ) of the slope, intercept and coef-
ficient of determination r2 computed for the nodes of class 0 of the network on
the entire time interval of study and for each calibration strategy.

Calibration approach
Slope Intercept r2

µ σ µ σ µ σ

No calibration 1.04 0.00 42 0 0.84 0.00

Oracle-based 1.01 0.00 14 1 0.97 0.01

Linear regression-based 1.02 0.00 15 1 0.98 0.01

bration approach in practice, we investigate in the following section how this
algorithm behaves when calibration is actually carried out on an instrument
after it is predicted as faulty. Moreover, the valid rendez-vous used to predict
the state of an instrument provide associations of its measured values with the
values from other instruments considered as references. We use them in a second
calibration approach.

6 Combination with calibration approaches

In the study presented in this section, three cases are considered when an in-
strument is detected as faulty:

• No calibration is carried out (equivalent to what was done in Section 5)

• Once an instrument is predicted as faulty, its gain and offset are respec-
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Figure 9: Target plot of the 9 nodes of class 0 of the network as a function of
their slope and intercept, computed on the entire time interval of study, for each
calibration strategy.

tively reset to their initial values, 1 and 0 respectively. It is equivalent
to having an oracle that knows the gain and offset of each instrument at
each instant. That is considered as a perfect calibration.

• A linear regression is carried out based on the couples of measured values
of the faulty instruments and its diagnosers that are in the set of valid
rendez-vous used for the diagnosis. This technique is often tested in the
literature for the calibration of measuring instruments [10].

The case study is identical to the one described in Section 5 regarding the
sensor network, the true and measured values and the configuration of the di-
agnosis algorithm.

Results for a single instrument are displayed in Figure 8. The instrument is
recalibrated right after being diagnosed as faulty for both recalibration methods.
Nevertheless, it is only visible at the next diagnosis procedure (instrument is
predicted non-faulty again). From the curves of the predicted states we cannot
assess the quality of the calibration, it only shows that it was efficient enough
to be classified again as non-faulty.

To proceed to an evaluation of the impact of the calibration on the measure-
ment results, a linear regression between the true values and the corrected values
is carried out for each instrument. It is computed on the entire time interval
of study. Table 6 presents the statistics of the slope, intercept and coefficient
of determination of the regression and Figure 9 represents a target plot of the
instruments as a function of their slope and intercept. We observe that both
the calibration approaches give equivalent results compared to the case without
calibration. The error on the slope and on the intercept are respectively reduced
of at least 50%, e.g. from 1.04 to 1.02, and 60%, e.g. from 41 to 16.
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However, even with the oracle-based calibration, we observe that the remain-
ing average offset can still be considered as significant. This residual is explained
by the fact that the gain and offset of the instruments are corrected at specific
moments and not at each time step: between two diagnosis procedures, the
instruments continue to drift. Moreover, when an instrument is considered as
faulty, the correction is applied only on the values that are measured after the
moment this prediction is made. This is illustrated in Figure 8.

More significantly, the average coefficient of determination of the linear re-
gression increases of 15 % (from 0.84 to 0.97) indicating at least a better con-
nection between the calibrated values and the true values than between the
measured values and the true values if no calibration is performed. Thus, a sim-
ple calibration approach, based on the information contained in the rendez-vous
used to predict the states of the instruments, allows obtaining an interesting im-
provement of their metrological performances.

To conclude, this case study shows that, in addition to being able to detect
when an instrument does not meet a specification and even without a fine adjust-
ment of its parameters, the diagnosis algorithm proposed provides also useful
data to perform the recalibration of measuring instruments, namely through
the sets of valid rendez-vous used during diagnosis procedures. Nevertheless,
the calibration approach we used in this section and more generally the case
studies we conducted in this paper are quite simple. Extensive studies, through
experiments or simulation, are needed to figure out how the best in situ cali-
bration results can be obtained with our diagnosis algorithm and a calibration
approach, depending on the measurand, the sensor network and its context of
deployment.

7 Conclusion

A novel algorithm for the diagnosis of drift faults in sensor networks is intro-
duced. It exploits the concept of rendez-vous between measuring instruments.
The algorithm studies the validity of the rendez-vous before using them to de-
termine the states of the instruments. It can be applied to any type of sensor
network in terms of composition of the network and mobility of the nodes. The
major assumption needed is to be able to assume the instruments of the high-
est metrological class in the sensor network as always non-faulty. For practical
use of the algorithm, an end-user will have to define the proper criteria for va-
lidity and compatibility between measurement results based on the monitored
phenomenon and on instruments’ datasheets; then to establish, based on the
specificity of the use case (mobility of the instruments, spatial variability of
the phenomenon) and of the instruments (for instance the time they require to
perform a measurement), the conditions under which instruments are in rendez-
vous, the minimal number of valid rendez vous required to derive the state of
an instrument, and the requirement indicating in which state an instrument is
depending on its number of valid rendez-vous over a given time range.

A case study based on a phenomenon following a 2D Gaussian law is con-
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ducted to showcase the algorithm and to provide insights on its performances.
It shows satisfying results with mostly correct prediction, although there are a
few false negatives. The overall accuracy of correct prediction is equal to 88%
for this use case. Complementary studies provide a preliminary result on the
sensitivity of the method to the specifics of each case study. One shows that the
spatio-temporal variability of the measurand has no influence on the diagnosis
results and that the algorithm is robust to other faults such as spikes or noise.

Afterwards, the diagnosis algorithm is associated to two calibration ap-
proaches. When an instrument is diagnosed as faulty, the valid rendez-vous
that were used to make the prediction of its state are exploited to make a linear
regression between the values of the faulty instrument and the values from its
diagnosers. This allowed to successfully correct the gain and offset of the faulty
measuring instruments, with a reduction of the error up to 50% on average
for the gain. Therefore, the diagnosis algorithm that is presented opens new
perspectives on in situ calibration, as this algorithm does more than indicating
which instruments are faulty in a sensor network: it also provides information
that can be exploited to correct them.

Future work aims at providing means to adjust the different parameters of
the algorithm toward optimized performances of diagnosis. Following on from
the first complementary case studies we exposed, the identification of the main
performance factors of the sensor network and its environment of deployment is
a major perspective for the use of this algorithm in real-case applications.

Resources

Codes and data files used to produce the results of Sections 5 and 6 are available
online under licence AGPL 3.0 and ODbL 1.0 respectively at https://doi.org/10.25578/IAZYBN.
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