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Abstract—We study the scenario where individuals (speakers)
contribute to the publication of an anonymized speech corpus.
Data users leverage this public corpus for downstream tasks,
e.g., training an automatic speech recognition (ASR) system,
while attackers may attempt to de-anonymize it using auxiliary
knowledge. Motivated by this scenario, speaker anonymization
aims to conceal speaker identity while preserving the quality
and usefulness of speech data. In this article, we study x-
vector based speaker anonymization, the leading approach in the
VoicePrivacy Challenge, which converts the speaker’s voice into
that of a random pseudo-speaker. We show that the strength of
anonymization varies significantly depending on how the pseudo-
speaker is chosen. We explore four design choices for this step:
the distance metric between speakers, the region of speaker space
where the pseudo-speaker is picked, its gender, and whether to
assign it to one or all utterances of the original speaker. We
assess the quality of anonymization from the perspective of the
three actors involved in our threat model, namely the speaker,
the user and the attacker. To measure privacy and utility, we use
respectively the linkability score achieved by the attackers and
the decoding word error rate achieved by an ASR model trained
on the anonymized data. Experiments on LibriSpeech show that
the best combination of design choices yields state-of-the-art
performance in terms of both privacy and utility. Experiments
on Mozilla Common Voice further show that it guarantees the
same anonymization level against re-identification attacks among
50 speakers as original speech among 20,000 speakers.

Index Terms—speaker anonymization, privacy, linkability,
voice conversion

I. INTRODUCTION

SPEECH is a rich source of personal information including
sensitive attributes such as identity [1], accent [2], or

pathological condition [3]. When the speaker’s goal is not bio-
metric authentication but some other voice-based interaction,
for example, exchanging with voice assistants or customer
helplines, speaker anonymization is desirable. Indeed, the
availability of efficient techniques to infer these attributes from
speech as well as recent advances in voice cloning [4] pose
severe privacy and security risks [5].

Throughout this article, we consider the following threat
model. Given a public dataset of anonymized speech con-
tributed by several speakers, an attacker records/finds a sample
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of speech of a speaker and attempts to find which utterances
in the anonymized dataset are spoken by this speaker, possibly
leveraging some knowledge about the anonymization method.
A good speaker anonymization method must defeat such link-
age attacks by concealing speaker identity, while preserving
the utility of speech for data users as measured for instance
by the perceived speech naturalness and/or the performance
of downstream tasks such as training an automatic speech
recognition (ASR) system.1 Figure 1 shows the three actors
involved in this model, namely the speaker, the attacker and
the user, along with their actions. The goals of the speaker
and the user are intimately linked, while the attacker operates
independently.

Speaker anonymization methods have been studied for
just over a decade. They include noise addition [7], speech
transformation [8], voice conversion [9]–[11], speech synthesis
[12], [13], or adversarial learning [14]. In this study, we focus
on x-vector based anonymization [13], [15], which converts the
original speaker’s voice into that of a target (pseudo-)speaker,
due to the naturalness of its output and its promising results so
far. In order to implement and assess such an anonymization
method, the following questions arise from the speaker’s and
user’s perspectives: Q1: How to optimally choose and assign
the target pseudo-speaker? Q2: How well is utility preserved?
Q3: How much residual speaker information remains? Fur-
thermore, the attacker must address the following questions:
Q4: Can privacy protection be defeated using some knowledge
of the anonymization method? Q5: How does the number of
possible speakers affect the re-identification performance?

In this article, we extend the two target pseudo-speaker
generation strategies in [13] (fully random, or at a fixed
distance from the original as measured by cosine distance
between x-vectors) into a whole family of strategies based on
four design choices: the distance metric between x-vectors, the
region of x-vector space where the pseudo-speaker is picked,
its gender, and whether to assign it to one or all utterances
of the original speaker. Our experiments suggest an optimal
combination of design choices to balance privacy and utility
(answering Q1). We train and/or evaluate ASR models on
anonymized speech to assess utility (answering Q2). We show
that some speaker information remains in the pitch sequence
and apply two different pitch transformation techniques to
remove it (answering Q3). We conduct these experiments
for three types of attackers [16], where stronger attackers

1Legally speaking, the term “anonymization” refers to a method that fully
achieves this goal. Following [6], we use it in a broader sense to refer to a
method that aims to achieve this goal, even when it has failed to do so.
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Fig. 1. Considered threat model. Speakers anonymize speech to conceal their identity before publication; attackers use biometric technology and knowledge
of the anonymization method to re-identify it; users (e.g., speech technology companies) use the published data for downstream tasks such as ASR training.

have more knowledge about the anonymization method (an-
swering Q4). Finally, we conduct additional experiments with
more than 20,000 possible speakers (answering Q5). These
contributions significantly extend our preliminary study [17],
which provided less detail, did not include utterance- vs.
speaker-level target assignment and pitch transformation, did
not evaluate privacy against the strongest (Semi-Informed)
attacker or with a large number of possible speakers, and did
not evaluate utility for ASR training.

The structure of the article is as follows. In Section II, we
introduce x-vector based anonymization and position it among
other related anonymization methods. Section III presents the
four considered design choices. Sections IV and V describe
the main experimental setup and the corresponding results.
Experiments with more speakers are conducted in Section VI.
We conclude in Section VII.

II. X-VECTOR BASED ANONYMIZATION

Speaker anonymization aims to conceal the speaker’s iden-
tity from a speech signal such that it cannot be used to
clone the speaker’s voice or to re-identify the speaker through
automatic speaker verification (ASV) or automatic speaker
identification (ASI). Early methods based on voice conversion
required both the original and the target speaker to be part
of the training set for the voice conversion system. Jin et al.
[9] convert all speakers into a single target. Bahmaninezhad
et al. [11] convert a given speaker into the average of all
speakers of the same gender. Pobar and Ipšić [10] pre-train
a set of speaker transformations and identify the speaker at
test time to select one of the corresponding transformations.
These methods are hardly applicable in practice since, in the
context of anonymization, the amount of speech from the
original speaker is often limited to one utterance. To relax
this constraint, Magariños et al. [18] find the closest source
speaker in the training set and apply one of the corresponding
transformations, while Justin et al. [12] transcribe speech into
a diphone sequence and re-synthesize it using a single target.
Although they do not require the original speaker to belong
to the training set anymore, these two methods suffer from
three limitations. First, they still result in a limited set of
target speakers or speaker transformations, which prevents the
original speaker from choosing an arbitrary unseen speaker as
the target. Second, using a real speaker’s voice as the target
raises ethical concerns. Third, the phonetic transcription step

in [12] is error-prone. This motivates the objective of convert-
ing the original speaker’s voice into an arbitrary, imaginary
pseudo-speaker’s voice without relying on a transcription step.
Speaker embeddings such as x-vectors [19] (a low-dimensional
representation extracted from an intermediate layer of an ASI
model) provide the continuous representation needed to define
and generate such pseudo-speakers.

Fang et al. [13] address this objective using a speaker-
independent speech synthesis system. They select x-vectors
within an external pool of speakers and average them to
obtain a target pseudo-speaker x-vector. This x-vector, along
with a representation of the original linguistic and intonation
contents, is provided as input to a neural source-filter (NSF)
based speech synthesizer [20] to produce anonymized speech.

In the following, we use the anonymization system shown
in Fig. 2, that is a variant of the one in [13]. This system
represents speaker identity, linguistic content and intonation
using x-vectors v,2 bottleneck (BN) features B [21] (a low-
dimensional representation extracted from an intermediate
layer of an ASR model) and pitch sequences p, respectively.
It comprises four steps: Step 1 (Feature extraction) extracts
pitch and BN features and the x-vector from the input signal.
Step 2 (X-vector anonymization) generates a target x-vector
v∗ by averaging N∗ candidate x-vectors from an external pool

2Following [13], we use raw x-vectors to represent speaker identity instead
of x-vectors compressed and rotated by linear discriminant analysis (LDA),
as classically done in the context of ASV. Unless the projected dimension is
carefully chosen after several experiments, the impact of the LDA transfor-
mation on speaker-specific information cannot be ascertained. Hence we defer
experiments with LDA-transformed x-vectors to a future study.
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Fig. 2. General architecture of the anonymization system.
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of speakers.3 Step 3 (Pitch conversion) is an optional step
which receives the target pitch statistics from the anonymiza-
tion module and transforms the original pitch sequence into
p∗. Step 4 (Speech synthesis) synthesizes a speech waveform
from the anonymized x-vector v∗ and the original B and p (or
optionally p∗) features using an acoustic model (AM) and the
NSF model. With the exception of Step 3 which is new (see
Section V-D), this system is identical to the first anonymization
baseline for the VoicePrivacy Challenge [6]. We refer to [22]
for details on the feature dimensions and the architectures of
the models in Steps 1 and 4 .

We note that there have been other interesting attempts
to generate a target pseudo-speaker x-vector for speaker
anonymization in the systems submitted to the first VoicePri-
vacy Challenge. Mawalim et al. [23] modified the signif-
icant elements of the source speaker x-vector that were
determined using singular value decomposition and variant
analysis to anonymize the identity. Perero-Codosero et al. [24]
transformed the original x-vector using an autoencoder with
adversarial training to suppress speaker, gender and accent
information. Turner et al. [25] fitted a Gaussian mixture model
based generative model over the external pool of speakers, and
then proposed to sample target x-vectors from this model to
preserve the distributional properties of x-vectors. Readers are
referred to Tomashenko et al. [26] for an in-depth analysis of
the objective and subjective evaluation results achieved by the
two challenge baselines and the 16 submissions.

III. ANONYMIZATION DESIGN CHOICES

Now given the ability to generate arbitrary external targets
in Step 2 (yellow box in Fig. 2), the question arises of which
strategy the speaker shall employ to select the candidate x-
vectors and achieve a suitable privacy-utility tradeoff. Fang et
al. [13] select candidate x-vectors at random within the whole
pool or within a fixed interval of distances from the original x-
vector. Han et al. [15] select a single target x-vector at random
within a maximum distance from the original x-vector. In the
following, we expand these initial strategies into a broader
range of strategies governed by the choice of the distance
metric between x-vectors, the region of x-vector space where
the candidates are selected, their gender, and the assignment
of the resulting target x-vector to one or all utterances of
the original speaker. These four design choices, which are
illustrated in Fig. 3, are detailed below. For the sake of focus,
we do not explore other design choices such as the size or the
diversity of the anonymization pool.

A. Distance metric: cosine vs. PLDA
To design advanced candidate selection strategies, the

speaker must first choose a distance metric which dictates
the properties of the x-vector space. We compare two such
metrics.

The first one is the cosine distance, which was used by [13].
For a pair of x-vectors ωi and ωj , it is defined as

dcos(ωi, ωj) = 1− ωi · ωj

||ωi||2||ωj ||2
. (1)

3There is no guarantee that averaging produces a valid x-vector, but all our
experiments show that the synthesized anonymized speech is of good quality.
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Fig. 3. Zoomed-in view of the x-vector anonymization step in Fig. 2 showing
the design choices for the generation of the target x-vector.

The second metric is based on probabilistic linear discrim-
inant analysis (PLDA) [27], that is the log-likelihood ratio of
the hypotheses that ωi and ωj belong to the same speaker (Hs)
vs. different speakers (Hd). Previous studies [28] have shown
that PLDA yields state-of-the-art performance as the x-vector
similarity metric in the context of ASV. This is attributed to
its formulation which estimates the factorized within-speaker
and between-speaker variability in speaker space, making
it a superior metric even for short utterances [29]. More
specifically, PLDA models x-vectors ω as ω = m+V y+Dz,
where m is the center of the x-vector space, the columns of
V capture speaker variability (eigenvoices) with y depending
only on the speaker, and the columns of D encode channel
variability (eigenchannels) with z varying from one recording
to another. The parameters m, V and D are trained on x-
vectors extracted using the x-vector extractor in Step 1 from
the dataset used to train that extractor itself (see [22] for details
on this dataset). The log-likelihood ratio score

dPLDA(ωi, ωj) = log
p(ωi, ωj |Hs)

p(ωi, ωj |Hd)
(2)

can be computed in closed form [30]. We propose to use
−dPLDA as the “distance” between a pair of x-vectors.

B. Proximity: random, far, near, dense, or sparse

We propose three alternative criteria resulting in five differ-
ent “proximity” choices to restrict the region of x-vector space
from which candidate x-vectors are selected.

1) Random: The simplest candidate x-vector selection strat-
egy is to select N∗ x-vectors with a given gender uniformly at
random from the pool. Note that this strategy does not allow us
to choose particular regions of interest in the x-vector space.

2) Far/near: Alternatively, the chosen distance metric can
be used to find candidate x-vectors which resemble most
(near) or least (far) the original speaker v. In essence, we
rank all the x-vectors in the pool in increasing order of their
distance from v and select either the top N (near) or the
bottom N (far). To introduce some randomness, N∗ < N
x-vectors are selected out of these N uniformly at random.

3) Dense/sparse: Another alternative is to identify clusters
of x-vectors in the pool and rank them based on their cardinal-
ity. We construct these clusters using the Affinity Propagation
[31] algorithm (see detailed procedure in Section IV-B). We
filter out the cluster which is closest to the original speaker,
then randomly select one cluster among those with most
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(dense) or least (sparse) members.4 We then randomly select
half of the members of that cluster.

In all five cases, the selected candidate x-vectors are aver-
aged to obtain the target (pseudo-speaker) x-vector v∗.

C. Gender selection: same, opposite, or random

In practice, instead of applying one of these five proximity
choices to the entire speaker pool, we apply it to a gender-
dependent pool which consists of either all males or all
females of the original pool. We propose three possible gender
selection choices: same where all speakers in the pool have
the same gender as the original speaker; opposite where they
all have the opposite gender; and random where either of the
two gender-dependent pools is selected at random. This allows
us to avoid averaging candidate x-vectors from both genders
with each other, and to assess the impact of gender selection
on privacy and utility.

D. Assignment: speaker- or utterance-level

The generation of the anonymized waveform is conditioned
upon the x-vector sequence, whose length is equal to the
number of frames in the original utterance. All the x-vectors
in this sequence are identical to each other to indicate a single
pseudo-speaker throughout the utterance. In theory, these x-
vectors should also be identical across all utterances spoken by
this pseudo-speaker but, according to [32], x-vectors also con-
tain channel, duration, and phonetic information, in addition
to speaker and gender. Hence, the x-vectors computed for dif-
ferent utterances may exhibit some variations due to utterance-
specific properties. To assess the effect of these variations
on privacy and utility, we propose two assignment strategies
for the target x-vector: speaker-level (perm) or utterance-level
(rand). In the former case, we average the utterance-level x-
vectors of all utterances of the original speaker into a single
speaker-level x-vector v, we generate a corresponding target
x-vector v∗, and we use it to anonymize all utterances of that
speaker. In the latter case, we consider the utterance-level x-
vector vu for each utterance u of the original speaker, we
generate a corresponding target x-vector v∗u (using the same
distance metric, proximity, and gender across all utterances),
and we use it to anonymize that utterance only.

IV. EXPERIMENTAL SETUP

The VoicePrivacy Challenge [6] assumed that the attacker
does not have access to the anonymization system and that the
user is unaware that speech has been anonymized. Privacy and
utility were consequently assessed using an ASV system and
an ASR system trained on original (non-anonymized) speech.
This resulted in overestimated privacy and underestimated
utility with respect to an attacker or a user who have access
to the anonymization scheme [16]. Also, the utility for ASR
training was not evaluated. Following [16], we advocate for a
complete study of the utility/privacy trade-off, which is key to
the success of downstream tasks.

4Note that the terms sparse and dense do not directly reflect the density
of x-vectors, since they do not take the diameter of the clusters into account.
However, we find that this relation holds in practice.

A. Data

The experiments in Section V rely on the same datasets as
the VoicePrivacy Challenge. Among the components of the
anonymization system, the ASR AM is trained on the train-
clean-100 and train-other-500 subsets of LibriSpeech [33], the
x-vector extractor is trained on VoxCeleb1 [34] and VoxCeleb2
[35], and the speech synthesis AM and NSF model are trained
on the train-clean-100 subset of LibriTTS [36]. The train-
other-500 subset of LibriTTS is used as the external pool of
speakers for x-vector anonymization. The development and
test sets are built from the dev-clean and test-clean subsets
of LibriSpeech, respectively.5 Each of these two sets consists
of trial utterances from 40 speakers and enrollment utterances
from a subset of 29 speakers (see Section IV-C). Details about
the number of male and female speakers and the number of
utterances in each dataset can be found in [6].

In Section VI, we employ the same trained models and
the same external pool of speakers but we build mutiple test
sets from the Mozilla Common Voice [37] English corpus
in order to study the attacker’s performance against a larger
number of enrolled speakers. Following the approach in [38,
Appendix A.1], we select 24,610 male speakers with a total
speech duration greater than 10 s after removing silent frames
using voice activity detection (VAD). All utterances with a
signal-to-noise ratio (SNR) above 75 dB are used for enrolle-
ment, in the limit of a total duration of 2 min per speaker.6 The
remaining utterances from 20 speakers whose total duration is
greater than 5 min are selected for trial. The resulting numbers
of utterances and trials are given in Table I.

TABLE I
STATISTICS FOR THE MOZILLA COMMON VOICE ENROLLMENT AND

TRIAL SETS AND NUMBER OF TRIALS.

Common Voice-enroll Number of speakers 24,610
Number of utterances 320,085

Common Voice-trial Number of speakers 20
Number of utterances 4,696

Number of trials Same-speaker trials 4,696
Different-speaker trials 115,563,864

B. Algorithm settings

The dense and sparse anonymization choices are imple-
mented as follows. We use Affinity Propagation [31] to cluster
the speakers in the external pool. This non-parametric cluster-
ing method determines the number of clusters automatically
via a message passing algorithm. Two parameters govern the
number of clusters: the preference parameter assigns a higher
weight to samples which are likely candidates for centroids,
and the damping factor weights the so-called responsibility
and availability messages. In our experiments, equal preference
is assigned to all samples and the damping factor is set to

5The VoicePrivacy Challenge involves development and evaluation sets
built from LibriSpeech and VCTK. Due to space limitations, we focus on
LibriSpeech.

6The SNR was computed using the WADA-SNR [39] algorithm available
at https://gist.github.com/johnmeade/d8d2c67b87cda95cd253f55c21387e75.

https://gist.github.com/johnmeade/d8d2c67b87cda95cd253f55c21387e75
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0.5. Out of 1,160 speakers in the pool, 80 clusters are found,
including 46 male and 34 female. The number of speakers per
cluster ranges from 6 to 36. Candidate x-vector selection is
achieved by picking either the 10 clusters with least members
(sparse) or the 10 clusters with most members (dense). The
remaining clusters are ignored. During anonymization, one of
the 10 clusters is selected at random and 50% of its members
are averaged to produce the target x-vector.

C. Privacy evaluation

As explained in Section I, privacy protection can be seen
as a contest between two entities: a speaker who publishes
anonymized utterances, and an attacker who attempts to un-
cover the speaker’s identity by comparing these utterances with
utterances whose speaker is known. Following the classical
ASV terminology adopted in the VoicePrivacy Challenge,
these are called trial and enrollment utterances, respectively,
and each such comparison is called a trial. The attacker has
full control over the enrollment set and the speaker identities
within it. Hence he/she may use some knowledge about the
anonymization scheme to transform the enrollment data and
reduce the mismatch with the trial data. To assess the strength
of anonymization against attackers with increasing knowledge,
we perform the evaluation in four scenarios:
• Baseline: The speaker does not perform any anonymiza-

tion. The attacker uses original speech for enrollment and
an ASV system trained on original speech. This offers the
lowest possible privacy protection.

• Ignorant: The speaker anonymizes his/her speech, unbe-
knownst to the attacker who still uses original speech
for enrollment and an ASV system trained on original
speech.

• Lazy-Informed: The speaker anonymizes his/her speech.
The attacker anonymizes the enrollment data using the
same anonymization system and the same design choices.
However, he/she is not aware of the random numbers
drawn by the speaker to obtain the random target gender
(Section III-C) or the candidate x-vectors (Section III-B).
Hence, different pseudo-speakers are assigned to the trial
and enrollment utterances of a given speaker.7

• Semi-Informed The speaker anonymizes his/her speech.
The attacker anonymizes the enrollment data using the
same system and design choices. In addition, he/she
anonymizes the training dataset for the ASV system and
re-trains it. This scenario is the one in which the speaker
is most “vulnerable” despite anonymization, hence we
consider it as the most trustworthy assessment of privacy.8

In Section V, privacy is assessed in terms of the linkability
[40], [41], denoted as Dsys

↔ , achieved by an x-vector-PLDA
ASV system trained on the train-clean-360 subset of Lib-
riSpeech (anonymized in the Semi-Informed scenario, original

7The Ignorant and Lazy-Informed scenarios were called OA and AA in the
VoicePrivacy Challenge. The Lazy-Informed scenario was also called Semi-
Ignorant in [17].

8The Informed scenario in [16] where the attacker is aware of the random
numbers drawn by the speaker is not part of our study, since it falls into a
security problem rather than just a privacy problem.

otherwise). This metric computes the overlap between the
distributions of PLDA scores of same-speaker and different-
speaker trials. It behaves similarly to the equal error rate
(EER) and log-likelihood ratio cost function [42] used in the
VoicePrivacy Challenge, but it does not rely on any restrictive
assumption (e.g., threshold-based decision) which makes it a
more trustworthy metric [41]. For the sake of reproducibility,
we use the same set of trials as in [6].9 Linkability varies
from 0 to 1, where lower values indicate higher privacy. The
95% confidence interval on the linkability computed via the
jackknife method [43] varies from ±0.0001 to ±0.0002.

Formally, the local linkability metric D↔(θ) for two ran-
dom utterances i and j with a score θ = dcos(ωi, ωj) or
θ = −dPLDA(ωi, ωj) is defined as p(Hs | θ)−p(Hd | θ). When
the local metric is negative, an attacker can deduce with some
confidence that the two utterances are from different speakers.
The authors in [40] argued that the local metric should
estimate the strength of the link described by a score rather
than measure how much a score describes different-speaker
relationships. Therefore they proposed a clipped version of
the difference:

D↔(θ) = max(0, p(Hs | θ)− p(Hd | θ)). (3)

The global linkability metric Dsys
↔ is then defined as the mean

value of D↔(θ) over all same-speaker scores:

Dsys
↔ =

∫
p(θ | Hs) ·D↔(θ) dθ.

In practice, D↔(θ) is rewritten as (2·α·lr(θ))/(1+α·lr(θ))−1
where the likelihood ratio lr(θ) is p(θ | Hs)/p(θ | Hd) and the
prior probability ratio α is p(Hs)/p(Hd), and p(θ | Hs) and
p(θ | Hd) are computed via one-dimensional histograms.

In Section VI, we also evaluate the average rank of the true
speaker and the top-k precision achieved for closed-set ASI.
Instead of training speaker classification systems on subsets
of Common Voice, which would overfit the speakers therein,
we compute the PLDA scores between each trial utterance
and all enrollment utterances (one per speaker, including the
true speaker) using the same x-vector and PLDA models as in
Section V and sort them in decreasing order. The higher the
rank and the lower the top-k precision, the higher the privacy.

D. Utility evaluation

In Section V-A, we evaluate the utility for ASR decoding
in terms of the word error rate (WER) achieved by an ASR
system trained on the train-clean-360 subset of LibriSpeech
and applied to the anonymized utterances. In Sections V-B
and V-C, we evaluate the utility both for ASR decoding and
training in terms of the WER achieved by an ASR system
trained either on the original or the anonymized train-clean-
360 dataset and used to decode either original or anonymized
speech. For more details on the ASR system architecture, see
[6]. A lower WER indicates higher utility. The 95% confidence

9As classically assumed in the speaker verification literature, the two
speakers in each trial have the same original gender. In practice though, the
gender of the original speaker may be unknown to the attacker. Hence, the
resulting linkability values can be seen as worst-case values from the speaker’s
point of view and best-case values from the attacker’s point of view.
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interval on the WER varies from ±0.2% for the lowest WER
values to ±0.4% for the highest ones.

V. RESULTS AND DISCUSSION

The design choices introduced in Section III result in 54
possible combinations, among which 48 combinations corre-
spond to 2 distances × 4 non-random proximities × 3 gender
selections × 2 assignments, and 6 combinations correspond to
random proximity with 3 gender selections × 2 assignments.
To assess the impact of these choices, our experiments are
organized according to the three actors in our threat model.
First, the speaker finds the two most promising combinations
of design choices on the development set in terms of privacy
in the Ignorant and Lazy-Informed scenarios and utility for
ASR decoding. This is motivated by the high computational
cost of anonymizing the train-clean-360 subset of LibriSpeech
and retraining ASV and ASR systems on it, which prevents
the evaluation of privacy in the Semi-Informed scenario and
utility for ASR training for all 54 combinations. Second, the
user assesses the utility of these two combinations for both
ASR training and decoding. Third, the attacker quantifies the
resulting privacy in the Semi-Informed scenario, which leads
us to identify the best combination among these two. Finally,
we show how the proposed pitch transformation further im-
proves privacy.

A. Speaker’s perspective

We first evaluate the design choices from the speaker’s
perspective in terms of privacy in the Ignorant and Lazy-
Informed scenarios and utility for ASR decoding on the
development set. The results are displayed in the form of
swarm plots, i.e., scatter plots where each dot represents the
privacy or utility value associated with one combination of
design choices. In order to avoid overlapping dots with similar
values, the dots are spread horizontally.

1) Distance: Figure 4 evaluates the effect of the chosen dis-
tance metric on privacy. We observe that both cosine distance
and PLDA result in similarly low linkability in the Ignorant
case but PLDA marginally outperforms cosine distance (i.e.,
it results in a lower linkability) in the Lazy-Informed case.
Since both distance measures perform similarly in terms of
utility (see Fig. 9(a)), PLDA has an advantage. Therefore we
consider only PLDA as the distance metric in the following
experiments.

2) Proximity: Next, we assess the five choices of target
proximity described in Section III-B, namely random, near,
far, sparse and dense. The distance metric is fixed to PLDA
and the values of N and N∗ are fixed to 200 and 100,
respectively.10

We observe in Fig. 5 that, although selecting candidate
x-vectors far from the original speaker achieves the lowest
linkability in the Ignorant case together with the random
strategy, it is largely outperformed in the Lazy-Informed case
by selection from sparse or dense clusters and by the random
strategy. This shows that clustering based pseudo-speaker

10We noticed a sharp decline in utility for smaller values of N∗.
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Fig. 4. Privacy against Ignorant and Lazy-Informed attackers depending on
the distance choice. Each swarm plot shows the 24 linkability values on the
development set resulting from all combinations of 4 proximity (excluding
random), 3 gender selection, and 2 assignment choices.

mapping results in more robust anonymization as compared
to simple distance-based mapping.
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Fig. 5. Privacy against Ignorant and Lazy-Informed attackers depending on
the proximity choice. Distance is fixed to PLDA. Each swarm plot shows the
6 linkability values on the development set resulting from all combinations
of 3 gender selection and 2 assignment choices.

Compared to the sparse selection strategy, the dense strategy
provides comparable privacy protection in the Lazy-Informed
case, but much higher utility (see Fig. 9(b)). This can be
attributed to the fact that speakers in sparse clusters stand out
more from the crowd than those in dense clusters, therefore
they are more likely to suffer from poor ASR performance.

Finally, random target selection yields similar privacy pro-
tection in the Lazy-Informed case and slightly better utility as
compared to dense. Hence we consider the random and dense
strategies to be the best choices for proximity.

3) Gender selection: We now investigate the gender se-
lection strategy described in Section III-C. The distance is
fixed to PLDA and proximity to dense or random. As per the
results shown in Fig. 6 it is hard to find the best choice for
gender selection in terms of privacy since the linkability is not
consistently lower for any specific choice.

In order to make a suitable choice, we introduce the
additional requirement that the chosen anonymization scheme
obfuscates the original speaker’s gender. The different
anonymization schemes can be visually compared in Fig. 7.
Same gender selection (Fig. 7 (b)) causes male and female
clusters to move apart. A similar result is observed with
opposite gender selection (not shown in the figure). On the
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Fig. 6. Privacy against Ignorant and Lazy-Informed attackers depending on
the gender selection choice. Distance is fixed to PLDA and proximity to
dense or random. Each swarm plot shows the 4 linkability values on the
development set resulting from all combinations of the 2 proximity and 2
assignment choices.

contrary, random gender-selection (Fig. 7(c) and 7(d)) results
in a non-separable boundary between genders.

20 0 20

40

20

0

20

40
(a) Original

40 20 0 20 40
20

10

0

10

20
(b) Random (same)

50 25 0 25 50
20

10

0

10

20

(c) Random (random)

50 25 0 25
40

20

0

20

40

(d) Dense (random)

Male
Female

Fig. 7. t-SNE visualization of speaker-level x-vectors from the LibriSpeech
train-clean-360 dataset anonymized using different proximity (random or
dense) and gender selection (same or random, in parentheses) choices.
Gaussian pitch normalization (see Section V-D) was used in all three cases.

Furthermore, we conduct gender identification experiments
over the original and anonymized x-vectors shown in Fig. 7 to
measure the degree of gender obfuscation caused by same vs.
random gender selection. We employ the k-nearest neighbour
algorithm with 5-fold cross-validation to predict the gender
of speakers in the LibriSpeech train-clean-360 dataset which
contains 921 speakers. The mean cross-validation accuracy
for each dataset reported in Table II corroborates the visual
observations in Fig. 7.

4) Assignment: Finally the choice of pseudo-speaker as-
signment is examined from the speaker’s perspective as de-
scribed in Section III-D. The distance is fixed to PLDA,
proximity to dense and gender selection to random. The results

TABLE II
GENDER IDENTIFICATION ACCURACY OVER THE ORIGINAL AND

ANONYMIZED X-VECTORS IN FIG. 7.

Anonymization scheme Mean cross-validation accuracy (%)

Original 98.58
Random (same) 100.00
Random (random) 70.46
Dense (random) 53.31

reported in Fig. 8 show that utterance-level assignment results
in lower linkability than speaker-level assignment. However,
the WER resulting from utterance-level assignment is higher
than from speaker-level assignment (see Fig. 9(d)).
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Fig. 8. Privacy against Ignorant and Lazy-Informed attackers depending on the
assignment choice. Distance is fixed to PLDA, proximity to dense or random,
and gender selection to random. Each swarm plot shows the 2 linkability
values on the development set resulting from the 2 proximity choices.

In the following, in order to conform with the requirements
of the VoicePrivacy Challenge [22, Section 3.2], we choose
speaker-level assignment. This ensures that “all trial utterances
from a given speaker appear to be uttered by the same pseudo-
speaker”.

Based on these indications, the speaker may choose specific
parameters according to their application needs. For the sake of
further experimentation, we choose distance as PLDA, prox-
imity as random or dense, gender selection as random and
assignment as speaker-level to be the two best combinations
of design choices based on our observations.

B. User’s perspective

We now present complementary results from the user’s per-
spective. Recall that in our threat model the user exploits the
anonymized speech data for some downstream task. His/her
primary concern is hence the utility of the data for that task. So
far, we have only evaluated the utility for ASR decoding using
an ASR system trained on the original train-clean-360 dataset
(see Fig. 9). We now evaluate the utility for ASR decoding
using an ASR system trained on anonymized data, as well as
the utility for ASR training. To do so, we anonymize the train-
clean-360 dataset using either of the two best combinations of
design choices, and we retrain the ASR system on it.

Figure 10 shows the resulting utility values. The four bars in
each plot represent the four decoding scenarios: OO indicates
original (non-anonymized) speech decoded by the ASR model
trained on original speech, AO indicates anonymized speech
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Fig. 9. Utility of anonymized speech for ASR decoding compared to original
(Baseline) speech depending on the design choices made by the speaker. Each
swarm plot shows the WER values obtained on the development set using
an ASR system trained on the original train-clean-360 dataset. The design
choices in subfigures a, b, c, and d are fixed or vary in the same way as in
Figs. 4, 5, 6 and 8, respectively.

decoded by the ASR model trained on original speech, OA
indicates original speech decoded by the ASR model retrained
on anonymized speech, and AA indicates anonymized speech
decoded by the ASR model retrained on anonymized speech.
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Fig. 10. Utility of original or anonymized speech for ASR training and ASR
decoding depending on the proximity choice (random or dense) made by
the speaker. Distance is fixed to PLDA, gender selection to random, and
assignment to speaker-level. See Section V-B for the definition of OO, AO,
OA, and AA.

We observe a WER degradation in the AO and OA scenar-
ios, which indicates a mismatch between training and test data.
The degradation is higher when original speech is decoded
using the retrained model (OA) than when anonymized speech
is decoded using the original model (AO). This asymmetry
suggests a “loss of generalization” of the ASR model trained
on anonymized speech, due to the unintentional exclusion of

certain factors of variability of original speech.
Fortunately, the WERs on the test set in the AA scenario

are almost as low as those in the OO scenario. This indicates
that anonymization yields viable speech data for ASR training
and ASR decoding with a WER similar to original speech,
provided that training and decoding are both conducted on
anonymized speech. No significant difference is observed
depending on the proximity choice made by the speaker.

C. Attacker’s perspective

Finally, we present complementary results from the at-
tacker’s perspective. The primary objective of the attacker is
to find the original speaker’s identity of anonymized speech
utterances, i.e., to achieve high linkability. So far, we have
only reported the linkability achieved by Ignorant and Lazy-
Informed attackers on the development set. We now present
the results achieved by these attackers and by a Semi-Informed
attacker on both the development and test sets.

The results for the two best combinations of design choices
are shown in Fig. 11. We observe that the linkability increases
as the strength of the attacker increases. It goes up to 0.44 with
random proximity, but stays below 0.22 with dense proximity,
even for the strongest (Semi-Informed) attacker. This indicates
the robustness of dense over random proximity. Therefore, we
ultimately recommend the following combination of choices
to the speaker: PLDA distance, dense proximity, random
gender selection, and speaker-level assignment. We recall that
the latter choice is a requirement set by the VoicePrivacy
challenge. Whenever speaker-level assignment is not required,
we recommend utterance-level assignment for higher privacy.
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Fig. 11. Privacy against Ignorant (Ign), Lazy-Informed (Lazy-I) and Semi-
Informed (Semi-I) attackers depending on the proximity choice (random or
dense) made by the speaker, compared to original speech (BL). Distance is
fixed to PLDA, gender selection to random, and assignment to speaker-level.

D. Pitch conversion

Sticking with the best combination of design choices, we
bring one last improvement: we explore three pitch conversion
methods to further enhance privacy and increase the natu-
ralness of anonymized speech. Indeed, the pitch sequence p
might reveal some information about the speaker [44] which is
carried over to the synthesized speech. Also, keeping the pitch
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sequence p unchanged while possibly changing the gender of
the x-vector results in inconsistent features which affect the
naturalness of the synthesized speech.

The three conversion methods operate on nonzero pitch
values only. Indeed, zero pitch values correspond to unvoiced
or silent frames, and must remain equal to zero to preserve the
phonetic content of the utterance. Conversely, nonzero pitch
values must remain nonzero. In the rest of this section, the
term “pitch sequence” and the notation p refer to a sequence
stripped off its zero values.

The first method called logarithm Gaussian pitch conversion
[45] was recently employed in [46] for voice anonymization.
The target pitch sequence p∗ is obtained by linearly scaling
the original pitch sequence p in the logarithmic domain as

log(p∗) =
log(p)− µsrc

σsrc
σtgt + µtgt, (4)

where µsrc, σsrc are the mean and standard deviation of p,
and µtgt, σtgt are the mean and standard deviation of the
target pseudo-speaker’s pitch “sequence” pps. The latter is
obtained by concatenating the pitch sequences of all utterances
of the N∗ candidate speakers composing the pseudo-speaker;
it is stored by the x-vector anonymization module (Step 2 in
Fig. 2) and passed to the pitch conversion module (Step 3 ).

In addition, we propose two other methods, which we
call percentile and minmax based pitch conversion. Percentile
based pitch conversion maps each percentile of the original
pitch distribution to the corresponding percentile of the target
pitch distribution. To do so, the sequences p and pps are sorted
in ascending order, yielding psorted and psorted

ps . Each value p[i]
in the original sequence is converted into a percentile %[i]:

%[i] =
rank of p[i] in psorted

length(psorted)
× 100. (5)

Then, the converted pitch value p∗[i] corresponding to %[i] is
picked in psorted

ps as

p∗[i] = psorted
ps

[⌊
length(psorted

ps )× %[i]
100

⌋]
(6)

where b·c denotes rounding down to the nearest integer. This
mapping is an instance of one-dimensional optimal transport
between the two distributions [47]. To the best of our knowl-
edge, this pitch conversion method is new.

Minmax based pitch conversion linearly scales the range
of pitch values, such that the minimum and maximum values
in the original sequences are mapped to the minimum and
maximum values of the target pseudo-speaker:

p∗[i] =

[
(p[i]−min(p))×

max(pps)−min(pps)

max(p)−min(p)

]
+min(pps).

(7)

One benefit of percentile or minmax based conversion is that
the converted pitch values belong to the range of pitch values
for the N∗ candidate speakers composing the pseudo-speaker,
while in case of Gaussian normalization some converted pitch
values may be beyond that range or even beyond the range of
valid pitch values for male or female speakers.

It is observed in Fig. 12(a) that logarithm Gaussian pitch
conversion and to a lesser extent minmax based conversion sig-
nificantly increase the WER, while percentile based conversion
maintains a WER close to the original. Figure 12(b) shows
that percentile and minmax based conversion substantially
improve privacy, especially against the Semi-Informed attacker,
while logarithm Gaussian conversion results in a more modest
improvement or no improvement. We conclude that percentile
based conversion is a suitable pitch conversion method which
increases privacy with no significant loss of utility. According
to informal listening results (not show in the figure), it also
improves the naturalness of cross-gender voice conversion.

Overall, the experiments in Section V exhibited the benefits
of the proposed improvements to x-vector based voice conver-
sion in terms of privacy against the strongest (Semi-Informed)
attacker. Specifically, x-vector based voice conversion with the
best combination of design choices and with percentile based
pitch conversion reduces the attacker’s linkability by one order
of magnitude with respect to original speech. This is to be
contrasted with signal processing based methods such as [48]
which offer almost no protection against such a strong attacker.
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Fig. 12. Utility and privacy resulting from logarithm Gaussian (gauss),
percentile or minmax based pitch conversion on top of x-vector anonymiza-
tion, compared to original pitch (no-conv). Top: utility for ASR decoding
with an ASR model trained on original (A-O) or anonymized (A-A) speech,
compared to original speech (BL). Bottom: privacy against Ignorant (Ign),
Lazy-Informed (Lazy-I) and Semi-Informed (Semi-I) attackers.
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VI. LARGE-SCALE SPEAKER STUDY

Similarly to other studies following the VoicePrivacy Chal-
lenge setup, all experiments above have relied on a small set of
29 enrolled speakers. In this section we analyze the attacker’s
performance against a larger number of enrolled speakers. This
number reflects the attacker’s knowledge: a smaller number
means that the attacker was able to narrow down the list
of speakers who may have uttered the trial utterances using
contextual information.11 Our goal is to study whether the
speaker’s identity gets hidden in the crowd or is still revealed
to some extent within a large set of enrolled speakers.

Previous research has studied the impact of the number of
speakers from a voice spoofing perspective where an attacker
aims to be accepted through an ASV authentication system by
finding the closest (trial) impostor to a given (enrolled) target
speaker [49], [50]. The attacker has access to a speech sample
of the target speaker and to the ASV scoring mechanism. The
authors showed that the chances of acceptance reach up to 50%
as the number of impostors approaches 105. A similar problem
was posed by the Multi-Target Speaker Detection Challenge
[51] which aims to identify and assess the membership of a
speaker to a set of blacklisted speakers. The authors showed
that the performance for both tasks degrades as the number
of speakers in the blacklist increases. In the following, we do
not assess the worst-case performance like [50]. Instead, we
measure the overall speaker recognition performance as the
number of different-speaker trials increases manifold.

A. Experimental setup

We use the Mozilla Common Voice English corpus because
of its large number of speakers. To the best of our knowledge
this is the first time this corpus is used for ASV and privacy
related experiments.

As mentioned in Section IV-A, we consider a total popula-
tion of 24,610 male speakers. Out of these, utterances from 20
speakers are selected as the public trial data subjected to re-
identification attack. After computing PLDA scores between
the trial and enrollment utterances, we get 4,696 same-speaker
scores and 115,563,864 different-speaker scores (see Table I).

We measure the attacker’s performance against an increas-
ing number of enrolled speakers. In the first step, we select
for enrollement the same 20 speakers as for trial, and we use
the corresponding same- and different-speaker scores. In the
second step, we add 20 other speakers for enrollement and
we include the corresponding different-speaker scores. In the
following steps, we double the number of other speakers at
each step, i.e., the total number of enrolled speakers increases
from 20 to 20,500. The added speakers are randomly sampled
5 times from the entire speaker population to avoid any bias.

B. Open-set results

Figure 13 reports the performance of different attackers in
terms of linkability. The linkability of original speech is equal

11The attacker may obtain this contextual information by inspecting the
metadata and/or the statistics of the public, anonymized dataset, or by simply
listening to individual utterances.

to 0.80 with 20 speakers and decreases to 0.70 with more than
a few hundred speakers. The linkability of anonymized speech
is much lower. For Ignorant and Lazy-Informed attackers, it
starts from 0.18 and decreases to 0.06. The linkability curve
for the Semi-Informed attacker is surprisingly below those of
the two other attackers, but it also follows a decreasing trend.

102 103 104

Number of enrollment speakers

0.2

0.4

0.6

0.8

Lin
ka

bi
lit

y 
D

sy
s

Baseline
Ignorant
Lazy-Informed
Semi-Informed

Fig. 13. Open-set ASV performance of Ignorant, Lazy-Informed and Semi-
Informed attackers as a function of the number of enrolled speakers, compared
to original speech (Baseline).

C. Closed-set results

The above evaluation in terms of linkability, which assumes
that the attackers rely on open-set ASV, hides the fact that the
chance of finding the true speaker of a trial utterance decreases
very quickly as the number of enrolled speakers increases. To
highlight it, we perform closed-set ASI as explained in Sec-
tion IV-C and report the rank of the true speaker. The higher
the rank, the lower the ASI performance. Since increasing the
number of speakers is expected to increase the rank, we also
report the normalized rank, that is the rank divided by the
number of speakers, and the chance-level rank, that is the
expected rank when the attacker selects the true speaker at
random (see Appendix A).

Figure 14(a) shows that the rank of the true speaker in-
creases almost linearly as a function of the number of speakers.
On original speech, it remains much lower than chance-level
even with thousands of speakers, which can be attributed to
the distinct characteristics of speakers in the population. On
anonymized speech, it converges close to the chance-level
rank for all attackers. The normalized rank plot in Fig. 14(b)
shows that, beyond a few hundred speakers, the Ignorant and
Lazy-Informed attackers perform more poorly than chance-
level, while the Semi-Informed attacker maintains a consistent
performance that is slightly better than chance-level.

In addition, we study the top-k precision obtained by the at-
tackers compared to the baseline performance for k ∈ {1, 20}.
We observe in Fig. 15 that the precision drops much faster
on anonymized data than original data, i.e., finding the true
speaker of an anonymized utterance among a set of S speakers
is equivalent to finding the true speaker of an original utterance
among S′ speakers, where S′ increases at a much faster rate
than S. The plot for k = 1 shows that without anonymization
the true speaker can be uniquely identified with 40% accuracy
among 20,500 speakers, while after anonymization the risk
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Fig. 14. Closed-set ASI performance of Ignorant, Lazy-Informed and Semi-
Informed attackers as a function of the number of speakers, compared to
original speech (Baseline).

of being uniquely identified becomes negligible beyond a
few dozen speakers. For k = 20, our anonymization scheme
provides the same level of protection against a Semi-Informed
attacker among 52 speakers than raw speech among 20,500
speakers. Additional results for k ∈ {10, 50} (not shown here)
follow a similar trend.

VII. CONCLUSION

Our work aimed to answer three questions from the
speaker’s and user’s perspectives, and two questions from the
attacker’s perspective to realistically assess the privacy and
utility of x-vector based speaker anonymization (see Section I).

To answer Q1, we introduced four design choices and
studied their effect on the privacy of anonymized speech
and its utility for ASR training and decoding. Based on our
findings, we recommended the following optimal combination
of choices: PLDA distance, dense proximity, random gender
selection, and utterance-level assignment (unless otherwise
required). To answer Q3, we then investigated three pitch con-
version methods for removing the residual speaker information
carried by the pitch sequence and to enhance the naturalness
of the synthesized speech. While classical logarithm Gaussian
conversion resulted in little or no improvement of privacy,
the proposed percentile based conversion method significantly
improved privacy with little loss of utility. Overall, x-vector
based voice conversion with the best combination of design
choices and with percentile based pitch conversion reduced
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Fig. 15. Top-k ASI precision of Ignorant, Lazy-Informed and Semi-Informed
attackers as a function of the number of speakers, compared to original speech
(Baseline). The numbers of speakers needed to achieve an equivalent drop in
precision before vs. after anonymization are highlighted.

the linkability against the strongest (Semi-Informed) attacker
by one order of magnitude with respect to original speech
(answering Q4), and it increased the WER on LibriSpeech
test-clean from 4.1% to 4.8% only in the situation when
ASR training and decoding are both conducted on anonymized
speech (answering Q2).

To answer Q5, we further evaluated the proposed
anonymization scheme as a function of the number of en-
rolled speakers, which reflects the attacker’s ability to narrow
down the list of speakers who may have uttered the trial
utterances using contextual information. We conducted closed-
set ASI by incrementally adding thousands of speakers in the
population and observed that the rank of the true speaker
quickly increases and converges close to chance-level after
anonymization. Another interesting observation can be made
by looking at top-k precision curves: the loss of precision
before anonymization that is seen after adding thousands of
speakers in the enrollment set is equivalent to adding only
a couple of speakers after anonymization. Specifically, the
best combination of design choices offers the same level of
protection against re-identification attacks among 52 speakers
as original speech among 20,500 speakers.

In the future, we plan to study the worst-case performance of
the proposed speaker anonymization scheme and characterize
which speakers are easier to re-identify. We also plan to pro-
vide analytical lower bounds on privacy by using techniques
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inspired from differential privacy [52].

APPENDIX A
DERIVATION OF THE CHANCE-LEVEL RANK

Let R ∈ {1, . . . , Nspk} be the set of all possible ranks for
a given speaker that can be obtained with probability P (R).
The expected rank is equal to:

E(R) =
Nspk∑
R=1

R · P (R). (8)

To obtain the chance-level rank, we set P (R) = 1
Nspk

. Hence

E(R) =
1

Nspk

Nspk∑
R=1

R =
1

Nspk

Nspk(Nspk + 1)

2
=
Nspk + 1

2
.

(9)
When the rank is normalized, we divide the chance-level rank
by Nspk to obtain the normalized chance-level rank

Nspk + 1

2Nspk
≈ 0.5. (10)
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