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Abstract

We study a group-formation game on an undirected complete graph G with all edge-weights
in a set W ⊆ R ∪ {−∞}. This work is motivated by a recent information-sharing model for
social networks (Kleinberg and Ligett, GEB, 2013). Specifically, we consider partitions of the
vertex-set of G into groups. The individual utility of any vertex v is the sum of the weights on
the edges uv between v and the other vertices u in her group. – Informally, u and v represent
social users, and the weight of uv quantifies the extent to which u and v (dis)agree on some fixed
topic. – For a fixed integer k ≥ 1, a k-stable partition is a partition in which no coalition of at
most k vertices would increase their respective utilities by leaving their groups to join or create
another common group. Before our work, it was known that such a partition always exists if
k = 1 (Burani and Zwicker, Math. Soc. Sci., 2003). We focus on the regime k ≥ 2.

• Our first result is that when all the social users are either friends, enemies or indifferent to
each other (i.e., W = {−∞, 0, 1}), a partition as above always exists if k ≤ 2, but it may
not exist if k ≥ 3. This is in sharp contrast with (Kleinberg and Ligett, GEB, 2013) who
proved that k-stable partitions always exist, for any k, if W = {−∞, 1}.

• We further study the intriguing relationship between the existence of k-stable partitions
and the allowed set of edge-weights W. Specifically, we give sufficient conditions for the
existence or the non existence of such partitions based on tools from Graph Theory. Doing
so, we obtain for most sets W the largest k(W) such that all graphs with edge-weights in
W admit a k(W)-stable partition.

• From the computational point of view, we prove that for any W containing −∞, the
problem of deciding whether a k-stable partition exists is NP-complete for any k > k(W).

Our work hints that the emergence of stable communities in a social network requires a trade-off
between the level of collusion between social users, and the diversity of their opinions.

1 Introduction
In the line of [KL13, BCDM19, Duc16a], we continue the study of a simplified model of group
formation within Online Social Networks (OSNs). The combinatorics behind this model is surprisingly
intricate, and, we think, interesting to study on its own. As a starter, let us sketch the motivations
behind the original model of Kleinberg and Ligett, from [KL13]. Users’ behaviour in OSNs is driven
by two conflicting objectives, namely: sharing with the other users while enforcing privacy of their
personal information. Information is commonly shared between users within a same social group,
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also known as a community. However, communities are dynamic. As a user leaves one community
for another, she may reveal the information learnt from her previous community to the new one,
which results in privacy leakage. The model from [KL13] helps for understanding how strategic
users can best choose their community in this context. We study the existence of stable outcomes
in this model.

Specifically, a generalized coloring game is played on an edge-weighted graph G = (V, E, w),
with each vertex being an agent. Throughout this paper, the set of edge-weights is denoted by W
(i.e., W = w(E)). We partition agents into groups. Then, the individual goal of each agent is to
maximize the sum of the weights of the edges between herself and the other agents in her group. –
Alternatively, we may see a partition as a graph coloring, and each group as a color class, hence the
name of generalized “coloring game”. – We refer to Figure 1 for an illustration (see also Section 2
for a formal definition of the game, and for any undefined terminology). Our main focus is on
the existence, and the computation, of k-stable partitions for generalized coloring games. Roughly,
these are partitions such that no k-subset of agents have an incentive to deviate from their current
strategy, i.e., from leaving their respective groups to join another (possibly, new) one. See Figure 3
for an illustration. Note that 1-stable partitions are exactly the Nash equilibria of the game. On
a social network point of view, stable partitions ensure that no small coalition of users have an
incentive to leave their current community for another one, thus preventing information leakage
from a community to another.

Related work. Kleinberg and Ligett studied a uniform version of the game: where G must be
a complete graph, and all edge-weights must be taken in W = {−∞, 1} (the latter representing
enmity and friendship between two users, respectively) [KL13]. Amongst many results, they proved
that a k-stable partition always exists, for any k, but that it is NP-hard to compute one if k is part
of the input. In two follow-up papers [BCDM19, Duc16b], we further studied the complexity of
computing k-stable partitions, for small values of k, using parallel algorithms or better-response
dynamics. In particular, better-response dynamics do not converge in polynomial time for any fixed
k ≥ 4 [BCDM19]. On the way, we uncovered an equivalence between the model of Kleinberg and
Ligett and the earlier introduced coloring games [PS08, CKPS10, MW13, EGM12]. Angel et al.
studied the sequential (non game-theoretic) complexity of a more general model where, informally
speaking, there are different categories of information considered [ABK+16]. We here propose a
deeper study of the original model of Kleinberg and Ligett for arbitrary edge-weight sets W.

The generalized coloring games that we study are equivalent to the so called additively separable
symmetric Hedonic games [FMZ17]. We note that there have been several subclasses of Hedonic
games proposed in the literature as a solution concept for group formation dynamics [DBHS06,
BZ03, Bal04, SD10, HJ17, FMZ17, OBI+17]. Additively separable symmetric Hedonic games are
quite appealing in this context, as they always admit a Nash equilibrium [BZ03]. Equivalently
with our terminology, every generalized coloring game admits a 1-stable partition. We focus in this
paper on the existence of k-stable partitions, for k ≥ 2. The particular case k = 2 can be seen as a
variation of the well-known concept of pairwise stability [JW96], while larger values of k correspond
to larger subsets of people coordinating their actions.

Finally, as noted by Kleinberg and Ligett, their model is also distantly related to the well-known
stable marriage problem [GS62]. Recall that there always exists a solution for the stable marriage
problem, which can be computed in polynomial time. In contrast, even for slight variations of this
original problem (e.g., stable roommates), solutions may not always exist, and this is sometimes
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NP-complete to decide [MS17, CNS18, Ron90]. This brings us with two close questions, namely:
can we find generalized coloring games for which no k-stable partition exists? and if so, what is the
complexity to decide whether, given a generalized coloring game, there exists a k-stable partition?
In what follows, we almost completely answer these two questions.

Our contributions. We give the first known relationships between the existence of k-stable
partitions and the properties of G and its subgraphs. For instance, we prove that a k-stable partition
always exists if k is less than the girth in the “friendship” subgraph G+ that is induced by all edges
with positive weights (Theorem 1). Doing so, we establish several positive and negative results on
the existence of k-stable partitions:

• In Section 3, we study the case of a graph G with all edge-weights in W = {−∞, 0, 1}. We
prove that, while a modest generalization of the uniform version of the game Kleinberg and
Ligett studied in [KL13], the situation is quite different from the latter, as k-stable partitions
may not always exist! Specifically, we prove on the positive side that a 2-stable partition always
exists (Corollary 1). However, on the negative side, we found a surprising counter-example
with only four null-weight edges for which no 3-stable partition can exist (Theorem 2). The
latter result shows that the existence of neutral relationships between users can strongly
impact the outcome of the game1. It also makes of pairwise stability (a.k.a., 2-stable partition)
the best stability result that one can hope for.

• Our counter-example for k = 3 and W = {−∞, 0, 1} is derived from a larger class of very
symmetric instances, all of which do not admit a k-stable partition for some small value of
k (typically, k = 2). We use this larger class of counter-examples in order to obtain, for
almost any possible edge-weight set W, the largest value k(W) such that any graph G with
edge-weights in W admits a k(W)-stable partition (Table 1). We see our result as evidence of
the tension between the collusion level between users (parameter k) and the diversity of their
opinions (edge-weight set W) in the existence of stable outcomes.

• We end up studying in Section 4.2 the complexity of the recognition of generalized coloring
games with a k-stable partition. Our main result in this part is an amusing dichotomy result
that we obtain for every edge-weight set W ⊃ {−∞}. Specifically, for the graphs G with all
edge-weights in W, the problem of deciding whether G has a k-stable partition is: trivial if
k ≤ k(W), and NP-complete if k > k(W). We stress that any known G0 with no k-stable
partition can be used as a black-box in our hardness reduction. Therefore, the mere existence of
any single counter-example to k-stability is sufficient in order to make the problem intractable.

2 Definitions
Preliminaries. The following notations and terminology are from [Duc16b]. For standard termi-
nology of Game Theory, see [OR94, Mye13]. For standard terminology of Graph Theory, see [BM08].
Let G = (V, E, w) be an edge-weighted graph with w : E → R∪ {−∞} be its weight function. Here,
the symbol −∞ represents an arbitrarily small quantity which stays unaffected when added to
any other quantity. Up to replacing the nonedges by null-weight edges, for the remainder of the

1See also [OBI+17], where similar results are proved for another Hedonic game (that is related to the one we study
in this paper), but for a stronger notion of (core) stability.
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paper, we assume the graph G to be a clique. In particular, we may omit the edge-set E and write
G = (V, w). Let W =def w(E) be the set of all edge-weights.

Partitions and Utilities. A coloring c : V → {1, 2, . . . , |V |} of G is a partition of its vertex-set
with each class (or group) being assigned a distinct integer. For every vertex v ∈ V we denote
by c(v) the integer corresponding to her group, also known as her color. Then, in the generalized
coloring game that is played on G, the vertices of G are the agents of the game, and the strategy of
an agent is her color. The group of all the vertices of color i is denoted by X

(c)
i , or Xi if c is clear

from the context. For every v ∈ V , the utility of v is defined as fc(v) =
∑

u∈Xc(v)

wuv (by convention,

we assume that wvv = 0). Every agent aims at maximizing her utility function. We define the global
utility of a coloring as U(c) =

∑
v∈V fc(v).

Deviations, Stability. We call a subset S ⊆ V , with |S| ≤ k, a k-deviation w.r.t. c, if it satisfies
the following property: there exists some color i ∈ N so that, for every v ∈ S, we have c(v) ̸= i and:

fc(v) <
∑

u∈Xi∪S

wuv.

We call a coloring c a k-stable partition if there is no k-deviation w.r.t. c. In particular, note that
k-stability implies j-stability for every j ∈ {1, 2, . . . , k}. We further have an equivalence between
|V |-stability and k-stability for every k ≥ |V |. The following better-response dynamics (see also
Algorithm 1) are a classical approach in order to compute stable partitions. Specifically, we start
from a trivial configuration where each agent has a different color. Then, as long as there exists a
k-deviation, we pick any existing k-deviation S and we assign a same color i to all the agents in S
so that they increase their respective utilities. Let us point out that i can be either a new color (we
make of S a new group) or a color already assigned to some other agents not in S (i.e., we add the
agents in S to an existing group). Furthermore, if this above dynamics converges then it stops on a
k-stable partition.

Better-Response Dynamics (Algorithm 1)

Input: a positive integer k ≥ 1, and a graph G = (V, w).

1: Let c0 be s.t. all the vertices of V have a different color.
2: Set i = 0.
3: while there exists a k-deviation w.r.t. ci do
4: Choose one k-deviation S and let j be s.t. ∀v ∈ S, fci(v) <

∑
u∈X

(ci)
j ∪S

wuv.

5: Define ci+1 as the coloring s.t.:

ci+1(v) =
{

j if v ∈ S

ci(v) otherwise.

6: Set i = i + 1.
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Friendship and conflict graphs. For any set of weights W ′, the subgraph G⟨W ′⟩ is the one
induced by all the edges of G whose weight is in W ′. In particular:

• The set W+ contains all positive weights, and it induces the friendship graph G+ := G⟨W+⟩.

• Similarly, the set W− contains all negative weights, and it induces the conflict graph G− :=
G⟨W−⟩. In particular, if W− = {−∞} (that was the case in [KL13]), then any stable partition
must be a proper coloring of G−.

As an example, in Figure 1, the friendship graph is a disjoint union of two triangles 2K3, and the
conflict graph is a complete bipartite graph K3,3.
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Figure 1: A bicoloring of a graph G = (V, w). Agents that are represented by a circle (resp., by a
square) have the same color. Red dashed edges have negative weight −∞, while green continuous
edges are labeled with their (positive) weight. Furthermore, each agent is labeled with her (positive)
utility with respect to this bicoloring.

3 Games with a unique positive weight

3.1 Positive results

We relate some structural properties of the underlying graph G with the existence of stable partitions.
In particular, we relate the existence of stable partitions with the girth (size of a smallest cycle) in
the friendship graph. Throughout the paper, the notation −N stands for the set of negative integers.

Theorem 1. Let G = (V, w) has all its edge-weights in {−∞, 0, 1} ∪ −N. If G+ has girth at least
k + 1, then there exists a k-stable partition for the generalized coloring game that is played on G.
Furthermore, better-response dynamics converge in O(|V |2) steps to a k-stable partition.

Before proving Theorem 1, we need to introduce a (very generic) potential function argument:

Lemma 1. Let c be a coloring of G = (V, w), let S be a k-deviation w.r.t. c, and let i be a color
such that, for every v ∈ S, we have fc(v) <

∑
u∈Xi∪S

wuv. If c′ is the coloring obtained from c by

assigning color i to all the vertices in S, then we have:

U(c′) − U(c) ≥ 2 ·

 |S| −
∑

v,v′∈S

wvv′ +
∑

v,v′∈S|c(v)=c(v′)
wvv′

 .
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Proof. By the hypothesis, the utility of each vertex in S increases by at least 1. So, we get as the
variation of the utility for the whole k-set:

∑
v∈S [ fc′(v) − fc(v) ] ≥ |S|. For every v ∈ S, we then

define δv =
∑

u/∈S|c(u)=c(v) wuv and σv =
∑

u∈S|c(u)=c(v) wuv. We define δ′
v =

∑
u/∈S|c(u)=i wuv and

σ′
v =

∑
u∈S wuv in a similar fashion. Then, fc(v) = δv + σv, while fc′(v) = δ′

v + σ′
v. So, we get by

summation that: ∑
v∈S

fc(v) =
∑
v∈S

δv + 2 ·
∑

v,v′∈S|c(v)=c(v′)
wvv′ ,

∑
v∈S

fc′(v) =
∑
v∈S

δ′
v + 2 ·

∑
v,v′∈S

wvv′ .

Note that for any v, v′ ∈ S, we count wvv′ twice: once for v, and another time for v′. Furthermore,
the variation of the global utility includes that of the nodes of S, that of the nodes of X

(c)
i , plus

that of the nodes in X
(c)
c(v), ∀v ∈ S. In other words, we get by symmetry that:

U(c′) − U(c) =
∑
v∈S

[ fc′(v) − fc(v) ] +
∑
v∈S

[ δ′
v − δv ]

= 2 ·
∑
v∈S

[ fc′(v) − fc(v) ] + 2 ·
∑

v,v′∈S|c(v)=c(v′)
wvv′ − 2 ·

∑
v,v′∈S

wvv′

≥ 2|S| + 2 ·
∑

v,v′∈S|c(v)=c(v′)
wvv′ − 2 ·

∑
v,v′∈S

wvv′ .

We are now ready to prove the main result of this subsection:
Proof of Theorem 1. Let us consider any one phase of the better-response dynamics. That is, we
have a color c, a k-deviation S w.r.t. c, and a color i s.t. ∀v ∈ S, fc(v) <

∑
u∈Xi∪S wuv. Then,

during this phase, we assign color i to all the vertices in S, and in doing so we get a new coloring c′.
Let e = |E(G+[S])| be the number of edges in the friendship subgraph induced by S. Since the only
positive weight is 1, we get by Lemma 1:

U(c′) − U(c) ≥ 2 ·

|S| −
∑

v,v′∈S|c(v)̸=c(v′)
wvv′

 ≥ 2 · (|S| − e).

Furthermore, since the girth of G+ is at least k + 1, S induces a forest in G+, and so, e ≤ |S| − 1.
Hence, U(c′) − U(c) ≥ 2, and as a result the global utility increases at each step of the dynamics.
The latter concludes the proof, because the global utility is upper bounded by an O(|V |2).

In particular, since any friendship graph has girth at least three, we obtain the following corollary:
Corollary 1. Let G = (V, w) has all its edge-weights in {−∞, 0, 1} ∪ −N. Then, there exists a
2-stable partition for the generalized coloring game that is played on G. Furthermore, better-response
dynamics converge in O(|V |2) steps to a 2-stable partition.

We remark that Theorem 1 (and so, Corollary 1) still holds true if one replaces 1 by any positive
integer a. However, it is unclear to us whether Theorem 1 still holds true if one replaces −N by the
larger set of all negative real numbers. Indeed, it is no more true that each vertex in a k-deviation
increases her utility by at least 1 (we only have that each such vertex increases her utility by a
positive real value, that can be made arbitrarily small by including some suitable subset of negative
real edge-weights).
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3.2 A counter-example for k = 3
As we prove next, the result of Corollary 1 cannot be improved, already for W = {−∞, 0, 1}.

Theorem 2. There is a graph G = (V, w) whose edge-weights are in W = {−∞, 0, 1} and such that
there does not exist a 3-stable partition for the generalized coloring game that is played on G.

The proof of Theorem 2 relies on another structural result which we state as follows. Given an
edge-weighted graph G = (V, w), we say that u and u′ are quasi-twins if wuu′ > 0 and for all nodes
v ∈ V \ {u, u′}, wuv = wu′v except maybe for one v0 for which |wuv0 − wu′v0 | ≤ wuu′ .

Lemma 2. Let G = (V, w) be a graph, and let c be a 1-stable partition. Then, for all quasi-twin
vertices u, u′ in G, we have c(u) = c(u′).

Proof. Without loss of generality we have that for all vertices v ∈ V \ {u, u′}, wuv ≥ wu′v. In
particular, either wuv = wu′v for all v ∈ V \ {u, u′}, or there is a unique v0 such that 0 <
wuv0 −wu′v0 ≤ wuu′ and wuv = wu′v for all v ∈ V \{u, u′, v0}. Suppose by contradiction c(u) ̸= c(u′).
There are two cases to be considered.

• Case fc(u) > fc(u′). If u′ changes her color for c(u), then we get a new coloring c′ such that
fc′(u′) ≥ (fc(u) − wuu′) + wuu′=fc(u) > fc(u′).

• Case fc(u) ≤ fc(u′). If u changes her color for c(u′), then we get a new coloring c′ such that
fc′(u) ≥ fc(u′) + wuu′ > fc(u′) ≥ fc(u).

In both cases, there is a 1-deviation, that is contradiction, hence c(u) = c(u′).

Proof of Theorem 2. The set of vertices consists of four sets Ai, 0 ≤ i ≤ 3, each of equal size h ≥ 2
and each with a special vertex ai, plus four vertices bi, 0 ≤ i ≤ 3, and two vertices c0 and c1. In
what follows, indices are taken modulo 2 for cj , j ∈ {0, 1}, and they are taken modulo 4 everywhere
else. Figure 2 represents the example with h = 3. The friendship graph G+ here consists of all the
edges with weight 1; it contains:

1. all the edges between nodes in Ai (0 ≤ i ≤ 3);

2. edges between bi and Ai (0 ≤ i ≤ 3);

3. edges between bi and Ai+1 \ {ai+1} (0 ≤ i ≤ 3);

4. edges between bi and bi−1 and bi+1 (0 ≤ i ≤ 3);

5. edges between c0 and all the bi, and edges between c1 and all the bi;

6. edges between c0 and A0 ∪ A2, and edges between c1 and A1 ∪ A3.

Moreover, there are four edges with weight 0, namely the edges {bi, ai+1}. All the other pairs of
agents represent “enemies” (they are pairwise connected by an edge with negative weight −∞).
That is two nodes in different Ai, Ai′ are enemies; a user bi is enemy of bi+2 and of the nodes in
Ai+2 and Ai+3; c0 and c1 are enemies; c0 is enemy of the nodes in A1 and A3, and c1 is enemy of
the nodes in A0 and A2. We now assume by contradiction there exists a 3-stable partition c for the
generalized coloring game which is played on G = (V, w).
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A1

A2

A3

A0 a0

a1

a2

a3

b0

b1

b2

b3

c0c1

Figure 2: A graph G = (V, w) with edge-weights in W = {−∞, 0, 1}. The coloring game played on
G does not admit a 3-stable partition. To keep the graph readable, we use conventions. (1) Some
sets of nodes are grouped within a circle; an edge from another node to that circle denotes an edge
to all elements of this set. (2) Edges of the conflict graph are not represented. In particular, all
nodes that are not connected by an edge on the figure are connected by an edge with negative weight
−∞. (3) Green solid edges represent edges with weight 1, whereas blue dashed edges represent
edges with weight 0.

Claim 1. Every agent in Ai picks the same color.

Proof. Since the vertices of Ai are pairwise quasi-twins, this is a direct corollary of Lemma 2. �

Claim 2. bi picks the same color as the agents in Ai or the agents in Ai+1.

Proof. Suppose that it is not the case. Then Xc(bi) contains at most two other nodes: one of bi−1 and
bi+1 (together enemies), and one of c0 and c1 (enemies). In particular, |Xc(bi)| ≤ 3. If |Xc(bi)| ≤ 2 or
the group Xj containing Ai has size at least 3, then bi can increase her utility by choosing color j.
Therefore, since c is 1-stable, we assume from now on |Xc(bi)| = 3, h = 2 and Ai = Xj . There are
two cases.

• If c(bi) = c(ci) then, S = {bi, ci} is a 2-deviation. Indeed, both vertices can increase their
respective utilities by choosing color j.

• Else, c(bi) = c(ci−1). Recall that Xc(bi) ∩ {bi−1, bi+1} ≠ ∅. In particular, if bi−1 ∈ Xc(bi), then
S = {ci−1, bi−1} is a 2-deviation. Indeed, all the vertices of S can increase their respective
utilities by choosing the same color j′ as all the vertices of Ai−1. Similarly, if bi+1 ∈ Xc(bi),
then S = {ci−1, bi+1} is a 2-deviation. Indeed, all the vertices of S can increase their respective
utilities by choosing the same color j′ as all the vertices of Ai+1.

In both cases, we derive a contradiction, because c is 2-stable. �
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Claim 3. There is an i such that agents in Ai, bi and bi−1 pick the same color.

Proof. We show the claim by contradiction. For that, we distinguish two cases:

• Case 1: bi−1 is with Ai, but not bi. So, as the claim is supposed to be false, bi is with Ai+1,
bi+1 is with Ai+2, and bi+2 is with Ai+3. If c(bi−1) = c(ci), then bi would increase her utility
by choosing color c(bi−1). Else, c(bi−1) ̸= c(ci), but then S = {bi, ci} is a 2-deviation. Indeed,
both vertices can increase their respective utilities by choosing color c(bi−1).

• Case 2: bi is with Ai, but not bi−1. So, as the claim is supposed to be false, bi−1 is with Ai−1,
bi+1 is with Ai+1, and bi+2 is with Ai+2. We observe that either c(ci) = c(bi) or c(ci) = c(bi+2).
W.l.o.g., suppose c(ci) = c(bi+2). If c(bi+1) = c(ci+1), then bi would increase her utility by
choosing color c(bi+1). Else, c(bi+1) ̸= c(ci+1), but then S = {bi, ci+1} is a 2-deviation. Indeed,
both vertices would increase their respective utilities by choosing color c(bi+1).

In both cases, we derive a contradiction, because c is 2-stable. �

Let i be s.t. the agents in Ai, bi, bi−1, ci all pick the same color. Such an i exists by Claim 3,
and it is necessarily unique. By symmetry, we assume i = 0, and we now consider the group
Xc(a0) = {b0, b3, c0} ∪ A0. There are several cases to distinguish.

• Case 1: c(a2) = c(b1) = c(b2). In particular, by Claims 1 and 2, Xc(a2) = A2 ∪ {b1, b2}.
Then, there are two subcases. Suppose that c(a1) = c(c1), in which case we have Xc(c1) =
A1∪{c1}. In this situation, the agent b1 would increase her utility from 1+(|A2|−1) = |A2| = h
to 1+|A1| = h+1 by choosing the same color as a1 and c1. So, there is a 1-deviation. Otherwise,
c(a1) ̸= c(c1), and so, Xc(a1) = A1, while Xc(c1) is equal to either {c1} or A3 ∪ {c1}. But then,
the agents b1 and c1 would increase their respective utilities from 1 + (|A2| − 1) = |A2| = h and
≤ |A3| = h to 1 + |A1| = h + 1, by choosing the same color as a1. So, there is a 2-deviation.

• Case 2: c(a2) = c(b2) ̸= c(b1). In particular, by Claims 1 and 2, Xc(a2) = A2 ∪ {b2}, and Xc(b1)
is equal to either A1 ∪ {b1} or A1 ∪ {b1, c1}.
Then, there are two subcases. Suppose that c(a3) = c(c1), in which case we have Xc(c1) =
A3 ∪ {c1}. Then, if b2 and b3 pick the color of a3, they would increase their respective utilities
from |A2| = h and 2+(|A0|−1) = 1+|A0| = h+1 to, respectively, 2+(|A3|−1) = |A3|+1 = h+1
and 2 + |A3| = h + 2. Otherwise, c(a3) ̸= c(c1), in which case Xc(c1) is equal to either {c1} or
A1 ∪ {b1, c1}. But then, if the three of b2, b3, c1 pick the same color as a3, they would increase
their respective utilities from |A2| = h, 2+(|A0|−1) = 1+|A0| = h+1, and ≤ 1+|A1| = h+1
to, respectively, 2 + (|A3| − 1) = 1 + |A3| = h + 1, 2 + |A3| = h + 2, and 2 + |A3| = h + 2.

• Case 3: c(a2) = c(b1) ̸= c(b2). In particular, by Claim 2, Xc(a2) = A2 ∪ {b1}, and Xc(b2) is
equal to either A3 ∪ {b2} or A3 ∪ {b2, c1}. In that case, b1 would increase her utility from
|A2| − 1 = h − 1 to ≥|A1| = h by choosing the color of a1. Therefore, there is a 1-deviation.

• Case 4: c(a2) /∈ {c(b1), c(b2)}. In particular, c(a2), c(b1) and c(b2) are pairwise different, and
we have: Xc(a2) = A2; Xc(b1) is equal to either A1 ∪ {b1} or A1 ∪ {b1, c1}; Xc(b2) is equal to
either A3 ∪ {b2} or A3 ∪ {b2, c1}. We observe that in this case, c(b2) = c(a3).
Then, there are two subcases. Suppose that c(c1) = c(a3). In this situation, we have
Xc(a3) = A3∪{b2, c1}. But then, the agent b3 would increase her utility from 2+(|A0|−1) = h+1
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to 2+ |A3| = h+2 by choosing this color, so, there is a 1-deviation. Otherwise, c(c1) ̸= c(a3), in
which situation we have: Xc(c1) is equal to either {c1} or A1 ∪ {b1, c1}; and Xc(a3) = A3 ∪ {b2}.
But then, both b3 and c1 would increase their respective utilities from ≤ h + 1 to h + 2 by
choosing the color of a3.

Finally, since in all cases there is a 3-deviation, there does not exist a 3-stable partition for the
generalized coloring game that is played on G.

4 The general case

4.1 The threshold for stability

Let us define, for every fixed set W, k(W) to be the largest k such that, for every graph with
edge-weights in W , there exists a k-stable partition. We prove sharp bounds on k(W) for almost all
sets W (see Table 1). Note that the two first lines of Table 1 were only proved for a = 1. However,
it follows from the definition of k-stability that scaling all edge-weights by some positive value a has
no impact on the (non)existence of a k-stable partition. As for the third line of Table 1, see our
brief discussion at the end of Sec. 3.1. The constructions of our counter-examples are presented
next. Remarkably, our results show that, along with the trivial cases where all the weights are
either non negative or non positive, the uniform version of the game Kleinberg and Ligett studied
in [KL13] is the only set W s.t. we have k(W) = ∞.

W k(W)
{−∞, a}, a > 0 ∞ [KL13]

{−∞, 0, a}, a > 0 2 Theorem 2, Corollary 1
{−∞, 0, a} ∪ −N, a ∈ N \ {0} 2 Theorem 2, Corollary 1

{−∞, a, b}, b > a > 0 1 Lemma 3
{−a, b}, a > 0, b > 0 ≤ 2 · ⌈a+1

b ⌉ + 1 Lemma 4

Table 1: Values of k(W) for different W.

Starters. Consider the graph G of Figure 3. There are three non negative weights, namely:

• The edges v1v2, v2v3, v3v1 have the same weight w1 (on the Figure, w1 = 2);

• The edges v1u3, v2u1, v3u2 have the same weight w2 (on the Figure, w2 = 3);

• The edges v1u2, v2u3, v3u1 have the same weight w3 (on the Figure, w3 = 4).

All the other edges have weight −∞. Moreover, if w1 < w2 < w3 and w1 + w2 > w3, then
we claim that there does not exist a 2-stable partition. Indeed, the partition with groups
{v1, v2, v3}, {u1}, {u2}, {u3} is 1-stable but not 2-stable. All the other 1-stable partitions for the
generalized coloring game that is played on G are isomorphic to the one we drew in Figure 3.
Therefore, none of them is 2-stable. Next, we generalize this construction.

Lemma 3. Let a, b be two positive integers such that a < b. There exists a graph G = (V, w) s.t.
all the edge-weights are in W = {−∞, a, b}, and there does not exist a 2-stable partition.
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Figure 3: A coloring game that does not admit a 2-stable partition: edges in green have the positive
weight indicated, whereas the red edges have negative weight −∞. The partition on the right is
not 2-stable. As an example, nodes v1 and v2 can decide to simultaneously move into the group
containing u3, which effectively “rotates” the groups in the partition.

Proof. Users are partitioned into four sets U1 = {x1, x2, x3}, U2 = {y1, y2, y3}, U3 = {z1, z2, z3} and
{v1, v2, v3}. Each of these sets induces a triangle whose three edges are weighted b. In addition:

• each edge between a node in Ui and another node in Ui′ , i ̸= i′ has negative weight −∞.

• the edges between v1 and U2 are weighted b, whereas the edges between v1 and U1 have
negative weight −∞. Similarly, the edges between v2 and U3 (resp., between v3 and U1) are
weighted b, whereas the edges between v2 and U2 (resp., between v3 and U3) have negative
weight −∞.

• Finally, we set:

• wv1z1 = wv1z2 = b, wv1z3 = a;
• wv2x1 = wv2x2 = b, wv2x3 = a;
• wv3y1 = wv3y2 = b, wv3y3 = a.

Let us assume by contradiction that there exists a 2-stable partition c.

Claim 4. For any 1 ≤ i ≤ 3, the nodes in Ui pick the same color.

Proof. By symmetry, it suffices to show the claim for U1. First, since the nodes x1, x2 are quasi-twins,
they pick the same color by Lemma 2. Furthermore, by construction all the edges between a node
of Xc(x1) and x3 have a positive weight (i.e., because the nodes of U1 are twins in the conflict
graph G−). Suppose for the sake of contradiction x3 /∈ Xc(x1). Then, the utility of x3 is at most
wv2x3 + wv1x3 = a + b < 2b. However, this implies that by choosing color c(x1), the node x3 would
increase her utility to at least 2b. �

By replacing each subset Ui by a single node ui, we get the counter-example of Figure 3 for the
choices of weights w1 = b, w2 = 2b + a and w3 = 3b. In particular, by Claim 4, we may associate to
any 1-stable partition c of G a partition c′ of the graph of Figure 3. Suppose by contradiction that
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c′ is not 1-stable. We can check that there always exists a 1-deviation whose node is taken from
{v1, v2, v3}. Therefore, c is not a 1-stable partition of G, that is a contradiction. From now on, we
assume that c′ is 1-stable. However, in any 1-stable partition c′, there exists a 2-deviation which
only contains nodes amongst {v1, v2, v3}. In particular, this is also a 2-deviation w.r.t. c.

Lemma 4. Let a, b be positive integers (not necessarily distinct). There exists a graph G = (V, w)
s.t. all the edge-weights are in W = {−a, b}, and there does not exist a 2 ·

(
1 + ⌈a+1

b ⌉
)
-stable

partition.

Proof. Let x, y be non negative integers such that bx − ay = gcd{a, b} = d. The vertex-set is
partitioned in nine subsets V1, V2, V3, U+

1 , U+
2 , U+

3 , U−
1 , U−

2 , U−
3 plus three vertices u=

1 , u=
2 , u=

3 . In
particular, there exist large enough constants k1, k2, k3 s.t.:

• The subsets Vi have respective size 1 + ⌈a+1
b ⌉;

• The subsets U+
i have respective size

⌈
1+b·(1+⌈ a+1

b ⌉)
d

⌉
· x + ki · a.

• The subsets U−
i have respective size

⌈
1+b·(1+⌈ a+1

b ⌉)
d

⌉
· y + ki · b − 1.

The edge-set is as follows:

• V1 ∪ V2 ∪ V3 induces a clique in the friendship graph G+ (i.e., all the edges between these
vertices are weighted b).

• The subsets Ui = U+
i ∪ U−

i ∪ {u=
i } induce cliques in the friendship graph G+.

• For every i ̸= j, the edges between Vi and U+
j have weight b (i.e., they induce a complete

bipartite subgraph in G+).

• Finally, all the edges between u=
1 and V3 have weight b, and in the same way all the edges

between u=
2 and V1 (resp., between u=

3 and V2) have weight b.

Every remaining edge has weight −a.

Suppose by contradiction that there exists a 2
(
1 + ⌈a+1

b ⌉
)
-stable partition c. By construction,

V1, V2, V3, U+
1 , U+

2 , U+
3 , U−

1 , U−
2 , U−

3 are quasi-twin sets. In particular, by Lemma 2, all the nodes in
any one of these sets pick the same color. For simplicity, let us write p = 1 +

⌈
a+1

b

⌉
, and q =

⌈
1+b·p

d

⌉
.

W.l.o.g., let us assume k1 ≤ k2 ≤ k3. If a vertex v ∈ V3 picks the same color as those nodes in U+
3 ,

then her maximum utility would be:

fc(v) = b ·
[
|V1| + |V2| + (|V3| − 1) + |U+

1 | + |U+
2 | + 1

]
− a · |U+

3 |
= b · [3p + 2qx + (k1 + k2) · a]

− a · (qx + k3 · a)

12



that is negative for large enough k3 (with respect to k1, k2). Therefore, the vertices of V3 pick a
different color than those in U+

3 (otherwise, the partition is not 1-stable). Similarly, if a vertex
u ∈ U1 ∪ U2 picks the same color as those nodes in U+

3 , then her maximum utility would be:

fc(v) = b · [|V1| + |V2| + |U2| − 1]
− a · |U+

3 |
= b · [2p + qx + k2 · a − 1]

− a · (qx + k3 · a)
< 0.

As a result, the vertices of U1 ∪ U2 pick different colors than those of U+
3 . We can prove in the exact

same way that the vertices of V3 ∪ U1 ∪ U2 pick different colors than those of U−
3 . Then, the group

of U+
3 , resp. of U−

3 , is a subset of U3 ∪ V1 ∪ V2. In particular, since |U+
3 |, |U−

3 | ≫ |V1| + |V2| = 2p, we
obtain that all the vertices of U3 must pick the same color (otherwise, there would exist 1-deviations).
By similar arguments as above, we may choose k1, k2 large enough so that all the vertices of U2
(resp., of U1) pick the same color. Moreover, the vertices of Vi pick a different color than those of
Ui, and for any i ̸= j the vertices of Uj pick a different color than those of Ui.
Let us replace the subsets Vi, Ui by fresh new vertices vi, ui. Doing so, we get an isomorphic copy of
the counter-example of Figure 3. In order to fix the weights w1, w2, w3, we fix a subset Vj , and then
we consider the contribution of any other subset to the utility of the nodes of Vj . We obtain that:

• w1 = b · |Vi| = b · p = b ·
(
1 +

⌈
a+1

b

⌉)
≥ b + a + 1;

• w2 = b · |U+
i | − a · |U−

i ∪ {u=
i }| = bqx + bkia − aqy − akib = (bx − ay)q = d · q ≥ 1 + b · p;

• w3 = b · |U+
i ∪ {u=

i }| − a · |U−
i | = bqx + bkia + b − aqy − akib + a = d · q + (b + a).

In particular, w1 < w2 < w3 < w1 + w2. This implies that we can map c to a 1-stable partition c′ of
the graph of Figure 3. For the latter, there exists a 2-deviation whose nodes are taken amongst
v1, v2, v3. In turn, there exists a 2p-deviation w.r.t. c, that is a contradiction.

4.2 Hardness results

Surprisingly, under the additional assumption −∞ ∈ W, the threshold k(W) fully characterizes
the complexity of recognizing generalized coloring games with a k-stable partition. Specifically, we
prove the following dichotomy result:

Theorem 3. Let W contain −∞, and let k ≥ 1 be fixed. Then, the problem of deciding whether
a given generalized coloring game, played on a graph with edge-weights in W, admits a k-stable
partition is either:

• trivial if k ≤ k(W);

• or NP-complete if k > k(W).

Under the assumption −∞ ∈ W, our results from Sections 3.2 and 4.1 show that in most cases
k(W) ≤ 2. Then, we observe that whenever k ≤ k(W), we can also compute a k-stable partition in
polynomial time, e.g., by using better-response dynamics. This approach does not work anymore

13



for the uniform case [KL13], thereby reinforcing the specificity of the latter compared to the other
possible sets of weights.
The remaining of this subsection is devoted to the proof of Theorem 3. The problem is clearly in
NP because, for any fixed k, we can decide whether a k-deviation exists in polynomial-time nO(k).
Informally, in order to prove the NP-hardness we will assume the existence of a counter-example,
and we will build a supergraph of it that is arbitrarily large. We will characterize the k-stable
partitions for the generalized coloring game that is played on this supergraph. In particular, we will
prove that a necessary and sufficient condition for having a k-stable partition is that one user from
the counter-example picks the same color as a large independent set from the supergraph. By doing
so, we will be able to reduce the well-known Maximum Independent Set to our problem.

Intermediate reductions. For technical reasons, we need a constant lower bound on the utility
of a user. Intuitively, we use this lower bound in order to ensure that if there exists a k-stable
partition, then there is some user from the counter-example that picks the same color as a large
independent set from the supergraph. In what follows, we introduce two reductions for enforcing
this constant lower bound.

Reduction 1. Let t be a positive integer, and let W be a finite set such that W+ ̸= ∅. We set
wp = max W. For a given graph G = (V, w) whose weight in W, and n′ ≥ |V |, we construct a new
graph G̃t,n′ as follows:

• We create n′ distinct copies of the complete graph Kt, whose edges are all weighted wp.

• Then, we add an edge of weight −∞ between any two nodes in two distinct copies of Kt.

• Finally, we add an edge of weight wp between any node in V and any node belonging to some
copy of Kt.

Intuitively, Reduction 1 increases the minimum utility of the nodes to wpt.

Reduction 2. Let α be a positive integer, and let W be a finite set such that W+ ̸= ∅. We set
wp = max W. For a given graph G = (V, w) whose weight in W, we construct KGα as follows:

• We replace every node u ∈ V with a clique of α nodes Kα(u) ⊆ V (KGα).

• For every ui, uj ∈ Kα(u), the edge uiuj has weight wp.

• For every ui ∈ Kα(u) and vj ∈ Kα(v), the edge uivj has weight wuv.

Overall, our reductions ensure the following properties:

Lemma 5. Let W be a finite set such that W+ ≠ ∅, and let G = (V, w) have all its edge-weights
restricted to W. Then, for any n′ ≥ |V | and t > |V |, there exists a k-stable partition for the game
played on G if, and only if, there exists a k-stable partition for the game played on G̃t,n′.

Proof. We remind that one obtains G̃t,n′ from G by adding n′ distinct copies of the complete graph
Kt, that we will denote by K1

t , . . . , Kn′
t .

14



First, let c be a k-stable partition for the game played on G. W.l.o.g., the colors used in c are
{1, 2, . . . , p}, for some p ≤ |V |. Let c′ be the coloring G̃t,n′ s.t.:{

c′(v) = c(v) if v ∈ V

c′(v) = j if v ∈ Kj
t .

We claim that c′ is a k-stable partition for the game played on G̃t,n′ . By contradiction, let S be a
k-deviation w.r.t. c′, and let a color j s.t., ∀v ∈ S, fc′(v) <

∑
u∈X

(c′)
j ∪S

wuv. If S ⊆ Ki
t then the only

possibility for the vertices of S is to create a new group. However, that would result in their utility
being k · wp ≤ (|V | − 1) · wp < (t − 1) · wp. Since ∀v ∈ Ki

t , fc′(v) ≥ (t − 1) · wp, this is impossible.
Therefore, we must have S′ = S ∩ V ̸= ∅. However, this implies:

∀v ∈ S′, fc′(v) = fc(v) + wp · t <
∑

u∈X
(c′)
j ∪S

wuv ≤

 ∑
u∈(X(c′)

j ∩V )∪S′

wuv

 + wp · t.

In particular, S′ is a k-deviation w.r.t. c.
Conversely, let c′ be a k-stable partition for the game played on G̃t,n′ . By Lemma 2, for any i, the
nodes in Ki

t pick the same color. Furthermore, we claim that every node of V must pick the same
color as some clique Ki

t . Indeed, suppose that it is not the case for u ∈ V . Since n′ ≥ n, there
exists an i such that no vertex of V picks the same color as Ki

t . In particular, Ki
t is a group of the

partition. But then, fc(u) <
∑

v∈V wuv < wp · t, and so, there would exist a 1-deviation. Therefore,
we proved as claimed that every node of V picks the same color as some clique Ki

t . Now, let c be
such that, ∀v ∈ V, c(v) = c′(v). We claim that c is a k-stable partition for the coloring game played
on G. Indeed, suppose by contradiction that there exists a k-subset S ⊆ V , and a color j such that:

∀v ∈ S, fc(v) <
∑

u∈X
(c)
j ∪S

wuv.

Again, since n′ ≥ n, we may assume w.l.o.g. that X
(c′)
j ̸= ∅. Furthermore,

∀v ∈ S, fc′(v) = fc(v) + wp · t <
∑

u∈X
(c)
j ∪S

wuv + wp · t =
∑

u∈X
(c′)
j ∪S

wuv.

A contradiction.

We are now able to prove Theorem 3:

Proof of Theorem 3. Let G0 = (V0, w0) be restricted to W and such that the game which is played
on it does not admit a k-stable partition. W.l.o.g., there exists some x0 ∈ V0 whose removal makes
the existence of a k-stable partition for the gotten subgraph. Indeed, otherwise, we remove nodes
sequentially until obtaining this property. Moreover, we may substitute W by the subset of all the
weights on the edges of G0, that is finite. Since there is no k-stable partition, we have W+ ≠ ∅. In
what follows, let wp = max W.
Let c0 be a k-stable partition for the coloring game that is played on G0 − x0. Let c′

0 be obtained
from c0 by adding a new group equal to the singleton {x0}. By the hypothesis, c′

0 is not k-stable.
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Amongst all the k-deviations S w.r.t. c′
0, and all the colors j s.t. ∀v ∈ S, fc′

0
(v) <

∑
u∈X

(c′
0)

j ∪S
wuv,

we choose one such a pair (S, j) such that, in the new coloring obtained from c′
0 by assigning color j

to all the nodes in S, the utility of x0 is maximized. Denote by f0 this maximum value of the utility
function for x0. Up to replacing G0 with ˜(G0)t′,n′

0
for some large enough constants t′, n′

0 (that can
be done w.l.o.g. by Lemma 5), we may assume f0 > 0. We also define the two constants α = ⌈ f0

wp
⌉

and β0 = 2n0 + 1, with n0 = |V0|.

We can now prove the NP-hardness of our problem by using a polynomial reduction for Maximum
Independent Set. Specifically, let G = (V, E) be an undirected unweighted graph, and let β ≥ β0
be an integer. We define DG = (V, wG) such that ∀uv ∈ E, wuv = −∞ and ∀uv /∈ E, wuv = wp (note
that the conflict graph D−

G is equal to G). Furthermore: let t = α · (β −1)+1; let G1 = ˜(G0)t,n0
; and

let G2 = K(DG)α. Here, it is important to observe that we have t > αβ − f0
wp

− 1 ≥ αβ − n0 − 1 ≥
β − n0 − 1 ≥ n0, because f0 ≤ n0wp. Finally, we build the graph HG from G1 and G2 as follows:

• For every edge between G1 − x0 and G2, we assign a negative weight −∞.

• For every edge between x0 and G2, we assign a positive weight wp.

K3 K3

K3 K3

K3

G1

x0

G0
G0\x0

G2

Figure 4: The NP-hardness reduction of Theorem 3.

This above transformation is illustrated in Figure 4. In what follows, we prove that there exists
a k-stable partition for the game played on HG if and only if there exists a maximum independent
set of size at least β in G. For that, let us first assume that every independent set of G has a size
less than β. Suppose for the sake of contradiction that there exists a k-stable partition for the
coloring game played on HG. By construction, no group can intersect both V (G1) \ {x0} and V (G2).
In particular, the group of x0 is either fully contained in G1, or in G2 + x0. Furthermore, there can
be no group with more than α · (β − 1) vertices of V (G2). But then, since α · (β − 1) < t, the group
of x0 must be in V (G1) (otherwise, we could increase the utility of x0 from ≤ α · (β − 1) · wp to, at
least t · wp, by joining some group in V (G1)). As a result, we can bipartition the k-stable partition
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in, respectively, a k-stable partition for G1, and a k-stable partition for G2. By Lemma 5, the fact
that there does not exist a k-stable partition for the game played on G0 implies the same for the
game played on G1. A contradiction. Therefore, there is no k-stable partition for HG.

Conversely, let us assume that there exists an independent set of G with size at least β. We
observe that, up to replacing wp by 1 in G2 +x0, we fall in the uniform version of the game studied by
Kleinberg and Ligett in [KL13]. In particular, by [KL13], there exists a k-stable partition c′ whose
largest group X

(c′)
j is a maximum independent set of the conflict graph G + x0. Then, c′(x0) = j

because it is an isolated vertex in G + x0. Also, recall that there exists a k-stable partition c0 for
G0 − x0. Therefore, by Lemma 5, there exists a k-stable partition c1 for G1 − x0. Let c be s.t.:{

c(v) = c′(v) if v ∈ V (G2) ∪ {x0}
c(v) = c1(v) if v ∈ V (G1) \ {x0}.

We claim that c is a k-stable partition for the gamed played on HG. Indeed, suppose for the
sake of contradiction that there exists a k-deviation S. By definition of c′, c0, we must have
S ∩ (V (G1) \ {x0}) ̸= ∅, and in the same way S ∩ (V (G2) ∪ {x0}) ̸= ∅. This implies x0 ∈ S ⊆ V (G1).
But then, let us choose a color j′ s.t. ∀v ∈ S, fc(v) <

∑
u∈X

(c′)
j′ ∪S

wuv. We must have X
(c′)
j′ ∪ S ⊆

V (G1), and therefore, by assigning color j′ to all the vertices in S the utility of x0 becomes at most
f0+wp·t. However, the former utility of x0 was at least wp·α·β = wp·(t+α) ≥ wp·(t+ f0

wp
) = wp·t+f0.

In particular, the utility of x0 has not increased, that is a contradiction because x0 ∈ S. This
concludes the NP-hardness proof, as our transformation is polynomial, and Maximum Independent
Set is NP-complete [Dai80].

5 Conclusion
We have obtained several new results on the (non)existence of k-stable partitions, by identifying
some relevant structural properties of the subgraphs induced by some subsets of weights, e.g.: girth,
quasi-twin sets, and the (non)existence of some highly symmetric patterns. It would be interesting
to study these problems in a different setting, where we allow any set of weights but we restrict
ourselves to some well-structured class of graphs. Also, we would find it interesting to study whether
our techniques could apply to the model of Angel et al. [ABK+16].
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