N

N

PANDA: Human-in-the-Loop Anomaly Detection and
Explanation

Grégory Smits, Marie-Jeanne Lesot, Véronne Yepmo Tchaghe, Olivier Pivert

» To cite this version:

Grégory Smits, Marie-Jeanne Lesot, Véronne Yepmo Tchaghe, Olivier Pivert. PANDA: Human-in-the-
Loop Anomaly Detection and Explanation. IPMU 2022 - Information Processing and Management of
Uncertainty in Knowledge-Based Systems, Jul 2022, Milan, Italy. hal-03696295

HAL Id: hal-03696295
https://hal.inria.fr /hal-03696295

Submitted on 15 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.inria.fr/hal-03696295
https://hal.archives-ouvertes.fr

PANDA: Human-in-the-Loop Anomaly
Detection and Explanation

Grégory Smits!,
Marie-Jeanne Lesot?, Véronne Yepmo Tchaghe!, and Olivier Pivert!

!University of Rennes — IRISA, UMR 6074, Lannion, France
{gregory.smits,veronne.yepmo,olivier.pivert}@irisa.fr
2Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

marie-jeanne.lesot@lip6.fr

Abstract. The paper addresses the tasks of anomaly detection and ex-
planation simultaneously, in the human-in-the-loop paradigm integrating
the end-user expertise: it first proposes to exploit two complementary
data representations to identify anomalies, namely the description in-
duced by the raw features and the description induced by a user-defined
vocabulary. These representations respectively lead to identify so-called
data-driven and knowledge-driven anomalies. The paper then proposes
to confront these two sets of instances so as to improve the detection step
and to dispose of tools towards anomaly explanations. It distinguishes
and discusses three cases, underlining how the two description spaces can
benefit from one another, in terms of accuracy and interpretability.

Keywords: outlier detection, outlier explanation, XAI, human-in-the-
loop, fuzzy vocabulary, linguistic description

1 Introduction

A common approach to provide users with eXplainable Artificial Intelligence
(XAI) tools is to implement the human-in-the-loop paradigm, i.e. to offer the
user a crucial role in the mining process itself. This paper considers the case of
the anomaly detection task and proposes to take into account user knowledge
expressed in the form of a fuzzy vocabulary to describe linguistically the data.

Informally, anomaly or outlier detection aims at identifying, in a data set,
instances that are conspicuous and, as put in the commonly accepted definition,
“deviate so much from other observations so as to arouse suspicions that they
were generated by a different mechanism” [10]. There exist numerous methods
to perform this task, as well as multiple surveys and taxonomies, see e.g. [4, 15].
However, most of them address the issue as a machine learning task, without
taking into account the user who analyses the data. Recently, many methods
have been proposed to provide a posteriori explanations about the identified
outliers within the XAI framework, see e.g. [20] for a survey.

This paper proposes to take the user into account very early in the outlier
detection process, leading to a knowledge-driven method that offers as additional
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feature an integrated linguistic description of the identified points. It thus opens
the way to their interpretation and understanding by the user, i.e. to an outlier
explanation method.

In order to do so, the proposed approach called PANDA, that stands for Per-
sonalised ANomaly Detection and Analysis, takes as input, in addition to the
data set to be processed, a fuzzy vocabulary defined by the user: this vocabulary
allows building linguistic descriptions of the data and constitutes precious user
knowledge. For instance, the vocabulary defines indistinguishable areas in the
data, i.e. values that should be considered as equivalent although they numeri-
cally differ: it can lead to distance functions more relevant from the user point
of view than the classical Euclidean distance [8].

The PANDA method proposes to exploit such a vocabulary to dispose of a
second data representation, complementary to the description induced by the ba-
sic data features: it is built as the vector concatenating the membership degrees
to all modalities of all features. It thus defines a knowledge-driven representation
of the data. In addition to providing a formalization of a subjective interpretation
of the data, this vector also provides a normalization (in the unit interval) and
a unification of non commensurable values, easing the combination of numerical
and categorical attributes within a data mining task.

PANDA then proposes to apply an outlier detection method in these two
description spaces. This principle bears similarity with the method proposed
in [11] that applies a clustering algorithm in the two data representation spaces:
the initial data definition space and the symbolic space induced by the vocabu-
lary. However the aim in [11] is to quantify the adequacy between the vocabulary
and the data inner structure. The crucial analysis step of PANDA confronts the
two sets of anomalies, identified in the two spaces, so as both to improve the
detection step and to dispose of tools towards anomaly explanations: PANDA
makes it possible to extend any anomaly detection method with a vocabulary-
based personalization of the data and a cross analysis of the outliers detected in
the two spaces. The isolation forest method [12] to anomaly detection is used as
an illustration in this paper.

The paper is structured as follows: Section 2 summarises related works, both
on anomaly detection and explanation, Section 3 describes the proposed PANDA
method, illustrating it with synthetic data and Section 4 presents a case study
on real data describing car ads. Section 5 concludes the paper.

2 Related Works

This section briefly presents the two tasks to which the proposed PANDA method
relates, considering anomaly detection and explanation in turn.
2.1 Anomaly Detection

There exist numerous methods to detect anomalies, i.e. points that deviate from
so-called regular phenomena, as well as multiple surveys, see e.g. [4,7,20, 15].
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Beyond a distinction between supervised and unsupervised approaches, there
exists no consensus about a taxonomy or the categories, nor the number of cate-
gories, further structuring the domain. It has for instance been proposed to dis-
tinguish between approaches based on nearest neighbours, clustering, statistics,
subspaces and classifiers [7], or between approaches based on density, distance
and models [12], or between approaches based on distance, model and neural
networks [20]. To name four, some classical examples of anomaly detection al-
gorithm include LOF (Local Outlying Factor [3] and its numerous variants),
Isolation Forests [12], One-class SVM [1] and Auto-Encoder Ensemble [5].

For the implementation of the generic PANDA method described in this
paper, the isolation forest (IF) approach [12] is considered. It constitutes an un-
supervised ensemble-based method that combines multiple isolation trees. Such
an isolation tree recursively draws random features and values to partition the
data, until a predefined tree depth is reached or each leaf contains only indi-
vidual (or indistinguishable) data points. Based on the fact that, by definition,
outliers are distant from dense regions, they are likely to be isolated early by the
recursively defined node partition. They thus appear in leaves close to the tree
root: an isolation score of any data point is defined as the length of the path to
the leaf it is assigned to. An isolation forest then combines most often hundreds
of such randomly built trees and, for any data point, outputs an anomaly score
based on its average isolation score [12].

2.2 Anomaly Explanation

Given a set of identified outliers, a natural question from the user is to ask for
the reason why they are considered as such, i.e. what makes them abnormal: this
calls for anomaly explanation methods, at the cross-roads of anomaly detection
and XAI. According to the recent survey [20], four categories of such methods
can be distinguished, depending on the type of provided explanations. The first
one, also the most represented one, groups feature importance approaches, that
either compute a score for each individual feature, as [14] for instance, or deter-
mine relevant subspaces, as e.g. [13]. These approaches can also be distinguished
depending on whether they apply locally to single outlier points or globally to
sets of outliers, or whether they are detector specific or agnostic, within the
so-called outlier aspect mining task [6].

A second category of anomaly explanation methods groups approaches that
additionally associate the responsible features with the values they take, as for
instance [2]. The latter can for instance be identified by rules expressed as con-
junction of predicates, where explanations take a disjunctive normal form. A
third category groups approaches based on point comparisons, that underline
the difference between an outlying point and regular points, for instance in look-
ing for counterfactual examples [9]. The fourth category focuses on analysing
the structure of the data, identifying the relations between subsets, i.e. clusters,
of regular points and individual anomalies or sets of anomalies, as e.g. [17]

To the best of our knowledge, none of these methods take into account user
knowledge, so as to provide personalised and more understandable explanations.
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Fig. 1. Examples of fuzzy partitions describing car prices (top) and makes (bottom)

3 Proposed PANDA Approach

After presenting the notations used in the paper, this section describes the two
steps of the proposed PANDA approach, respectively corresponding to the ma-
chine learning process applied to the considered data set and to the contrastive
analysis of the identified anomalies.

3.1 Notations and Illustrative Data Set

D = {x1,x9,...,x,} denotes a set of n data points described by m attributes,
Aj to A,,, with respective domains D1 to D,,. These attributes can be numerical
or categorical.

V ={Py,..., Py} denotes a vocabulary defined as a set of linguistic variables:
for i = 1..m, P; is a triple (A;, {p;}, {l;}) with ¢; modalities. The p;;, j = 1..¢;
are the respective membership functions of the modalities defined on universe D;
and the [;; their respective linguistic labels.

Figure 1 depicts two examples of fuzzy partitions: the top part applies to
a numerical attribute describing second hand car prices, for which ¢ = 4 and
with labels ‘cheap’, ‘medium’, ‘expensive’ and ‘exorbitant’. The bottom part
applies to a categorical attribute describing the car make: it shows a subjective
interpretation of their reliability, with ¢ = 3 and labels ‘reliable’, ‘unreliable’
and ‘untested’. The membership functions are defined through their a-cuts: for
each term, each row shows the makes whose membership degrees equal the value
given on the left of the table.

It is assumed that each P; defines a strong partition [16], i.e. Vy € D;,
Z?;l wij(y) = 1. In addition, it is assumed that the partition is such that any
value y can partially satisfy up to two modalities only. In the case of features
with numerical domains, these two modalities are adjacent.
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Fig. 2. Considered 2D illustrative data set

Throughout the section, we consider as example the data shown on Figure 2
with n = 651, m = 2 with A; and A numerical attributes whose respective
domains are Dy = [0,25] and Dy = [—40,30]. P; contains ¢; = 4 modalities
whose membership functions are shown below the graph and P, contains ¢g» = 4
modalities as well, whose membership functions are shown on the right side of
the graph. The data set contains several dense regions as well as some outliers.

3.2 Data Processing

Data Rewriting with the Fuzzy Vocabulary Each data point is first rewrit-
ten by computing its membership degrees to all modalities of all attributes and
concatenating them: z = (x!,...,2™) is represented as the vector of Q = 27:1 q;
components:

™)

<Mv11 (xl)v tee 7Mv1q1 (wl)? Y (x vy Mg, (xm)>

This vector is sparse, having at most 2m non-zero components due to the hy-
potheses on the partitions described in the previous section.

The whole dataset D may thus be rewritten according to a vocabulary V in
linear time wrt. |D| but this process may easily be distributed to handle massive
data [19]. The rewritten data DY are thus described as vectors of [0, 1]9.

Double Anomaly Detection To leverage the expert knowledge about the data
embedded in his/her vocabulary, a same anomaly detection method is applied on
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both D and DY . In this paper, the Isolation Forest (IF) [12] method is applied in
the two spaces using recommended parameters (100 trees in the forest, anomaly
score with threshold 0.5 and a subset minimum size 256).

The resulting sets of identified anomalies are denoted by A and AY respec-
tively. The former, identified in the initial feature space, are interpreted as data-
driven anomalies; the latter, identified in the description space induced by the
user vocabulary, are interpreted as knowledge-driven anomalies.

3.3 Anomaly Analysis: Cross Comparison of Detected Anomalies

The anomaly analysis step then consists in comparing the two sets A and AV,
considering their intersection and differences, commented in turn in this section.
The goal of this comparison is to help users better understand both the data and
the vocabulary. It is shown that it makes it possible to refine the anomaly detec-
tion, turning data-driven anomalies into contextual regularities and conversely
points looking regular in D into contextual anomalies. Tools are thus provided
towards the explanation of the identified outliers, as discussed below.

Figure 3 shows the result of an IF anomaly detection on D (top part) and DY
(bottom part). The blueish zones indicate the anomaly scores for each point of
the domain, white zones corresponding to high anomaly scores. Black lines in
the top part of Figure 3 are the separation lines of one isolation tree randomly
drawn from the forest.

It can first be observed that, as expected, the general profiles of the anomaly
score landscapes differ between the two graphs. In particular, in the rewritten
case (bottom part), the regions homogeneous in terms of scores are parallel to
the axes: the modalities of the fuzzy variables define indistinguishability zones
within which all points have the same representation and are thus treated the
same way. As a consequence, the data density is aggregated within each region,
with fuzzy boundaries between the Cartesian product of the fuzzy set cores. The
anomaly score landscape in the case of the initial representation space obviously
follows the observed data density more closely.

Linguistic Description of Anomalies: AN.AY A first category of anomalies
contains the points that are identified as such in both description spaces, i.e. the
intersection of the two anomaly sets. These points can be considered as confirmed
anomalies, for which in addition a linguistic description is available.

Indeed, a point z € AN AY is a data-driven outlier whose description in the
vocabulary-induced space is considered as anomalous as well. Furthermore, this
vocabulary-induced description characterises x, as it allows identifying it as an
anomaly, and provides a linguistic description.

This case is illustrated with points 1 with coordinates (1, -17), z2 (20, 30),
x3 (9, -25) and x4 (15, -30), on Figure 3: they are indeed outliers from the data
density or separability point of view and from the vocabulary point of view. They
illustrate two distinct cases: x1 and zo possess extreme feature values, that make
them outliers, whereas x3 and x4 possess anomalous features combinations as
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Fig. 3. Profile of the obtained anomaly scores: the lighter the colour, the higher the
score. (Top) for D, (bottom) for DY.
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compared to the other data points. In addition, the vocabulary allows describing
linguistically these outliers: z; can e.g. be described as “value on attribute Ay is
abnormally low and value on attribute As is medium” whereas and x3 as “value
on attribute Ay is low and on attribute Ay is low”.

The obtained linguistic description can be considered as a step towards an
intelligible explanation of the anomalies. However, two caveats require for cau-
tion. First, the provided description involves all features, i.e. is of size m. As
such it may be the case that it is actually not legible when the number of fea-
tures is high. Enriching the proposed approach with outlier aspect mining (see
Section 2.2) is a considered extension to address this issue. Second, the descrip-
tion does not explain the reason why the considered point is an anomaly: for
instance this description takes the same form for the two above-mentioned illus-
trative points, whereas they correspond to different cases. This corresponds to
a classic challenge of outlier explanation generation.

Unexpected Anomalies: A \ AY A second category of anomalies contains
data points that are identified as outliers in the initial description space, but
not in the vocabulary-induced one. This case is illustrated with points 5 (24, 0)
and g (20, -30) on Figure 3: in DY, they are associated with the minimal
anomaly score, i.e. they are considered as regular points. Indeed, they are de-
scribed with terms that make them unanomalous whereas they are isolated from
the data density point of view.

Such points can be described as “unexpected anomalies” insofar as the user
does not dispose of a vocabulary that allows describing them and thus seems
not to expect them. In an interactive information extraction process, it is highly
relevant to draw his/her attention to these anomalies, so that the reason why
they are not identified as such in the knowledge-driven approach can be explored.
Several cases can indeed be distinguished, calling for different treatments.

A first possibility is that the user vocabulary is actually not adequate, i.e.
does not correspond to the data distribution and content: it is useful to underline
the existence of such specific cases the user may not have envisioned, suggesting
to add new linguistic modalities to describe such subspaces specifically. This
corresponds to a case of vocabulary data adequacy that is not captured by
previous works on this topic, as e.g. [11]. For the considered illustrative data set,
x5 is an example of this case: it may call for splitting the very high modality so
as to dispose of a term for this specific value of attribute Aj;.

On the other hand, a second possibility is that these data point should indeed
not be identified as anomalies: the knowledge provided through the vocabulary
allow to diagnose issues in the data, suggesting the need to add information so
that they are not considered as anomalies. It may for instance be the case that
the processed data set is actually incomplete and misses data points, that would
e.g. connect the candidate anomaly to a denser data region: the data set may
be not representative of the underlying data distribution, about which the user
vocabulary provides information. This can again be illustrated by data point x5,
which may be connected to the cluster of regular data observed for lower values
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of attribute A;. Similarly, the vocabulary can be considered as suggesting that
data point xg should not be considered as isolated, further suggesting that there
should be no distinction between the two clusters it is inbetween.

Inadequate Vocabulary: AY \ A A third category of anomalies contains, as
a reciprocal of the second category, data points that are identified as outliers in
the vocabulary-induced description space, but not in the initial one. This case
is illustrated with the set of points X7, around (17, 0) on Figure 3: they build a
minor group of points described with the high modality of attribute A;.

Such points can be characterised as special cases based on the vocabulary,
whereas they are not in the raw feature space. They may indicate a type of
vocabulary inadequacy, different from the one discussed above: the vocabulary
can be interpreted as being too subtle and introducing fine distinctions that are
not justified in a data-driven analysis. As illustrated with Figure 3, such cases
e.g. occur when a modality splits a dense data area, here with the distinction
between modalities high and very high of attribute A;. They may suggest the
need for vocabulary revision, in the same manner as the one explored in [18].

On the other hand, the fuzzy vocabulary is a model of the knowledge an
expert possesses about a specific applicative context, explaining how subsets of
the different attribute domains have to be interpreted [8]. Thus, these points
in AY not identified as anomalies in D could also correspond to contextual false
negative. However, the identification of such cases relies on additional contextual
knowledge: the user may be interested in detecting the occurrence of such cases
and the fine distinction may be required from an expert point of view. The
vocabulary then offers the mean to identify them. As a concrete example of such a
situation, let us consider the temperature monitoring a combustion engine whose
ideal temperature is around 90°C. Whereas observing operating temperatures in
the range [60,91] may not be problematic (it may e.g. be records during the
warm-up phase), it may be crucial for the expert to know when the temperature
reaches 92°C. A dedicated vocabulary is a solution to avoid contextual false
negatives and false positives.

4 Use case: Secondhand Car Ads

This section presents preliminary experiments conducted on a real data set de-
scribing classified ads about secondhand cars and discusses the results obtained
when applying the proposed PANDA method. Identifying anomalies then aims
at detecting both possible description errors, e.g. typing errors that make the
ads unrealistic, and very specific cars, e.g. vintage cars or rare models.

4.1 Experimental Protocol

The considered real data set contains 49,188 ads about secondhand cars de-
scribed by six attributes price, mileage, year, priceNew, make and model. The
priceNew attribute indicates the price of the car of the considered make and
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Table 1. Terms of the vocabulary used to rewrite the car descriptions

Attr. Linguistic values

Price almostOffered, veryLow, low, medium,
expensive, veryExpensive, exorbitant

Mileage | almostNull, veryLow, low, medium, high, veryHigh, huge

Year vintage, old, acceptable, recent, almostNew
PriceNew|veryLow, low, medium, expensive, veryExpensive, exorbitant
Make luxury, highClass, mediumClass, lowClass

model when sold new. Table 1 gives the labels of the linguistic variables defined
for the five first attributes; the associated membership functions, omitted for size
constraints, correspond to common sense definitions of the modelled properties.

The proposed PANDA method is applied on this data set D and its rewritten
form DY. The Isolation Forest algorithm is run with the hyper-parameter values
suggested in [12]: 100 trees are built on random subsamples of the data set each
containing 256 data points, the anomaly threshold is set to 0.5.

4.2 Result Analysis

Tables 2 and 3 show the ten instances, respectively in D and DY, with the
highest anomaly scores. Deviating values and value combinations are shown in
bold, based on manual analysis. It can be observed that the first PANDA cate-
gory, AN .AY, is empty, this section discusses the reason why and comments the
two other categories in turn, comparing A and AY.

Regarding A given in Table 2, it can first be observed the ads ranked 1, 4, 5
and 10 can legitimately be considered as anomalies due to their erroneous prices,
that take values greater than one million. The analysis of the other ads in this
list shows they can be interpreted as anomalies because they correspond to rare
luxury sport cars, that despite not being new models are still very expensive
even with a medium mileage (see e.g. the third ad).

Observing the results for the rewritten data in Table 3, one can first remark
that the integration of expert knowledge using the fuzzy vocabulary leads to
a very different list of anomalies. Indeed, due to the fact that luxury makes
are now grouped within a dedicated modality, they do not appear anymore as
anomalies: luzury make having a very expensive price despite an acceptable year
is now a sufficiently frequent conjunction of properties describing a subset of the
analyzed ads. As a consequence, the knowledge driven anomaly detection makes
it possible to identify other outliers and its combination with the data driven
approach to get a better understanding of their respective contents.

Anomalies AY can be interpreted as being of two types: typing errors leading
to unrealistic values, as a mileage equal to 1 for a vintage car (e.g. ad 3), and
suspicious combinations of properties. Ads 5, 8 and 9 are examples of the latter:
they correspond to cars from a luxury make with an expensive or very expensive
price and a very low sale price. Looking more in depth at the ad description
reveals that these cars are sold with a broken engine.



PANDA 11

Table 2. Top-10 anomalies found in the secondhand cars dataset, A

Price  Mileage Year PriceNew Make Model Score
7,500,000 112,000 1993 98,754 mercedes 500 SL A 0.705
110,000 15,000 1984 80,570 ferrari BB 512 5 0.696
62,000 50,000 1992 168,174  ferrari F 512 4.9i 0.69

42,600,000 22,000 2010 44,020 mercedes Classe C 350 CDI 0.688
17,490,000 202,000 2005 54,440 mercedes Classe CLS 320 CDI 0.682
109,000 3,800 2007 104,719  porsche 911 3.6i 0.681
93,900 41,900 2007 168,372 ferrari F430 Spider V8 0.68
112,000 21,750 2009 136,882 audi R8 V10 5.2 FSI 525 0.68
115,000 22,154 2009 136,882 audi R8 V10 5.2 FSI 525 0.68
0/12,500,000 334,000 2007 32,774 mercedes Classe C 220 CDI 0.677

= © 00 O Uik Wi

Table 3. Top-10 anomalies found in the rewritten secondhand cars data set, AV

Price Mileage Year PriceNew Make Model Score
1 | 450 100 1988 8,232 renault Super 5 Tiga 0.609
2 | 850 229,000 1983 8,345 bmw 315 0.604
3| 25 1 2010 26,798 audi A3 Sportback 2.0 TDI 0.602
4 12,350 4,801 2009 9,639 dacia Sandero 1.5 dCi 70  0.599
5 11,000 450,000 1988 36,550 mercedes 300 TD 0.598
6 (6,999 159 2004 30,387 jaguar X 0.597
7 | 700 10 1994 28,178 bmw 525 TD 0.597
8 (1,000 500,000 1985 36,416 bmw 628 CSi 0.596
9 (2,990 290,000 1988 76,441 bmw 750 iL 0.596
10| 500 320 1991 27,116 bmw 524 TD 0.594

5 Conclusion and Perspectives

Addressing the task of identifying and explaining outliers in a data set, the
PANDA approach proposed in this paper makes it possible to integrate user
expertise so as to detect and compare both data-driven and knowledge-driven
anomalies. Analyses based on an illustrative toy data set and a real data set
show how they enrich each other: the PANDA approach provides a personalised
outlier detection method, drawing the user attention to different types of specific
cases of interest. It thus constitutes a human-in-the-loop outlier detection and
offers tools towards outlier explanation.

Future works will aim at including further developments regarding the outlier
explanation component, in particular the generation of linguistic description of
the identified anomalies, e.g. combining the proposed methodology with outlier
aspect mining components. They will also address the question of integrating
PANDA within relational data base management systems, as exploratory tool for
a user to get a global view on the data content and global structure. Experiments
with real data and real users will be conducted to measure the extent to which
it contributes to the user understanding and satisfaction when interacting with
massive data sets.
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