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Technology

Machine Learning-Based Prediction of
Impulse Control Disorders in Parkinson’s
Disease From Clinical and Genetic Data

Johann Faouzi , Samir Bekadar, Fanny Artaud , Alexis Elbaz , Graziella Mangone,
Olivier Colliot , Member, IEEE, and Jean-Christophe Corvol

Abstract—Goal: Impulse control disorders (ICDs) are fre-
quent non-motor symptoms occurring during the course
of Parkinson’s disease (PD). The objective of this study
was to estimate the predictability of the future occurrence
of these disorders using longitudinal data, the first study
using cross-validation and replication in an independent
cohort. Methods: We used data from two longitudinal PD
cohorts (training set: PPMI, Parkinson’s Progression Mark-
ers Initiative; test set: DIGPD, Drug Interaction With Genes
in Parkinson’s Disease). We included 380 PD subjects from
PPMI and 388 PD subjects from DIGPD, with at least two vis-
its and with clinical and genetic data available, in our anal-
yses. We trained three logistic regressions and a recurrent
neural network to predict ICDs at the next visit using clini-
cal risk factors and genetic variants previously associated
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with ICDs. We quantified performance using the area under
the receiver operating characteristic curve (ROC AUC) and
average precision. We compared these models to a trivial
model predicting ICDs at the next visit with the status at
the most recent visit. Results: The recurrent neural network
(PPMI: 0.85 [0.80 – 0.90], DIGPD: 0.802 [0.78 – 0.83]) was the
only model to be significantly better than the trivial model
(PPMI: ROC AUC = 0.75 [0.69 – 0.81]; DIGPD: 0.78 [0.75
– 0.80]) on both cohorts. We showed that ICDs in PD can
be predicted with better accuracy with a recurrent neural
network model than a trivial model. The improvement in
terms of ROC AUC was higher on PPMI than on DIGPD data,
but not clinically relevant in both cohorts. Conclusions:
Our results indicate that machine learning methods are
potentially useful for predicting ICDs, but further works are
required to reach clinical relevance.

Index Terms—Impulse control disorders, machine learn-
ing, Parkinson’s disease, precision medicine.

Impact Statement—Impulse control disorders, leading
to high impairment of the quality of life of subjects with
Parkinson’s disease, are difficult to predict. Further studies
are required to try to improve the predictive performance of
machine learning-based models.

I. INTRODUCTION

A LTHOUGH Parkinson’s disease (PD) is mostly known
for its motor symptoms, numerous non-motor symptoms

have been reported to occur during the course of the disease
[1]. Impulse control disorders (ICDs) are psychiatric disorders
characterized by the failure to resist an impulse, and unsuc-
cessful attempts to control specific behaviors [2]. ICDs and
related disorders are frequent in PD with a prevalence ranging
from 15–20% in cross-sectional studies [3], [4], an incidence
estimated to around 10% per year [5], [6], and a cumulative
incidence reaching almost 50% after 5 years of disease duration
in longitudinal studies [5]. PD patients with disease duration
greater than 5 years are also subject to these disorders [7].
The four most common ICDs in PD are pathological gam-
bling, compulsive eating, hypersexuality, and compulsive shop-
ping, but other frequent ICDs include punding and hobbyism,
and the prevalence of each ICD, in particular pathological
gambling, highly varies between different cultures [8]. ICDs are
associated with reduced quality of life, strained interpersonal
relationships, increased caregiver burden, and require prompt
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addressing [9]–[11]. Several case reports suggest that partial
and total discontinuations of dopamine agonist (DA) treatment
leads to a resolution of ICDs [12], [13].

Many factors have been associated with ICDs in PD, including
socio-demographic, clinical and genetic biomarkers [14]. In
particular, men tend to develop more pathological gambling
and hypersexuality disorders while women develop more com-
pulsive buying and eating disorders [15]. A younger age has
been associated with ICDs in PD in numerous studies [4],
[16]–[18]. Anxiety [18]–[20], depression [16], [20], and rapid
eye movement (REM) sleep behavior disorders [21], [22] have
also been correlated to ICDs. Dopamine replacement therapy has
been shown to be the main risk factor for ICD. Both levodopa
and dopamine agonists have been associated with ICDs, but with
a stronger and higher association with dopamine agonists. Fi-
nally, associations between ICDs and several single-nucleotide
polymorphisms (SNPs) in dopamine signaling pathway genes
have been suggested [23]–[28].

The predictive performance of these factors altogether has
been underexplored. Only three studies reported predictions at
the patient level [24], [29], [30]. In all three studies, authors
trained a logistic regression using clinical and genetic data, and
measured its predictive performance using the area under re-
ceiver operating characteristic (ROC) curve (ROC AUC). None
of these studies had cross-validation or a replication cohort,
altering the confidence in the reported performance [31].

Our main objective was to predict ICDs from clinical and
genetic data using machine learning approaches. We utilized
two longitudinal cohorts to train and cross-validate the models
on one cohort, but also assess the generalization capability of
these models on the other cohort. The objective was to predict
the risk of ICDs at the next visit, knowing the clinical history of
the patient and their genotyping data.

II. MATERIALS AND METHODS

A. Populations

We used data from two research cohorts: the Parkinson’s
Progression Markers Initiative (PPMI) database and the Drug
Interaction With Genes in Parkinson’s Disease (DIGPD) study.

PPMI (https://www.ppmi-info.org) is a multicenter observa-
tional clinical study using advanced imaging, biologic sampling,
and clinical and behavioral assessments to identify biomarkers
of PD progression [32]. Data was gathered during face-to-face
visits every 6–12 months. PD subjects were de novo and drug-
naive at baseline. We downloaded the clinical and genetic data
from the PPMI database (https://www.ppmi-info.org/data) on
the 17th of October, 2019.

DIGPD is a French multicenter longitudinal cohort with an-
nual follow-up of PD patients [5]. Eligible criteria consist in re-
cent PD diagnosis (UK Parkinson’s Disease Society Brain Bank
criteria) with disease duration less than 5 years at recruitment.
Data was gathered during face-to-face visits every 12 months
following standard procedures.

Both studies were conducted according to good clinical
practice, obtained approval from local ethic committees and reg-
ulatory authorities, and all patients provided informed consent
prior to inclusion.

B. Participants and Clinical Measurements

Inclusion criteria consisted of having:
1) a PD diagnosis,
2) a baseline visit and at least another visit,
3) clinical and genetic data available, and
4) PD medication taken available.

We included socio-demographics and clinical variables that
have been associated with ICDs in the literature: age of PD
onset, length of follow-up, sex, past ICDs, continuous scales of
anxiety, depression and REM sleep, and the motor exam (part
III) of the Movement Disorders Society-sponsored revision of
the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS).
ICDs were assessed at each visit using the Questionnaire for
Impulsive-Compulsive Disorders in Parkinson’s Disease - Rat-
ing Scale [33] in PPMI, and through semi-structured interviews
by a movement disorder specialist in DIGPD. We standardized
each feature since some of them were assessed with different
scales and because it is a common requirement for most machine
learning estimators.

We took into account PD medication with three binary vari-
ables corresponding to the main classes of treatment (levodopa,
dopamine agonists, others) and we derived more specific vari-
ables for dopamine agonists: mean daily, maximum daily and
total doses (expressed in levodopa equivalent) and cumulative
duration.

C. Genetic Variants

In absence of genome-wide association study on ICDs in
PD, we considered 50 genetic variants selected as previously
described: 20 variants from 16 genes involved in dopamine,
serotonin, glutamate, norepinephrine and opioid systems and
previously associated with ICD in PD or in the general popu-
lation [23]; 30 additional variants from 10 genes differentially
expressed after an acute challenge of levodopa in the striatum
in a mouse model of dopamine denervation [34].

Genotyping data were collected using NeuroX [35] arrays in
PPMI (267,607 variants measured), and Illumina Multi-Ethnic
Genotyping Arrays in DIGPD (1,779,819 variants). We ex-
cluded variants with missing rates greater than 2% and vari-
ants deviating from Hardy-Weinberg equilibrium (p < 10−8).
We excluded related individuals (third-degree family relation-
ships), individuals with mismatch between reported sex and
genetically determined sex, and individuals with outlying het-
erozygosity (± 3 standard deviation). We imputed missing
SNPs using the Michigan Imputation Server [36] for PPMI
and the Sanger Imputation Server [37] for DIGPD, using
the reference panel of the Haplotype Reference Consortium
(release 1.1) [37]. We filtered variants based on their im-
putation quality (r2 > 0.6 for PPMI, INFO score > 0.9 for
DIGPD) in order to only include variants imputed with high
quality.

https://www.ppmi-info.org
https://www.ppmi-info.org/data
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D. Data Processing

Processing genetic data and extracting variants of interest
matching inclusion criteria was performed using the PLINK
[38] software. Processing of the different text-like files was
performed using the pandas [39] and NumPy [40] Python
packages. Missing values were imputed in a forward-fill fashion:
for a given subject and a given feature, missing values were
imputed using the most recent non-missing value for this subject
and this feature. Baseline missing values were imputed using the
mean baseline values on the training set. We used this simple
approach because only a small percentage of data from a small
subset of variables (anxiety, depression, REM sleep, and motor
exam) was imputed and because it can be applied to any scale
without any training.

E. Machine Learning Algorithms

We investigated five standard machine learning algorithms
implemented in the scikit-learn [41] and XGBoost [42] Python
packages: logistic regression, support vector machines with a
linear kernel and with a radial basis function kernel [43], [44],
random forest [45] and gradient tree boosting [46], [47]. These
algorithms expect a fixed number of features as input. In order to
deal with varying numbers of visits, we reduced all the previous
visits into one “summary” visit using a convex combination. A
convex combination is a linear combination such that the weights
are all non-negative and sum to one. The weights indicate how
much each visit contributes to this “summary” visit. A weight
of 1 for the first visit means that the “summary” visit is simply
the baseline visit, while a weight of 1 for the latest visit means
that the “summary” visit is simply the most recent visit. One can
also give uniform weights, so that each visit contributes equally
to this “summary” visit, or higher weights to most recent visits
if they are assumed to be more important than older visits.

As the prediction task is longitudinal, we also investigated
the use of recurrent neural networks. Recurrent neural networks
are a class of artificial neural networks dedicated to sequential
data. We employed a simple architecture (Fig. 1) with a Gated
Recurrent Unit [48] to extract information from the clinical
measurements, followed by a concatenation of this vector with
the socio-demographic and genetic data, followed by a Fully
Connected layer with a sigmoid activation function. We used
the PyTorch [49] Python package to build and train the recurrent
neural network.

The recurrent neural network model is the only algorithm that
learns to transform the variable-length sequence of inputs into a
vector. All the machine learning models are trained end-to-end
and there is no separate estimation of the h(t) vector in the
recurrent neural network model.

All the machine learning models are trained end-to-end and
take as input clinical (age of PD onset, sex, past ICDs, anxiety,
depression, REM sleep, types of PD medication and specific
variables for the use of dopamine agonists, as described in
Section II-B) and genetic data (as described in Section II-C),
except in Section III-C in which we compare the models with
the same machine learning algorithms trained with clinical data
only.

Fig. 1. Architecture of the recurrent neural network. The clinical fea-
tures assessed at several visits, denoted as (x(1), . . . ,x(t)), are used as
input of the Gated Recurrent Unit (GRU). The GRU extracts information
from these clinical features into a vector h(t). This vector and the time-
independent variables, namely the socio-demographic and genetic data
denoted as s, are used as input of a Fully Connected (FC) layer followed
by a sigmoid activation function, returning the probability of having an
impulse control disorder at the next visit, denoted as ŷ(t+1).

Since the task is longitudinal, we defined a trivial model as
the one that predicts the ICD status of a patient at the next visit
with the ICD status at the most recent visit.

F. Cross-Validation

We used PPMI as the training (discovery) cohort, and DIGPD
as the test (replication) cohort. To unbiasedly estimate the pre-
dictive performance of the models, we employed a nested cross-
validation procedure that is illustrated in Fig. 2. In the outer loop,
we randomly split 80% of the PPMI subjects into the training
set and the remaining 20% into the test set. In the inner loop,
we performed a 5-fold subject-level cross-validation procedure
to optimize the hyper-parameters of the models on the training
set. These hyper-parameters control how the algorithms fit the
training data. For instance, these hyper-parameters included the
type (�1 or �2 penalty) and amount (λ parameter) of regular-
ization for the linear models. In particular, logistic regression
models were regularized. The regularization applies to all the
input data (clinical and genetic). After finding the optimal values
for the hyper-parameters, each model was evaluated on the test
set. Finally, we evaluated the performance of each model on the
whole DIGPD cohort.

G. Statistical Analysis

Baseline characteristics in both cohorts were compared with
chi-squared tests for categorical variables and t-tests for continu-
ous variables using the SciPy [50] Python package. Predictive
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Fig. 2. Cross-validation procedure. We employed a nested cross-validation procedure on the PPMI cohort. In the outer loop, we split the
PPMI subjects into training and test sets, while the inner loop was a 5-fold subject-level cross-validation to optimize the hyper-parameters
of the model. The model with the optimal values for the hyper-parameters was evaluated on the test set of PPMI and on the whole DIGPD
cohort.

performance was mainly evaluated using the area under the
receiver operating characteristic curve and average precision
(AP). AP summarizes a precision-recall curve as the weighted
mean of precisions achieved at each threshold, with the increase
in recall from the previous threshold used as the weight. The
precision-recall curve is similar to the ROC curve, but plots
the precision (positive predictive value) against the recall (sen-
sitivity). The precision-recall curve does not take into account
the true negatives, and is particularly useful when the positives
are more important than the negatives (false negatives are more
serious than false positives). Other metrics included accuracy,
balanced accuracy (BA), sensitivity and specificity. ROC and
precision-recall curves were plotted using the matplotlib
[51] Python package, and all the metrics were computed using
the scikit-learn [41] package. Comparison between ROC
AUC was measured using the DeLong test [52]. P-values were
adjusted for multiple comparisons using Bonferroni correction.
We did not perform hypothesis testing to compare AP scores as
we were not aware of a relevant statistical test to do so.

III. RESULTS

A. Population Characteristics

Out of the 423 PD subjects in PPMI, we excluded 1 subject for
not having a baseline visit, 2 for not having medication records
and 40 for not having genetic data. Out of the 415 PD subjects
in DIGPD, we excluded 27 for having only a baseline visit. No
subjects were excluded based on their genetic data. Thus, we
included 380 PD subjects from PPMI and 388 PD subjects from
DIGPD in our analyses. The 380 PPMI subjects had a total of

2,728 visits, while the 388 DIGPD subjects had a total of 2,101
visits. Since our objective was to predict the occurrence of ICDs
at the next visit, the number of observations for a given subject is
equal to their number of visits minus 1. Thus, the total number of
observations was equal to 2,348 in PPMI and 1,713 in DIGPD.

Clinical characteristics are presented in Table I. Age and sex in
both cohorts were not significantly different. PPMI subjects had
significantly more visits and smaller intervals between back-
to-back visits, as well as longer follow-ups. DIGPD subjects
had significantly lower scores in the motor exam of the MDS–
UPDRS. The prevalence of ICDs at baseline was significantly
higher in DIGPD than in PPMI, as well as their lifetime preva-
lence. Both differences might be explained by the fact that PD
subjects are de novo and drug-naive at baseline in PPMI whereas
they are not in DIGPD. Other phenotypes (anxiety, depression,
and REM sleep disorders) were not statistically compared due
to the different scales used.

Concerning genetic data, we excluded 1 genetic variant for
being a variable number of tandem repeat polymorphism. Fur-
thermore, we excluded 18 SNPs for having too low imputation
quality scores. Finally, 31 SNPs were included in our analyses
(Supplementary Table 1).

B. Predictive Performance

Table II presents the predictive performance for the five main
models: the trivial model, logistic regression models using the
baseline visit, the most recent visit, and the mean over all the
past visits respectively, and the recurrent neural network model.
The logistic regression model using the baseline visit had some
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TABLE I
BASELINE CHARACTERISTICS. FOR CONTINUOUS VARIABLES, MEAN ± STANDARD DEVIATION IS REPORTED. FOR BINARY VARIABLES, THE COUNT FOR BOTH
CATEGORIES IS REPORTED AS WELL AS THE PROPORTION OF THE FIRST CATEGORY. STATISTICAL DIFFERENCES WERE ASSESSED USING INDEPENDENT T
TESTS FOR CONTINUOUS VARIABLES AND CHI-SQUARED TESTS FOR BINARY VARIABLES. GDS: GERIATRIC DEPRESSION SCALE; HAD: HOSPITAL ANXIETY

AND DEPRESSION SCALE; RBDSQ: RAPID EYE MOVEMENT SLEEP BEHAVIOR DISORDER SCREENING QUESTIONNAIRE; STAI: STATE-TRAIT ANXIETY
INVENTORY

TABLE II
RESULTS OF THE FOUR MAIN MODELS. PREDICTIVE PERFORMANCE FOR THE FIVE MAIN MODELS ON BOTH COHORTS ARE REPORTED

of the lowest scores on both cohorts (ROC AUC = 0.75 and AP
= 0.44 in PPMI, ROC AUC = 0.67 and AP = 0.43 in DIGPD).
The trivial model reached a ROC AUC = 0.75 of in PPMI and
of 0.78 in DIGPD. The recurrent neural network yielded the
highest scores in PPMI (ROC AUC = 0.85, AP = 0.61), while
the logistic regression using the most recent visit yielded the
highest scores in DIGPD (ROC AUC = 0.80, AP = 0.64). Fig. 3
and Fig. 4 show the ROC and precision-recall curves for the
four main models compared to the trivial model in PPMI and
in DIGPD respectively. The recurrent neural network models
had sensitivities of 61% and 70% and specificities of 90% and
82% in PPMI and DIGPD respectively, at the default threshold
(probability > 0.5).

The recurrent neural network model was the only model to be
significantly better than the trivial model on both cohorts, and
two logistic regression models were significantly better than the
trivial model on one cohort (Fig. 5).

Although AP scores for the three best models were higher
in DIGPD than in PPMI, the prevalence of ICDs, computed
over all the (patient, visit) pairs, was twice higher in DIGPD
than in PPMI (27% in DIGPD, 14% in PPMI). As AP scores of
random guess are equal to the prevalence of the positive class,

the differences between AP scores in both cohorts should be
interpreted with much caution.

The other machine learning algorithms (support vector ma-
chines with linear and radial basis function kernels, random for-
est, and gradient tree boosting) and other reduction approaches
(giving positive weights to all the past visits, but higher weights
to more recent visits) yielded comparable results (Supplemen-
tary Table 2).

To evaluate the impact of the splitting of PPMI into training
and test sets on the predictive performance, we repeated the
cross-validation procedure 10 times and also evaluated the 10
models on DIGPD. All iterations yielded comparable results
(Supplementary Table 3).

To evaluate the impact of the choice of the training and
replication cohorts, we used DIGPD as the training cohort and
PPMI as the replication cohort and obtained similar results
(Supplementary Tables 4 and 5).
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Fig. 3. ROC and Precision-recall curves on PPMI. The models, trained on a subset of subjects in PPMI, were evaluated on an independent subset
of subjects in PPMI.
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Fig. 4. ROC and Precision-recall curves on DIGPD. The models, trained on a subset of subjects in PPMI, were applied on all the subjects in
DIGPD.
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Fig. 5. Statistical comparison of ROC AUC for the five main models. 95% confidence intervals were computed using the asymptotic normal
distributions of the ROC AUC scores. P-values were computed using the DeLong test. P-values below the 0.05 threshold after adjustment for
multiple comparison using Bonferroni correction are highlighted with at least one asterisk: p ≤ 0.05 (�), p ≤ 0.01 (��), p ≤ 0.001 (� � �).

TABLE III
STATISTICAL COMPARISON OF ROC AUC FOR THE FOUR MAIN MODELS WITH AND WITHOUT GENETIC VARIANTS. DIFFERENCES IN ROC AUC BETWEEN

THE MODELS WITH AND WITHOUT GENETIC VARIANTS WERE ASSESSED WITH THE DELONG TEST. SIGNIFICANT DIFFERENCES AFTER BONFERRONI
CORRECTION ARE HIGHLIGHTED IN BOLD FONT

C. Contribution of the Different Features

Since the genetic factors of ICDs in PD are mostly unknown
and genotyping data is not usually collected in clinical rou-
tine, we investigated the predictive performance of the same
algorithms without the genetic variants as input, in order to
assess their added value in the models. Table III presents the ROC
AUC of the models with and without genetic variants and their
statistical comparison. Only one comparison was statistically
different: the logistic regression model using the most recent
visit had a higher ROC AUC with genetic variants than without
genetic variants on DIGPD (ROC AUC = 0.80 with genetic
variants, ROC AUC=0.79 without genetic variants,p < 0.001).
The genetic variants did not seem to be major contributors to the
decision function of the logistic regression models.

We also investigated the coefficients of the three logistic re-
gression models with and without genetic variants as input (Sup-
plementary Tables 6 and 7). As the logistic regression model us-
ing the baseline visit did not perform better than the trivial model,
and the variables for PD medication were all null (PD patients
in PPMI are de novo drug-naive at baseline, and the medical
history of PD patients in DIGPD was not available before their

baseline visit), we only interpreted the other two models. The
following features had positive coefficients: sex, past ICDs, de-
pression, REM sleep, motor exam, being on other PD medication
than levodopa and dopamine agonists, and maximum dose and
cumulative duration of dopamine agonists. On the other hand,
the following features had negative coefficients: age, anxiety,
being on levodopa, and mean daily and total dose of dopamine
agonists. The features corresponding to being on dopamine
agonists and time to prediction had coefficients close to zero.
The variables with the largest absolute values were past ICDs,
and total dose and cumulative duration of dopamine agonists.

IV. DISCUSSION

To the best of our knowledge, this study is the first one evaluat-
ing the predictability of ICDs in PD in an unbiased manner using
two longitudinal cohorts, including one independent replication
cohort.

Three previous studies reported ROC AUC for a prediction
task of ICDs in PD [24], [29], [30]. Kraemmer and colleagues
reported ROC AUC of 0.65 [0.58 – 0.73] with clinical variables
only and of 0.76 [0.70 – 0.83] with clinical and genetic variables,
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while Erga and colleagues reported ROC AUC of 0.68 [0.59
– 0.78] with clinical features only and of 0.70 [0.61 – 0.79]
with clinical and genetic features, and Jesus and colleagues
reported ROC AUC of 0.69 with clinical features only and of
0.80 with clinical and genetic features. However, the methods
and prediction tasks were different. Erga and colleagues per-
formed a cross-sectional analysis of 119 PD patients from the
Norwegian ParkWest study, Jesus and colleagues also performed
a cross-sectional analysis of 353 PD patients recruited from the
Movement Disorder Clinic of the University Hospital Virgen
del Rocío in Seville, Spain, while Kraemmer and colleagues
performed a longitudinal analysis of 276 PD patients from PPMI.
In their studies, each patient corresponds to a unique observation,
leading to much lower sample sizes. Moreover, all three studies
did not use an independent test set nor cross-validation and
did not have a replication cohort, which might lead to overly
optimistic reported results [31]. By contrast, our study uses
cross-validation on the training cohort (PPMI), an independent
test set from PPMI and a replication cohort (DIGPD). Results
were overall comparable in both cohorts, even though the per-
formance was slightly lower in DIGPD than in PPMI, and
the difference with the trivial model was also less substantial,
although statistically significant. This may be explained by the
fact that both cohorts have different characteristics (de novo
drug-naive patients in PPMI, already-treated patients in DIGPD)
and some variables (anxiety, depression, REM sleep) were not
measured with the same instruments.

The best performing model was the recurrent neural network.
It achieved a statistically higher performance than the trivial
model in both cohorts. Nevertheless, while the difference in
performance was substantial (10 percentage points of ROC
AUC) for the PPMI dataset, it was much weaker for DIGPD
dataset. This may be partly due to the difficulty of generalizing
to a different cohort with different inclusion criteria and dif-
ferent measurement scales. Nevertheless, the results obtained
when using DIGPD for training and PPMI for replication (see
Supplementary Tables 4 and 5) suggest that prediction may be
inherently slightly more difficult in the DIGPD cohort.

The logistic regression coefficients were overall consistent
with the literature. For the socio-demographic variables, sex
and age have respectively a positive and negative coefficients,
in accordance with a younger age and a male sex previously
associated with ICDs in PD [15]. Depression, REM sleep and
motor exam scores also had positive coefficients, consistent
with their positive association [14]. Anxiety scores had negative
coefficients although previously reported to be positively asso-
ciated with ICD. The maximum dose and cumulative duration
of dopamine agonists had positive coefficients, confirming the
important role of the dose and the duration of dopamine agonist
therapy in the risk to develop ICDs in PD [5]. Interestingly,
the types of PD medication sparsely contributed to the decision
function of the models, with very small coefficients. The mean
daily and total doses of dopamine agonists had negative coeffi-
cients, although these coefficients were almost null for the mean
daily dose. These derived features have rarely been investigated
altogether, making the comparison with the literature difficult.
It should be noted that the coefficients are estimated altogether

and that the logistic regression models were regularized, so
interpretation should be performed with caution.

We used features that have been associated with ICDs in PD
as input of our models, but there are probably more unknown
risk factors to be discovered. In addition, as a class of psychiatric
disorders, ICDs are particularly complex, with qualitative envi-
ronmental factors that might play important roles, are difficult
to measure, and are not captured by clinical scales used in PD.
Assessment of ICDs may also be noisy (e.g. patients hiding or
not aware of their behavior), and thus ICDs are probably less
predictable in practice than other comorbidities in PD, such as
dementia [53]. Finally, little is known about the genetic factors
of ICDs in PD. In our study, the inclusion of genetic variants did
not lead to a substantial improvement over clinical data alone
for the best performing models. In absence of genome-wide
association study and genetic risk scores for ICDs in PD, we used
associated genetic variants from candidate gene analyses [23],
[24], [29]. As variation in complex traits is caused by numerous
genetic variants, such analyses have important limitations and
many association studies could not be replicated, particularly in
psychiatric conditions like schizophrenia [54]. More studies, in
particular genome-wide association studies, are needed to better
understand the genetic landscape of ICDs in PD.

Being able to predict ICDs is of critical importance due to their
potential medical, financial, and/or legal medical complications.
Identifying patients at high risk to develop ICDs at the next visit
may lead to changes in the dopaminergic treatment strategy (e.g.
decrease the dose of dopamine agonists and increase levodopa)
and/or recommend a closer monitoring of behavioral changes by
the caregiver. The efficacy of such preventive strategies based
on a predictive model remains however to be evaluated. In this
perspective, the model may be adapted depending on the relative
importance for identifying positives (patients who will develop
ICDs) or negatives (patients who will not develop ICDs). The
balanced accuracy scores were equal to 76% for the recurrent
neural network models in both cohorts, but the sensitivities (61%
vs 70%) and specificities (90% vs 82%) differed, which might
be explained by the different prevalences in both cohorts. Using
the default threshold (probability > 0.5) made the models more
specific than sensitive, which might be a limitation if finding
the positives is more important than the negatives. On the other
hand, models being more specific than sensitive might be more
relevant if the main objective is to propose treatment changes
only to patients who are at strong risk, and avoid unnecessary
modifications in more patients. The threshold can still be ad-
justed depending on the main objective. Prospective studies are
required to validate the models and allow their relevance in
clinical routine. Another clinically relevant task would be to
predict the first onset of ICDs in PD, but is left for future work.

Our study has several limitations. A first important limitation
is that the performances of the best models were only marginally
better than that of a trivial model on the replication cohort
DIGPD. While the difference was statistically significant, its
magnitude is too small for the tool to be useful in clinical practice
in its current state. They nevertheless set a methodologically
solid basis for the development of improved models. Second, as
mentioned in Section II-B, the definition of ICDs differ between
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cohorts. This may partly explain why our machine learning
models struggle to generalize in the independent replication
cohort. Third, the sample sizes are relatively small, in particular
on the test set of PPMI due to the use of cross-validation.
Fourth, each observation is a (subject, visit) pair and thus the
observations are not independent (the intra-subject observations
are not independent, but the inter-subject observations are inde-
pendent), which could lead to underestimating p-values when
assessing the statistical difference between ROC AUC. Fifth,
in absence of genome-wide association study and genetic risk
scores for ICDs in PD, we used associated genetic variants from
candidate gene analyses. Genetic risk scores are more robust
estimators of the genetic liability of a phenotype and should be
preferred when available [55]. We previously investigated the
genetics of ICDs in PD by computing genetic risk scores for
other phenotypes and investigating their statistical association
with ICDs, but we could not report any statistical association
[56]. Sixth, we did not include several risk factors of ICDs
in PD as input of the algorithms, such as dyskinesia [57] and
sleep disorders other than REM sleep. Nonetheless, the added
value of known risk factors that were not included remains to
be proven, as these risk factors were discovered in univariate
analyses. Moreover, adding more features as input of machine
learning algorithms does not necessarily lead to better predictive
performance due to the correlation between the features and the
risk of overfitting.

V. CONCLUSION

Our study shows the feasibility of prediction of impulse con-
trol disorders in Parkinson’s disease. Nevertheless, the improve-
ments obtained compared to a trivial model are not sufficient to
support clinical utility at this stage of research. Nonetheless, our
study highlights a sound methodology and sets a baseline that
future studies can compare to. Further studies including other
risk factors and investigating the first onset of ICDs are required
to obtain clinically relevant models.
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SUPPLEMENTARY MATERIALS

We list the different reduction approaches that we investigated
and the genetic variants included in our analyses. We also
provide additional experiments with other machine learning
algorithms and other reduction approaches, with several cross-
validation runs, and the same experiments but with swapping
the role of both cohorts, and the coefficients of the best logistic
regression models.

REFERENCES

[1] J. P. Hiseman and R. Fackrell, “Caregiver burden and the nonmotor symp-
toms of Parkinson’s disease,” Int. Rev. Neurobiol., vol. 133, pp. 479–497,
2017.

[2] A. H. Evans, A. P. Strafella, D. Weintraub, and M. Stacy, “Impulsive and
compulsive behaviors in Parkinson’s disease,” Movement Disord.: Official
J. Movement Disord. Soc., vol. 24, no. 11, pp. 1561–1570, 2009.

[3] V. Voon et al., “Prevalence of repetitive and reward-seeking behaviors in
Parkinson disease,” Neurology, vol. 67, no. 7, pp. 1254–1257, 2006.

[4] D. Weintraub et al., “Impulse control disorders in Parkinson disease:
A cross-sectional study of 3090 patients,” Arch. Neurol., vol. 67, no. 5,
pp. 589–595, May 2010.

[5] J.-C. Corvol et al., “Longitudinal analysis of impulse control disorders in
Parkinson disease,” Neurology, vol. 91, no. 3, pp. e189–e201, Jul. 2018.

[6] K. M. Smith, S. X. Xie, and D. Weintraub, “Incident impulse control dis-
order symptoms and dopamine transporter imaging in Parkinson disease,”
J. Neurol. Neurosurg. Psychiatry, vol. 87, no. 8, pp. 864–870, 2016.

[7] A. H. Erga, G. Alves, O. B. Tysnes, and K. F. Pedersen, “Evolution of
impulsive-compulsive behaviors and cognition in Parkinson’s disease,” J.
Neurol., vol. 267, no. 1, pp. 259–266, 2020.

[8] P. Parra-Díaz et al., “Does the country make a difference in impulse control
disorders? A systematic review,” Movement Disord. Clin. Pract., vol. 8,
no. 1, pp. 25–32, 2021.

[9] A. L. Phu et al., “Effect of impulse control disorders on disability and
quality of life in Parkinson’s disease patients,” J. Clin. Neurosci., vol. 21,
no. 1, pp. 63–66, 2014.

[10] I. Leroi, V. Harbishettar, M. Andrews, K. McDonald, E. J. Byrne, and A.
Burns, “Carer burden in apathy and impulse control disorders in Parkin-
son’s disease,” Int. J. Geriatr. Psychiatry, vol. 27, no. 2, pp. 160–166,
2012.

[11] A. H. Erga, G. Alves, O. B. Tysnes, and K. F. Pedersen, “Impulsive
and compulsive behaviors in Parkinson’s disease: Impact on quality of
and satisfaction with life, and caregiver burden,” Parkinsonism Related
Disord., vol. 78, pp. 27–30, 2020.

[12] E. Mamikonyan et al., “Long-term follow-up of impulse control disorders
in Parkinson’s disease,” Movement Disord., vol. 23, no. 1, pp. 75–80, 2008.

[13] M. J. Nirenberg and C. Waters, “Compulsive eating and weight gain related
to dopamine agonist use,” Movement Disord., vol. 21, no. 4, pp. 524–529,
2006.

[14] M. Grall-Bronnec et al., “Dopamine agonists and impulse control dis-
orders: A complex association,” Drug Saf., vol. 41, no. 1, pp. 19–75,
Jan. 2018.

[15] D. Weintraub and D. O. Claassen, “Impulse control and related disorders
in Parkinson’s disease,” Int. Rev. Neurobiol., vol. 133, pp. 679–717, 2017.

[16] M. B. Callesen, D. Weintraub, M. F. Damholdt, and A. Møller, “Impul-
sive and compulsive behaviors among Danish patients with Parkinson’s
disease: Prevalence, depression, and personality,” Parkinsonism Related
Disord., vol. 20, no. 1, pp. 22–26, Jan. 2014.

[17] M. Poletti et al., “A single-center, cross-sectional prevalence study of
impulse control disorders in Parkinson disease: Association with dopamin-
ergic drugs,” J. Clin. Psychopharmacol., vol. 33, no. 5, pp. 691–694,
Oct. 2013.

[18] F. E. Pontieri et al., “Sociodemographic, neuropsychiatric and cognitive
characteristics of pathological gambling and impulse control disorders
NOS in Parkinson’s disease,” Eur. Neuropsychopharmacology: J. Eur.
College Neuropsychopharmacol., vol. 25, no. 1, pp. 69–76, Jan. 2015.

[19] I. Leroi et al., “Apathy and impulse control disorders in Parkinson’s
disease: A direct comparison,” Parkinsonism Related Disord., vol. 18,
no. 2, pp. 198–203, Feb. 2012.

[20] V. Voon et al., “Impulse control disorders in Parkinson disease: A mul-
ticenter case-control study,” Ann. Neurol., vol. 69, no. 6, pp. 986–996,
Jun. 2011.

[21] M. L. Fantini et al., “Increased risk of impulse control symptoms in Parkin-
son’s disease with REM sleep behaviour disorder,” J. Neurol. Neurosurg.,
Psychiatry, vol. 86, no. 2, pp. 174–179, Feb. 2015.

[22] C. C. Ramírez Gómez et al., “A multicenter comparative study of impulse
control disorder in Latin American patients with Parkinson disease,” Clin.
Neuropharmacol., vol. 40, no. 2, pp. 51–55, Apr. 2017.

[23] F. Cormier-Dequaire et al., “Suggestive association between OPRM1 and
impulse control disorders in Parkinson’s disease,” Movement Disord.:
Official J. Movement Disord. Soc., vol. 33, no. 12, pp. 1878–1886, 2018.

[24] A. H. Erga et al., “Dopaminergic and opioid pathways associated with
impulse control disorders in Parkinson’s disease,” Front. Neurol., vol. 9,
2018, Art. no. 109.

[25] X. H. Castro-Martínez et al., “Behavioral addictions in early-onset Parkin-
son disease are associated with DRD3 variants,” Parkinsonism Related
Disord., vol. 49, pp. 100–103, 2018.

[26] S. Zainal Abidin et al., “DRD and GRIN2B polymorphisms and their
association with the development of impulse control behaviour among
Malaysian Parkinson’s disease patients,” BMC Neurol., vol. 15, p. 59,
Apr. 2015.

[27] S. Krishnamoorthy et al., “Dopamine D3 receptor Ser9Gly variant is
associated with impulse control disorders in Parkinson’s disease patients,”
Parkinsonism Related Disord., vol. 30, pp. 13–17, 2016.

[28] J.-Y. Lee et al., “Association of DRD3 and GRIN2B with impulse
control and related behaviors in Parkinson’s disease,” Movement Dis-
ord.: Official J. Movement Disord. Soc., vol. 24, no. 12, pp. 1803–1810,
Sep. 2009.

[29] J. Kraemmer et al., “Clinical-genetic model predicts incident impulse con-
trol disorders in Parkinson’s disease,” J. Neurol. Neurosurg., Psychiatry,
vol. 87, no. 10, pp. 1106–1111, Oct. 2016.

[30] S. Jesús et al., “Integrating genetic and clinical data to predict impulse con-
trol disorders in Parkinson’s disease,” Eur. J. Neurol., vol. 28, pp. 459–468,
Feb. 2021.

[31] A. Koul, C. Becchio, and A. Cavallo, “Cross-validation approaches for
replicability in psychology,” Front. Psychol., vol. 9, 2018, Art. no. 1117.

[32] K. Marek et al., “The Parkinson progression marker initiative (PPMI),”
Prog. Neurobiol., vol. 95, no. 4, pp. 629–635, Dec. 2011.

[33] D. Weintraub et al., “Questionnaire for impulsive-compulsive disorders in
Parkinson’s disease-rating scale,” Movement Disord.: Official J. Movement
Disord. Soc., vol. 27, no. 2, pp. 242–247, Feb. 2012.

[34] F. Charbonnier-Beaupel et al., “Gene expression analyses identify Narp
contribution in the development of l-DOPA-induced dyskinesia,” J. Neu-
rosci., vol. 35, no. 1, pp. 96–111, Jan. 2015.

[35] M. A. Nalls et al., “NeuroX, a fast and efficient genotyping platform for
investigation of neurodegenerative diseases,” Neurobiol. Aging, vol. 36,
no. 3, pp. 1605.e7–1605.12, Mar. 2015.

[36] S. Das et al., “Next-generation genotype imputation service and methods,”
Nature Genet., vol. 48, no. 10, pp. 1284–1287, 2016.

[37] S. McCarthy et al., “A reference panel of 64,976 haplotypes for genotype
imputation,” Nature Genet., vol. 48, no. 10, pp. 1279–1283, 2016.

[38] C. C. Chang, C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell, and J.
J. Lee, “Second-generation PLINK: Rising to the challenge of larger and
richer datasets,” GigaScience, vol. 4, no. 1, Feb. 2015, Art. no. s13742-
015-0047-8.

[39] W. McKinney, “Data structures for statistical computing in Python,” in
Proc. 9th Python Sci. Conf., 2010, pp. 56–61.

[40] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585,
no. 7825, pp. 357–362, Sep. 2020.

[41] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, no. 85, pp. 2825–2830, 2011.

[42] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in
Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2016,
pp. 785–794.

[43] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers,” in Proc. 5th Annu. Workshop Comput. Learn.
Theory, 1992, pp. 144–152.

[44] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20,
no. 3, pp. 273–297, Sep. 1995.

[45] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
Oct. 2001.



FAOUZI et al.: MACHINE LEARNING-BASED PREDICTION OF ICDs IN PD 107

[46] L. Mason, J. Baxter, P. L. Bartlett, and M. R. Frean, “Boosting algorithms as
gradient descent,” in Advances in Neural Information Processing Systems
12, S. A. Solla, T. K. Leen, and K. Müller, Eds. Cambridge, MA, USA:
MIT Press, 2000.

[47] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Statist., vol. 29, no. 5, pp. 1189–1232, 2001.

[48] K. Cho et al., “Learning phrase representations using RNN encoder–
decoder for statistical machine translation,” in Proc. Conf. Empirical
Methods Natural Lang. Process., 2014, pp. 1724–1734.

[49] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. D. Alché-Buc, E. Fox,
and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, Inc., 2019,
pp. 8026–8037.

[50] P. Virtanen et al., “SciPy 1.0: Fundamental algorithms for scientific com-
puting in Python,” Nature Methods, vol. 17, no. 3, pp. 261–272, Mar. 2020.

[51] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Comput. Sci. Eng.,
vol. 9, no. 3, pp. 90–95, May 2007.

[52] E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, “Comparing the
areas under two or more correlated receiver operating characteristic curves:
A nonparametric approach,” Biometrics, vol. 44, no. 3, pp. 837–845,
Sep. 1988.

[53] G. Liu et al., “Prediction of cognition in Parkinson’s disease with a clinical-
genetic score: A longitudinal analysis of nine cohorts,” Lancet Neurol.,
vol. 16, no. 8, pp. 620–629, 2017.

[54] E. C. Johnson et al., “No evidence that schizophrenia candidate genes
are more associated with schizophrenia than non-candidate genes,” Biol.
Psychiatry, vol. 82, no. 10, pp. 702–708, Nov. 2017.

[55] N. R. Wray, M. E. Goddard, and P. M. Visscher, “Prediction of individual
genetic risk to disease from genome-wide association studies,” Genome
Res., vol. 17, no. 10, pp. 1520–1528, Oct. 2007.

[56] J. Faouzi, B. Couvy-Duchesne, S. Bekadar, O. Colliot, and J.-C. Cor-
vol, “Exploratory analysis of the genetics of impulse control disorders
in Parkinson’s disease using genetic risk scores,” Parkinsonism Related
Disord., vol. 86, pp. 74–77, 2021.

[57] R. Biundo et al., “Impulse control disorders in advanced Parkinson’s
disease with dyskinesia: The ALTHEA study,” Movement Disord.: Official
J. Movement Disord. Soc., vol. 32, no. 11, pp. 1557–1565, Nov. 2017.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


