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Computing large Riemann–Roch spaces for plane projective curves still constitutes a
major algorithmic and practical challenge. Seminal applications concern the construc-
tion of arbitrarily large algebraic geometry error correcting codes over alphabets with
bounded cardinality. Nowadays such codes are increasingly involved in new areas of
computer science such as cryptographic protocols and “interactive oracle proofs”. In
this paper, we design a new probabilistic algorithm of Las Vegas type for computing
Riemann–Roch spaces of smooth divisors, in characteristic zero, and with expected
complexity exponent 2.373 (a feasible exponent for linear algebra) in terms of the input
size.

KEYWORDS: Algebraic curves, Puiseux expansions, Riemann–Roch spaces, Complexity,
Algorithms

1. INTRODUCTION

Let 𝕂 be an effective field and let �̄� denote an algebraic closure of 𝕂. Here “effective”
means that we can perform arithmetic operations and zero-tests in 𝕂. The projective
space of dimension 2 over �̄� is written ℙ2. The input projective curve 𝒞 in ℙ2 is given
by its defining equation F(x, y, z)= 0, where F∈𝕂[x, y, z] is homogeneous, absolutely
irreducible, and of total degree 𝛿⩾1.

The field 𝕂(𝒞) denotes the set of rational functions of the form A/B where A and B
are homogeneous polynomials of the same degree with B prime to F, and subject to the
equivalence relation A/B∼A′/B′⟺AB′−A′B∈(F). For a given𝕂-rational divisor D
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of 𝒞 we are interested in computing a𝕂-basis of the Riemann–Roch space

ℒ(D)≔{h∈𝕂(𝒞)∖{0} :Div(h)⩾−D}∪{0}.

The goal of the present paper is the design of a new efficient probabilistic algorithmof Las
Vegas type to computeℒ(D) in the Brill–Noether fashion [15]. For the sake of simplicity,
we focus on fields of characteristic zero. The actual restriction on the characteristic only
concerns computations of Puiseux expansions, so our algorithm can be adapted to sup-
port positive characteristic whenever it is sufficiently large, namely greater than 𝛿, or
simply whenever the needed Puiseux expansions are well defined.

Riemann–Roch spaces intervene in various areas of applied algebra. For instance,
they are pivotal to design efficient algebraic geometry error correcting codes, as intro-
duced by Goppa [28, 29, 30]. These codes generalize the well known Reed–Solomon
codes because they may be defined over smaller alphabets. Such codes are particularly
suitable for new application areas such as “interactive oracle proofs” [9, 11], a construc-
tion itself involved in decentralized computations. In algebraic geometry, Riemann–Roch
spaces intervene in arithmetic operations in Jacobians of curves [44, 47, 71].

Currently, in practice, algebraic curves used in coding theory are mostly limited to
cases where Riemann–Roch spaces are explicitly known, such asHermitian curves, Suzuki
curves, or Giuletti–Korchmáros curves. For the sake of diversity it is relevant to handle
more general situationswhich challenges our ability to efficiently compute Riemann–Roch
spaces. For instance, known models of the curves introduced by Tsfasman, Vlăduţ, and
Zink [70] in order to construct codes asymptotically better than the Gilbert–Varshamov
bound involve non-ordinary singularities [48], which are still not supported by the recent
efficient algorithms of [3, 4, 52].

1.1. Brill–Noether in a nutshell
The present paper is in the vein of the seminal theory designed by Brill andNoether [15].
To the curve 𝒞 is associated a so-called adjoint divisor, written 𝒜 , related to the singu-
larities of 𝒞 ; see Section 3.2. Then the input 𝕂-rational divisor D is decomposed into
D=D+−D−, where D+ and D− are positive (also called effective) divisors with disjoint
supports; see the definition of divisors in Section 3. When degD+<degD−, ℒ(D) is {0},
so we freely assume that degD+⩾deg D− in the rest of the paper. The Brill–Noether
method mostly divides into two parts, as follows.

1. The first part consists in computing a homogeneous polynomial H that can serve as a
common denominator of a𝕂-basis ofℒ(D). Brill andNoether showed that it is sufficient
that H∈𝕂[x,y,z] satisfies

Div(H)⩾D++𝒜. (1.1)

Informally speaking, this means that the curve defined by H = 0 passes through the
points of D and the singular locus of 𝒞 with ad hocmultiplicities. Of course, for efficiency
purposes, it is of practical interest to take H of degree as small as possible. In fact Condi-
tion (1.1) can be expressed in terms of a homogeneous linear system: the unknowns are
the coefficients of H and the number of equations depends ondegD+ and deg𝒜 . As soon
as the number of unknowns is strictly larger than the number of equations, the system
admits a non-zero solution. This is a standard way to determine a candidate for H.
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2. Let d≔deg H and let 𝓁(D) denote the dimension of ℒ(D). The second part of the
Brill–Noether method consists in computing polynomials G1, . . . ,G𝓁 (D) of degree d such
that {Gi/H}i=1, . . . ,𝓁 (D) is a basis ofℒ(D). These polynomials can be obtained as a basis of
homogeneous polynomials G∈𝕂[x,y,z] of degree d, “defined modulo F”, that satisfy

Div(G)⩾Div(H)−D.

This condition can again be expressed in terms of a homogeneous linear system of equa-
tions in the coefficients of G, once Div(H) has been computed.

1.2. Computational model
For complexity analyses, we use an algebraic model over a general field 𝕂 (typically
computation trees [16]), so we count the number of arithmetic operations and zero-tests
performed by the algorithms. In order to simplify the presentation of complexity bounds,
we use the established soft-Oh notation [27, Chapter 25, Section 7]: f (n)=Õ(g(n))means
that f (n)=g(n) log2

O(1)(|g(n)|+3). A function f (n) is softly linear when f (n)= Õ(n).
The vector space of polynomials of degree <n in 𝕂[x] will be written 𝕂[x]<n. For

polynomial arithmetic, we content ourselves with softly linear cost bounds for prod-
ucts, divisions, greatest common divisors, and products of several polynomials. We will
freely use the known results presented in the textbook [27].

The constant 𝜔will denote a real value between 2 and 3 such that two n×n matrices
over a commutative ring can be multiplied with O(n𝜔) ring operations. The current best
known bound is 𝜔<2.37286 [7]. The constant 𝜛 is another real value between 1.5 and
(𝜔+ 1)/2 such that the product of a n× n√ matrix by a n√ × n√ matrix takes O(n𝜛)
operations. The current best known bound is 𝜛<1.629 [51, Table 2, half of the upper
bound for 𝜔(2)] (combined with the tensor permutation lemma [43, Corollary 7]).

1.3. Related work
Adjoint curves. The notion of adjoint for plane curves was introduced by Brill andNoe-
ther [15] in 1874 for ordinary curves: they defined a curve to be adjoint to another curve C
if it passes with multiplicity at least m− 1 through any singular point of C of multi-
plicity m. Since then, different notions of adjoint have been proposed.

In [31], Gorenstein presented an adjoint condition related to the conductor ideal of
the curve. One century after the work of Brill and Noether, Keller proposed a notion of
adjoint in terms of the “divisor of double points” of the curve; see [46] and [32, Defin-
itions 2.12 and 2.13]. More recently in [8, Appendix A, Section 2] and then in [26], the
adjoint condition has been defined in relation to the divisor of a differential form on the
curve. The same definition is used by Campillo and Farrán [18, 19]. All these notions are
proven to be equivalent when dealing with curves having only ordinary singularities:
see [32, Corollary 4.16] and [25, Chapter 8, Section 5, Proposition 8]. In the case of non-
ordinary singularities, Greco and Valabrega proved in [32, Theorem 4.6] that Goren-
stein's and Keller's adjoint conditions are equivalent, and in [32, Theorem 4.13] that the
Brill–Noether one is actually more restrictive. Examples of an adjoint in the sense of
Gorenstein (equivalently of Keller) that is not an adjoint in the sense of Brill andNoether
can be found in [32, Example 4.5] and [33, Example 2.5]. Following [26], one can fur-
ther deduce the equivalence of the adjoint condition in terms of a differential form with
Gorenstein's (and thus with Keller's) one.
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The adjoint conditions listed above represent themainstream in the literature. For the
sake of completeness, we mention yet other definitions. In [6], Abhyankar and Sathaye
proposed an adjoint notion depending on infinitely near singular points on the curve,
while in [33] one can find another construction in terms of virtual multiplicities. Papers
have been devoted to investigate these different definitions of adjoint and their relation-
ships: we refer the reader to the work of Greco and Valabrega [32, 33], and also to [21]
for a computational approach.

Algorithms. As said, the seminal Brill–Noether approach [15] to compute Riemann–Roch
spaces was originally restricted to ordinary curves, and later extended to arbitrary plane
curves by Le Brigand andRisler [50]. Although formulated in a slightly different manner
Le Brigand and Risler revisited Keller's point of view for the adjoint conditions. In [35,
36, 37], Haché designed an algorithm along with a software implementation from [50].
Other algorithms in the vein of the Brill–Noether approach have been proposed byHuang
and Ierardi [44] still for ordinary curves, and by Campillo and Farrán [18, 19] in com-
bination with the theory of Hamburger–Noether expansions. An implementation of a
Brill–Noether variant for general curves is available within the SINGULAR [67] computer
algebra system.

More recently, fast algorithms have been designed for nodal curves [3, 52], leading to
a complexity exponent as small as (𝜔+1)/2. Then, ordinary curves have been handled
in [4] with the same complexity exponent. Comparisons between algorithms for ordi-
nary curves can be found in [4].

In order to address general curves, one can also appeal to an alternate family of algo-
rithms, often called “arithmetic”, that is different from the Brill–Noether approach, and
that makes use of integral bases. The state-of-the-art algorithm of this family is due to
Hess [38] and is implemented both in the MAGMA [12] and SINGULAR [66] computer
algebra systems.

1.4. Our contributions

In order to design fast algorithms from the Brill–Noether theory, one central problem is
the definition and the efficient computation of the adjoint divisor 𝒜 of the curve 𝒞 .

Our first contribution is a new simple rewriting of the adjoint 𝒜 of 𝒞 in terms of the
rational Puiseux expansions (Xi(t),Yi(t)) centered at the singular points of 𝒞 ; see Defin-
itions 2.8 and 2.9. This condition is derived from the one based on differential forms [8,
26]. In this way, the adjoint condition Div(H)⩾𝒜 for a homogeneous polynomial H is
equivalent to the fact that the values of H at all the expansions (Xi(t),Yi(t)) have suffi-
ciently large valuations; see Section 3.2.

Our second contribution is an elementary proof of the followingwell known proposi-
tion via the Lagrange interpolation. Let P be a point of 𝒞 and consider two homogeneous
polynomials A and B that are prime to F: if DivP(B)⩾DivP(A)+𝒜P then Noether's con-
dition is satisfied by the triple (F,A,B) at P; see Section 3.3. The Max Noether theorem
and this proposition are the cornerstone of the residue theorem that summarizes the cor-
rectness of the Brill–Noether method; see Theorem 4.1. In other words, our approach
avoids both desingularizing 𝒞 explicitly and determining sequences of conductor ideals.
The practical interest is to benefit from fast algorithms recently developed for Puiseux
expansions of algebraic germs of curves.
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Once the Puiseux expansions of 𝒞 have been computed at all the singular points with
suitable orders, our third contribution is the reformulation of the linear systems for the
aboveH and Gi in terms of structured linear algebra. On the one hand, we propose a rel-
atively sharp bound for degH that allows simplifications in the subsequent computation
ofDiv(H); see Section 4. On the other hand,we show that a “compressed representation”
of the Gi is possible in terms of a basis of a𝕂[x]-module; this is defined in Section 7.4.

In order to prove our main Theorem 7.8, we design a new probabilistic algorithm of
Las Vegas type for computing Riemann–Roch spaces of smooth divisors, in characteristic
zero, and with expected complexity exponent 𝜔 in terms of the input size. This algo-
rithm makes use and extends ideas introduced in [4]. Its bottleneck lies in linear system
solving. The exponent 𝜔 is achieved by means of a generic solver, but we also develop a
more promising alternative approach via the aforementioned𝕂[x]-modules.

Further new technical ingredients also concern divisors, for which we develop effi-
cient algorithms for their power series expansion representation in Section 3. This repre-
sentation is more convenient than the global one used in [3, 4] because it fits both smooth
and non-smooth divisors.

For the sake of comparison, let us mention that the complexities of the algorithms
implemented by Haché [35, 36, 37] have not been analyzed into details, to our best
knowledge. Hess' algorithm [38] also uses𝕂[x]-modules to represent and compute Rie-
mann–Roch spaces, and achieves a polynomial complexity bound for general curves but
the exact complexity exponent does not seem to have been analyzed so far, still to our
best knowledge. At least, we know from [1] that the needed integral closures can be
computed in softly quadratic time in terms of 𝛿 2 (the dense size of the representation
of F).

2. PREREQUISITES

This section is mostly devoted to notations, to well known algorithms in computer
algebra, and to Puiseux expansions.

2.1. Zariski closed sets

The projective space of dimension n over K̄ is denoted by ℙn. For a subset S of homo-
geneous polynomials in 𝕂[x0, . . . , xn], we write 𝒱ℙ(S) for the Zariski closed set in the
projective space ℙn defined as the common zeros of the elements of S, that is

𝒱ℙ(S)≔{P∈ℙn :F(P)=0,∀F∈S}.

The affine space of dimension n over K̄ is denoted by 𝔸n. For a set S of polynomials in
𝕂[x1, . . . ,xn], we write 𝒱𝔸(S) for the Zariski closed set in the affine space 𝔸n defined as
the common zeros of the elements in S, that is

𝒱𝔸(S)≔{P∈𝔸n : f (P)=0,∀ f ∈S}.

If𝕄≔𝕂[x1, . . . ,xn] is a polynomial ring and P a point in𝔸n, then𝕄P will represent the
local ring of the rational functions A/B in𝕂(x1, . . . ,xn) such that B(P)≠0.
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2.2. Algorithms for polynomials
Wefirst recall that a linear change of variables in a homogeneous polynomial takes softly
linear time. If M is a 3×3matrix over𝕂, then F∘M stands for the right composition of F
with the linear map

(((((((((((((((((
(((((((
(
( x
y
z )))))))))))))))))
)))))))
)
)
⟼M(((((((((((((((((

(((((((
(
( x
y
z )))))))))))))))))
)))))))
)
)
.

LEMMA 2.1. Let F∈𝕂[x,y,z] be a homogeneous polynomial of degree 𝛿 and let M be an invert-
ible 3×3 matrix over𝕂. Then F∘M can be computed with Õ(𝛿 2) operations in𝕂.

Proof. The case |𝕂|⩾𝛿+1 corresponds to [42, Proposition 9]. It will be sufficient for the
main result of the paper. The general case is proved in [4, Lemma 2.5]. □

Then, we recall a complexity result for modular composition, that will be used to
evaluate rational functions at divisors. At present time no algorithm with softly linear
cost is known for bivariate modular composition over a general field𝕂. We will content
ourselves with the following statement.

LEMMA 2.2. Let f ∈𝕂[x,y] be of total degree 𝛿, let 𝜒∈𝕂[t] and let u,v∈𝕂[t]<deg𝜒 be such
that 𝜆xu(t)+𝜆yv(t)= t rem𝜒(t) holds for some (𝜆x,𝜆y)∈𝕂2. Then f (u(t),v(t)) rem𝜒(t) can
be computed with

Õ�𝛿
𝜔
2+1+𝛿

𝜔−1
2 deg 𝜒�

operations in𝕂.

Proof. Up to permuting x and y, we may assume that 𝜆y≠0. We compute

g(x, t)≔ f (x, (t−𝜆xx)/𝜆y)

with Õ(𝛿 2) operations in𝕂 via Lemma 2.1. Then we obtain g(u(t), t) rem 𝜒(t) by means
of [3, Lemma 2.1], that is a variant of an algorithm designed in [58]. □

We also recall two well known propositions for multi-remaindering and Chinese
remaindering [27, Chapter 10, Section 3].

PROPOSITION 2.3. Let 𝜒1,...,𝜒s be polynomials in𝕂[x], and let d≔deg 𝜒1+⋅⋅⋅+deg𝜒s. Given
f ∈𝕂[x], the remainders f rem 𝜒i for i=1, . . . , s can be computed with Õ(d+deg f ) operations
in𝕂.

PROPOSITION 2.4. Let 𝜒1,...,𝜒s be pairwise coprime polynomials in𝕂[x], and let d≔deg𝜒1+⋅⋅⋅+
deg 𝜒s. Given r1, . . . , rs∈𝕂[x] such that deg ri<deg 𝜒i, the unique polynomial f ∈𝕂[x]<d
satisfying f rem 𝜒i= ri for i=1, . . . , s can be computed with Õ(d) operations in𝕂.

The change of primitive elements for quotient algebras of the form 𝕂[t]/(𝜃(t)) is a
classical problem in computer algebra. The proof of the following lemma gathers efficient
known techniques: early ideas go back to Le Verrier [53], and fast algorithms have been
designed and popularized by Shoup [63, 64]. Here, we slightly improve [3, Lemma 2.3].
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LEMMA 2.5. Let 𝜃(t)∈𝕂[t] be a monic separable polynomial of degree d. Given e(t) in 𝕂[t]/
(𝜃(t)) we can test if e(t) is primitive for 𝕂[t]/(𝜃(t)) and, if so, compute its minimal polyno-
mial 𝜃 along with 𝜂(t)∈𝕂[t]<d such that

𝕂[t]/(𝜃(t)) ≅ 𝕂[t]/(𝜃(t))
t ⟼ 𝜂(t)

e(t) ⟻ t

is an isomorphism, with O(d𝜛) field operations, whenever𝕂 has characteristic zero or >d.

Proof. Let Tr denote the trace map of 𝕂[t]/(𝜃(t)). To obtain the vector representation
of Tr in the canonical basis of the powers of x, we use the well known Newton–Girard
formula. In fact we let 𝜇(z)≔zd𝜃(1/z) stand for the reciprocal polynomial of 𝜃, and we
compute the power series expansion

−𝜇′(z)
𝜇(z) =Tr(t)+Tr(t2)z+ ⋅ ⋅ ⋅ +Tr(td−1)zd−1+O(zd)

with Õ(d) operations in𝕂.
Let 𝜃 be the characteristic polynomial of the multiplication by e(t) endomorphism in

this algebra. Le Verrier's method consists in computing

Tr(e(t)i), for i=1, . . . ,d.

This task is the transpose of modular composition (for instance see [64, Section 2], or [40,
Section 1.2]), so it takesO(d𝜛) operations in𝕂 by combining [27, Theorem 12.4]with [16,
Theorem 13.20]. Then, the generating series

𝜏(z)≔�
i⩾0

Tr(e(t)i+1)zi

satisfies the Newton–Girard formula

−𝜈 ′(z)
𝜈(z) =𝜏(z)+O(zd), (2.1)

where 𝜈(z)≔ zd 𝜃(1/z) is the reciprocal of 𝜃. Therefore 𝜈 is recovered with Õ(d) opera-
tions in characteristic zero or>d; for instance see [14, Corollary 1] or [34, Proposition 3].
Testing if e(t) is primitive is equivalent to testing if 𝜃 is separable, which takes Õ(d)
operations in𝕂. If e(t) is primitive then t can be written as

t=𝜂(e(t)) rem 𝜃(t),

where 𝜂=𝜂0+𝜂1 t+ ⋅ ⋅ ⋅ +𝜂d−1 td−1∈𝕂[t]. We write Λ for the linear form

Λ: 𝕂[t]/(𝜃(t)) ⟶ 𝕂
a(t) ⟼ Tr(t a(t)),

and verify that

�
i⩾0

Λ(e(t)i)zi = �
j=0

d−1

𝜂j�
i⩾0

Tr(e(t)i+ j)zi

= 𝜂(z−1) (z𝜏(z)+d)+z−1𝜌(z−1),
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where 𝜌∈𝕂[z] has degree <d−2, so

𝜎(z) ≔ zd−1𝜈(z)�
i⩾0

Λ(e(t)i)zi

= zd−1𝜂(z−1)(−z𝜈 ′(z)+d𝜈(z))+ zd−2𝜌(z−1)𝜈(z)

is a polynomial of degree⩽2d−1. Since −z𝜈 ′(z)+d𝜈(z) has degree ⩽2d−1, we further
obtain that 𝜎 has degree ⩽2d−2. Again, using the transpose algorithm of the modular
composition, the computation of Λ(e(t)i) for i=0, . . .,n−1, hence of 𝜎, takes O(d𝜛) oper-
ations in𝕂 by [27, Theorem 12.4].

It follows that

z2d−1𝜎(z−1)=𝜂(z)(−zd−1𝜈 ′(z−1)+dzd𝜈(z−1))+𝜌(z)zd+1𝜈(z−1),
whence that

z2d−1𝜎(z−1) = z𝜂(z)𝜃′(z)+𝜌(z)zd+1𝜈(z−1)
= z𝜂(z)𝜃′(z)+𝜌(z)z𝜃(z).

At this point 𝜃 has been computed, we may divide both sides of the latter identity by z,
and deduce 𝜂 as

𝜂(z)=(z2d−2𝜎(z−1))/𝜃 ′(z) rem 𝜃(z),
in softly linear time. □

The last useful sub-algorithm concerns the computation of Taylor expansions of poly-
nomials at algebraic numbers. Precisely, given a separable polynomial 𝜃 ∈𝕂[s] and a
positive integer m, we consider the map

Γ𝜃,m: 𝕂[s]/(𝜃m(s)) ≅ (𝕂[t]/(𝜃(t)))[[S− t]]/(S− t)m

s ⟼ S.

PROPOSITION 2.6. [39, simplified from Section 4.2] Γ𝜃,m is an isomorphism. Both directions
of Γ𝜃,m can be computed in softly linear time, namely Õ(mdeg 𝜃) operations in𝕂.

2.3. Rational Puiseux expansions
From now and until the end of the section we gather known facts and complexity results
about Puiseux series. It is assumed that 𝕂 has characteristic zero. We rely on recent
papers by Poteaux and his collaborators [60, 61, 62], in which further details and histor-
ical references can be found. We recall that𝕂[[x]] represents the ring of the power series
in x. Its field of fractions, called the field of Laurent series, is written𝕂((x)).

Let F∈𝕂((x))[y] be a monic separable polynomial of degree dy in y. We write

Fy≔
∂F
∂y , Discy F≔(−1)dy(dy−1)/2Resy(F,Fy)∈𝕂((x)),

where Resy(F,Fy) represents the resultant of F and Fy regarded in the main variable y. It
is well known that F admits dy distinct roots in the field of Puiseux series

�̄�⟨⟨x⟩⟩≔�
e⩾1

�̄�((x1/e)),

that are called its Puiseux expansions. From the seminal works of Newton and Puiseux,
the field �̄�⟨⟨x⟩⟩ is known to be algebraically closed. If F is monic in 𝕂[[x]][y], then its
Puiseux expansions have nonnegative valuation in x.
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PROPOSITION 2.7. [23, 24] Let F be an absolutely irreducible polynomial in𝕂((x))[y] of degree
dy= e. Then, there exists 𝛾∈𝕂∖{0} and∑i=n

∞ 𝛽i t i∈𝕂((t)) such that

F=�
k=0

e−1

(((((((((((((((((((y−�
i=n

∞

𝛽i (𝜁 k(x/𝛾)1/e)i))))))))))))))))))),
where 𝜁 stands for a primitive e-th root of unity.

Proof. These expansions appeared in [24, Section 1, p. 124], and the proof of their exis-
tence follows from a variant of the Newton polygon method [24, Section 4.4]. □

This proposition motivates the following definition, still extracted from [23, 24].

DEFINITION 2.8. Let F∈�̄�((x))[y] be an irreducible polynomial of degree e. Let 𝔼 represent the
field generated by the coefficients of F over 𝕂. A rational Puiseux expansion of F over 𝕂 is a
pair (X(t),Y(t))∈𝔼((t))2, such that the following properties hold:
• (X(t),Y(t))=(𝛾 te,∑i=n

∞ 𝛽i t i), with n∈ℤ and 𝛾𝛽n≠0,
• F(X(t),Y(t))=0.

A rational Puiseux expansion represents the e following Puiseux series in �̄�((x1/e)),
for k=0, . . . , e−1:

𝜑k(x)≔�
i=n

∞

𝛽i (𝜁 k (x/𝛾)1/e)i,

where 𝜁 is a primitive e-th root of unity. The commonminimal polynomial over𝔼((x))[y]
of these series is

F=�
k=0

e−1

(y−𝜑k(x)).

The integer e is called the ramification index of the Puiseux expansions of F: no Puiseux
expansion of F belongs to �̄���x1/e′��with e′<e. More generally, a rational Puiseux expan-
sion of a non necessarily absolutely irreducible polynomial F∈𝕂((x))[y] will mean a
rational Puiseux expansion of one of its absolutely irreducible factors.

For algorithmic purposes and for avoiding irreducible polynomial factorization, we
need to revisit Definition 2.8 in order to allow rational Puiseux expansions to be defined
over products of fields.

DEFINITION 2.9. A complete set of rational Puiseux expansions of a polynomial F∈𝕂((x))[y]
is a sequence of triples (𝜇i(a),Xi(t),Yi(t)) for i=1, . . . , s such that:
• 𝜇i∈𝕂[a] is monic and separable; we set 𝔼i≔𝕂[a]/(𝜇i(a)) and 𝛼i will represent the class

of a in 𝔼i,
• (Xi(t)=𝛾i tei,Yi(t))∈𝔼i((t))2,
• 𝛾i and the initial coefficients of Yi and FY(Xi(t),Yi(t)) are invertible in 𝔼i,
• {1, . . . , s} × 𝒱𝔸(𝜇i) is in one-to-one correspondence with the absolutely irreducible factors

of F. Precisely, for any i∈{1, . . ., s} and any root 𝛼 of 𝜇i, (𝜋𝛼(Xi(t)),𝜋𝛼(Yi(t))) is a rational
Puiseux expansion (with the meaning of Definition 2.8) of an absolutely irreducible factor
of F, where 𝜋𝛼 stands for the natural projection from 𝔼i[[t]] onto𝕂[𝛼][[t]].
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Example 2.10. Let us take𝕂≔ℚ and

F(x,y)≔y7−x (x3+y2+xy)2.

We have valx(Discy F) = 33. With the Newton polytope algorithm, we compute three
rational Puiseux expansions with the representation of Definition 2.9:
𝜇1(a) ≔ a2−2a+2
X1(t) ≔ t
Y1(t) ≔ −t+𝛼1 t2+O(t3)

𝜇2(a) ≔ a
X2(t) ≔ t3
Y2(t) ≔ t+O(t2)

𝜇3(a) ≔ a
X3(t) ≔ −t2
Y3(t) ≔ −t4+ t6− 2 t8+5 t10+

t11+O(t12)

PROPOSITION 2.11. Let F∈𝕂[[x]][y] be monic and separable of degree dy in y, and let ((𝜇i(a),
Xi(t),Yi(t)))i=1, . . . ,s represent the rational Puiseux expansions of F with the meaning of Defini-
tion 2.9. Then, we have

valx(Discy F)=�
i=1

s

deg 𝜇ivalt(Fy(Xi(t),Yi(t))).

Proof. Let 𝜁i stand for a primitive ei-th root of unity. The multiplicative property of the
resultant yields

valx(Discy F)=�
i=1

dy

deg 𝜇i�
k=0

ei−1

valx(Fy(x,Yi(𝜁ik(x/𝛾i)1/ei))).

On the other hand, for k=0, . . . , ei−1 we verify that

valx(Fy(x,Yi(𝜁ik(x/𝛾i)1/ei)))=valt(Fy(Xi(t),Yi(t)))/ei. □

2.4. Puiseux expansions at ramified points
In this subsection, F now represents a polynomial in 𝕂[x,y]. We are interested in com-
puting all the rational Puiseux expansions above all the critical points of the projection
from the curve 𝒱𝔸(F) onto the x-axis:

𝒱𝔸(F) ⟶ �̄�
(x,y) ⟼ x.

The following proposition is a consequence of the proof of [62, Theorem 1.2].

PROPOSITION 2.12. Let F∈𝕂[x,y] be of total degree 𝛿 and of degree 𝛿 in y. We can compute the
following data with a probabilistic algorithm of Las Vegas type that takes an expected number of
Õ(𝛿 3) operations in𝕂:
• (Δi,mi)i=1, . . . ,r; we set 𝕃i≔𝕂[b]/(Δi(b)); 𝛽i will represent the class of b in 𝕃i;
• For i=1, . . . , r, quadruples ((𝜇i, j(a),Xi, j(t),Yi, j(t), 𝜎i, j))j=1, . . . ,si with 𝜇i, j(a)∈𝕃i[a], 𝜎i, j∈
ℕ⩾0, and

(Xi, j(t),Yi, j(t))∈�𝔼i, j[[t]]/(t𝜎i,j+1)�2,

where 𝔼i, j≔𝕃i[a]/(𝜇i, j(a)); 𝛼i, j will represent the class of a in 𝔼i, j;
Such that the following properties hold:
• Discy F=Δ1

m1 ⋅ ⋅ ⋅ Δr
mr, where the Δi∈𝕂[x] are pairwise separable coprime factors of Discy F

of multiplicity mi (the mi are not necessarily pairwise distinct), for i=1, . . . , r;
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• 𝜇i, j is monic and separable of degree ⩾1, and its non-zero coefficients are invertible in 𝕃i, for
i=1, . . . , r and j=1, . . . , si; here the separability of 𝜇i, j means that the discriminant of 𝜇i, j is
invertible in 𝕃i;

• Xi, j writes as 𝛽i+𝛾i, j tei,j, with 𝛽i zero or invertible in 𝕃i, 𝛾i, j invertible in 𝔼i, j and ei, j⩾1, for
i=1, . . . , r and j=1, . . . , si;

• The non-zero coefficients of Yi, j are invertible in 𝔼i, j, for i=1, . . . , r and j=1, . . . , si;
• The initial coefficient of Fy(Xi, j(t),Yi, j(t)) is invertible in 𝔼i, j and we have

𝜎i, j=valt(Fy(Xi, j(t),Yi, j(t))),
for i=1, . . . , r and j=1, . . . , si;

• For i=1,...,r and for any root 𝛽 of Δi, let 𝜋𝛽 stand for the natural projection 𝕃i→𝕂[𝛽] (but
also for its natural coefficient-wise extensions), then

((𝜋𝛽(𝜇i, j(a)),𝜋𝛽(Xi, j(t)−𝛽i),𝜋𝛽(Yi, j(t))))j=1, . . . ,si
are the truncations at precision 𝜎i, j+1 of the rational Puiseux expansions of F regarded in
𝕂[𝛽][[x−𝛽]][y], with the meaning of Definition 2.9.

Proof. We assume that the reader is familiar with [62], especially with Sections 5 and 6.
We compute the “D5-desingularisation” of F, with the meaning of [62, Definition 6.1,
based on Definition 5.10], andwith an expected number of Õ(𝛿 3) operations in𝕂 by [62,
Proposition 6.2]. As a result, we directly obtain all the needed data and properties but
the following ones, which require a closer look at the internal calculations:
• The truncation of the parametrization (Xi, j(t),Yi, j(t)) is computed at precision>2𝜎i, j⩾
𝜎i, j+1. This is not explicitly stated in [62], that focuses on singular parts. But this
is a byproduct of [62, Proposition 3.14], that is passed on Step 5 of algorithm Moni-
cRNP3. This internal precision is indeed required by the Hensel lifting subroutine.

• The valuation of Fy(Xi, j(t),Yi, j(t)) is determined by the successive internal Newton
polygons leading to (Xi, j(t),Yi, j(t)) during the calculations; see [62, Lemma 3.16]. On
the other hand all the Puiseux expansions represented by the pair (Xi, j(t),Yi, j(t)) share
the same sequence of Newton polygons: this is ensured by Step 2 of [62, Algorithm
Polygon-Data]. Consequently, the initial coefficient of Fy(Xi, j(t),Yi, j(t)) is invert-
ible. □

Proposition 2.12 will play a part in computing adjoint divisors of curves in the next
section. This computation will not be the bottleneck of our main algorithm (underlying
Theorem 7.8): a complexity boundO(𝛿 2𝜔)within Proposition 2.12 would suffice for The-
orem 7.8.

Example 2.13. (Continued from Example 2.10) Let us take𝕂≔ℚ and

F(x,y)≔y7−x(x3+y2+xy)2,

that is absolutely irreducible. We illustrate the data occurring in Proposition 2.12. The
equation F=0 defines a curve 𝒱𝔸(F) of degree 𝛿=7. The discriminant of F in y is

Discy(F)=−Δ1
m1(x)Δ2

m2(x),
where

Δ1(b) ≔ b

Δ2(b) ≔ b9− 345744
823543 b

5+ 377300
823543 b

4− 122500
823543 b

3+ 19412
823543 b

2− 3456
823543 b+

432
823543,
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and m1≔33, m2≔1, r=2.
The unique singular point of 𝒱𝔸(F) is P≔(0,1). LetΠx represent the projection from

the curve 𝒱𝔸(F) onto the x-axis. The critical points of Πx are the roots of Δ1 and Δ2.
Here 𝛽1 is the class of b in 𝕃1≔𝕂[b]/(Δ1(b)). The y-coordinates of the points of

Πx
−1(𝛽1) are the roots of F(𝛽1,y)=y7=0, that is the singleton {0}. We obtain the following

truncations for the Puiseux expansions (recall that 𝛼1,1 represents a root of 𝜇1,1):

𝜇1,1(a) ≔ a2−2a+2
X1,1(t) ≔ t

Y1,1(t) ≔ −t+𝛼1,1 t2+�−3
2 𝛼1,1+5� t3+ ⋅ ⋅ ⋅ +�2178 𝛼1,1−

405
8 � t5+O(t6)

𝜎1,1 ≔ 5

𝜇1,2(a) ≔ a
X1,2(t) ≔ t3

Y1,2(t) ≔ t+ 2
3 t

3− 5
9 t

5+O(t7)
𝜎1,2 ≔ 6

𝜇1,3(a) ≔ a
X1,3(t) ≔ −t2

Y1,3(t) ≔ −t4+ t6−2 t8+5 t10+ t11−14 t12+ ⋅ ⋅ ⋅− 1615
16 t17+O(t18)

𝜎1,3 ≔ 17.

The y-coordinates of the points of Πx
−1(𝛽2) are the roots of F(𝛽2,y)=0. We verify that 5

of these roots are simple and one is double: in fact F(𝛽2, a) factorizes into 𝜇2,1(a) 𝜇2,22 (a)
where 𝜇2,1 has degree 5 and 𝜇2,2 has degree 1. We deduce that

𝜇2,1(a) ≔ a5+�−7524223091985523
99075595293942 𝛽28+ ⋅ ⋅ ⋅ + 6356788317432

16512599215657�a
4+ ⋅ ⋅ ⋅

X2,1(t) ≔ 𝛽2+ t
Y2,1(t) ≔ 𝛼2,1+O(t)

𝜎2,1 ≔ 0

𝜇2,2(a) ≔ a+ 7524223091985523
198151190587884 𝛽28+ ⋅ ⋅ ⋅− 3178394158716

16512599215657
X2,2(t) ≔ 𝛽2+𝛾2,2 t2

Y2,2(t) ≔ 𝛼2,2+𝛾2,2′ t+O(t2)
𝜎2,2 ≔ 1,

where 𝛾2,2 and 𝛾2,2′ are some elements of 𝔼2,2.

Remark 2.14. The first preprint version [2] of the present paper contains another proof
of Proposition 2.12 independent of Sections 5 and 6 of [62]. It relies on the combination
of [62, Theorem 1.1] and the directed evaluation paradigm [41]. The resulting algorithm
is expected to be easier to implement than the one in [62].

2.5. Uniformizing parameters
Let F denote a monic irreducible polynomial in �̄�[[x]][y] of degree e, so

�̄�[[x]][y]/(F(x,y))
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is an integral domain, whose field of fractions is �̄�((x))[y]/(F(x,y)). The rational Puiseux
expansion of F over 𝕂 is written (X(t),Y(t)), as in Definition 2.8. The next proposition
is well known and is often deduced from algorithms that compute Puiseux expansions.
For completeness we include a standalone proof based on the definitions.

PROPOSITION 2.15. Let F denote a monic irreducible polynomial in �̄�[[x]][y]. Then, �̄�((x))[y]/
(F(x, y)) is endowed with the unique discrete valuation that extends the valuation in x via the
following isomorphism:

Φ: �̄�((x))[y]/(F(x,y)) ≅ �̄�((t))
x ⟼ X(t)=𝛾 te

y ⟼ Y(t).

Proof. The map Φ is injective because F is the minimal polynomial of Y((x/𝛾)1/e) over
�̄�((x)), as seen in Section 2.3. Let us write Y(t)=∑i⩾0 𝛽i t i as before, and consider the
morphism of �̄�((x))-algebras

Ψ: �̄�((x))[y] ⟶ �̄�((x))[t]/(te−x/𝛾)

y ⟼ Y(t)=�
k=0

e−1

((((((((((((((�i⩾0 𝛽ie+k(x/𝛾)i)))))))))))))) tk.
The polynomial F is in kerΨ. Since F and te−x/𝛾 are irreducible over �̄�((x)) and of the
same degree e, the map

Ψ̄: �̄�((x))[y]/(F(x,y)) ⟶ �̄�((x))[t]/(te−x/𝛾)
y ⟼ Y(t).

is an isomorphism. Finally we note thatΦ(Ψ̄−1(t))= t, soΦ is surjective. □

3. DIVISORS

From now on, F denotes an absolutely irreducible homogeneous polynomial in 𝕂[x,y,
z] that defines a curve 𝒞 in ℙ2. This section is devoted to the definitions of places and
divisors of 𝒞 in terms of rational Puiseux expansions.

3.1. Places and valuations
A place 𝒫 of �̄�(𝒞) in the affine chart z=1 will be represented by a pair (X(t),Y(t))∈
�̄�[[t]]2 such that (X(t)−X(0),Y(t)) is a rational Puiseux expansion of F(x,y,1) regarded
in𝕂((x−X(0)))[y], as in Definition 2.8. The point (X(0) :Y(0) :1) of 𝒞 is called the center
of 𝒫 . From Proposition 2.15 a place 𝒫 induces a valuation as follows:

val𝒫(A)≔valt(A(X(t),Y(t),1)),

for any homogeneous polynomial A in �̄�[x,y,z].

Remark 3.1. This representation of places depends on ambient coordinates. For instance,
a place 𝒫 centered at a regular point P of 𝒞 has ramification index 1 if Fy(P)≠ 0, but
ramification index ⩾2 otherwise. However the valuation induced by a place does not
depend on the coordinates.
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A divisor D of a curve 𝒞 is a symbolic sum of places multiplied by integers called
multiplicities:

D=m1𝒫1+ ⋅ ⋅ ⋅ +ms𝒫 s.

The support of D, denoted by suppD, is the set of places which appear in the decompo-
sition of Dwith non-zero multiplicities. A divisor D is smooth if the centers of the places
of its support are regular points of the curve. The degree of D is defined by

degD≔m1+ ⋅ ⋅ ⋅ +ms.

If ℰ is a finite subset of 𝒞 , then 𝒫|ℰ will mean that 𝒫 is a place centered at a point of ℰ .
If A is a homogeneous polynomial in �̄�[x,y,z] prime to F, then its associated divisor is

Div(A)= �
𝒫|𝒱ℙ(F,A)

val𝒫(A)𝒫.

3.2. Adjoint divisor

Let us assume that the set of singular points of 𝒞 , written Sing(C), lies in the affine chart
z=1. Let𝒫 be a place represented by an expansion (X(t),Y(t)) as above. Following [8],
the local adjoint divisor of 𝒞 at a point P∈Sing(C) is defined by

𝒜P≔−�
P ∣P

valt((((((((((((((
e te−1

Fy(X(t),Y(t),1)))))))))))))))P ,
and the (global) adjoint divisor is

𝒜≔ �
P∈Sing(C)

𝒜P. (3.1)

Remark 3.2. It is well known that 𝒜 is positive. In fact, this can be seen from the fol-
lowing calculations. Let ((𝜇i(a),Xi(t)=𝛾i tei,Yi(t)))i=1, . . . ,s represent the rational Puiseux
expansions of F centered at a singular point P of 𝒞 that we assume to be (0 : 0 : 1) for
simplicity. So the local factorization of F can be written

F(x,y, 1)=u(x,y)�
i=1

s

�
k=0

ei−1

(y−Yi(𝜁ik(x/𝛾i)1/ei)),

where u is invertible in𝕂[[x,y]], and 𝜁i is a primitive ei-th root of unity. Then we calcu-
late

Fy(X1(t),Y1(t),1)

= u(X1(t),Y1(t))�
k=1

ei−1
(Y1(t)−Y1(𝜁ik t))�

i⩾2

s

�
k=0

ei−1

(Y1(t)−Yi(𝜁ik (𝛾1 te1/𝛾i)1/ei))

and we note that

valt(((((((((((((((((�k=1
ei−1

(Y1(t)−Y1(𝜁ik tei)))))))))))))))))))⩾ ei−1,

which ensures that the multiplicity of the place (X1(t),Y1(t)) in 𝒜 is nonnegative.
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Remark 3.3. It is usual to extend the valuation induced by a place𝒫 to differential forms
of 𝒞 . The multiplicity of 𝒫 in the adjoint divisor is classically defined by

valP((((((((((((dxFy ))))))))))))≔valt((((((((((((((
e te−1

Fy(X(t),Y(t),1))))))))))))))).

DEFINITION 3.4. A homogeneous polynomial A∈𝕂[x,y,z] is adjoint to 𝒞 if DivP(A)⩾𝒜P for
all singular points P of 𝒞. It is said to be sharply adjoint to 𝒞 if the inequalities are equalities for
all singular points P.

Example 3.5. Let 𝒞 be the curve defined by y2−x3=0 in the affine chart z=1. We recall
that in [46] Keller proposed a notion of adjoint that is used in [50] for instance; see
also [32, Definitions 2.12 and 2.13]. In order to compute Keller's adjoint divisor, we per-
form a single blow-up of equation y= t x. The strict transform 𝒞 is defined by t2− x=
0. The exceptional divisor is defined by x: it intersects 𝒞 at the origin with multiplicity
m=2. Consequently, the Keller adjoint divisor is:

𝒜=(m−1)m(0, 0)=2(0, 0).

Let h≔ a(x)+ b(x)y, that rewrites h̃≔ a(x)+xb(x) t, in terms of the coordinates x, t. The
conditionDiv(h)⩾𝒜 means that h̃ vanishes at the originwith intersectionmultiplicity⩾2.
This is equivalent to

valt(a(t2)+b(t2) t3)⩾2,

and then equivalent to valt(a(t2))⩾2.
On the other hand, the adjoint condition defined in (3.1) is obtained from the single

place 𝒫 parametrized by (X(t),Y(t))=(t2, t3), that yields

valP((((((((((((dxFy ))))))))))))=valt�
2 t
2 t3�

=−2.

It follows that h is adjoint if, and only if, valt(h(t2,t3))⩾2. This is equivalent to valt(a(t2))⩾
2. As expected, the adjoint definition (3.1) is the same as Keller's one in this example.

3.3. Noether's condition
Let P∈ℙ2 be a singular point of 𝒞 . Without loss of generality, up to a suitable linear
change of coordinates, we may assume that P=(0 :0 :1) and that the local equation of F
in the neighborhood of P writes as follows:

F(x,y, 1)=u(x,y)�
i=1

m

(y−𝜑i(x)), (3.2)

where u∈𝕂[[x,y]] is invertible and where 𝜑1, . . .,𝜑m denote the Puiseux expansions of F
regarded in �̄�[[x]][y].

DEFINITION 3.6. (Noether's local condition) Let F,G,H be homogeneous polynomials in𝕂[x,
y, z]. When F and G are coprime, we say that Noether's condition is satisfied by the triple
(F,G,H) at a point P∈ℙ2 if H is in the ideal generated by F and G in �̄�[x,y,z]P.
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PROPOSITION 3.7. Let P be a point of 𝒞, and consider two homogeneous polynomials A and B in
𝕂[x,y,z] that are prime to F. If DivP(B)⩾DivP(A)+𝒜P then Noether's condition is satisfied
by the triple (F,A,B) at P.

Proof. Without loss of generality we may assume that P=(0 :0 :1) as above. Let 𝜑1, . . . ,
𝜑m denote the Puiseux expansions introduced in (3.2). By conjugation, the set {𝜑1,...,𝜑m}
is naturally partitioned into places 𝒫1, . . . ,𝒫 s, with s⩽m. The ramification index of 𝜑i is
written ei. The assumption means that

val𝒫 i�
B
A�⩾−val𝒫 i((((((((((((dxFy )))))))))))),

for i=1, . . . , s. For i=1, . . . ,m, this rewrites into

valx�
B
A(x,𝜑i(x),1)�−valx(Fy(x,𝜑i(x),1))⩾−(((((((1− 1

ei)))))))>−1. (3.3)

The Lagrange interpolation formula in

�̄�⟨⟨x⟩⟩[y]/(((((((((((((((((�i=1
m

(y−𝜑i(x)))))))))))))))))))
gives

�B
A�(x,y, 1)≡ c(x,y) mod�

i=1

m

(y−𝜑i(x)), (3.4)
where

c(x,y)≔�
i=1

m B(x,𝜑i(x),1)
A(x,𝜑i(x),1)

∏j≠i (y−𝜑j(x))
Fy(x,𝜑i(x), 1)

. (3.5)

Using that val(a+b)⩾min(val(a),val(b)), Equation (3.3) implies

valx(c(x,y))⩾min
i

valx((((((((((((BA(x,𝜑i(x), 1)
1

Fy(x,𝜑i(x), 1)))))))))))))>−1. (3.6)

Since interchanging i and j in the right-hand side of Equation (3.5) leaves the expres-
sion of c unchanged, c is invariant under the action of transpositions, hence under any
permutation of 𝜑1, . . . , 𝜑m. Consequently, c can be written as a polynomial in terms of
elementary symmetric functions of 𝜑1,...,𝜑m; see [49, Chapter IV, Section 6, Theorem 6.1]
for instance. Since ∏i=1

m (y−𝜑i(x))∈𝕂[[x]][y] it follows that c∈𝕂[[x]][y], hence that
the left-hand side of Equation (3.6) is a nonnegative integer.

Equation (3.4) implies that B(x,y,1) belongs to the ideal (F(x,y,1),A(x,y,1)) regarded
in𝕂[[x]][y], that corresponds to Noether's condition at P. □

The proof of Proposition 3.7 turns out to be remarkably elementary compared to
other ones in the literature that appeal to desingularization trees or conductor ideals.
Proposition 3.7 can be used in replacement of [4, Proposition 3.5] so that [4, Section 3]
can be straightforwardly revisited into a complete elementary proof of the Brill–Noe-
ther method in characteristic zero.

3.4. Computation of the adjoint divisor
We conclude this section with a summary of the main results: the computation of the
adjoint divisor and the rephrasing of the adjoint condition for the purpose of our main
algorithm. But before it is useful to introduce an ad hoc definition for “generic coordi-
nates”, that will occur several times in the sequel.
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DEFINITION 3.8. Let F and G be two coprime homogeneous polynomials in𝕂[x,y,z]. The coor-
dinates x,y,z are said to be generic for F and G if the following conditions hold:
• degy F=deg F,
• R(x,z)≔Resy(F(x,y,z),G(x,y,z)) has degree deg FdegG in x.
We say that the coordinates are generic for F if they are generic for F and Fy.

Note that R(x, z) is always homogeneous of total degree deg FdegG. If the coordinates
of F and G are generic, then 𝒱ℙ(F,G) belongs to the affine chart z=1. Let us further recall
that a linear form 𝜆(x,y) is said to be primitive for a finite set of points ℰ in 𝔸2 if it takes
different values at different points of ℰ .

From a geometric point of view, x is primitive for 𝒱𝔸(F(x,y,1),Fy(x,y,1)) if, and only
if, the following projection is injective:

𝒱𝔸(F(x,y, 1),Fy(x,y, 1)) ⟶ �̄�
(x,y) ⟼ x.

DEFINITION 3.9. Let F∈𝕂[x,y,z] be homogeneous, absolutely irreducible, and of total degree 𝛿,
such that the coordinates are generic for F, and that x is primitive for 𝒱𝔸(F(x,y, 1),Fy(x,y, 1)).
Then, the series expansions of the adjoint divisor (3.1) are made of the following data:
• (Δi)i=1, . . . ,r in𝕂[b]; we write 𝕃i≔𝕂[b]/(Δi(b)), and let 𝛽i represent the class of b in 𝕃i;
• For i=1, . . . , r, quadruples ((𝜇i, j(a),Xi, j(t),Yi, j(t), 𝜎i, j))j=1, . . . ,si with 𝜇i, j of degree ⩾1 in
𝕃i[a], and

(Xi, j(t),Yi, j(t))∈�𝔼i, j[[t]]/(t𝜎i,j+1)�2,

where 𝔼i, j≔𝕃i[a]/(𝜇i, j(a)); The class of a in 𝔼i, j will be written 𝛼i, j;
Such that the following properties hold:
• The Δi are pairwise squarefree coprime factors of Discy(F(x,y, 1)) of multiplicity mi⩾1 (the

mi are not necessarily distinct), for i=1, . . . , r;
• 𝒱𝔸(Δ1 ⋅ ⋅ ⋅ Δr) is the set of abscissas of the singular locus of 𝒱𝔸(F(x,y, 1));
• 𝜇i, j is monic and separable of degree ⩾1, and its non-zero coefficients are invertible in 𝕃i, for

i=1, . . . , r and j=1, . . . , si;
• Xi, j writes as 𝛽i+𝛾i, j tei,j, with 𝛽i zero or invertible in 𝕃i, 𝛾i, j invertible in 𝔼i, j and ei, j⩾1, for

i=1, . . . , r and j=1, . . . , si;
• The non-zero coefficients of Yi, j are invertible in 𝔼i, j, for i=1, . . . , r and j=1, . . . , si;
• The initial coefficient of Fy(Xi, j(t),Yi, j(t), 1) is invertible and we have

𝜎i, j=valt(Fy(Xi, j(t),Yi, j(t), 1)),

for i=1, . . . , r and j=1, . . . , si;
• For i=1, . . . , r and all root 𝛽 of Δi, let 𝜋𝛽 stand for the projection 𝕃i→𝕂[𝛽], but also for its

natural coefficient-wise extensions, then

((𝜋𝛽(𝜇i, j(a)),𝜋𝛽(Xi, j(t)−𝛽i),𝜋𝛽(Yi, j(t))))j=1, . . . ,si

are the truncations at precision 𝜎i, j+1 of the rational Puiseux expansions of F regarded in
𝕂[𝛽][[x−𝛽]][y], with the meaning of Definition 2.9, and centered at the singular point of
abscissa 𝛽.
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In the following proposition, the series expansions of the adjoint divisor (3.1) are
computed via Proposition 2.12. Informally speaking, among all the Puiseux expansions
occurring in this proposition, it suffices to keep only those which are centered at singular
points of the curve defined by F.

PROPOSITION 3.10. Let F∈𝕂[x,y,z] be homogeneous, absolutely irreducible, and of total degree 𝛿,
such that the coordinates are generic for F, and that x is primitive for 𝒱𝔸(F(x, y, 1), Fy(x, y,
1)). Then, the series expansions of the adjoint divisor, defined in Equation (3.1) and represented
as in Definition 3.9, can be computed by an algorithm of Las Vegas type with an expected number
of Õ(𝛿 3) operations in𝕂.

Proof. Let us first recall a simple criterion to decide if a given point of 𝒱𝔸(F(x, y, 1))
is regular from the knowledge of Puiseux expansions. Without loss of generality we
can assume this point to be the origin. Regarded in �̄�[[x, y]], the polynomial F(x,y, 1)
factorizes into u(x,y)G(x,y)where u is invertible and G∈�̄�[[x]][y] is monic. The origin
is a regular point if, and only if,Gx(0,0)≠0 orGy(0,0)≠0. Let us assume thatGy(0,0)=0.
In this case, the condition Gx(0, 0)≠ 0 becomes equivalent to the fact that the Newton
polygon of G starts at the point (0, 1). Since this polygon ends at (degyG, 0), it admits
a single edge. Consequently, the origin is regular if, and only if, G has a single rational
Puiseux expansion of the form X(t)=𝛾 te, Y(t)=𝜌 t+O(t2), where e≔degyG and 𝛾,𝜌 are
non-zero elements of 𝕂. Informally speaking in the neighborhood of the origin G(x,y)
approximates to ye−𝜌ex/𝛾.

Then, we consider the data computed by the algorithm underlying Proposition 2.12,
and we aim at discarding from them the rational Puiseux expansions centered at regular
points of the curve 𝒱𝔸(F(x,y, 1)). First, it is clear that we can discard all the quadruples
(𝜇i, j(a),Xi, j(t),Yi, j(t), 𝜎i, j) satisfying 𝜎i, j=0. Second, following the criterion of the pre-
ceding paragraph, and according to the assumptions on the coordinates, the remaining
Puiseux expansions centered at regular points are the ones corresponding to indices i
satisfying the following property: it remains a single quadruple (𝜇i, j(a),Xi, j(t),Yi, j(t),𝜎i, j)
such that deg 𝜇i, j=1 and Yi, j′ is non-zero in 𝔼i, j (hence invertible). These expansions are
dropped, so the remaining ones are those centered at singular points of 𝒱𝔸(F(x,y, 1)). □

Example 3.11. (Continued from Example 2.13) Let us take𝕂≔ℚ and

F(x,y,z)≔y7−x(x3+y2 z+xyz)2,

that is absolutely irreducible. The point (0 :0 :1) is the only singular point of the curve
𝒞 =𝒱ℙ(F). The adjoint divisor is made of the rational Puiseux expansions computed in
Example 2.13 that are centered at (0 :0 :1).

With the notation of Definition 3.9, for i=1, . . . , r and j=1, . . . , si, we introduce

𝜏i, j≔valt(Fy(Xi, j(t),Yi, j(t),1))−(ei, j−1), (3.7)

that corresponds to the common multiplicity of the places represented by (Δi(b),𝜇i, j(a),
Xi, j(t),Yi, j(t),𝜎i, j) in the support of the adjoint divisor 𝒜 . Since 𝒜 is positive, the 𝜏i, j are
positive.

PROPOSITION 3.12. Given 𝒜 as in Definition 3.9, a homogeneous polynomial A∈𝕂[x,y, z] is
adjoint to the curve 𝒞 defined by F=0 if, and only if,

valt(A(Xi, j(t),Yi, j(t), 1))⩾𝜏i, j (3.8)
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for i=1, . . . , r and j=1, . . . , si.
It is sharply adjoint to 𝒞 if, and only if, Inequalities (3.8) are equalities and the coefficient of

degree 𝜏i, j in A(Xi, j(t),Yi, j(t), 1) is invertible in 𝔼i, j, for i=1, . . . , r and j=1, . . . , si.

Proof. This is a consequence of Definition 3.4 and the definition of divisors. □

PROPOSITION 3.13. Given𝒜 as in Definition 3.9, testing if a homogeneous polynomial A∈𝕂[x,
y,z] of degree <𝛿 in y and total degree ⩽d is sharply adjoint to the curve 𝒞 defined by F=0 takes
Õ(𝛿max(d, 𝛿 2)) operations in𝕂.

Proof. We computeA(x,y,1) remΔi(x)mi+1 for i=1,...,r thanks to fast multi-remaindering
with Õ(𝛿max(d, 𝛿 2)) operations in𝕂, by Proposition 2.3. For i=1,...,s, the image of A in

(𝕃i[[x−𝛽i]]/(x−𝛽i)mi+1)[y],

written Ai, can be computed in softly linear time by Proposition 2.6. Note that

𝜏i, j⩽valt(Fy(Xi, j(t),Yi, j(t),1))⩽mi.

Via Horner's method, the evaluation of Ai(Xi, j(t),Yi, j(t),1) at precision 𝜏i, j+1 takes time

Õ(𝛿 deg Δideg 𝜇i, j (𝜏i, j+1))= Õ(𝛿 deg Δideg 𝜇i, jvalt(Fy(Xi, j(t),Yi, j(t), 1))).

The sum of these costs for i=1, . . . , s and j=1, . . . , si yields

Õ(((((((((((((((((
((
(
(𝛿�

i=1

s

deg Δi�
j=1

si
deg 𝜇i, jvalt(Fy(Xi, j(t),Yi, j(t),1)))))))))))))))))))

))
)
) = Õ(((((((((((((((((𝛿�i=1

s

mideg Δi)))))))))))))))))
= Õ(𝛿 3)

operations in𝕂, thanks to Proposition 2.11. Finally, testing if the coefficient of degree 𝜏i, j
in Ai(Xi, j(t),Yi, j(t),1) is non-zero takes softly linear time. □

4. DEGREE OF THE DENOMINATOR

Given a plane projective curve 𝒞 and a smooth positive 𝕂-rational divisor D, this sec-
tion deals with the existence of homogeneous polynomialsH∈𝕂[x,y,z] that are sharply
adjoint to 𝒞 , that satisfy Div(H)⩾D, and that have a total degree d as small as possible.
Such polynomials will serve as common denominators of Riemann–Roch spaces. Such
specific denominators will yield simpler computations of Div(H)−𝒜 in the context of
the Brill–Noether method.

4.1. Residue Theorem
In what follows we shall use the well known Residue Theorem in the algebraic frame-
work, which is the cornerstone of the proof of the Brill–Noethermethod. In the literature,
the Residue Theorem is often stated and proved for ordinary curves, see [25, Chapter 8],
[50, Section 3], [4, Theorem 3.7]. A detailed proof in the general setting can be found in
Haché's PhD thesis [36, Théorème 2.6.10]. Here we state this theorem in the general con-
text, without repeating a proof. However, we point out that the proof of [4, Theorem 3.7]
for the ordinary case can be straightforwardly extended to the non-ordinary case, using
our Proposition 3.7 instead of [4, Proposition 3.6].
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We recall that two divisors D and D′ of 𝒞 are said to be linearly equivalent, written
D≡D′, if there exists a rational function h∈K(𝒞) such that D=D′+Div(h).

THEOREM 4.1. (Residue Theorem) Let D and D′ be two 𝕂-rational divisors of the curve 𝒞
defined by F=0, such that D≡D′ and D′⩾0. Suppose that H∈𝕂[x, y, z] is a homogeneous
polynomial prime to F such that Div(H)=D+𝒜+R for a positive𝕂-rational divisor R. Then,
there exists a homogeneous polynomial H′∈𝕂[x,y,z], prime to F, of the same degree as H, such
that Div(H′)=D′+𝒜 +R.

We appeal to the Residue Theorem only once in this paper for the following lemma,
that gives a condition for a function in𝕂(𝒞) to be regular in some affine chart.

LEMMA 4.2. Let L∈𝕂[x, y, z] be a homogeneous degree one polynomial such that Div(L) is
smooth. Then, for any positive integer d, any non-zero element of ℒ(dDiv(L)−𝒜) admits
a rational function representation in the form H/Ld, where H∈𝕂[x, y, z] is a homogeneous
polynomial of degree d.

Proof. We set D≔dDiv(L)−𝒜 and consider h≠0 inℒ(D) (if ℒ(D)={0} then the proof
is trivial). By construction, we have

D′≔D+Div(h)⩾0.

We apply Theorem 4.1 to D′ and the decomposition

Div(Ld)=dDiv(L)=D+𝒜+R,

where R≔0. This yields a homogeneous polynomial H of degree d prime to F such that

Div(H)=D′+𝒜=D′−D+dDiv(L).
Consequently, we have

Div(H/Ld)=D′−D=Div(h).

Then Div((H/Ld)/h) is zero, whence (H/Ld)/h is a constant, by [68, Corollary 1.3.4].
Finally, we have shown that h is a𝕂-multiple of H/Ld in𝕂(𝒞). □

Let 𝒜 be the adjoint divisor of 𝒞 , defined in Equation (3.1), and recall that 𝛿 denotes
the degree of the curve 𝒞 . The genus g of 𝒞 is

g≔ (𝛿−1)(𝛿−2)−deg𝒜
2 . (4.1)

This relation is proved in [31, Theorem 11] using the definition of the adjoint divisor in
terms of conductor ideals. Since this definition is equivalent to the one in Equation (3.1)
by [26, Section 4], this relation for the genus of the curve applies here. We also refer the
reader to [35, Remark 4.9], where the same formula is given involving Keller's notion of
adjoint, and to [59], where the formula is stated in terms of differential forms.

4.2. Degree bound
Our degree bound for sharply adjoint denominators of Riemann–Roch spaces is pre-
sented in the following proposition.
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PROPOSITION 4.3. Assume that the cardinality of 𝕂 is infinite. Let D be a positive 𝕂-rational
divisor of 𝒞, and let

d⩾ (𝛿−1)(𝛿−2)+degD
𝛿 ⋅

Then, there exists a homogeneous polynomial H∈𝕂[x,y,z] prime to F of degree d and such that

Div(H)⩾D+𝒜
and Div(H)−D−𝒜 is smooth.

Proof. Fix a homogeneous polynomial L∈𝕂[x, y, z] of degree 1 such that Div(L) is
smooth. By Bézout's theorem [25, Section 5.3] we have deg(Div(L))=𝛿. We set

E≔D+𝒜.

The assumption on d and Equation (4.1) lead to

deg(dDiv(L)−E)=d𝛿−degD−deg𝒜⩾(𝛿−1)(𝛿−2)−deg𝒜=2g.

Let P1, . . . ,Pr denote the singular points of 𝒞 and let 𝒫 i,1, . . . ,𝒫 i,si be the places centered
at Pi for i=1, . . . , r. We can apply [25, Chapter 8, Section 8.6, Corollary 3]: even if this
corollary in [25] is stated for ordinary curves, it applies without change for curves with
arbitrary singularities as explained in [26, Section 4]. Alternatively, we refer the reader
to [20, Theorem 4.9.7]. We fit in a situation where the Riemann–Roch theorem for �̄�(𝒞)
is an equality, that is

dim�̄�ℒ�̄�(dDiv(L)−E−𝒫 i, j)=dim�̄�ℒ�̄�(dDiv(L)−E)−1,

for i=1, . . . , r and j=1, . . . , si. By [65, Chapter II, Section 5, Proposition 5.8] we have

ℒ�̄�(dDiv(L)−E)=�̄�⊗ℒ(dDiv(L)−E).

Consequently, since |𝕂| is infinite, there exist functions h∈ℒ(dDiv(L)−E) which are
not contained in any of the ℒ�̄�(dDiv(L)−E−𝒫 i, j) for any pair (i, j). From Lemma 4.2
such a function h admits a rational function representation of the form h=H/Ld. By
construction of h,

Div(H)−D−𝒜=Div(h)+dDiv(L)−E

is positive and smooth. □

4.3. Probability bound
If D is a smooth 𝕂-rational divisor (that will be the case in our main algorithm), then
Proposition 4.3 ensures the existence of polynomials H∈𝕂[x, y, z] such that Div(H)⩾
D+𝒜 andH is sharply adjoint. The next lemma establishes that such polynomialsH can
be found with high probability in a suitable vector space.

LEMMA 4.4. Let D be a smooth positive 𝕂-rational divisor of a curve 𝒞 =𝒱ℙ(F) with F of total
degree 𝛿 and such that the coordinates are generic for F. Let ℋ denote the 𝕂-vector space of
homogeneous polynomials H∈𝕂[x,y,z] of total degree

d≔⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈(𝛿−1)(𝛿−2)+degD
𝛿 ⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉,
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of degree <𝛿 in y, and such that Div(H)⩾D+𝒜; by convention the zero polynomial is included
in ℋ. Let H1, . . . ,Hl denote a basis of ℋ and let 𝒮 be a finite subset of 𝕂. Then, for (a1, . . . , al)
taken at random in 𝒮 l, the probability that a1H1+ ⋅ ⋅ ⋅ + alHl is not sharply adjoint is

⩽(𝛿−1)(𝛿−2)
|𝒮| .

Proof. SetHa≔a1H1+⋅⋅⋅+alHl. Let us write𝒜=∑i=1
s 𝜏i𝒫 i into the sum of pairwise dis-

tinct places (with 𝜏i⩾1), and let (Xi(t),Yi(t)) represent the rational Puiseux expansion
of𝒫 i. If the ai are regarded as variables, then Ha is sharply adjoint by Proposition 4.3, so
the polynomial

Σ(a1, . . . ,al)≔�
i=1

s

coeff(Ha(Xi(t),Yi(t), 1),𝜏i)

is non-zero, where coeff(Ha(Xi(t),Yi(t), 1), 𝜏i) represents the coefficient of degree 𝜏i in
Ha(Xi(t),Yi(t), 1).

Then, regarding the ai as values in 𝒮, the polynomialHa is sharply adjoint if, and only
if, Σ(a1, . . . ,al)≠0. The total degree of Σ in the ai is

⩽s⩽deg𝒜 ⩽(𝛿−1)(𝛿−2).

The conclusion follows from the well known Schwartz–Zippel lemma; see [27,
Lemma 6.44] for instance. □

5. DATA STRUCTURES

Before presenting the main algorithm, it still remains to describe the data structures for
divisors, alongwith their main properties. We design specific data structures to represent
divisors by local expansions and to operate on them efficiently. The present approach
differs from the global representation of divisors used in [3, 4, 52]; the comparison is
addressed at the end of the section. It yields a unified way to represent smooth and
non-smooth divisors that will be useful in Section 6. As a benefit we can operate faster on
the supports of the divisors and perform less multi-remaindering and Chinese remain-
dering (the inverse task of multi-remaindering).

5.1. Primitive elements
We recall usual terminologies.

DEFINITION 5.1. A primitive element representation of a finite set ℰ of points in𝔸2 is the data
of:
• (𝜆x,𝜆y) in �̄�2 such that the linear form 𝜆≔𝜆xx+𝜆yy separates the points of ℰ. This means

that the form takes different values at different points of ℰ (as in Section 3.4).
• A polynomial 𝜃 in �̄�[t] whose roots are the values of 𝜆 at the points of ℰ, that is

𝜃(t)≔�
P∈ℰ

(t−𝜆(P)).

So 𝜃 is monic and separable of degree |ℰ|.
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• Polynomials u and v in �̄�[t] of degree <|ℰ| such that

ℰ ={(u(𝜁),v(𝜁)) : 𝜃(𝜁)=0}.

The form 𝜆 is said to be primitive for ℰ. Note that such a representation is uniquely determined
by 𝜆. If (𝜆x, 𝜆y)∈𝕂2 and if 𝜃,u,v∈𝕂[t], then the primitive element representation is said to
be defined over𝕂. In the sequel we will also say that 𝜆 parametrizes ℰ.

With the notation of Definition 5.1, note that 𝜆xu(t)+𝜆yv(t)= t rem 𝜃(t) holds.

LEMMA 5.2. Let 𝒮 be a finite subset of 𝕂. The probability that a random matrix M≔(((((((((((( a b
c d ))))))))))))with

entries in 𝒮 does not make the linear form x primitive for M(ℰ) is ⩽�|𝜀|2 �/|𝒮|.

Proof. The proof is rather elementary. For instance, it results from the combination of [52,
Lemma 7] with the aforementioned Schwartz–Zippel lemma; see details in [4, Lemma
4.1] for instance. □

PROPOSITION 5.3. Given a primitive element representation of ℰ over𝕂 by 𝜆≔𝜆xx+𝜆yy, and
polynomials u, v, and 𝜃 as above. Let (�̃�x, �̃�y)∈𝕂2, let M denote a 3×3 invertible matrix, and let

ℰ #≔{(a :b :1) : (a,b)∈ℰ}⊂ℙ2.

We can check if M(ℰ #) is in the affine chart z=1 and if �̃�≔ �̃�xx+�̃�yy is primitive for the set
of points ℰ̃ representing M(ℰ #) in 𝔸2, and if so compute the corresponding primitive element
representation of ℰ̃ with O(|ℰ|𝜛) field operations, whenever𝕂 has characteristic zero or >|ℰ|.

Proof. We compute

(((((((((((((((((
(((((((
(
( wx
wy
wz )))))))))))))))
))))))))))
)
=M(((((((((((((((((

(((((((
(
( u
v
1 )))))))))))))))))
)))))))
)
)
.

Then, M(ℰ #) is in the affine chart z=1 if, and only if, wz is invertible modulo 𝜃. If so we
can compute ũ≔wx/wz rem 𝜃 and ṽ≔wy/wz rem 𝜃. Then we appeal to Lemma 2.5 with
𝕂[t]/(𝜃(t)) and e(t)≔�̃�x ũ(t)+ �̃�y ṽ(t). □

5.2. Smooth divisors
A smooth divisor will naturally be stored as the pair of the representations of D+ andD−,
where D+ and D− are positive divisors with disjoint supports and whose difference isD.
So we focus on the representation of a positive smooth divisor D defined over 𝕂. Mini-
mally,D can be represented by its centers (in one-to-one correspondence with the places
in its support) and the respective multiplicities, that form a multi-set. If P is a center of
D of multiplicity m, then the effective version of the implicit function theorem allows
the computation of the power series expansions of the germ of curve defined by 𝒞 at P
at order m. The set of these expansions for each center of D constitutes a more detailed
representation of D.

5.2.1. Multi-set primitive representation

We will represent smooth divisors in a different manner from [3, 4, 52], that turns out
to be more flexible and efficient for practice because several computations can be per-
formed independently of themultiplicities. Informally speaking, a smooth divisorDwill
involve a primitive representation of its support, as detailed in the following definition.
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DEFINITION 5.4. Let ℰ1,...,ℰ s be pairwise disjoint finite sets in the affine chart z=1 of 𝒞, defined
over𝕂, parametrized by the same primitive element 𝜆≔𝜆xx+𝜆yy, and such that

||||||||||||||||||
|||||
|
| ∂F∂x ∂F

∂y

𝜆x 𝜆y ||||||||||||||||||
|||||
|
|

is invertible at all the points of ℰ1∪⋅⋅⋅∪ℰ s. Then, 𝜆 and the set of pairs (ℰ i,mi) form amulti-set
primitive representation of the smooth positive divisor D=m1ℰ1+ ⋅ ⋅ ⋅ +msℰ s. The form 𝜆 is
said to be an unramified primitive element for D.

Given 𝜆 and a pair (ℰ i,mi) as in Definition 5.4, there exists a unique primitive element
representation 𝜃i, ui, vi of ℰ i. For convenience, we will write the support of a smooth
divisor D in terms of its centers, that is as

suppD≔ℰ1∪ ⋅ ⋅ ⋅ ∪ℰ s.

LEMMA 5.5. Let 𝒮 be a finite subset of 𝕂. Let D be a smooth positive divisor, let M be a 3×3
matrix with random entries in 𝒮. If M is invertible then the probability that M−1(D) is not in the
affine chart z=1 or that x is not an unramified primitive element for the affine part of M−1(D) is

⩽3|suppD|2
|𝒮| .

Proof. Let P1, . . . ,Ps represent the support of D. Let (Mi, j)1⩽i, j⩽3 denote the entries of M,
and let (Ni, j)1⩽i, j⩽3 denote the entries of N≔det(M)M−1. The Ni, j are polynomials of
total degree 2 in the entries of M. If

�
i=1

s

(N3,1x(Pi)+N3,2y(Pi)+N3,3z(Pi))≠0,

where x(Pi), y(Pi) and z(Pi) represent the coordinates of Pi, then M−1(D) is in the affine
chart z=1. As a straightforward application of the Schwartz–Zippel lemma, the proba-
bility that M−1(D) is not in this affine chart is ⩽2 s/|𝒮|. If

�
1⩽i< j⩽s

(N1,1(x(Pi)−x(Pj))+N1,2(y(Pi)−y(Pj))+N1,3(z(Pi)−z(Pj)))≠0

then x is primitive for the support of M−1(D). So the probability that x is not primitive
for the support of M−1(D) is ⩽2�s2�/|𝒮|. Then we verify that

∂(F∘M)
∂y (M−1(Pi))=M1,2

∂F
∂x (Pi)+M2,2

∂F
∂y(Pi)+M3,2

∂F
∂z (Pi).

Therefore, the probability that the support of M−1(D) intersects 𝒱ℙ�
∂ (F ∘M)

∂y � is ⩽s/|𝒮|,
again by the Schwartz–Zippel lemma. □

LEMMA 5.6. Let f ∈𝕂[x, y] be of total degree 𝛿, let (𝜆x, 𝜆y)∈𝕂2, and let 𝜒i∈𝕂[t] and ui,
vi∈𝕂[t]<deg𝜒i for i=1, . . . , s be such that 𝜆xui(t)+𝜆yvi(t)= t rem 𝜒i(t) holds and that the 𝜒i
are pairwise coprime. Then, f (ui(t),vi(t)) rem 𝜒i(t) can be computed with

Õ(((((((((((((((((𝛿
𝜔
2+1+𝛿

𝜔−1
2 �

i=1

s

deg 𝜒i)))))))))))))))))
operations in𝕂.
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Proof. By Proposition 2.4 the polynomials 𝜒 ≔𝜒1 ⋅ ⋅ ⋅ 𝜒s and u, v∈𝕂[t]<deg𝜒 such that
u rem 𝜒i=ui and v rem 𝜒i=vi for i=1, . . . , s, can be computed with Õ(deg 𝜒) operations
in𝕂. Then f (u,v) rem 𝜒 is obtained with

Õ�𝛿
𝜔
2+1+𝛿

𝜔−1
2 deg 𝜒�

further operations in 𝕂 by Lemma 2.2. Proposition 2.3 then yields f (u,v) rem 𝜒i for i=
1, . . . , s with Õ(deg 𝜒) further operations in𝕂. □

PROPOSITION 5.7. Let D be a smooth positive 𝕂-rational divisor of 𝒞 represented as in Defin-
ition 5.4, let M denote an invertible 3×3 matrix over 𝕂, and let (�̃�x, �̃�y)∈𝕂2. We can test if
M(D) has its support in the affine chart z=1, if �̃�xx+�̃�yy is an unramified primitive element for
the affine part of M(D), and if so compute the corresponding multi-set primitive representation
with

Õ�𝛿
𝜔
2 +1+𝛿

𝜔−1
2 |suppD|+ |suppD|𝜛�

operations in𝕂, whenever𝕂 has characteristic zero or >|suppD|.

Proof. With the notation of Definition 5.4, for i=1, . . . , s let ℰ i be the sets of the centers
of D, represented by 𝜆x x+𝜆y y, ui, vi, and 𝜃i. In the context of Proposition 5.3, let ℰ i

#

denote the canonical image of ℰ i inℙ2, and let ℰ̃ i denote the affine part of M(ℰ i
#): we can

check if M(ℰ i
#) is in the affine chart z=1, test if �̃�= �̃�xx+�̃�yy is primitive for ℰ̃ i, and if so,

compute the corresponding representation ũi, ṽi, and 𝜃i with O((deg 𝜃i)𝜛) operations by
Proposition 5.3.

In order to check if �̃� is primitive for ⋃i=1
s ℰ̃ i, it suffices to verify that 𝜃 ≔∏i=1

s 𝜃i is
separable, that takes softly linear time. Then, we evaluate 𝜆y

∂F
∂x(x,y, 1)−𝜆x

∂F
∂y (x,y, 1) at

(ũi, ṽi)modulo 𝜃i for i=1, . . . , s, and test if the result is prime to 𝜃i˜ , with

Õ�𝛿
𝜔
2+1+𝛿

𝜔−1
2 |suppD|�

further operations in𝕂, by Lemma 5.6. □

5.2.2. Expansions of multi-set primitive representations

Given a regular point P of 𝒞 , via the implicit function theorem, Newton's operator is a
classical way to compute power series expansions of the germ of curve centered at P for
any arbitrary truncation order. In the following paragraphs we analyze the complexity
for computing D in terms of a list of series expansions.

DEFINITION 5.8. Given a subset of regular points ℰ of 𝒞 defined over 𝕂 and represented by a
primitive element 𝜆≔𝜆xx+𝜆yy and polynomials 𝜃,u, v. The series expansion of the divisor
D=mℰ is the data of

(X(t),Y(t))∈(𝕃[[t]]/(tm))2,
where

𝕃≔𝕂[b]/(𝜃(b)),

and such that F(X(t),Y(t), 1)=O(tm), X(t)=u(𝛽)+ t, Y(0)= v(𝛽), where F is the defining
polynomial of the curve 𝒞 and 𝛽 denotes the class of b in 𝕃.
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For a general positive smooth𝕂-rational divisor D of the formm1ℰ1+⋅⋅⋅+msℰ s represented
as in Definition 5.4, its corresponding series expansions are the set of the series expansions of
miℰ i for i=1, . . . , s.

LEMMA 5.9. Let f ∈𝕂[x,y] be of total degree 𝛿. Let mi∈ℕ>0, 𝜃i∈𝕂[b], 𝕃i≔𝕂[b]/(𝜃i(b)),

(Xi(t),Yi(t))∈(𝕃i[[t]]/(tmi))2,

for i=1,...,s represent the series expansions of a positive smooth divisor D (as in Definition 5.8).
Then, f (Xi(t),Yi(t)) for i=1, . . . , s can be computed with

Õ�𝛿
𝜔
2+1+𝛿

𝜔−1
2 degD�

operations in𝕂.

Proof. We follow the notation of Proposition 2.6, and compute ui(t)≔Γ𝜃i,mi(Xi(t)), vi(t)≔
Γ𝜃i,mi(Yi(t)) and 𝜒i≔𝜃imi. Thanks to Lemma 5.6we obtain f (ui(t),vi(t)) rem𝜒i, for i=1,...,s,
with

Õ(((((((((((((((((𝛿
𝜔
2 +1+𝛿

𝜔−1
2 �

i=1

s

deg 𝜒i)))))))))))))))))= Õ�𝛿
𝜔
2+1+𝛿

𝜔−1
2 degD�

operations in𝕂. Then, we obtain f (Xi(t),Yi(t)) as Γ𝜃i,mi
−1 ( f (ui(t),vi(t)) rem𝜒i). Evaluating

Γ𝜃i,mi and its inverse takes softly linear time by Proposition 2.6. □

LEMMA 5.10. Let D be a smooth positive 𝕂-rational divisor given by series expansions. Series
expansions of 2D can be computed with

Õ�𝛿
𝜔
2+1+𝛿

𝜔−1
2 degD�

operations in𝕂.

Proof. LetD=m1ℰ1+⋅⋅⋅+msℰ s be as above. Let ui,vi,𝜃i denote the parametrization of ℰ i,
and let (Xi(t),Yi(t)) ∈ (𝕃i[[t]]/(tmi))2 with 𝕃i≔𝕂[b]/(𝜃i(b)) stand for the expansion
of miℰ i, for i=1, . . . , s. Let 𝜆xx+𝜆yy denote the common primitive element of the ℰ i.

The usual Newton iteration

(((((((((((((((((((
X̂i

Ŷi ))))))))))))))))
)))≔((((((((((((

Xi
Yi ))))))))))))−((((((((((((((((((

((((
(
( ∂F

∂x(Xi,Yi)
∂F
∂y(Xi,Yi)

𝜆x 𝜆y ))))))))))))))))))
))))
)
)−1(((((((((((( F(Xi,Yi)

𝜆xXi+𝜆yYi− t ))))))))))))+O(t2mi)

yields the expansion of 2miℰ i. The evaluations of F, ∂F
∂x , and

∂F
∂y at (Xi(t),Yi(t)) at preci-

sion 2mi, for i=1, . . . , s, amount to

Õ�𝛿
𝜔
2+1+𝛿

𝜔−1
2 degD�

operations in𝕂 by Lemma 5.9. □

PROPOSITION 5.11. Given a multi-set primitive representation of a positive smooth 𝕂-rational
divisor D, the corresponding series expansions can be computed with

Õ�𝛿
𝜔
2+1+𝛿

𝜔−1
2 degD�

operations in𝕂.
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Proof. We still write D=m1ℰ1+ ⋅ ⋅ ⋅ +msℰ s as above. Let K be the first integer such that
mi<2K+1 for i=1, . . . , s. For k=1, . . . ,K, we introduce

Dk≔ �
i=1

2k⩽mi<2k+1

s

miℰ i.

The representation of the ℰ i straightforwardly yields the series expansions of the smooth
divisor

Ek≔ �
i=1

2k⩽mi<2k+1

s

ℰ i.

Then, we compute 2Ek, 4Ek, . . . , 2k+1Ek via Lemma 5.10. The series expansions of Dk are
deduced from those of 2k+1Ek by truncating the series at the precisions prescribed by
the mi. The total cost amounts to

Õ�𝛿
𝜔
2+1+𝛿

𝜔−1
2 degD�

because k=O(log(degD)). The sum of these costs for k=1,...,K yields the claimed bound
since K=O(log(degD)). □

5.3. Addition and subtraction
In this subsection we consider two smooth positive divisors D1 and D2 represented by
((𝜃1,i,u1,i,v1,i,m1,i))i=1, . . . ,s1 and ((𝜃2,i,u2,i,v2,i,m2,i))i=1, . . . ,s2, as in Definition 5.4. In order
to compute D1+D2 and the positive part [D1−D2]+ of D1−D2, we first treat separately
the common points of the supports of D1 and D2, and then the remaining points.

LEMMA 5.12. Given two smooth positive divisors D1 and D2 in multi-set primitive representa-
tion, parametrized by the same unramified primitive element 𝜆≔𝜆xx+𝜆yy, and such that

�
i=1

s1
𝜃1,i=�

i=1

s2
𝜃2,i,

we can check if 𝜆 is an unramified primitive element for D≔D1+D2, and, if so, compute the
corresponding multi-set primitive representation with

Õ(|suppD|)
operations in𝕂.

Proof. The form 𝜆 is an unramified primitive element for D≔D1+D2 if, and only if, D1
and D2 have the same support. In this case the multi-set primitive representation of D is
obtained by computing a common factor basis for (𝜃1,i)i=1, . . . ,s1 and (𝜃2,i)i=1, . . . ,s2.

More precisely we proceed by induction on s1. If s1=1, then we compute u1,1 rem 𝜃2,i
and v1,1 rem 𝜃2,i for i=1, . . . , s2 in softly linear time by Proposition 2.3. The sum D can be
parametrized by 𝜆 if, and only if, (u1,1 −u2,i) rem 𝜃2,i=0 and (v1,1 −v2,i) rem 𝜃2,i=0. A
multi-set primitive representation of D is obtained as

((𝜃2,i,u2,i,v2,i,m2,i+m1,1))i=1, . . . ,s2.
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If s1⩾2 then we set h≔⌊s1/2⌋. We define D1
lo from ((𝜃1,i,u1,i, v1,i,m1,i))i=1, . . . ,h and D1

hi

from ((𝜃1,i,u1,i,v1,i,m1,i))i=h+1, . . . ,s1. We compute 𝜒1lo≔∏i=1
h 𝜃1,i and 𝜒1hi≔∏i=h+1

s1 𝜃1,i in
softly linear time.

Then 𝜃2,ilo ≔gcd(𝜒1lo, 𝜃2,i) and 𝜃2,ihi≔𝜃2,i/𝜃2,ilo for i=1, . . . , s2 can be computed in softly
linear time via Proposition 2.3. We define D2

lo to be

((𝜃2,ilo ,u2,i rem 𝜃2,ilo ,v2,i rem 𝜃2,ilo ,m2,i))i=1, . . . ,s2
and D2

hi to be

((𝜃2,ihi,u2,i rem 𝜃2,ihi,v2,i rem 𝜃2,ihi,m2,i))i=1, . . . ,s2.

Of course we discard tuples that represent empty sets. Finally, we compute D1
lo+D2

lo

and D1
hi+D2

hi recursively, and concatenate the results. The claimed complexity bound
follows from a classical induction. □

PROPOSITION 5.13. Given two smooth positive divisors D1 and D2 in multi-set primitive rep-
resentation as in Definition 5.4, sharing the same unramified primitive element 𝜆≔𝜆xx+𝜆yy,
one can check if 𝜆 is an unramified primitive element for D≔D1+D2, and, if so, compute the
corresponding multi-set primitive representation with

Õ(|suppD1|+ |suppD2|)

operations in𝕂.

Proof. We compute 𝜒2≔∏i=1
s2 𝜃2,i and then 𝜒2 rem 𝜃1,i for i=1, . . . , s1 with Õ(|suppD1|+

|suppD2|) operations in𝕂 by Proposition 2.3. Then we deduce

𝛾i≔gcd(𝜒2 rem 𝜃1,i, 𝜃1,i)

for i=1, . . . , s1 in softly linear time. For i=1, . . . , s1 we set 𝜃1,i≔𝜃1,i/𝛾i, ǔ1,i≔u1,i rem 𝜃1,i,
and v̌1,i≔v1,i rem 𝜃1,i. The tuples

((𝜃1,i, ǔ1,i, v̌1,i,m1,i))i=1, . . . ,s1

represent a smooth positive divisor written Ď1⩽D1. The tuples

((𝛾i,u1,i rem 𝛾i,v1,i rem 𝛾i,m1,i))i=1, . . . ,s1

represent another smooth positive divisor written D̂1⩽D1. Note that D̂1 and Ď1 have
disjoint support and thatD1=D̂1+Ď1 holds. The total cost for computing this decompo-
sition is Õ(|suppD1|+ |suppD2|).

Then, we compute 𝛾≔∏i=1
s1 𝛾i=gcd(𝜒1,𝜒2) and 𝛿i≔gcd(𝛾,𝜃2,i) for i=1,...,s2, in softly

linear time, again via Proposition 2.3. For i=1,...,s2we set 𝜃2,i≔𝜃2,i/𝛿i, ǔ2,i≔u2,i rem 𝜃2,i,
and v̌2,i≔v2,i rem 𝜃2,i. The tuples

((𝜃2,i, ǔ2,i, v̌2,i,m2,i))i=1, . . . ,s2

represent a smooth positive divisor written Ď2⩽D2. The tuples

((𝛿i,u2,i rem 𝛿i,v2,i rem 𝛿i,m2,i))i=1, . . . ,s2
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represent a smooth positive divisor written D̂2⩽D2. Note that D̂2 and Ď2 have disjoint
support and that D2= D̂2+ Ď2 holds.

Since D̂1 and D̂2 have the same product of defining polynomials, namely 𝛾,
Lemma 5.12 ensures that D̂1+ D̂2 can be computed with Õ(|supp D̂1| + |supp D̂2|) oper-
ations in𝕂, unless 𝜆 is not an unramified primitive element. Finally, the multi-set primi-
tive representation of D is the union of the representations of Ď1, D̂1+ D̂2, and Ď2. □

LEMMA 5.14. Given two smooth positive divisors D1 and D2 in multi-set primitive representa-
tion as in Definition 5.4, sharing the same unramified primitive element 𝜆≔𝜆xx+𝜆yy, and such
that

�
i=1

s1
𝜃1,i=�

i=1

s2
𝜃2,i,

we can compute a multi-set primitive representation D≔[D1−D2]+ in terms of 𝜆 with

Õ(|suppD1|+ |suppD2|)

operations in𝕂.

Proof. We proceed by induction on s1 as in the proof of Lemma 5.12, from which we
borrow the notation. If s1=1, then we compute

𝛿i≔gcd(𝜃2,i,u1,1−u2,i,v1,1−v2,i) for i=1, . . . , s2

via Proposition 2.3. We set

𝜃1≔
𝜃1,1

∏i=1
s2 𝛿i

.

Amulti-set primitive representation of D is made of 𝜆 and the tuples

(𝜃1,u1,1 rem 𝜃1,v1,1 rem 𝜃1,m1,1)

and

(𝛿i,u2,i rem 𝛿i,v2,i rem 𝛿i,m1,1−m2,i)

such that m1,1−m2,i>0, for i=1, . . . , s2.
If s1⩾2, thenwe computeD1

lo,D1
hi,D2

lo, andD2
hi as in the proof of Lemma 5.12. Finally,

we obtain [D1
lo−D2

lo]+ and [D1
hi−D2

hi]+ recursively, and merge the results. □

PROPOSITION 5.15. Given two smooth positive divisors D1 and D2 in multi-set primitive repre-
sentation, sharing the same unramified primitive element 𝜆≔𝜆xx+𝜆yy, the multi-set primitive
representation of [D1−D2]+ in terms of 𝜆 can be computed with

Õ(|suppD1|+ |suppD2|)

operations in𝕂.

Proof. As in the proof of Proposition 5.13 we compute Ď1, D̂1, and D̂2. We have

[D1−D2]+= Ď1+[D̂1− D̂2]+,

so the conclusion follows from Lemma 5.14 used with D̂1 and D̂2. □
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5.4. Equivalence with global representation
For the sake of comparisonwith previous work, for smooth divisors, we prove the equiv-
alence between the series expansion representation and the “global representation” used
in [3, 4, 52]. This equivalence is not necessary to the rest of the paper. As a benefit, multi-
set primitive representations are cheaper for sums and partial subtractions since Hensel
lifting is not needed. We recall that the ambient curve 𝒞 inℙ2 is defined by the equation
F=0.

PROPOSITION 5.16. Given a smooth positive divisor D=m1P1+ ⋅ ⋅ ⋅ +msPs whose support is
in the affine chart z=1, and given an unramified primitive element 𝜆xx+𝜆yy for D, there exist
unique polynomials 𝜒, u, and v in �̄�[t] with the following properties:
Div-H0. 𝜒 is monic of degree deg D, and u, v have degree <degD,
Div-H1. F(u(t),v(t),1) rem 𝜒(t)=0,
Div-H2. 𝜆xu(t)+𝜆yv(t)= t,
Div-H3. 𝜆y

∂F
∂x(u(t),v(t),1)−𝜆x

∂F
∂y(u(t),v(t),1) is coprime with 𝜒(t),

Div-H4. The roots of 𝜒 are 𝜆(P1),...,𝜆(Ps), with respective multiplicities m1,...,ms, and {(u(𝜁),
v(𝜁)) :𝜒(𝜁)=0}={P1, . . . ,Ps} holds.

Proof. The proof can be found in [52, Section 3] or in [3, Proposition 3.1]. □

A global representation of a smooth𝕂-rational divisorD is the data of 𝜆xx+𝜆yy∈𝕂[x,
y] and 𝜒, u, and v in𝕂[t], as occurring in Proposition 5.16.

PROPOSITION 5.17. Given a smooth positive 𝕂-rational divisor D for which x is an unramified
primitive element, the conversions between the series expansions and the global representation of
D in terms of x take softly linear time.

Proof. Let D=m1ℰ1+ ⋅ ⋅ ⋅ +msℰ s be given by series expansions: we write 𝜃i,ui,vi for the
parametrization of ℰ i, and

(Xi(t)=𝛽i+𝛾i t,Yi(t))∈(𝕃i[[t]]/(tmi))2

for the series expansion of mi ℰ i, where 𝕃i≔𝕂[b]/(𝜃i(b)), 𝛽i represents the class of b
in 𝕃i, and 𝛾i is invertible in 𝕃i. Up to replacing t by t/𝛾i (that incurs linear time), we may
assume that 𝛾i=1. We introduce

Γ𝜃i,mi: 𝕂[t]/(𝜃imi(t)) ≅ 𝕃i[[t]]/(tmi)
t ⟼ 𝛽i+ t,

and verify that
Γ𝜃i,mi
−1 (Xi(t))=Γ𝜃i,mi

−1 (𝛽i+ t)= t.

Then, 𝜃imi, Γ𝜃i,mi
−1 (Xi(t)), Γ𝜃i,mi

−1 (Yi(t)) is the global representation of mi ℰ i for the primitive
element x. It can be obtained in softly linear time via Proposition 2.6. By Proposition 2.4
we recover the global representation of D in softly linear time by Chinese remaindering.

Conversely, let 𝜒(t), u(t)= t, v(t) denote the global representation of D in terms of
x. In softly linear time we compute the squarefree factorization of 𝜒=𝜃1m1 ⋅ ⋅ ⋅ 𝜃sms where
the mi are pairwise distinct and the 𝜃i are squarefree and pairwise coprime. By Proposi-
tion 2.3, we obtain u rem 𝜃imi and v rem 𝜃imi for i=1, . . . , s with Õ(degD) operations in𝕂.
Then

Γ𝜃i,mi(u rem 𝜃imi)=Γ𝜃i,mi(t rem 𝜃imi)=𝛽i+ t
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and Γ𝜃i,mi(v rem 𝜃imi) represent the series expansion of miℰ i; this also incurs softly linear
time thanks to Proposition 2.6. □

6. VANISHING POLYNOMIALS

This section is devoted to computing homogeneous polynomials that vanish at a divisor
of a curve 𝒞 defined by a homogeneous polynomial F∈𝕂[x,y,z] of degree 𝛿. We assume
that F has degree 𝛿 in y and that the centers of this divisor are in the affine chart z=1. The
set of polynomials of total degree d that vanish at this divisor forms a vector space, that
can be computed straightforwardly by Gaussian elimination. This approach is detailed
in the first subsection. Then, we focus on a more promising method that yields “com-
pressed representations” of bases of Riemann–Roch spaces.

6.1. Vanishing conditions
So far, places occurring in the Brill–Noether algorithm have been separated into two
families: those centered at singular points of the curve and those at regular points. How-
ever the representations of these places have been designed to be consistent in terms
of families of series expansions parametrized by algebraic numbers. This motivates the
following ad hoc definition.

DEFINITION 6.1. A vanishing condition defined over𝕂 is a quintuple (Δ(b),𝜇(a),X(t),Y(t),
m) such that:
• Δ∈𝕂[b] is monic and separable; 𝛽 will represent the class of b in 𝕃≔𝕂[b]/(Δ(b));
• 𝜇∈𝕃[a] is monic and separable; here separable means that the discriminant of 𝜇 is invertible

in 𝕃; 𝛼 will represent the class of a in 𝔼≔𝕃[a]/(Δ(a));
• m∈ℕ>0;
• (X(t),Y(t))∈(𝔼[[t]]/(tm))2, with X(t)=𝛽+𝛾te, 𝛾 invertible in𝔼, and e a positive integer.
We say that a polynomial g∈𝕂[x,y] satisfies this vanishing condition when

valt(g(X(t),Y(t)))⩾m.

With the representation of Definition 3.9 of the adjoint divisor 𝒜 of 𝒞 , and according
to Definition 3.4, the adjoint condition can be regarded as a conjunction of vanishing
conditions whose representations are

((Δi(b),𝜇i, j(a),Xi, j(t)=𝛽i, j+𝛾i, j tei,j,Yi, j(t),𝜏i, j))i=1, . . . ,r, j=1, . . . ,si,

where the 𝜏i, j are defined in Equation (3.7), and the ei, j are the ramification indices. In
other words, a homogeneous polynomial G∈𝕂[x,y,z] is adjoint to 𝒞 if, and only if,

valt(G(Xi, j(t),Yi, j(t), 1))⩾𝜏i, j for i=1, . . . , r, j=1, . . . , si.

On the other hand, if D=mℰ is a smooth divisor given by series expansions as in Defini-
tion 5.8 and parametrized by x, its representation by 𝜃(b), u(b)=b, v(b), X(t)=𝛽+ t, Y(t)
gives rise to the following vanishing condition:

(Δ(b)=𝜃(b),𝜇(a)=a,X(t),Y(t),m).
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For a homogeneous polynomialG∈𝕂[x,y,z], the conditionDiv(G)⩾D is satisfied if, and
only if,

valt(G(X(t),Y(t),1))⩾m.

6.2. Straightforward linear solving
In this subsectionwe propose a solution based on classical linear algebra to the following
problem: given vanishing conditions

((Δi(b),𝜇i(a),Xi(t),Yi(t),mi))i=1, . . . ,r

as in Definition 6.1, find polynomials g∈𝕂[x,y] of total degree ⩽d, degree <𝛿 in y and
vanishing at all these conditions simultaneously. Vanishing conditions can be translated
into a homogeneous 𝕂-linear system, where the unknowns are the coefficients of g and
the number of equations is

𝜎≔�
i=1

r

mideg Δideg 𝜇i. (6.1)

Algorithm 6.1

Input. A sequence of vanishing conditions ((Δi(b), 𝜇i(a),Xi(t),Yi(t),mi))i=1, . . . ,r as in
Definition 6.1 and integers 𝛿,d⩾1.

Output. A 𝕂-basis of the polynomials g∈𝕂[x,y] of total degree ⩽d and degree <𝛿
in y that vanish simultaneously at all the input conditions.

1. Construct the matrix representing the𝕂-linear mapΦ:

{g∈𝕂[x,y] :deg g⩽d, degy g<𝛿} ⟶ �
i=1

r

𝔼i[[t]]/(tmi)

g(x,y) ⟼ (g(Xi(t),Yi(t)) rem tmi : i=1, . . . , r).

2. Compute and return a basis g1, . . . ,gl of kerΦ.

PROPOSITION 6.2. Algorithm 6.1 is correct and takes

Õ((d𝛿+𝜎)𝜔)

operations in𝕂, where 𝜎 has been defined in Equation (6.1).

Proof. For each i=1, . . . , r computing Xi(t)kYi(t)l at precision mi for l=0, . . . , 𝛿− 1 and
k=0, . . . ,d− l takes

Õ(d𝛿deg Δideg 𝜇imi)

operations in 𝕂. Taking the sum of these costs for i=1, . . . , r, we deduce that Õ(d 𝛿 𝜎)
operations in 𝕂 suffice to build the matrix of Φ. For the basis of the source space we
take the monomials xkyl for l=0, . . . , 𝛿−1 and k=0, . . . ,d− l. The basis of 𝔼i[[t]]/(tmi) in
the target space is set to 𝛼ik𝛽i

l tm for k=0, . . . ,deg 𝜇i−1, l=0, . . . ,deg Δi−1, and m=0, . . . ,
mi−1. Consequently, thematrix ofΦ hasO(d𝛿) columns and 𝜎 rows. Computing a basis
of kerΦ costs

Õ((d𝛿+𝜎)𝜔)

operations in 𝕂; see [10, Chapter 2], [69, Theorem 2.10], or [13, Chapitre 8, Théorème
8.4], for instance. □
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The straightforward approach developed in Algorithm 6.1 turns out to be sufficient
to achieve the complexity bound of Theorem 7.8. Yet we believe that it is worth adapting
the point of view previously introduced in [3, 4], because it yields more compact rep-
resentations of Riemann–Roch spaces (see Section 7.4), and it could benefit from future
improvements for computing the kernel ofΦ. In fact, in the special case where𝕂 is alge-
braically closed we will precisely achieve a lower complexity exponent in Section 7.7.

6.3. Popov form
Let 𝒃1, . . . , 𝒃𝛿 be a basis of a free 𝕂[x]-submodule of rank 𝛿 of 𝕂[x]𝛿, let 𝒔∈ℕ𝛿 be a shift
vector, we define

deg𝒔 𝒃i≔max(deg 𝒃i,1+𝒔1, . . . ,deg 𝒃i,𝛿+𝒔𝛿),

this is called the 𝒔-degree of 𝒃i. The pivot index of 𝒃i is the largest index j such that

deg 𝒃i, j+𝒔j=deg𝒔 𝒃i.

The basis 𝒃1, . . . , 𝒃𝛿 is said to be in 𝒔-Popov form if the matrix made of the rows 𝒃1, . . . , 𝒃𝛿 is
in 𝒔-Popov form. In the present case this means that:
• the pivot index of 𝒃i equals i for i=1, . . . , 𝛿,
• 𝒃i,i is monic for i=1, . . . , 𝛿,
• deg 𝒃j,i<deg 𝒃i,i for i=1, . . . , 𝛿, and j≠ i.
Given any basis, it is always possible to compute its 𝒔-Popov form. The Popov form will
be needed for the following purpose.

PROPOSITION 6.3. [3, Proposition 4.2] Let 𝒃1, . . . , 𝒃𝛿 be a basis of a free 𝕂[x]-module ℳ of
rank 𝛿 in 𝒔-Popov form. Given an integer d⩾0, the elements in ℳ of 𝒔-degree ⩽d form a 𝕂-
vector space of basis x j𝒃i for i=1, . . . , 𝛿 such that deg𝒔 𝒃i⩽d and j=0, . . . ,d−deg𝒔 𝒃i.

Computing Popov forms of m×n matrices can be done by means of row operations
only, with Õ(mn r(degM)2) operations in 𝕂, where r is the rank of M and when 𝒔 is
zero [54, Theorem 7.1]. The current best known bound Õ(m𝜔−1ndegM) holds when-
everm⩽n [56, 57]. For more information about Popov forms we refer the reader to [55].

6.4. Syzygy module
Let 𝔈 be a 𝜎-dimensional 𝕂-vector space, whose elements are regarded as column vec-
tors. By choosing an endomorphism of 𝔈, represented by a 𝜎 ×𝜎 matrix J with entries
in𝕂, we endow 𝔈 with a structure of a𝕂[x]-module defined by

p ⋅ 𝒆≔p(J)𝒆,

where p∈𝕂[x] and 𝒆∈𝔈. In other words, J represents the matrix of the multiplication
by x in 𝔈.

Given a vector 𝑬≔(𝒆1, . . . , 𝒆𝛿) in E𝛿, we consider the map

𝑬J: 𝕂[x]𝛿 ⟶ 𝔈 (6.2)
𝒑≔(p1, . . . ,p𝛿) ⟼ 𝒑⋅𝐄≔p1 ⋅ 𝒆1+ ⋅ ⋅ ⋅ +p𝛿 ⋅ 𝒆𝛿.

The kernel of 𝑬J forms a submodule of 𝕂[x]𝛿 which is free of rank 𝛿 because it contains
𝜇J(x)𝕂[x]𝛿, where 𝜇J stands for the minimal polynomial of J. The kernel ker 𝑬J is usually
called the (first) syzygy module of 𝑬.
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For the sake of efficiency, it is important to compute bases of ker 𝑬J with small shifted
degrees, for a shift vector 𝒔∈ℕ𝛿 as above. The natural candidate bases are those in Popov
form.

THEOREM 6.4. [45, simplified from Theorem 1.4] With the notation as above, the basis in
𝒔-Popov form of ker 𝑬J can be computed with Õ(𝜎𝜔⌈𝛿/𝜎⌉) operations in𝕂.

6.5. Compressed bases
We come back to Algorithm 6.1: wewill replace the straightforward kernel basis computa-
tion by Theorem 6.4. The complexity exponent will remain the same as in Proposition 6.2,
but we will obtain special bases having a representation size in general smaller.

In this subsection, we are given vanishing conditions

((Δi(b),𝜇i(a),Xi(t),Yi(t),mi))i=1, . . . ,r

as inDefinition 6.1, an integer 𝛿⩾1, andwe search for polynomials g∈𝕂[x,y] of degree<𝛿
in y such that

valt(g(Xi(t),Yi(t)))⩾mi for i=1, . . . , r.
We let

𝔈≔�
i=1

r
𝔼i[[t]]/(tmi).

The basis considered for 𝔼i[[t]]/(tmi) is the set of the 𝛼ik 𝛽i
l tm for k=0, . . . , deg 𝜇i− 1,

l=0, . . . ,deg Δi−1, m=0, . . . ,mi−1. With 𝜎 defined by Equation (6.1), we have

𝜎 =dim𝕂𝔈.

Let Ji denote thematrix of themultiplication endomorphism byXi(t)=𝛽i+𝛾itei in𝔼i[[t]]/
(tmi). Let J be the block diagonal matrix made of the blocks J1, . . . , Jr. Let 𝒆k denote the
vector (Y1(t)k−1, . . . ,Yr(t)k−1) regarded in 𝔈; precisely the projection of 𝒆k onto 𝔼i[[t]]/
(tmi) is Yi(t)k−1.

LEMMA 6.5. The matrices J1, . . . , Jr and the vectors 𝒆1, . . . , 𝒆r can be computed with

Õ((𝛿+𝜎)𝜎)
operations in𝕂.

Proof. Fix i in {1,...,r}. Building the vector representation of 𝛼ik𝛽i
degΔi for k=0,...,deg𝜇i−1

does not require any operation in𝕂. Second, we compute 𝛼ik𝛽i
l𝛾i for k=0, . . . ,deg 𝜇i−1

and l=0, . . . ,deg Δi−1. This amounts to Õ((deg Δideg 𝜇i)2) operations in𝕂.
Then, we note that

Xi(t)𝛼ik𝛽i
l tm=𝛼ik𝛽i

l+1 tm+𝛼ik𝛽i
l𝛾i tm+ei,

so the coordinates of Xi(t)𝛼ik𝛽i
l tm are obtainedwithout any further arithmetic operations.

Computing Yi(t)k for k=0,. . ., 𝛿−1 takes Õ(midegΔideg 𝜇i𝛿) operations in𝕂. Summing
these costs for i=1, . . . , r yields

Õ(((((((((((((((((�i=1

r

((deg Δideg 𝜇i)2+mideg Δideg 𝜇i 𝛿))))))))))))))))))= Õ((𝛿+𝜎)𝜎). □
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PROPOSITION 6.6. Let
((Δi(b),𝜇i(a),Xi(t),Yi(t),mi))i=1, . . . ,r

represent vanishing conditions as in Definition 6.1, let 𝛿⩾1, and set 𝒔≔(𝛿−1,𝛿−2,...,1,0) for
the shift vector. Let ℊ be the space of polynomials g of 𝕂[x,y] that vanish at all these conditions
and such that degy g<𝛿. Then, ℊ is a free 𝕂[x]-module of rank 𝛿, for which a basis in 𝒔-Popov
form can be computed with

Õ(𝜎𝜔 ⌈𝛿/𝜎⌉)

operations in𝕂, where 𝜎 has been defined in Equation (6.1).

Proof. In this context, the map (6.2) is

𝑬J: 𝕂[x]𝛿 ⟶ 𝔈=�
i=1

r
𝔼i[[t]]/(tmi)

𝒑≔(p1, . . . ,p𝛿) ⟼ 𝒑⋅𝐄=(p1(Xi(t))+p2(Xi(t))Yi(t)+ ⋅ ⋅ ⋅ +p𝛿(Xi(t))Yi(t)𝛿−1)i=1, . . . ,r.

Consequently, ker 𝑬J can be regarded as the 𝕂[x]-module of the polynomials p in
𝕂[x][y]<𝛿 such that

valt(p(Xi(t),Yi(t)))⩾mi for i=1, . . . , r,

that is exactly the definition of ℊ . The combination of Lemma 6.5 with Theorem 6.4 yields
the claimed cost. □

6.6. Application to divisors
To conclude this section, we revisit Proposition 6.6 in terms of divisors.

PROPOSITION 6.7. Let 𝒞 be a projective curve of degree 𝛿 defined by F=0. We assume that the
adjoint divisor 𝒜 of 𝒞 is represented as in Definition 3.9. Let D be a smooth positive𝕂-rational
divisor represented by series expansions as in Definition 5.8 and let 𝒔≔(𝛿− 1, 𝛿− 2, . . . , 1, 0)
stand for a shift vector. Let 𝒢 be the space of homogeneous polynomials G of 𝕂[x,y,z] such that

degyG<𝛿 and Div(G)⩾D+𝒜.

Then, 𝒢(x,y, 1) is a free 𝕂[x]-module of rank 𝛿, for which a basis in 𝒔-Popov form can be com-
puted with

Õ((𝛿 2+degD)𝜔)
operations in𝕂.

Proof. Since D is smooth, the condition Div(G)⩾D+𝒜 is equivalent to Div(G)⩾D and
Div(G)⩾𝒜 . As explained at the end of Section 6.1, these inequalities can straightfor-
wardly be rephrased into vanishing conditions in the affine chart z=1. The inequality
Div(G)⩾D yields degD linear equations in the coefficients of G(x,y, 1), while the other
inequality Div(G)⩾𝒜 yields deg 𝒜 =O(𝛿 2) linear equations. Proposition 6.6 gives the
claimed complexity bound since 𝜎 =O(𝛿 2+degD). □

7. COMPUTATION OF RIEMANN–ROCH SPACES

We are now ready to present our top level algorithm for computing Riemann–Roch
spaces. For efficiency reasons, our method relies on random changes of coordinates. So
we begin this section with studying the complexities related to this task.
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7.1. Changes of coordinates
We first recall that generic coordinates (with the meaning of Definition 3.8) can be
achieved after a random linear change of the variables with high probability.

LEMMA 7.1. Let F and G be two coprime homogeneous polynomials in𝕂[x,y,z], and let 𝒮 be a
finite subset of 𝕂. If M is an invertible 3×3 matrix taken at random with entries in 𝒮, then the
coordinates are not generic for F∘M and G∘M with probability

⩽2deg FdegG+deg F
|𝒮| .

Testing if the coordinates are generic for F and G takes Õ(deg F+degG) operations in𝕂.

Proof. Let (Mi, j)1⩽i, j⩽3 denote the entries of M. The coefficient of ydegF in F∘M is F(M1,2,
M2,2,M3,2), so it is generically non-zero and has degree deg F in the entries of M. Let C
be the coefficient of xdegFdegG in the determinant R of the Sylvester matrix of F∘M and
G ∘M in y, where F ∘M (resp. G∘M) is regarded as a polynomial of degree deg F in y
(resp. degG in y).

The degree of C in the entries of M is ⩽2 deg F deg G. Once F is ensured to have
degree deg F in y, then R(x,z+ cx) has degree deg FdegG in xwhenever R(1,c)≠0. This
proves that C is not identically zero as a polynomial in the entries of M. The bound on
the probability then follows directly from the aforementioned Schwartz–Zippel lemma.

Testing if the coordinates are generic involves determining the degree of F in y and
computing R(x, 0), that incur Õ(deg F+degG) arithmetic operations in𝕂. □

LEMMA 7.2. Let 𝒮 be a finite subset of 𝕂 and let F be a squarefree polynomial in 𝕂[x,y, z]. If
M is an invertible 3×3 matrix taken at random with entries in 𝒮, then the coordinates are not
generic for F∘M with probability

⩽2(deg F)2
|𝒮| .

Testing if the coordinates are generic for F takes Õ(deg F) operations in𝕂.

Proof. Let 𝛿≔deg F. The proof is very similar to the one of Lemma 7.1 but we need to
take into account that the change of variables does not commute with the differentiation
in y. Let (Mi, j)1⩽i, j⩽3 denote the entries of M. The coefficient of y𝛿 in F ∘M is F(M1,2,
M2,2,M3,2), so it is generically non-zero and has degree 𝛿 in the entries of M. Let C be the
coefficient of x𝛿(𝛿−1) in the determinant R of the Sylvester matrix of F∘M and ∂(F ∘M)

∂y in
y, where F∘M is regarded as a polynomial of degree 𝛿 in y.

The degree of C in the entries of M is ⩽𝛿(2𝛿−1). Once F is ensured to have degree 𝛿
in y, then R(x,z+ cx) has degree 𝛿 (𝛿−1) in xwhenever R(1,c)≠0. This proves that C is
not identically zero as a polynomial in the entries of M. The rest of the proof is the same
as for Lemma 7.1. □

7.2. Modular change of coordinates
Next, we address the cost of the division by F with respect to the variable y. We write
G remy F for the remainder in the division of G by F in 𝕂[x, z][y]. This division is well
defined whenever F is monic in y.

36 COMPUTING RIEMANN–ROCH SPACES VIA PUISEUX EXPANSIONS



LEMMA 7.3. Let F∈𝕂[x,y,z] be homogeneous of degree 𝛿⩾1 and of degree 𝛿 in y. Let G1 and
G2 be homogeneous polynomials in𝕂[x,y,z] of total degree d1 and d2 and degree <𝛿 in y. Then,
G1G2 remy F can be computed with Õ((d1+d2)𝛿) operations in𝕂.

Proof. The product P(x,y)≔G1(x,y,1)G2(x,y,1) can be computed with Õ((d1+d2)𝛿) by
means of the Kronecker substitution method; see [27, Chapter 8, Section 4] for instance.
If d1+d2<𝛿 then no division by F in y is needed. Otherwise P(x,y) remy F(x,y, 1) can be
computed in (𝕂[[x]]/(xd1+d2+1))[y] with Õ((d1+ d2) 𝛿) operations in 𝕂. It remains to
homogenize the latter remainder in degree d1+d2, unless it is zero. □

LEMMA 7.4. Let F∈𝕂[x,y,z] be homogeneous of degree 𝛿⩾1 and of degree 𝛿 in y. Let G∈𝕂[x,
y,z] be homogeneous of total degree d and degree<𝛿 in y. Then, Gn remyF can be computed with
Õ(nd𝛿) operations in𝕂.

Proof. This bound follows from the usual modular binary powering algorithm and
Lemma 7.3; see [27, Chapter 4, Section 3] for instance. □

LEMMA 7.5. Let F∈𝕂[x,y,z] be homogeneous of degree 𝛿⩾1 and of degree 𝛿 in y. Let H∈𝕂[x,
y, z] be homogeneous of total degree d and degree <𝛿 in y, and let M be a 3×3 matrix over 𝕂.
Then, H ∘M remy F can be computed with Õ(𝛿 2+d𝛿) operations in𝕂.

Proof. If d⩽2𝛿 then H ∘M can be computed with Õ(𝛿 2) operations in𝕂, by Lemma 2.1.
Then, (H ∘M)(x,y,1) remy F(x,y) can be computed with Õ(𝛿 2) operations in𝕂 by means
of a fast division algorithm in𝕂[[x]]/(xd+1)[y]. The corresponding remainder can then
be homogenized in degree d, unless it is zero.

If d>2 𝛿, then we use the “divide and conquer” paradigm. We set d0≔⌊d/2⌋ and
d1≔d−d0, and we note that d0⩾𝛿 and d1⩾𝛿. We decompose H into

H=zd0H1+G+xd1H0,

where degz(G+ xd1H0)< d0, degx G< d1, and such that the supports of zd0H1, G, and
xd1H0 are pairwise disjoint. Such a decomposition of H is uniquely determined by these
conditions. The supports of these polynomials specialized at z=1 can be sketched as
follows:

y

(0,0)

xd1H0zd0H1
G

xd1 d

𝛿−1

In particular, we have
degH0=d0, degyH0<𝛿, degH1=d1, degyH1<𝛿.

Then, we verify that

degx(G+xd1H0) ⩾ d−degz(G+xd1H0)−degy(G+xd1H0)
⩾ d−(d0−1)− (𝛿−1)
= d1−𝛿+2,
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and that

degzG ⩾ d−degxG−degyG
⩾ d− (d1−1)− (𝛿−1)
= d0−𝛿+2.

We set G̃≔G/(xd1−𝛿+2 zd0−𝛿+2), and deduce that

degx G̃ ⩽ d1−1− (d1−𝛿+2)=𝛿−3
degz G̃ ⩽ d0−1− (d0−𝛿+2)=𝛿−3
degy G̃ ⩽ 𝛿−1,

so the decomposition of H rewrites as

H= zd0H1+xd1−𝛿+2 zd0−𝛿+2 G̃+xd1H0.

By Lemma 7.4, the polynomials (z ∘M)d0 remy F, (x ∘M)d1−𝛿+2 (z ∘M)d0−𝛿+2 remy F, and
(x∘M)d1 remy F, can be computed with Õ(d𝛿) operations in𝕂. In addition, G̃∘M remy F
can be computed with Õ(𝛿 2) operations in 𝕂 by Lemma 2.1. Thanks to Lemma 7.3, we
obtain H ∘M remy F from H0∘M remy F and H1∘M remy F with Õ(d𝛿) operations in𝕂.

LetT(d) represent the cost for computingH ∘M remy Fwith degH=d. For d>2𝛿, we
have shown that

T(d)=T(d0)+T(d1)+ Õ(d𝛿).

This “divide and conquer” strategy endswhen d⩽2𝛿, forwhichwe have seen thatT(d)=
Õ(𝛿 2).

The successive recursive calls of the algorithm are regarded as a tree. The sum of
the total degree of the polynomials H occurring at depth h is ⩽d. So the total cost of
the computation nodes at depth h is Õ(d 𝛿). The depth of the tree is O(log(d/𝛿)). The
number of leaves isO(d/𝛿), and the contribution of each leaf is Õ(𝛿 2). Consequently, the
computation of H ∘M remy F amounts to Õ(𝛿 2+d𝛿). □

7.3. Computation of a common denominator
As recalled in Section 1.1, the first part of the Brill–Noether method is the computation
of a common denominator of a basis ofℒ(D). We are looking for homogeneous polyno-
mials H∈𝕂[x,y,z] of degree

d≔⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈(𝛿−1)(𝛿−2)+degD+
𝛿 ⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉, (7.1)

such that Div(H)⩾D++𝒜 . Note that d𝛿=O(𝛿 2+degD+). For the sake of complexity,
we require that Div(H) is sharply adjoint, which means that Div(H)−𝒜 is smooth. The
computation is summarized in the following algorithm.

Algorithm 7.1

Input. An absolutely irreducible plane projective curve 𝒞 of degree 𝛿, defined by the
equation F=0, and a smooth𝕂-rational divisor D of 𝒞 in multi-set primitive rep-
resentation.

Output. A homogeneous polynomialH∈𝕂[x,y,z], of total degree d defined in (7.1),
and degree <𝛿 in y, such that Div(H)⩾D++𝒜 and Div(H) is sharply adjoint,
where 𝒜 represents the adjoint divisor of 𝒞 .
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Assumption.𝕂 has characteristic zero. The coordinates are generic for F. The centers
of D are in the affine chart z=1. The variable x is primitive for the union of the centers
of D and 𝒱𝔸(F(x,y, 1),Fy(x,y, 1)).
1. Compute the series expansions of 𝒜 using Proposition 3.10.
2. Expand the representation of D+ using Proposition 5.11.
3. Let ℋ denote the space of homogeneous polynomials H of 𝕂[x, y, z] such that
degyH<𝛿 and Div(H)⩾D++𝒜 . Use Proposition 6.7 with D+ in order to obtain
a𝕂[x]-module basis h1, . . . ,h𝛿 of ℋ(x,y, 1).

4. Set H(x, y, z)≔ zd∑i=1
𝛿 ai(x/z) hi(x/z, y/z) with ai(x)∈𝕂[x]⩽d−deg hi taken at

randomwith coefficients in {1,.. .,2𝛿 2}. Repeat this step untilH is sharply adjoint.
5. Return H.

PROPOSITION 7.6. Algorithm 7.1 is correct and takes an expected number of

Õ((𝛿 2+degD+)𝜔)
operations in𝕂.

Proof. The assumptions are gathered in order to be able to apply Propositions 3.10, 5.11,
and 6.7. By Proposition 4.3 the𝕂-vector subspace V of ℋ of homogeneous polynomials
of degree d has positive dimension. Then, Proposition 6.3 ensures that the polynomialsH
generated in Step 4 are uniformly random elements of V. By Lemma 4.4, the expected
number of iterations of this step is O(1). Consequently, the algorithm finishes with a
correct result.

Step 1 costs Õ(𝛿 3) operations in𝕂 by Proposition 3.10. Step 2 contributes to

Õ�𝛿
𝜔
2+1+𝛿

𝜔−1
2 degD+�

by Proposition 5.11. Then, Step 3 incurs Õ((𝛿 2+degD+)𝜔) by Proposition 6.7. Finally,
the construction of H in Step 4 takes Õ(𝛿 d)= Õ(𝛿 2+degD+) operations in 𝕂. Testing
if H is sharply adjoint further incurs

Õ(𝛿max(d, 𝛿 2))= Õ(𝛿 3+degD+)
by Proposition 3.13. □

7.4. Representation of Riemann–Roch bases
The𝕂[x]-module approach of Section 6.5 naturally leads to the following representation
of a Riemann–Roch space ℒ(D) by:
• M∈GL3(𝕂),
• a homogeneous polynomial H in𝕂[x,y,z],
• a sequence of homogeneous polynomials G1, . . . ,Gl in 𝕂[x,y,z] of respective degree

d1, . . . ,dl,
such that
• F∘M has generic coordinates,
• degyH<𝛿, degyGi<𝛿 for i=1, . . . , l,
• the support of M−1(D) is in the affine chart z=1,
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• 𝒱ℙ(F∘M,H) is in the affine chart z=1,

• ((((((((((((((x
jzd−di− jGi

H ))))))))))))))∘M−1 with 0⩽ j⩽d−di and 1⩽ i⩽ l form a basis of ℒ(D).

7.5. Computation of a numerator basis
We are now ready to detail the second step of the Brill–Noether method: a common
denominator H of ℒ(D) has been computed and it remains to obtain a basis of numer-
ators. The way H has been determined does not a priori guarantee that the current
coordinates will be sufficiently generic for Div(H) and for the subsequent computation
of Div(H)−𝒜 −D. Consequently, the first part of the following algorithm is dedicated
to finding sufficiently generic coordinates with high probability. Although this part of
the algorithm seems technical, its correctness will be proved routinely. Nevertheless,
it would be further interesting to show that a single random change of the coordinates
from the outset is sufficient to ensure all the needed genericity conditions with high prob-
ability. In fact, we previously developed this strategy in [4] for curves with ordinary
singularities.

Algorithm 7.2

Input. An absolutely irreducible plane projective curve 𝒞 defined by F=0, a smooth
𝕂-rational divisorD of 𝒞 inmulti-set primitive representation, a common denom-
inator H∈𝕂[x,y,z] of ℒ(D) of total degree d and degree <𝛿 in y.

Output. A representation of ℒ(D) as defined in Section 7.4.
Assumption.𝕂 has characteristic zero. The coordinates are generic for F. The centers
of D are in the affine chart z=1. The variable x is primitive for the union of the centers
of D and the singular locus of 𝒞 . Div(H) is sharply adjoint and satisfies Div(H)⩾
D++𝒜 .
1. Take a 3×3matrixM at random with entries in

𝒮≔{1, . . . , 60 (𝛿 2+degD+)2}
until M is invertible.

2. Compute F∘M. If the coordinates are not generic for F∘M, then go to Step 1.
3. Compute H ∘M remy F using Lemma 7.5.
4. Compute

ℰ≔𝒱𝔸(F∘M(x,y, 1), (H ∘M remy F)(x,y, 1))

by using [3, Lemma 2.4]. If the number of solutions counted with multiplicities is
not d𝛿 or if x is not primitive for ℰ , then go to Step 1.
Otherwise, write 𝜃iH(t)=0, x=ui

H(t)= t rem 𝜃iH(t) and y=viH(t) for the parame-
trization of the points of ℰ having intersection multiplicity i, for i=1, . . . ,d𝛿.

5. Compute M−1(D) using Proposition 5.7. If the centers of M−1(D) are not in the
affine chart z=1, or if x is not an unramified primitive element for M−1(D), then
go to Step 1.

6. If x is not primitive for the union of the centers of M−1(D−) and ℰ , then go to
Step 1. If x is not primitive for 𝒱𝔸�F∘M(x,y,1), ∂(F ∘M)

∂y (x,y, 1)�, then go to Step 1.
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7. Replace F by F∘M,H byH ∘M remy F andD byM−1(D), and compute the adjoint
divisor 𝒜 of 𝒞 in the new coordinates, by using Proposition 3.10.

8. Compute the product Δ of the Δi of Definition 3.9. Compute

𝜃≔�
i=1

d𝛿

𝜃iH and 𝜃≔𝜃/Δ.

Then compute 𝜃i≔𝜃 rem 𝜃iH, 𝜃i≔gcd (𝜃i, 𝜃iH), ũi≔ t rem 𝜃i(t), ṽi≔ viH rem 𝜃i, for
i=1, . . . ,d𝛿.
If some of the Fy(x, ṽi(x),1) are not invertible modulo 𝜃i(x) then go to Step 1. Oth-
erwise the (𝜃i, ũi, ṽi, i) for i=1,...,d𝛿 constitute a multi-set primitive representation
of the smooth divisor Div(H)−𝒜 in terms of x.

9. Compute the multi-set primitive representation of

R≔((Div(H)−𝒜)−D+)+D−

in terms of x by using Propositions 5.15 and 5.13 successively.
10. Expand the representation of R by means of Proposition 5.11.
11. Let 𝒢 denote the space of homogeneous polynomials G of 𝕂[x, y, z] such that

degy G<𝛿 and Div(G)⩾R+𝒜 . Compute a basis g1, . . . , g𝛿 of the 𝕂[x]-module
𝒢(x,y, 1) by means of Proposition 6.7 used with R. Sort the gi by increasing total
degrees and let l be maximal such that deg gl⩽d.

12. Return M, H, zdigi(x/z,y/z), and di for i=1, . . . , l.

PROPOSITION 7.7. Algorithm 7.2 is correct and takes an expected number of

Õ((𝛿 2+degD+)𝜔).
operations in𝕂.

Proof. If the algorithm reaches Step 7, then the conditions of Proposition 3.10 are sat-
isfied, so the adjoint divisor 𝒜 can actually be computed. When entering Step 8 the
variable x separates the centers ofDiv(H) andDiv(H) is sharply adjoint. SinceDiv(H)⩾
D++𝒜 , the variable x also separates the centers of𝒜 (i.e. the singular points of 𝒞). Con-
sequently Δ divides 𝜃 in Step 8. Therefore if Step 8 does not return to Step 1, then it
actually computes a multi-set primitive representation of Div(H)−𝒜 . From Step 6 it
is ensured that x is an unramified primitive element for R so Step 9 works properly.

From the Brill–Noether theory, briefly recalled in Section 1.1, it is known that a poly-
nomialH satisfyingDiv(H)⩾D++𝒜 is a suitable denominator forℒ(D). Thismeans that
a numerator basis is a basis of the space of polynomials G modulo F, of total degree d=
degH, and such that Div(G)⩾Div(H)−D; see [36, Chapitre 2, Théorème 2.7.1], or [37,
Théorème 2.5], or [50, Section 4], for instance. Consequently, when Step 11 is reached,
Propositions 6.3 and 6.7 ensure the correctness of the output.

Before analyzing probabilities, from the definition of d in (7.1), we note that

d𝛿⩽𝛿 2+degD+−2𝛿. (7.2)

The probability that a 3×3matrixM taken with random entries in 𝒮 is not invertible is

⩽ 3
|𝒮| (7.3)
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by the aforementioned Schwartz–Zippel lemma. In Step 2, the probability that the coor-
dinates are not generic for F∘M is

⩽2𝛿 2
|𝒮| (7.4)

by Lemma 7.2. In Step 4, the probability that the coordinates are not generic for F∘M and
H ∘M or that x is not a suitable primitive element is

⩽
2d𝛿+𝛿+�d 𝛿2 �

|𝒮| ⩽ 3(𝛿 2+degD+)2
|𝒮| (7.5)

by Lemmas 7.1 and 5.2 combinedwith Inequality (7.2). In Step 5, the probability that the
conditions forM−1(D) are not met is

⩽3(degD++degD−)2
|𝒮| ⩽ 12(degD+)2

|𝒮| , (7.6)

by Lemma 5.5. In Step 6, the probability that the algorithm goes back to Step 1 is
�deg D−+|ℰ|

2 �+�𝛿(𝛿−1)
2 �

|𝒮| ⩽ (degD++d𝛿+𝛿 2)2
|𝒮|

⩽ 4(𝛿 2+degD+)2
|𝒮| (7.7)

by Inequality (7.2) and Lemma 5.2 again.
In Step 8 the abscissas of the centers of the places of Div(H) which belong to 𝒜 are

precisely the roots of ∆: we discard those places by dividing each 𝜃iH by gcd(𝜃iH,Δ) and
we update the parametrization ui

H and viH in order to obtain the candidate representa-
tion of Div(H)−𝒜 . Then, we check whether x is an unramified primitive element for
Div(H)−𝒜 . For the probability of Step 8 to return to Step 1, we apply Lemma 5.5 to the
divisor made of the points of ℰ that are smooth on 𝒞 : the probability bound is

⩽3 |ℰ|2
|𝒮| ⩽ 3(d𝛿)2

|𝒮| ⩽ 3(𝛿 2+degD+)2
|𝒮| . (7.8)

The sumof the right-hand sides of Inequalities (7.3) to (7.8) is⩽1/2. Overall, the expected
number of times the algorithm goes back to Step 1 is O(1). We are done with the cor-
rectness.

The cost of Step 1 is negligible. Then Step 2 contributes to Õ(𝛿 2) by Lemmas 2.1
and 7.1. Step 3 takes

Õ(𝛿 2+d𝛿)= Õ(𝛿 2+degD+)

operations in 𝕂 by Lemma 7.5. By [3, Lemma 2.4] (or [4, Proposition 5.6]), the cost of
Step 4 is

Õ(d𝛿 2)= Õ(𝛿 3+𝛿degD+)= Õ((𝛿 2+degD+)2).
Step 5 costs

Õ�𝛿
𝜔
2 +1+𝛿

𝜔−1
2 degD++(degD+)𝜛�= Õ((𝛿 2+degD+)2)

by Proposition 5.7.
Arriving at Step 6, x is an unramified primitive element for the support of M−1(D−)

and for ℰ , so it suffices to verify that the defining polynomials are coprime, with

Õ(degD−+|ℰ|)= Õ(d𝛿+degD+)= Õ(𝛿 2+degD+)
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operations in𝕂. Testing if x is primitive for 𝒱𝔸�F∘M(x,y,1), ∂(F ∘M)
∂y (x,y,1)� contributes

to Õ(𝛿 3) by [3, Lemma 2.4] (or [4, Proposition 5.6]). The conditions of Proposition 3.10
are satisfied, so Step 7 costs Õ(𝛿 3).

For Step 8, Proposition 2.3 allows the computation of the 𝜃i, ũi, ṽi for i=1, . . . ,d𝛿 with

Õ(d𝛿+𝛿 2)= Õ(𝛿 2+degD+)

operations in 𝕂. The remaining evaluations of Fy and the consecutive invertibility tests
of Step 8 amount to

Õ�𝛿
𝜔
2+1+𝛿

𝜔−1
2 (d𝛿)�= Õ�𝛿

𝜔
2 +1+𝛿

𝜔−1
2 (𝛿 2+degD+)�= Õ((𝛿 2+degD+)2)

by Lemma 5.6.
By Propositions 5.13 and 5.15, Step 9 costs

Õ(deg(Div(H))+degD+)= Õ(d𝛿+degD+)= Õ(𝛿 2+degD+).

Step 10 then takes

Õ�𝛿
𝜔
2+1+𝛿

𝜔−1
2 degR�= Õ�𝛿

𝜔
2+1+𝛿

𝜔−1
2 (d𝛿)�= Õ((𝛿 2+degD+)2)

operations in𝕂 by Proposition 5.11. Finally Step 11 contributes to

Õ((𝛿 2+degR)𝜔)= Õ((𝛿 2+d𝛿)𝜔)= Õ((𝛿 2+degD+)𝜔)

by Proposition 6.7. □

7.6. Main complexity bound
By combining Algorithms 7.1 and 7.2, we finally achieve our main result.

THEOREM 7.8. Let 𝕂 be an effective field of characteristic zero. Let F∈𝕂[x,y,z] be a homoge-
neous and absolutely irreducible polynomial of degree 𝛿, that defines a curve 𝒞. Let D be a smooth
𝕂-rational divisor of 𝒞 given in multi-set primitive representation (see Definition 5.4). Then,
a representation ofℒ(D) as in Section 7.4 can be computed with a probabilistic algorithm of Las
Vegas type with an expected number of

Õ((𝛿 2+degD+)𝜔)
operations in𝕂.

Proof. After a random change of coordinates, the assumptions of Algorithm 7.1 hold
with high probability, thanks to Lemmas 5.2, 5.5, and 7.2. Changing the coordinates
in F and testing their genericity takes Õ(𝛿 2) operations in 𝕂 by Lemmas 2.1 and 7.2.
Changing the coordinates in D, verifying that the centers are in the affine chart z=1,
and that x is an unramified primitive element takes

Õ�𝛿
𝜔
2 +1+𝛿

𝜔−1
2 |suppD+|+ |suppD+|𝜛�= Õ((𝛿 2+degD+)𝜔)

by Proposition 5.7. Let 𝜃D denote the corresponding minimal polynomial of x.
Testing if x is primitive for 𝒱𝔸(F(x,y,1),Fy(x,y,1)) and computing the corresponding

parametrization requires Õ(𝛿 3) operations in 𝕂 by [3, Lemma 2.4] (or [4, Proposi-
tion 5.6]). Let 𝜃Fy denote the corresponding minimal polynomial of x.
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The variable x is an unramified primitive element for the union of the centers of D
and 𝒱𝔸(F(x, y, 1), Fy(x, y, 1)) if, and only if, Res(𝜃D, 𝜃Fy) ≠ 0, whose computation takes
negligible time. Finally, once the assumptions of Algorithm 7.1 are satisfied, we call
this algorithm, followed by Algorithm 7.2. The total complexity bound is deduced from
Propositions 7.6 and 7.7. □

7.7. Towards a subquadratic complexity bound
To conclude this section, we focus on the following unusual special case:
Hypothesis (C). 𝕂 is algebraically closed of characteristic zero and is endowed with a

routine that computes the roots of any polynomial 𝜃∈𝕂[x] in softly linear time.
In fact, our goal is only to show that the complexity exponent for computing Rie-
mann–Roch spaces can be improved in this case, thanks to a faster algorithm for syzygy
bases. Precisely, we will rely on the following statement that improves Theorem 6.4 in
a particular case; we use the notation of Section 6.5.

THEOREM 7.9. [45, simplified from Theorem 1.5] With the notation of Section 6.4, if J is a
Jordan matrix, then the basis in 𝒔-Popov form of ker 𝑬J can be computed with Õ(𝛿𝜔−1(𝜎 + |𝒔|))
operations in𝕂, where |𝒔|≔ s1+ ⋅ ⋅ ⋅ + s𝛿.

We deduce the following proposition in replacement of Proposition 6.7.

PROPOSITION 7.10. Under Hypothesis (C), the complexity bound in Proposition 6.7 can be
replaced by Õ(𝛿𝜔−1(𝛿 2+degD)).

Proof. Since 𝕂 is algebraically closed, by using root-finding, we can decompose any
vanishing condition into a conjunction of vanishing conditions where each of them is still
represented by (Δ(b), 𝜇(a), X(t), Y(t)) as in Definition 6.1 but in the form of Δ(b)≔b−𝛽,
𝜇(a)≔ a and X(t)=𝛽+𝛾 te. Such a rewriting takes softly linear time by Hypothesis (C)
and Proposition 2.3. By computing a e-th root of 𝛾 we can further reduce to the case
where 𝛾=1, that is X(t)=𝛽+ te, in softly linear time.

For j=0,...,e−1, let 𝜈j denote the largest integer 𝜈 such that 𝜈 e+ j⩽m−1. In the basis
of the𝕂-vector space𝕂[[t]]/(tm)made of the concatenation of

�t𝜈je+ j, t(𝜈j−1)e+ j, . . . , te+ j, t j� for j=0, . . . ,min(e,m)−1,

the matrix representing the multiplication by X(t) = 𝛽+ te is a Jordan matrix. Conse-
quently, the cost of Lemma 6.5 becomes Õ(𝛿 𝜎): building the Ji is straightforward, and
e1, . . . , er still contribute to Õ (𝛿𝜎).

Since |𝒔|=O(𝛿 2), by combining this bound with Theorem 7.9, the complexity bound
in Proposition 6.6 becomes Õ(𝛿𝜔−1 (𝛿 2+𝜎)). The conclusion follows as in the proof of
Proposition 6.7. □

In the future, we hope that the complexity bound in Proposition 7.10will holdwithout
Hypothesis (C). This might be made possible thanks to further advances in the so called
interpolation bases algorithms; see [45, 55]. Let us now briefly assess the overall cost of
our Brill–Noether variant in this framework.

THEOREM 7.11. Under Hypothesis (C), the expected complexity bound in Theorem 7.8 can be
replaced by

Õ�(𝛿 2+degD+)
𝜔+1
2 �.
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Proof. Using Proposition 7.10 instead of Proposition 6.7, and revisiting complexity
analyses step by step, the cost in Proposition 7.6 becomes Õ(𝛿𝜔+1+𝛿𝜔−1degD+). Then,
the cost in Proposition 7.7 becomes

Õ(𝛿𝜔+1+𝛿𝜔−1degD++(degD+)𝜛).

It follows that the complexity bound in Theorem 7.8 can be replaced by

Õ(𝛿𝜔+1+𝛿𝜔−1degD++(degD+)𝜛)= Õ�𝛿𝜔+1+𝛿𝜔−1degD++(degD+)
𝜔+1
2 �.

If degD+⩽𝛿 2 then 𝛿𝜔−1degD+=O(𝛿𝜔+1). Otherwise 𝛿 2<degD+ and we have

𝛿𝜔−1degD+⩽(degD+)
𝜔−1
2 degD+⩽(degD+)

𝜔+1
2 ,

whence the claimed bound. □

The complexity bound of Theorem 7.11 is similar to the one obtained in [4] for ordi-
nary curves without Hypothesis (C): in this case another fast algorithm from [56] is used
for syzygy bases.

8. CONCLUSION

Our new algorithm for computing bases of Riemann–Roch spaces is subject to future
improvements and extensions. A first extension concerns handling non necessarily
smooth input divisors. Indeed our Proposition 4.3 supports this more general setting,
so it would essentially suffice to focus on the algorithmic side.

Another challenging research direction would be to achieve the same complexity
exponent in any characteristic. At present time the main difficulty resides in designing a
suitable efficient replacement of Puiseux expansions. Some possibilities in this direction
could be to exploit Hamburger–Noether expansions (introduced in [17] and previously
used in the context of computing Riemann–Roch spaces in [18]), or to rely on the approx-
imate roots theory initiated by Abhyankar [5, 22].

Finally, the bottleneck of our main algorithm is in the complexity bound of The-
orem 6.4. Therefore, faster computations of syzygy bases related to the structured linear
algebra problem occurring in Section 6.5 would improve the complexity exponent of
our main algorithm, in a way similar to the framework of Section 7.7.
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