
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
92

69
--

FR
+E

N
G

RESEARCH
REPORT
N° 9269
April 2019

Project-Team Prosecco

A Mechanised
Cryptographic Proof of
the WireGuard Virtual
Private Network Protocol
Benjamin Lipp, Bruno Blanchet, Karthikeyan Bhargavan

RESEARCH CENTRE
PARIS

2 rue Simone Iff - CS 42112
75589 Paris Cedex 12

A Mechanised Cryptographic Proof of the
WireGuard Virtual Private Network Protocol

Benjamin Lipp, Bruno Blanchet, Karthikeyan Bhargavan

Project-Team Prosecco

Research Report n° 9269 — version 3∗ — initial version April 2019 —
revised version June 2022 — 50 pages

Abstract: WireGuard is a free and open source Virtual Private Network (VPN) that aims to
replace IPsec and OpenVPN. It is based on a new cryptographic protocol derived from the Noise
Protocol Framework. This paper presents the first mechanised cryptographic proof of the protocol
underlying WireGuard, using the CryptoVerif proof assistant.
We analyse the entire WireGuard protocol as it is, including transport data messages, in an
ACCE-style model. We contribute proofs for correctness, message secrecy, forward secrecy, mutual
authentication, session uniqueness, and resistance against key compromise impersonation, identity
mis-binding, and replay attacks. We also discuss the strength of the identity hiding provided by
WireGuard.
Our work also provides novel theoretical contributions that are reusable beyond WireGuard. First,
we extend CryptoVerif to account for the absence of public key validation in popular Diffie-Hellman
groups like Curve25519, which is used in many modern protocols including WireGuard. To our
knowledge, this is the first mechanised cryptographic proof for any protocol employing such a
precise model. Second, we prove several indifferentiability lemmas that are useful to simplify the
proofs for sequences of key derivations.

Key-words: security protocols, verification, computational model, VPN

∗ Version 2: Revised the treatment of Curve25519 to take into account the usage of a single coordinate ladder
(Section 3.3). Minor improvements in bounds in Lemma 9. Other minor fixes. Version 3: Fixed definition of gap
Diffie-Hellman (Definition 1). Separate result on indifferentiability of hkdf-expand. Other minor fixes.

Une preuve cryptographique mécanisée du protocole de
réseau privé virtuel WireGuard

Résumé : WireGuard est un logiciel de réseau privé virtuel (VPN) gratuit et open source qui
cherche à remplacer IPsec et OpenVPN. Il est fondé sur un nouveau protocole cryptographique
dérivé de la famille de protocoles Noise. Ce document présente la première preuve cryptographique
mécanisée du protocole de WireGuard, obtenue avec l’assistant de preuve CryptoVerif.

Nous analysons le protocole WireGuard en entier, tel qu’il est, y compris les messages de
transport de données, dans un modèle du style ACCE. Nous obtenons des preuves de correction,
secret des messages, forward secrecy, authentification mutuelle, unicité des sessions, et résistance
contre des attaques d’imposture par compromis de clés, de mauvaise liaison d’identités, et de rejeu.
Nous discutons également la robustesse de la protection des identités fournie par WireGuard.

Notre travail fournit aussi de nouvelles contributions théoriques, réutilisables au-delà de
WireGuard. Premièrement, nous étendons CryptoVerif pour tenir compte de l’absence de
validation des clés publiques dans des groupes Diffie-Hellman populaires comme Curve25519, qui
est utilisé dans beaucoup de protocoles modernes dont WireGuard. À notre connaissance, c’est la
première preuve cryptographique mécanisée qui utilise un modèle aussi précis. Deuxièmement,
nous prouvons plusieurs lemmes d’indifférentiabilité qui sont utiles pour simplifier les preuves de
suites de dérivations de clés.

Mots-clés : protocoles cryptographiques, vérification, modèle calculatoire, VPN

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 3

1 Introduction

The traditional distinction between a secure intranet and the untrusted Internet is becoming less
relevant as more and more enterprises host internal services on cloud-based servers distributed
across multiple data centres. Sensitive data that used to travel only between physically proximate
machines within secure buildings is now sent across an unknown number of network links that
may be controlled by malicious entities.

To maintain the security of such distributed intranets, the most powerful tools at the disposal
of system administrators are Virtual Private Network (VPN) protocols that set up low-level
secure channels between machines, and hence can be used to transparently protect all the data
exchanged between them. Indeed, all leading cloud providers now offer VPN gateways, so that
enterprises can treat cloud-based servers as if they were located within their intranet.1

Standards vs. Custom Protocols. Most popular VPN solutions are based on Internet
standards like IPsec [26] and TLS [39], for several reasons. First, these protocols typically have
multiple interoperable implementations that are available on all mainstream operating systems,
so the VPN software can be easily built as a layer on top. Second, standards are designed to be
future-proof by relying on versioning and cryptographic agility, so that a VPN protocol can easily
move from one protocol version or cryptographic algorithm to another if (say) a weakness were
found on some configuration. Third, published standards typically have been closely scrutinised
by numerous interested parties, and hence are believed to be less likely to contain obvious security
flaws.

Conversely, using a standard protocol also has its disadvantages. Standardisation takes time,
and so a standard protocol may not use the most modern cryptographic algorithms. On the
contrary, the need for interoperability and backwards compatibility often force implementations to
continue support for obsolete cryptographic algorithms, leading to cryptanalytic attacks [11] and
software flaws [8]. Over time, standards and their implementations can grow to an unmanageable
size that can no longer be studied as a whole, allowing logical flaws to hide in unused corners of
the protocol [10].

Consequently, many new secure channel protocols eschew standardisation in favour of a lean
design that uses only modern cryptography and supports minimal cryptographic agility. The
succinctness of the protocol description aids auditability, and the lack of optional features reduces
complexity. Examples of this approach are the Signal protocol [33] used in many secure messaging
systems and the Noise protocol framework [37].

WireGuard is a VPN protocol that adopts this design philosophy [21]. It implements and
extends a secure channel protocol derived from the Noise framework, and it chooses a small set
of modern cryptographic primitives. By making these choices, WireGuard is able to provide a
high-quality VPN in a few thousand lines of code, and is currently being considered for adoption
within the Linux kernel. The design of WireGuard is detailed and informally analysed in [21],
but a protocol of such importance deserves a thorough security analysis.

A Need for Mechanised Proofs. Having a succinct, well-documented description is a good
basis for understanding, auditing, and implementing a custom cryptographic protocol, but in
itself is no guarantee that the protocol is secure. Symbolic analysis with tools like ProVerif [15]
and Tamarin [34] can help find logical flaws, and WireGuard already has been analysed using
Tamarin [22]. However, symbolic analyses do not constitute a full cryptographic proof. For
example, they cannot demonstrate the absence of cryptanalytic attacks on secure channels and

1https://cloud.google.com/vpn/docs/concepts/overview,
https://docs.aws.amazon.com/vpc/latest/userguide/vpn-connections.html,
https://azure.microsoft.com/en-us/services/vpn-gateway/

RR n° 9269

https://cloud.google.com/vpn/docs/concepts/overview
https://docs.aws.amazon.com/vpc/latest/userguide/vpn-connections.html
https://azure.microsoft.com/en-us/services/vpn-gateway/

4 Lipp & Blanchet & Bhargavan

VPNs (e.g. [11].)
Cryptographic proofs provide the highest form of formal assurance, but writing proofs by

hand requires significant expertise and effort, especially if the proof is to account for the precise
low-level details of a real-world protocol. And as proofs get larger, the risk of introducing proof
errors becomes non-negligible. All this effort is hard to justify for a custom protocol which may
change as the software evolves. For example, a manual cryptographic proof for the WireGuard
protocol appears in [23], but this proof would need to be carefully reviewed and adapted if the
WireGuard protocol were to change in any way or if a variant of WireGuard were to be proposed.

We advocate the use of mechanised provers to build cryptographic proofs, so that they can be
checked for errors, and can be easily modified to accommodate different variants of the protocol.
In this paper, we rely on the CryptoVerif protocol verifier [12, 13] to build a proof of WireGuard.
CryptoVerif relies on a computational model of cryptography, and generates machine-checkable
proofs by sequences of games, like those manually written by cryptographers.

Uncovering Real-World Cryptographic Assumptions. A mechanised proof also allows the
analyst to experiment with a variety of cryptographic assumptions and discover the precise set of
assumptions that a protocol’s security depends on.

In some cases, a protocol may require an unusual assumption about a hash function, or
a stronger assumption about encryption than one may have expected, and these cases can
provide a guide to implementers on what concrete cryptographic algorithms should or should
not be used to instantiate the protocol. For example, in our analysis of WireGuard, we find
that most of the standard properties require only standard assumptions about the underlying
authenticated encryption scheme (AEAD) but identity hiding requires a stronger assumption,
which is satisfied by the specific algorithms used by WireGuard, but may not be provided by
other AEAD constructions.

In other cases, a protocol’s use of a cryptographic primitive may motivate a new, more precise
model of the primitive. Protocols like WireGuard seek to depend on a small set of primitives and
reuse them in different ways. For example, WireGuard relies on the Curve25519 elliptic curve
Diffie-Hellman operation for an ephemeral key exchange as well as for entity authentication. It
uses Curve25519 public keys both as identities and as unique nonces to identify sessions. To
verify that Curve25519 is appropriate for all these usages, and to prove the absence of attacks
such as replays, identity mis-binding, and key compromise impersonation, we need to account for
the details of the Curve25519 group, rather than rely on a generic Diffie-Hellman assumption.
Hence, we propose a new model for Curve25519 in CryptoVerif and prove WireGuard secure
against this model.

Contributions. We present the first mechanised proof for the cryptographic design of the
WireGuard VPN, including the Noise IKpsk2 secure channel protocol it uses. Our analysis is
done on WireGuard v1 as specified in [21]. In addition to classic key exchange security for
IKpsk2, we examine the identity hiding and denial-of-service protections provided by WireGuard.
We conclude with a discussion of the strengths and weaknesses of WireGuard, and propose
improvements that would allow for stronger security theorems.

Our work also provides contributions reusable beyond the proof of WireGuard. To the best of
our knowledge, this is the first mechanised proof for any cryptographic protocol that takes into
account the precise structure of the Curve25519 group. We also prove a series of indifferentiability
results that allow us to simplify sequences of random oracle calls, and we made several extensions
to CryptoVerif that we mention in the rest of the paper when we use them. These extensions are
included in CryptoVerif 2.01 available at https://cryptoverif.inria.fr/.

Our models of WireGuard are available at https://cryptoverif.inria.fr/WireGuard.

Inria

https://cryptoverif.inria.fr/
https://cryptoverif.inria.fr/WireGuard

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 5

2 WireGuard

WireGuard [21] establishes a VPN tunnel between two remote hosts in order to securely encapsulate
all Internet Protocol (IP) traffic between them. The main design goals of WireGuard are to
be simple, fast, modern, and secure. In order to establish a tunnel, a system administrator
only needs to configure the IP address and long-term public key for the remote host. With
this information, WireGuard can establish a secure channel, using a protocol derived from the
Noise framework, instantiated with fast, modern cryptographic primitives like Curve25519 and
BLAKE2. The full WireGuard VPN is implemented in a few thousand lines of code that can run
on multiple platforms, but for performance, is usually run within the operating system kernel. In
particular, WireGuard is in the process of being incorporated into the Linux kernel (most likely
Linux 4.2/5.0), as an alternative to IPsec.

In this section, we focus on the cryptographic design of WireGuard. We begin by describing
the secure channel component, then the extensions WireGuard makes for denial-of-service and
stealthy operation. We end the section by detailing the concrete cryptographic algorithms used
by WireGuard and the list of informal security goals it seeks to achieve.

2.1 Secure Channel Protocol: Noise IKpsk2

Noise [37] is a framework for building two-party cryptographic protocols that are secure by
construction. Using the building blocks in this framework, a designer can create a new protocol
that matches a desired subset of security guarantees: mutual or optional authentication, identity
hiding, forward secrecy, etc. The Noise specification also includes a list of curated pre-defined
protocols, with an informal analysis of their message-by-message security claims. WireGuard
instantiates one of these protocols, which is called IKpsk2, and extends it to provide further
guarantees needed by VPNs.

The secure channel protocol is depicted in Figure 1a, and the cryptographic computations are
detailed in Figure 1b, using notations similar to [21]. Before the protocol begins, the initiator i
and the responder r are assumed to have exchanged their long-term static public keys (Spub

i , Spub
r).

Optionally, they may have also established a pre-shared symmetric key (psk); if this key is absent
it is set to a key-sized bitstring of zeros.

Message Exchange. The protocol begins when i sends the first handshake message to r, which
includes the following components:

• Ii: a fresh session identifier, generated by i,

• Epub
i : a fresh ephemeral public key, generated by i,

• Spub
i � : i’s static public key, encrypted for r,

• ts�: a timestamp, encrypted with a key that can be computed only by i and r, and

• mac1,mac2: message authentication codes (see §2.2).

In response, r sends the second handshake message containing:

• Ii: i’s session identifier,

• Ir: a fresh session identifier, generated by r,

• Epub
r : a fresh ephemeral public key, generated by r,

RR n° 9269

6 Lipp & Blanchet & Bhargavan

Initiator i Responder r

First(Ii, E
pub
i , Spub

i � , ts�,mac1,mac2 = 016)

Second(Ir, Ii, E
pub
r , empty�,mac1,mac2 = 016)

↪→ ↪→
TransportData(Ii, N

→
1 , P1�)

� �
TransportData(Ir, N

←
2 , P2�)

TransportData(Ii, N
→
3 , P3�)

· · ·

Figure 1a: WireGuard’s protocol messages.

Initiator i Responder r

First(Ii, . . . ,mac1,mac2 = 016)

CookieReply(Ii,nonce, τ �)

First(Ii, . . . ,mac1,mac2)

(continues with standard handshake)

– – – – – – – – CookieReply – – – – – – – –

Rr ←$ {0, 1}256 (refresh only every 2 minutes)
τ ← mac(Rr, Ai) with Ai = IPi‖Porti

nonce ←$ {0, 1}192

τ� ← xaenc(hash(labelcookie‖Spub
r),nonce, τ,mac1)

– – – – – – – – Non-zero mac2 – – – – – – –

mac2 ← mac(τ,msgβ)

Figure 1c: Cookie mechanism under load.

– – – – – – – – First – – – – – – – – – – – –

Epub
i : (Epriv

i , Epub
i)←$ keygen()

C0 ← hash(protocol_name)

H0 ← hash(C0‖prologue)
H1 ← hash(H0‖Spub

r)

C1 ← hkdf1(C0, E
pub
i)

H2 ← hash(H1‖Epub
i)

C2‖k1 ← hkdf2(C1, dh(E
priv
i , Spub

r))

Spub
i � : Spub

i � ← aenc(k1, 0, S
pub
i , H2)

H3 ← hash(H2‖Spub
i �)

C3‖k2 ← hkdf2(C2, dh(S
priv
i , Spub

r))

ts�: ts� ← aenc(k2, 0, timestamp(), H3)

H4 ← hash(H3‖ts�)
mac1: mac1 ← mac(hash(labelmac1‖Spub

r),msgα)

– – – – – – – – Second – – – – – – – – – – –

Epub
r : (Epriv

r , Epub
r)←$ keygen()

C4 ← hkdf1(C3, E
pub
r)

H5 ← hash(H4‖Epub
r)

C5 ← hkdf1(C4, dh(E
priv
r , Epub

i))

C6 ← hkdf1(C5, dh(E
priv
r , Spub

i))

C7‖π‖k3 ← hkdf3(C6, psk)

H6 ← hash(H5‖π)
empty�: empty� ← aenc(k3, 0, empty, H6)

H7 ← hash(H6‖empty�)

mac1: mac1 ← mac(hash(labelmac1‖Spub
i),msgα)

– – – – – – – – Key Derivation – – – – – – –

T→‖T← ← hkdf2(C7, empty)

– – – – – – – – TransportData – – – – – – – –

P1� ← aenc(T→, N→1 = 0, P1, empty)

P2� ← aenc(T←, N←2 = 0, P2, empty)

P3� ← aenc(T→, N→3 = 1, P3, empty)

Figure 1b: Cryptographic Computations for
Protocol Messages.

Figure 1: (a) An overview of WireGuard’s main protocol messages; (b) the cryptographic
computations used to create these messages; they need to be adapted accordingly for the receiving
side; and (c) the cookie mechanism used by WireGuard to protect hosts against Denial-of-Service
attacks. We write x� for a variable containing an encryption of x; x� is just a variable identifier.
The authenticated encryption functions aenc and xaenc take as arguments a key, a nonce, the
plaintext to encrypt, and the additional data to authenticate, in this order. msgα refers to all the
bytes of a message up to but not including mac1, msgβ is the same but including mac1. Session
key derivation takes places after the second protocol message, symbolised by ↪→, at which point
the initiator can send messages. The end of the handshake is symbolised by �, after which
transport data messages can be sent in both directions. The cookie mechanism is depicted in
one direction, initiator to responder, but can actually be used by either initiator or responder,
whichever is under load.

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 7

• empty�: an empty bytestring encrypted with a key that can be computed only by i and r,
and

• mac1,mac2: message authentication codes (see §2.2).

The encrypted payloads in the two messages serve as authenticators: by computing the
corresponding encryption key, each party proves that it knows the private key for its static public
key. The encryption key for the second message also requires knowledge of the optional psk
providing an additional authentication guarantee. The two ephemeral keys add fresh session-
specific key material that can be used to compute (forward) secret session keys known only to i
and r.

At the end of these two messages, i and r derive authenticated encryption keys (T→, T←) that
can be used to transport IP traffic in the two directions. Importantly, i sends the first transport
message, hence confirming the successful completion of the handshake to r, before r sends it any
encrypted traffic. Each of these transport messages includes:

• Ii or Ir: the recipient’s session identifier,

• N←j or N→j : the current message counter,

• Pj : an IP datagram, encrypted under the traffic key.

Cryptographic Computations. Figure 1b describes how each of these message components
and traffic keys are computed. As the handshake proceeds, i and r compute a sequence of
transcript hashes (H0, H1, . . . ,H7) that hashes in all the public data used in the two handshake
messages, including:

• protocol_name, prologue: strings identifying the protocol,

• Epub
i , Epub

r : both ephemeral public keys,

• Spub
r , Spub

i � : both static public keys, but with the initiator’s key in encrypted form,

• ts�, empty�: both encrypted handshake payloads, and

• π: an identifier derived from the pre-shared key.

These transcript hashes serve as unique identifiers for the current stage of the session. In particular,
no two completed WireGuard sessions should have the same H7.

Both parties also derive a sequence of chaining keys (C0, C1, . . . , C7) by mixing in all the key
material, including:

• protocol_name, Epub
i , Epub

r ,

• dh(Epriv
i , Spub

r) = dh(Spriv
r , Epub

i): the ephemeral-static Diffie-Hellman shared secret com-
puted using the initiator’s ephemeral key (named first in ephemeral-static) and the respon-
der’s static key (named second in ephemeral-static),

• dh(Spriv
i , Spub

r) = dh(Spriv
r , Spub

i): the static-static shared secret,

• dh(Epriv
i , Epub

r) = dh(Epriv
r , Epub

i): the ephemeral-ephemeral shared secret,

• dh(Spriv
i , Epub

r) = dh(Epriv
r , Spub

i): the static-ephemeral shared secret, and

• psk : the (optional) pre-shared key.

RR n° 9269

8 Lipp & Blanchet & Bhargavan

The function dh is the elliptic curve scalar multiplication, taking a private key and a public key as
argument, permitting the computation of a shared secret [30]. In the preceding list, the initiator
uses the first function call, and the responder the second one, respectively.

The protocol uses all four combinations of static and ephemeral Diffie-Hellman shared-secret
computations to maximally protect against the compromise of some of these keys. The psk also
serves as a defensive countermeasure against quantum adversaries who may be able to break the
Diffie-Hellman construction, but not hkdf. Hence, by using a frequently updated psk , WireGuard
users can protect current sessions against future quantum adversaries.

Each chaining key is mixed into the next chaining key via an hkdf key derivation that also
outputs encryption keys as needed. This chain of key derivations outputs two encryption keys
(k1, k2) for the first handshake message, an encryption key (k3) and a PSK identifier (π) for the
second message, and traffic keys (T←, T→) for all subsequent transport messages.

To encrypt each message, WireGuard uses an authenticated encryption scheme with associated
data (AEAD) that takes a key, a counter, a plaintext (padded up to the nearest blocksize) and an
optional hash value as associated data. The encryptions in the handshake messages use the current
transcript hash (H2, H3, H6) as associated data, which guarantees that the two participants have
a consistent session transcript. Transport messages use an empty string as associated data. The
message counter is initially set to 0 for each AEAD key and incremented by 1 every time the key
is reused.

Relationship with IKpsk2. The secure channel protocol described above is a direct instantia-
tion of Noise IKpsk2, with five notable differences. First, WireGuard adds local session identifiers
(Ii, Ir) for the initiator and responder. Second, WireGuard fixes the payload of the first message
to a timestamp, and the one of the second message to the empty string. Third, WireGuard
stipulates that the first traffic message is sent from the initiator to the responder. Fourth,
WireGuard excludes zero Diffie-Hellman shared secrets to avoid points of small order, while Noise
recommends not to perform this check. Fifth, WireGuard adds two message authentication codes
to the handshake messages, to provide stealth and to protect against DoS, as described in the
next section. We also observe that although this protocol is superficially similar to other popular
Noise protocols like IK (which is used in WhatsApp), there are important differences between
these variants and a proof for one does not translate to the other.

2.2 Extensions for Stealth and Denial-of-Service

A VPN protocol operates at a low-level in the networking stack and hence needs to not only
protect against cryptographic attacks, but also real-world network-level attacks such as denial of
service (DoS). Indeed, a cryptographic protocol like IKpsk2 that needs to perform two expensive
Diffie-Hellman operations before it can authenticate a handshake message is even more vulnerable
to DoS: an adversary can send bogus messages that tie up computing resources on the recipient.
A further security goal for WireGuard is that its VPN endpoints should be stealthy, in the sense
that it should not be possible for a network adversary to blindly scan for WireGuard services.

To support stealthy operation, WireGuard endpoints do not respond to any handshake message
unless the sender can prove that it knows the static public key of the recipient. This proof is
incorporated in the mac1 field included in each handshake message, which contains a message
authentication code (MAC) computed over the prefix of the current handshake message up to
but not including mac1, using a MAC key derived from the recipient’s static public key. The
recipient verifies this MAC before processing the message, and stays silent if the MAC fails.
Hence, a network adversary who does not know the public key cannot detect whether WireGuard
is running on a machine, and at the same time cannot force the recipient to perform two finally
useless Diffie-Hellman operations.

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 9

To protect more actively against DoS, WireGuard incorporates a cookie-based protocol
(depicted in Figure 1c) that a host can use when it is under load. For example, if the responder
suspects it is under a DoS attack, it can refuse to process the first handshake message and
instead send back an initiator-specific fresh cookie (τ) that is computed from a frequently rotated
secret key (Rr) (known only to the responder) and the initiator’s IP address (IPi) and source
port (Porti). The responder encrypts this cookie for the initiator, using a key derived from the
initiator’s static public key, a fresh nonce, and the mac1 field of the first message as associated
data.

The initiator decrypts τ and then retries the handshake by sending the first message again,
but this time with a second field mac2 that contains a MAC over the full message up to and
including mac1, using τ as the MAC key. After verifying this MAC, the responder continues with
the standard handshake.

However, to obtain τ , an adversary must be able to read messages on the network path
between the initiator and responder and must also know the initiator’s static key (which is never
sent in the clear by the protocol). And even if the adversary has both these capabilities, it is
required to perform session specific cryptographic computations for every handshake message
it sends to the responder, significantly limiting its ability to mount a DoS attack. Hence, this
cookie protocol protects the recipient from brute-force network attacks.

Note that the mac2 field is included in both handshake messages, and hence can be used in
both directions, to protect both the initiator and responder from DoS attacks.

The two MACs are WireGuard-specific mechanisms which are not present in IKpsk2. Since
they do not use any of the session keys (or hashes or chaining keys) that are used in IKpsk2,
adding these mechanisms should, in principle, not affect the security of the secure channel protocol.
However, since the static public keys of the two hosts are used in the two MACs, we need to
carefully study their impact on the identity-hiding guarantees of IKpsk2.

2.3 Instantiating the Cryptographic Algorithms

WireGuard uses a small set of cryptographic constructions and instantiates them with modern
algorithms, carefully chosen to provide strong security as well as high performance:

• dh: all Diffie-Hellman operations use the Curve25519 elliptic curve [30], which uses 32-byte
private and public keys;

• hash: all hash operations use the BLAKE2s hash function [40], which returns a 32-byte hash;

• aenc: authenticated encryption for handshake and traffic message uses the AEAD scheme
ChaCha20Poly1305 [35], where the key has 32 bytes, the 96-bit nonce is composed of 32
bits of zeroes followed by the 64-bit little-endian value of the message counter, the plaintext
is padded with zeroes up to the nearest 16-byte block, and the associated data is a hash
value of 32 bytes;

• xaenc: cookie encryption uses an extended AEAD construction using XChaCha20Poly1305,
which incorporates a 192-bit random nonce [7] into the standard ChaCha20Poly1305
construction;

• mac: all MAC operations use the keyed MAC variant of the BLAKE2s hash function, which
returns a 16-byte tag;

• hkdfn: all key derivations use the HKDF construction [29], using BLAKE2s as the underlying
hash function.

RR n° 9269

10 Lipp & Blanchet & Bhargavan

WireGuard also uses some constants to indicate the specific algorithms it uses and to disambiguate
different uses of the mac and xaenc primitives. The protocol_name field is set to the UTF-8
string “Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s” while the prologue is set to “WireGuard v1
zx2c4 Jason@zx2c4.com”. The mac1 computation uses the UTF-8 string “mac1––” as labelmac1,
and the cookie computation uses “cookie–” as labelcookie.

2.4 Security Goals, Informally
Using the mechanisms described in this section, WireGuard seeks to provide the following set of
strong security guarantees, inheriting the security claims of Noise IKpsk2 [37] and extending them
with the additional DoS and stealth goals of WireGuard [21]. In the following, we use honest to
refer to a party that follows the protocol specification, and dishonest to a party that doesn’t, i.e.
that is controlled by the adversary. Most properties are defined to hold within a clean session; we
define this notion formally in Section §5.1.

• Correctness: If an honest initiator and an honest responder complete a WireGuard
handshake and the messages are not altered by an adversary, then the transport data keys
(T→, T←) and the transcript hash H7 are the same on both hosts.

• Secrecy: If a transport data message P is sent over a tunnel between two honest hosts,
then this message is kept confidential from the adversary. Furthermore, the traffic keys for
this tunnel are also confidential.

• Forward Secrecy: Secrecy for a session holds even if both the static private keys (Spriv
i ,

Spriv
r) and the pre-shared key (psk) become known to the adversary, but only after the

session has been completed and all its traffic keys and chaining keys are deleted by both
parties.
Secrecy also holds even if the static and ephemeral keys are compromised (e.g. by a quantum
adversary), as long as the pre-shared key is not compromised.

• Mutual Authentication: If an honest initiator (resp. responder) completed a handshake
(ostensibly) with an honest peer, then that peer must have participated in this handshake.
Moreover, if a host A receives a plaintext message over a WireGuard tunnel that claims to
be from host B, then B must have (intentionally) sent this message to A.

• Resistance against Key Compromise Impersonation (KCI): The recipient of a mes-
sage can authenticate the message’s sender even if the recipient’s static key is compromised.

• Resistance against Identity Mis-Binding: If two honest parties derive the same traffic
keys in some WireGuard session, then they agree on each other’s identities, even if one
or both of them have been interacting with a dishonest party or a honest party with
compromised keys. This property is also called resistance against unknown key-share
attacks.

• Resistance against Replay: Any protocol message sent may be accepted at most once
by the recipient.

• Session Uniqueness: There is at most one honest initiator session and at most one honest
responder session for a given traffic key. Similarly, there is at most one honest initiator
session and at most one honest responder session for given handshake messages.

• Channel Binding: Two sessions that have the same final session transcript hash H7 share
the same view and the same session keys.

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 11

• Identity Hiding: Just by looking at the messages transmitted over the network, a passive
adversary cannot infer the static keys involved in a session. (However, these identities are
not forward secret: If the responder’s static key gets compromised, the adversary can later
decrypt the initiator’s static public key that was transmitted in the first message.)

• DoS Resistance: The adversary cannot have a message accepted by a recipient under
load without having first made a round trip with that recipient. In practice, this means
that the adversary has to be at the claimed address. Because we assume that the adversary
controls the network, we cannot prove more than enforcing a round trip.

The security goals above are stated in terms of completed WireGuard sessions, with most security
guarantees only applying after the third message, when both initiator and responder start freely
sending and receiving data. In particular, the first transport data message (i.e. the third message)
serves as key confirmation to the responder, and is needed to prove that the initiator has control
over its ephemeral key. This is why, in WireGuard, the responder does not send any data until it
sees this third message. In the rest of this paper, we investigate whether WireGuard achieves the
goals set out above.

3 Cryptographic Assumptions
This section presents the assumptions that we make on the cryptographic primitives used by
WireGuard. For most primitives, the desired assumption is already present in the library of
primitives of CryptoVerif, so we just need to call a macro to use that assumption. Still, we had
to design a new model for Curve25519, detailed below.

3.1 Random Oracle Model
We assume that BLAKE2s is a random oracle [4]. This assumption is justified in [32] using a weak
ideal block cipher. In particular, BLAKE2s uses a prefix-free Merkle-Damgård construction, thanks
to the use of finalisation flags. Therefore, extension attacks which apply to pure Merkle-Damgård
constructions do not apply to BLAKE2s.

3.2 IND-CPA and INT-CTXT for AEAD
We assume that the ChaCha20Poly1305 AEAD scheme [35] is IND-CPA (indistinguishable under
chosen plaintext attacks) and INT-CTXT (ciphertext integrity) [3], provided the same nonce
is never used twice with the same key. IND-CPA means that the adversary has a negligible
probability of distinguishing encryptions of two distinct messages of the same length that it has
chosen. INT-CTXT means that an adversary with access to encryption and decryption oracles
has a negligible probability of forging a ciphertext that decrypts successfully and has not been
returned by the encryption oracle. These properties are justified in [38], assuming ChaCha20 is
a PRF (pseudo-random function) and Poly1305 is an ε-almost-∆-universal hash function. The
latter property is shown to hold in [5].

3.3 Curve25519 and Gap Diffie-Hellman
WireGuard uses the elliptic curve Curve25519 [30] for Diffie-Hellman key exchanges. Curve25519,
as implemented in WireGuard and as specified by RFC 7748 [30], satisfies the following properties:

1. It is an elliptic curve defined by an equation of the form Y 2 = X3 +AX2 +X in the field
Fp of non-zero integers modulo a large prime p, where A2 − 4 is not a square modulo p.

RR n° 9269

12 Lipp & Blanchet & Bhargavan

2. It forms a commutative group of order kq where k (cofactor) is a small integer and q is
a large prime, using point addition as group law and the point at infinity ∞ as neutral
element. The base point g0 is a point on the curve with prime order q.

3. The incoming public keys are not verified and the implementation uses a single coordinate
ladder, that is, the curve points are only represented by their X coordinate. When
X3 + AX2 + X is a square Y 2, X represents the curve point (X,Y) or (X,−Y). When
X3 + AX2 + X is not a square, X does not represent a point on the curve, but on its
quadratic twist. The twist is also an elliptic curve, which forms a group of order k′q′ where
k′ is a small integer and q′ is a large prime, using point addition as group law and the point
at infinity ∞ as neutral element. (In particular, the incoming public keys can represent any
point on the curve or its twist, and may not belong to the subgroup generated by the base
point g0.)

4. The cofactor k of the curve is a multiple of the cofactor k′ of the twist.

5. The single coordinate ladder is defined following [6, Theorem 2.1]: We consider the elliptic
curve E(Fp2) defined by the equation Y 2 = X3 + AX2 +X in a quadratic extension Fp2
of Fp, we define X0 : E(Fp2) → Fp2 by X0(∞) = 0 and X0(X,Y) = X, and for X ∈ Fp
and y an integer, we define y · X ∈ Fp as y · X = X0(yQ) for all Q ∈ E(Fp2) such that
X0(Q) = X.

6. The public keys (bitstrings in a finite set G) are mapped to elements of Fp by the function
decode_pk : G → Fp and conversely, elements of Fp are mapped to public keys by the
function encode_pk : Fp → G, such that decode_pk ◦ encode_pk is the identity.

7. The Diffie-Hellman “exponentiation” exp : G× Z→ G is defined by

exp(X, y) = encode_pk(y · decode_pk(X))

8. The private keys are chosen uniformly in {kn | n ∈ S} where S ⊆ {nmin, . . . , nmax},
nmin < nmax, nmax − nmin < q, nmax − nmin < q′, and all elements of S are prime to qq′.

Curve25519 satisfies these properties with p = 2255 − 19, k = 8, k′ = 4, q = 2252 + δ with
0 < δ < 2128 (the exact value is δ = 0x14def9dea2f79cd65812631a5cf5d3ed), q′ = 2253 − 9− 2δ,
S = {2251, . . . , 2252−1}. The set G of public keys consists of bitstrings of 32 bytes, or equivalently
G = {0, . . . , 2256 − 1}. The function decode_pk : G → Fp is defined by decode_pk(X) =
(X mod 2255) mod p. Conversely, encode_pk : Fp → G is such that encode_pk(X) is the
representation of X as an element of {0, . . . , p− 1}. For generality, our model supports not only
Curve25519, but any elliptic curve that satisfies assumptions 1 to 8 above.

Let us first establish a few properties of y ·X.

Lemma 1. 1. We can define y ·X for y in Zkqq′ .

2. y · (z ·X) = (yz) ·X.

3. Let Z be the set of integers multiple of k and prime to qq′ modulo kqq′. For any z ∈ Z, for
any X,Y ∈ Fp, we have z ·X = z · Y if and only if k ·X = k · Y .

4. Let Gsub = {k · X | X ∈ Fp}. For any z prime to qq′, for any X,Y ∈ Gsub, we have
z ·X = z · Y if and only if X = Y .

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 13

Proof. 1. We have kqq′Q = ∞ for any Q: if Q is on the curve, then kqQ = ∞ since ∞ is
the neutral element of the curve and its order is kq, so kqq′Q = ∞; if Q is on the twist, then
k′q′Q =∞ since ∞ is the neutral element of the twist and its order is k′q′, so kqq′Q =∞ since
kqq′ is a multiple of k′q′. Hence, (y + nkqq′)Q = yQ for any n, so we can define y ·X when y is
in Zkqq′ .

2. We have y · (z ·X) = X0(yQ′) for all Q′ ∈ E(Fp2) such that X0(Q′) = z ·X = X0(zQ) for
all Q ∈ E(Fp2) such that X0(Q) = X. Taking Q′ = zQ, we have y · (z ·X) = X0(yzQ) for all
Q ∈ E(Fp2) such that X0(Q) = X, so y · (z ·X) = (yz) ·X.

3. We have z = kz′ for some z′ prime to qq′: there exist z′′ and n such that z′z′′ + nqq′ = 1.
Then kz′z′′ + nkqq′ = k. Hence, z′′ · (z ·X) = (zz′′) · X = (kz′z′′) · X = k · X and similarly
z′′ · (z · Y) = k · Y .

If k ·X = k ·Y , then z ·X = (kz′) ·X = z′ · (k ·X) = z′ · (k · Y) = (kz′) ·Y = z ·Y . Conversely,
suppose z ·X = z · Y . Thus, z′′ · (z ·X) = z′′ · (z · Y), so k ·X = k · Y .

4. We have X = k ·X ′ and Y = k · Y ′ for some X ′ and Y ′. By 3. applied to kz, X ′, Y ′, we
have (kz) ·X ′ = (kz) · Y ′ if and only if k ·X ′ = k · Y ′. That is exactly z ·X = z · Y if and only if
X = Y .

Property 2 implies that exp(exp(g, y), z) = encode_pk(z · (y ·X0(g0))) = encode_pk((zy) ·
X0(g0)), where g = encode_pk(X0(g0)) represents the base point. Hence, by commutativity of
integer multiplication, exp(exp(g, y), z) = exp(exp(g, z), y): the same Diffie-Hellman shared secret
is computed by both participants of the protocol.

We say that public keys X and Y such that k · decode_pk(X) = k · decode_pk(Y) are
equivalent, because they yield the same Diffie-Hellman shared secrets as shown by Lemma 1,
property 3. There are in general several public keys equivalent to a public key X. Moreover, the
public keys may be 0, and x · 0 = 0 for all x.

While most proofs of Diffie-Hellman key agreements assume a prime order group, that
assumption is not correct for most implementations of Curve25519. For instance, the identity
mis-binding issue that we discuss in Section 6 would not appear in a prime order group. Therefore,
we need to provide a new model that takes into account the properties mentioned above.

In CryptoVerif, we first define the following types:

type G [bounded, large].
type Gsub [bounded, large].
type Z [bounded, large,nonuniform].

The type G represents the set of public keys; it is bounded because it is represented by bitstrings
of bounded length, and large because collisions between randomly chosen elements in G have
a small probability. (The set G contains at least p elements since encode_pk is injective, and
p is a large prime.) The type Gsub represents the set {k · X | X ∈ Fp} = {X0(Q) | Q is in
the subgroup of order q of the curve or in the subgroup of order q′ of the twist}. The type Z
corresponds to the set Z defined in Lemma 1. When honest participants choose private keys,
they are chosen uniformly in a subset of Z, {kn | n ∈ S}, considered modulo kqq′. By hypothesis,
n ∈ S is prime to qq′. Moreover, since k is small integer and q and q′ are large primes, k is
not a multiple of q nor q′, so k is also prime to qq′. Hence, kn is a multiple of k and prime to
qq′, so kn considered modulo kqq′ is in Z. Since these elements do not cover the whole set Z,
the distribution for choosing random private keys inside the whole Z is non-uniform, which is
indicated by the annotation nonuniform.

The main idea of our model is to rely on a Diffie-Hellman assumption in Gsub , and so to work
as much as possible with elements in Gsub . We rewrite the computations in G into computations
in Gsub by first mapping the public keys X ∈ G to k · decode_pk(X) ∈ Gsub .

We define functions:

RR n° 9269

14 Lipp & Blanchet & Bhargavan

fun exp(G,Z) : G.
fun mult(Z,Z) : Z.
equation builtin commut(mult).

We let exp(X, y) = encode_pk(y · decode_pk(X)) and mult be the product modulo kqq′, in Z.
Since its two arguments are multiples of k and prime to qq′, so is its result, and it is in Z. The last
line states that the function mult is commutative. (We could add associativity and other algebraic
properties, but commutativity is typically sufficient to prove security of basic Diffie-Hellman key
exchanges. More algebraic properties may be needed to prove group Diffie-Hellman protocols, for
instance. Note that not modelling these does not restrict the adversary in the computational
model.)

fun pow_k(G) : Gsub .
fun exp_div_k(Gsub , Z) : Gsub .
fun Gsub2G(Gsub) : G [data].
equation forall X : Gsub , X

′ : Gsub ;
(pow_k(Gsub2G(X)) = pow_k(Gsub2G(X ′))) = (X = X ′).

We have pow_k(X) = k ·decode_pk(X), and it is in Gsub for all X in G. We have exp_div_k(X,
y) = (y/k) ·X. This function is convenient since the private keys in Z are always multiples of k.
Let us show that it is well defined and operates on Gsub . Since y is a multiple of k, there exists y′
such that y = ky′. There are k representatives of y/k modulo kqq′, y′+nqq′ for n ∈ {0, . . . , k−1},
but all representatives yield the same value for (y/k) · X: since X ∈ Gsub , there exists X ′
such that X = k · X ′, so (y′ + nqq′) · X = (y′ + nqq′) · (k ·X ′) = (ky′ + nkqq′) · X ′ = y · X ′.
Moreover, this value is equal to k · (y′ ·X ′), so it is in Gsub . The function Gsub2G is encode_pk
restricted to Gsub ; it converts elements of type Gsub to type G. The annotation data tells
CryptoVerif that it is injective. The last equation says that pow_k ◦Gsub2G is injective. The
function decode_pk ◦ Gsub2G is the identity, so pow_k(Gsub2G(X)) = k · X and similarly
pow_k(Gsub2G(X ′)) = k ·X ′. By Lemma 1, property 4, k ·X = k ·X ′ if and only if X = X ′.

We also define constants:

const zero : G.
const zerosub : Gsub .
equation zero = Gsub2G(zerosub).
const g : G.
const g_k : Gsub .
equation pow_k(g) = g_k .
equation g_k 6= zerosub .

The constant 0 is zero as an element of G and zerosub as an element of Gsub . The constant
g = encode_pk(X0(g0)) represents the base point, and g_k = k · decode_pk(g).

We also state equations that hold on these functions:

equation forall X : G, y : Z; exp(X, y) = Gsub2G(exp_div_k(pow_k(X), y)). (1)

equation forall X : Gsub , y : Z, z : Z;
exp_div_k(pow_k(Gsub2G(exp_div_k(X, y))), z) = exp_div_k(X,mult(y, z)).

(2)

Equation (1) follows from y · decode_pk(X) = (y/k) · (k · decode_pk(X)) and Equation (2) from
(z/k) · k · (y/k) ·X = (yz/k) ·X. Equation (2) applies in particular to simplify exp(exp(X, y), z)
after applying (1):

exp(exp(X, y), z) = Gsub2G(exp_div_k(pow_k(Gsub2G(exp_div_k(pow_k(X), y))), z))

= Gsub2G(exp_div_k(pow_k(X),mult(y, z)))

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 15

This equation with X = g, combined with the commutativity of mult , shows that both participants
of the protocol compute the same Diffie-Hellman shared secret. These equations are used by
CryptoVerif as rewrite rules, to rewrite the left-hand side into the right-hand side. They allow to
rewrite computations in G into computations that happen in Gsub , after mapping the public keys
X ∈ G to k · decode_pk(X) ∈ Gsub . In particular, exp(g, y) = Gsub2G(exp_div_k(g_k , y)) and
exp(exp(g, y), z) = Gsub2G(exp_div_k(g_k ,mult(y, z))).

The next equations allow CryptoVerif to simplify equality tests with 0, which are used by
some protocols, including WireGuard, to exclude elements of low order from the allowed public
keys.

equation forall X : Gsub , y : Z; (exp_div_k(X, y) = zerosub) = (X = zerosub).
equation forall X : Gsub , y : Z; (exp_div_k(X, y) 6= zerosub) = (X 6= zerosub).
equation forall X : Gsub ; (pow_k(Gsub2G(X)) = zerosub) = (X = zerosub).
equation forall X : Gsub ; (pow_k(Gsub2G(X)) 6= zerosub) = (X 6= zerosub).

When y ∈ Z, y = ky′ for some y′ prime to qq′. Moreover, y′ ·0 = 0. Therefore, (y/k) ·X = 0 if and
only if y′ ·X = y′ ·0 if and only if X = 0 by Lemma 1, property 4. We have pow_k(Gsub2G(X)) =
k · X and k is prime to qq′, so k · X = 0 if and only if k · X = k · 0 if and only if X = 0 by
Lemma 1, property 4.

Other properties serve to simplify equalities between Diffie-Hellman values in Gsub , with the
goal of showing that these equalities are false. When the Diffie-Hellman shared secrets are passed
to a random oracle, these equality tests appear after using the random oracle assumption: we
compare the arguments of each call to the random oracle with arguments of previous calls, to
know whether the random oracle should return the result of a previous call.

equation forall X : Gsub , X
′ : Gsub , y : Z;

(exp_div_k(X, y) = exp_div_k(X ′, y)) = (X = X ′).
(3)

equation forall X : Gsub , x
′ : Z, y : Z;

(exp_div_k(X, y) = exp_div_k(g_k ,mult(x′, y))) =
(X = pow_k(Gsub2G(exp_div_k(g_k , x′)))).

(4)

collision y
R← Z; z

R← Z; [random_choices_may_be_equal] forall X : Gsub ;
return(exp_div_k(X, y) = exp_div_k(X, z))
≈Pcoll1rand(Z) return((X = zerosub) ∨ (y = z)).

(5)

collision x
R← Z; forall X : Gsub , Y : Gsub ;

return(exp_div_k(X,x) = Y) ≈2×Pcoll1rand(Z) return((X = zerosub) ∧ (Y = zerosub))
if X independent-of x ∧ Y independent-of x.

(6)

collision x
R← Z; forall y : Z,X : Gsub ;

return(exp_div_k(g_k ,mult(x, y)) = X) ≈2×Pcoll1rand(Z) return(false)
if y independent-of x ∧X independent-of x.

(7)

collision x
R← Z; y

R← Z; [random_choices_may_be_equal] forall X : Gsub ;
return(exp_div_k(g_k ,mult(x, y)) = X) ≈4×Pcoll1rand(Z) return(false)
if X independent-of x ∨X independent-of y.

(8)

collision x
R← Z; y

R← Z; y′
R← Z; [random_choices_may_be_equal]

return(exp_div_k(g_k ,mult(x, y)) = exp_div_k(g_k ,mult(x, y′)))
≈Pcoll1rand(Z) return(y = y′).

(9)

Equation (3) follows from Lemma 1, property 4 because y = ky′ for some y′ prime to qq′.
In particular, using (1), injectivity of Gsub2G , and (3), exp(X, y) = exp(X ′, y) simplifies into

RR n° 9269

16 Lipp & Blanchet & Bhargavan

pow_k(X) = pow_k(X ′). In contrast, in a prime order group, exp(X, y) = exp(X ′, y) implies
X = X ′. This is the reason why, in the identity mis-binding issue of Section 6, we fail to prove
equality of the public keys X = X ′ and can only prove pow_k(X) = pow_k(X ′).

Equation (4) is a particular case of (3) whenX ′ = x′·g_k = pow_k(Gsub2G(exp_div_k(g_k ,
x′))). However, CryptoVerif would not apply (3) to a term of the form exp_div_k(X, y) =
exp_div_k(g_k ,mult(x′, y)).

Let us solve the equation y ·X = z ·X for X ∈ Gsub . If X = 0, then y ·X = 0 = z ·X for all
y and z. Otherwise, X = X0(Q) where Q is either in the subgroup of order q of the curve or in
the subgroup of order q′ of the twist. Since X 6= 0, Q 6=∞, so Q is a generator of either of these
subgroups. The equation y ·X = z ·X means X0(yQ) = X0(zQ), that is, yQ = zQ or yQ = −zQ.
If Q is on the curve, this means y ≡ z mod q or y ≡ −z mod q. If Q is on the twist, this means
y ≡ z mod q′ or y ≡ −z mod q′. In other words, z + mq and −z +mq are equivalent private
keys for all m and all public keys in Gsub that correspond to points on the curve, and z +mq′

and −z +mq′ are equivalent private keys for all m and all public keys in Gsub that correspond to
points on the twist. (In the case of Curve25519, there are indeed honestly generated equivalent
private keys: kn and k(q − n) for n ∈ {2251, . . . , 2251 + δ} can both be honestly generated since
q−n ∈ {2251, . . . , 2251+δ} in this case. Similarly, kn and k(q′−n) for n ∈ {2252−8−2δ, . . . , 2252−1}
can both be honestly generated since q′ − n ∈ {2252 − 8− 2δ, . . . , 2252 − 1}.)

In the collision statement (5), Pcoll1rand(Z) is the probability that a randomly chosen element
x in Z is equal to an element of Z independent of x. Since random private keys are chosen uniformly
among a set of |S| elements, Pcoll1rand(Z) = 1/|S|. For Curve25519, Pcoll1rand(Z) = 2−251.
Statement (5) means that the probability of distinguishing exp_div_k(X, y) = exp_div_k(X, z)
from (X = zerosub)∨ (y = z) is at most Pcoll1rand(Z), assuming y and z are chosen randomly in
Z (y R← Z; z

R← Z). The annotation [random_choices_may_be_equal] means that the random
choices y R← Z and z R← Z may be either independent or the same random choice. (Without this
annotation, they would necessarily be independent.) Grouping the two cases in a single collision
statement allows CryptoVerif to apply it even when it cannot determine whether the random
choices are independent or identical: when x and y are two cells of the same array with indices
that may be different or equal. In (5), when X = 0 or y = z, both sides are true. Suppose now
that X 6= 0 and y 6= z. Then, y and z are independent random choices, and the right-hand side is
false. The expressions differ when the left-hand side is true, that is, (y/k) ·X = (z/k) ·X, so
y/k ≡ z/k mod q or y/k ≡ −z/k mod q when X = X0(Q) for Q on the curve and y/k ≡ z/k
mod q′ or y/k ≡ −z/k mod q′ when X = X0(Q) for Q on the twist. Since q and q′ are greater
than nmax−nmin and y/k and z/k are in S ⊆ {nmin, . . . , nmax}, the only possibility for y/k ≡ z/k
mod q or y/k ≡ z/k mod q′ is y = z, which is excluded, and the equations y/k ≡ −z/k mod q
and y/k ≡ −z/k mod q′ each have at most one solution for z once y is fixed, so they hold with
probability at most Pcoll1rand(Z). Therefore, the two expressions differ with at most probability
Pcoll1rand(Z).

Statement (6) means that the probability of distinguishing exp_div_k(X,x) = Y from
(X = zerosub) ∧ (Y = zerosub) is at most 2× Pcoll1rand(Z) assuming x is chosen randomly in
Z (x R← Z) and X and Y are independent of x. Indeed, suppose that exp_div_k(X,x) = Y
differs from (X = zerosub) ∧ (Y = zerosub). If X = 0, then (x/k) ·X = 0, so both expressions
reduce to Y = 0, so they cannot differ. Therefore, X 6= 0. The second expression is then false. If
(x/k) ·X = Y , then Y = y ·X for some y independent of x. Moreover x = kn for n ∈ S chosen
randomly, and y is independent of n. The equality (x/k) ·X = n ·X = Y = y ·X holds if and
only if n ≡ y mod q or n ≡ −y mod q when X = X0(Q) for Q on the curve and n ≡ y mod q′

or n ≡ −y mod q′ when X = X0(Q) for Q on the twist. Each of these equations has at most one
solution for n since q and q′ are greater than nmax−nmin, so there are at most two solutions for n

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 17

in total (for Curve25519, there are indeed two solutions for some values of y, due to the existence
of equivalent private keys), hence the first expression (x/k) ·X = Y is true with probability at
most 2×Pcoll1rand(Z), and the two expressions differ with at most that probability. The support
for side-conditions in collision statements is an extension of CryptoVerif that we implemented.

In statement (7), when the equality exp_div_k(g_k ,mult(x, y)) = X holds, we have X =
exp_div_k(g_k , z) for some z ∈ Z independent of x. Hence, since g_k corresponds to a point
on the curve, xy/k ≡ z/k mod q or xy/k ≡ −z/k mod q. Since y/k is prime to qq′, so prime to
q, y/k is invertible modulo q, so x ≡ z/y mod q or x ≡ −z/y mod q, and z/y is independent of
x, so these equalities happen with probability at most 2× Pcoll1rand(Z).

When x and y are independent, statement (8) is a consequence of statement (7). Suppose that
x and y are the same random choice: x = y. When the equality exp_div_k(g_k ,mult(x, x)) = X
holds, we have X = exp_div_k(g_k , z) for some z ∈ Z independent of x. Hence, since g_k
corresponds to a point on the curve, x2/k ≡ z/k mod q or x2/k ≡ −z/k mod q, that is,
x2 ≡ z mod q or x2 ≡ −z mod q, and z is independent of x. Each of these equations has at
most 2 solutions for x, so these equalities happen with probability at most 4× Pcoll1rand(Z).
(Furthermore, for Curve25519, q ≡ 1 mod 4, so −1 is a square modulo q, hence both z and −z
are squares simultaneously, so x2 ≡ z mod q or x2 ≡ −z mod q may have 4 solutions for x in
total.)

Statement (9) holds when y and y′ are the same random choice. When y and y′ are independent
random choices and exp_div_k(g_k ,mult(x, y)) = exp_div_k(g_k ,mult(x, y′)), since g_k
corresponds to a point on the curve, we have xy/k ≡ xy′/k mod q or xy/k ≡ −xy′/k mod q.
Since x is prime to qq′, so prime to q, x is invertible modulo q, so y/k ≡ y′/k mod q or
y/k ≡ −y′/k mod q. In the first case, since q is greater than nmax − nmin and y/k and y′/k are
in S ⊆ {nmin, . . . , nmax}, we have y = y′. Hence the two sides of (9) differ only in the second
case, which happens with probability less than Pcoll1rand(Z).

For simplicity, we omit 4 additional collision statements, which can be inferred from the
ones above. CryptoVerif may be able to infer some of them automatically in the future. When
CryptoVerif transforms a game using a Diffie-Hellman assumption, it renames exp_div_k into
exp_div_k ′, in order to prevent the repeated application of the same game transformation. Hence,
we define a symbol exp_div_k ′ with the same equations and collision statements as exp_div_k .

This model is included as a macro in CryptoVerif’s library of cryptographic primitives, so that
it can easily be reused. Similar models also apply to other curves that have a similar structure,
for instance Curve448 [30], which is also used by the Noise framework, and by other protocols
like TLS 1.3. For Curve448, we have p = 2448 − 2224 − 1, k = k′ = 4, q = 2446 − 2223 − δ with
0 < δ < 2220, q′ = 2446 + δ, and the private keys are kn for n ∈ {2445, . . . , 2446 − 1}. We note the
following differences with respect to Curve25519:

• Assumptions 1 to 8 are satisfied except that the elements of {2445, . . . , 2446 − 1} are not
all prime to qq′: q is in {2445, . . . , 2446 − 1}, so kq is a valid private key, and it is the only
private key non-prime to qq′. It is a weak private key in the sense that for all X that
correspond to a point on the curve, (kq) ·X = 0. Shared secrets generated using this private
key are rejected when the participants verify that the shared secrets are non-zero. We first
exclude this private key, which yields a probability difference of 1/2445 = 2−445 for each
chosen private key, and then apply the previous results with S = {2445, . . . , 2446 − 1} \ {q}.

• q ≡ −1 mod 4, so −1 is not a square modulo q. Hence, in the proof of (8), the equalities
x2 ≡ z mod q and x2 ≡ −z mod q cannot both have solutions for x for the same value
of z. (Either z or −z is a square modulo q but not both.) Therefore, statement (8) can
be strengthened by reducing the probability difference to 2 × Pcoll1rand(Z) instead of
4× Pcoll1rand(Z).

RR n° 9269

18 Lipp & Blanchet & Bhargavan

We have also added to CryptoVerif’s library of primitives the model for Curve448 outlined above,
as well as a more general model that assumes neither that the private keys are prime to qq′
(eliminating weak private keys multiple of q or q′ as explained for Curve448), nor that q ≡ −1
mod 4. The latter model is sound for both Curve25519 and Curve448.

We assume that Gsub satisfies the gap Diffie-Hellman (GDH) assumption [36], in the following
sense:

Definition 1 (Gap Diffie-Hellman). Given g that corresponds to a generator of the subgroup of
order q of the curve and EU = {kn | n ∈ [(q + 1)/2, q − 1]} considered modulo kqq′, a · g, and b · g
for random a, b ∈ EU , the adversary has a negligible probability to compute (ab) · g (computational
Diffie-Hellman assumption), even when the adversary has access to decisional Diffie-Hellman
oracles, which tell him

• given U, V,W ∈ Gsub, whether there exist β ∈ EU such that U = β · g, and W = β · V ;

• given G,U, V,W ∈ Gsub, whether there exist α, β ∈ EU such that G = α · g, U = β · g, and
α ·W = β · V .

Choosing the exponents in EU guarantees the unicity of β such that U = β · g (E stands
for exponent, U for unique). Moreover, EU is close to the set of honestly generated exponents
{kn | n ∈ S}: the statistical distance between the uniform distributions on these two sets is
bounded by 2−126 [1, Lemma 1]. The first decisional Diffie-Hellman oracle basically tells whether
(U, V,W) is a good Diffie-Hellman triple with generator g, and the second one basically tells
whether (U, V,W) is a good Diffie-Hellman triple with generator G, as we explain below. We need
to separate the two oracles because there exists no α ∈ EU such that α ·W = W for all W ∈ Gsub .
We use the formulation of Definition 1 for the decisional Diffie-Hellman oracles to accommodate
elements V , W not necessarily in the group generated by g. When all elements are in the group
generated by g of order q, we have for the first oracle U = u · g for u = β, V = v · g for some v so
W = (uv) · g; and for the second oracle U = u ·G for u = β/α (since α is invertible modulo q) and
V = v ·G for some v, so α ·W = β ·V = (vβ) ·G = (uvα) ·G so W = (uv) ·G, hence there exist u
and v such that U = u ·G, V = v ·G, and W = (uv) ·G. (U, V,W) is then a good Diffie-Hellman
triple with generator G. Note that we need the computational Diffie-Hellman assumption only
for the curve, not for the twist, while the decisional Diffie-Hellman oracles may mix elements of
the curve and of the twist: G and U always correspond to points of the curve, while V and W
either correspond to points both on the curve or both on the twist. (If V corresponds to a point
on the curve and W corresponds to a point on the twist, then β · V corresponds to a point on
the curve and α ·W corresponds to a point on the twist, so they cannot be equal except when
V = W = 0.) This assumption was already modelled in CryptoVerif.

Interestingly, the obtained model is very similar to what we would obtain with the elliptic
curve Curve25519 itself, without using a single coordinate ladder. In the latter case, G is the
curve itself, a group of order kq. The base point g has prime order q; Gsub is the prime order
subgroup generated by g. The set Z is the set of integers multiple of k and prime to q, modulo
kq. The operation y · X is point multiplication, the functions decode_pk and encode_pk are
the identity. Then we have properties similar to Lemma 1, replacing qq′ with q: y ·X is defined
for y ∈ Zkq; y · (z ·X) = (yz) ·X; for any z ∈ Z, X,Y ∈ G, we have z ·X = z · Y if and only if
k ·X = k · Y (because z = kz′ for some z′ invertible modulo q); for any z prime to q, for any
X,Y ∈ Gsub , we have z · X = z · Y if and only if X = Y (because z is invertible modulo q).
Public keys X and Y are equivalent when k ·X = k ·Y , so each public key has k equivalent public
keys, including itself. Similarly to the previous model, exp(X, y) = y ·X, mult is the product
modulo kq in Z, pow_k(X) = k ·X, and exp_div_k(X, y) = (y/k) ·X. The function Gsub2G
maps each element of Gsub to the same element in G. The constants zero in G and zerosub in

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 19

Gsub represent the neutral element of G, that is, the point at infinity ∞. The properties of these
functions and constants until (4) are proved similarly to the previous model, replacing qq′ with q.
Let us solve the equation y ·X = z ·X for X ∈ Gsub . If X =∞, then y ·X =∞ = z ·X for all y
and z. Otherwise, X is a generator of Gsub , so y ·X = z ·X if and only if y ≡ z mod q. As a
result, we can strengthen (5) as follows:

equation forall X : Gsub , y : Z, z : Z;
(exp_div_k(X, y) = exp_div_k(X, z)) = ((y = z) ∨ (X = zerosub)).

In the proof of (6), (x/k) ·X = n ·X = Y = y ·X holds if and only if n ≡ y mod q, and the
probability that the expressions differ is at most Pcoll1rand(Z) instead of 2 × Pcoll1rand(Z).
Due to the strengthened form of (5), equalities exp_div_k(g_k , y) = exp_div_k(g_k , z) are
replaced with y = z. For this reason, we replace (7), (8), and (9) with properties on private keys.
Statement (7) becomes:

collision x
R← Z; forall y : Z, z : Z;

return(mult(x, y) = z) ≈Pcoll1rand(Z) return(false)
if y independent-of x ∧ z independent-of x

since mult(x, y) = z means xy ≡ z mod kq, so xy/k ≡ z/k mod q and y is invertible modulo q,
so x/k ≡ z/ky mod q, so x ≡ z/y mod kq. Since z/y is independent of x, the equality x ≡ z/y
mod kq has probability at most Pcoll1rand(Z) to happen. Statement (8) becomes:

collision x
R← Z; y

R← Z; [random_choices_may_be_equal] forall z : Z;
return(mult(x, y) = z) ≈2×Pcoll1rand(Z) return(false)
if z independent-of x ∨ z independent-of y.

When x and y are independent, this statement is a consequence of the previous one. When they
are the same random choice, x = y, and mult(x, x) = z implies x2 ≡ z mod kq, so x2/k ≡ z/k
mod q so (x/k)2 ≡ z/k2 mod q since k is invertible modulo q, and the probability that the
expressions differ is at most 2× Pcoll1rand(Z) instead of 4× Pcoll1rand(Z) since each element
has at most 2 square roots modulo q. The increased probability that we observe in the model
with single coordinate ladder in the previous collision statements comes from the existence of
equivalent private keys. Statement (9) becomes

equation forall x : Z, y : Z, y′ : Z; (mult(x, y) = mult(x, y′)) = (y = y′)

since mult(x, y) = mult(x, y′) means xy ≡ xy′ mod kq, so xy/k ≡ xy′/k mod q, so y/k ≡ y′/k
mod q since x is invertible modulo q, so y ≡ y′ mod kq, that is, y = y′ in Z. Finally, the GDH
assumption is needed only in the subgroup Gsub , so the twist is excluded. This model is presented
in the conference version of this work [31], where we unfortunately overlooked that Curve25519
implementations use a single coordinate ladder. To sum up, the main difference with the model
using a single coordinate ladder is that some collisions have a slightly higher probability with a
single coordinate ladder. Hence, in practice, using a single coordinate ladder has little impact on
security.

In their cryptographic proof of WireGuard, Dowling and Paterson [23] use the PRF-ODH
assumption. We use the GDH and random oracle assumptions instead because CryptoVerif cannot
currently use the PRF-ODH assumption in scenarios with key compromise. While in principle
the PRF-ODH assumption is weaker, Brendel et al. [16] show that it is implausible to instantiate
the PRF-ODH assumption without a random oracle, so our assumptions and the one of [23] are
in fact fairly similar.

RR n° 9269

20 Lipp & Blanchet & Bhargavan

4 Indifferentiability of Hash Chains
Before modelling WireGuard, we first present a different, equally precise, formulation of hash
chains that is more amenable to a mechanised proof in CryptoVerif. Indeed, WireGuard makes
many hash oracle calls to BLAKE2s, and at each call to a random oracle, CryptoVerif tests
whether the arguments are the same as in any other previous random oracle call (to return the
previous result of the random oracle). Therefore, using directly BLAKE2s as a random oracle
would introduce a very large number of cases and yield exaggeratedly large cryptographic games.
In order to avoid that, we simplify the random oracle calls using indifferentiability lemmas. These
lemmas are not specific to WireGuard and can be used to simplify sequences of random oracle
calls in other protocols, including other Noise protocols and Signal [33]. In the future, these
lemmas may serve as a basis for an indifferentiability prover inside CryptoVerif, which would
simplify random oracle calls before proving the protocol.

Specifically, WireGuard uses HKDF in a chain of calls to derive symmetric keys at different
stages of the protocol:

C0 ← const

C1 ← hkdf1(C0, v0)

C2‖k1 ← hkdf2(C1, v1)

C3‖k2 ← hkdf2(C2, v2)

C4 ← hkdf1(C3, v3)

C5 ← hkdf1(C4, v4)

C6 ← hkdf1(C5, v5)

C7‖π‖k3 ← hkdf3(C6, v6)

T→‖T← ← hkdf2(C7, v7)

We show, using the indifferentiability lemmas of this section, that hkdfn is indifferentiable from a
random oracle, and that the chain above is indifferentiable from:

k1 ← chain′1(v0, v1)

k2 ← chain′2(v0, v1, v2) (10)

π‖k3‖T→‖T← ← chain′6(v0, v1, v2, v3, v4, v5, v6)

where chain′1, chain′2, and chain′6 are independent random oracles. Thus, we obtain a much
simpler computation, which we use in our CryptoVerif model of WireGuard. Previous analyses of
WireGuard did not use such a result because they do not rely on the random oracle model: [23]
relies on the PRF-ODH assumption, [22] uses the symbolic model.

4.1 Definition of Indifferentiability
Indifferentiability can be defined as follows. This definition is an extension of [18] to several
independent oracles.

Definition 2 (Indifferentiability). Functions (Fi)1≤i≤n with oracle access to independent random
oracles (Hj)1≤j≤m are (tD, tS , (qHj

)1≤j≤m, (qFi
)1≤i≤n, (qH′i)1≤i≤n, ε)-indifferentiable from inde-

pendent random oracles (H ′i)1≤i≤n if there exists a simulator S such that for any distinguisher
D

|Pr[D(Fi)1≤i≤n,(Hj)1≤j≤m = 1]− Pr[D(H′i)1≤i≤n,S = 1]| ≤ ε

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 21

The simulator S has oracle access to (H ′i)1≤i≤n, makes at most qH′i queries to H ′i, and runs in
time tS. The distinguisher D runs in time tD and makes at most qHj

queries to Hj for 1 ≤ j ≤ m
and qFi

queries to Fi for 1 ≤ i ≤ n.

In the game G0 = D(Fi)1≤i≤n,(Hj)1≤j≤m , the distinguisher interacts with the real functions
Fi and the random oracles Hj from which the functions Fi are defined. In the game G1 =

D(H′i)1≤i≤n,S , the distinguisher interacts with independent random oracles H ′i instead of Fi, and
with a simulator S, which simulates the behaviour of the random oracles Hj using calls to H ′i.
(We may also present S as m simulators Sj that each simulate a single random oracle Hj using
calls to H ′i, 1 ≤ i ≤ n; these simulators share a common state.) Indifferentiability means that
these two games are indistinguishable.

4.2 Basic Lemmas
In this section, we show several basic indifferentiability lemmas, which are not specific to
WireGuard. The proofs that are not included in this section can be found in the appendix.
Lemma 2 shows that random oracle calls with disjoint domains are indifferentiable from calls to
independent random oracles.

Lemma 2 (Version of [27, Lemma 2] with more precise evaluation of numbers of oracle calls). If
H is a random oracle, then the functions H1, . . . ,Hn defined as H on disjoint subsets D1, . . . , Dn

of the domain D of H are (tD, tS , qH , (qHi
)1≤i≤n, (q

′
Hi

)1≤i≤n, 0)-indifferentiable from independent
random oracles, where tS = O(qH) assuming one can determine in constant time to which subset
Di an element belongs, and q′Hi

is the number of requests to H in domain Di made by the
distinguisher. Hence q′H1

+ · · ·+ q′Hn
≤ qH , so in the worst case q′Hi

is bounded by qH .

Lemma 3 shows that the concatenation of two independent random oracle calls is indifferen-
tiable from a random oracle.

Lemma 3. If H1 and H2 are independent random oracles with the same domain that re-
turn bitstrings of length l1 and l2 respectively, then the concatenation H ′ of H1 and H2 is
(tD, tS , (qH1

, qH2
), qH′ , qH1

+ qH2
, 0)-indifferentiable from a random oracle, where tS = O(qH1

+
qH2

).

Conversely, Lemma 4 shows that splitting the output of a random oracle into two fixed length
outputs yields independent random oracles.

Lemma 4. If H is a random oracle that returns bitstrings of length l, then the function H ′1
returning the first l1 bits of H and the function H ′2 returning the last l − l1 bits of H are
(tD, tS , qH , (qH′1 , qH′2), (qH , qH), 0)-indifferentiable from independent random oracles, where tS =
O(qH).

As a particular consequence, Lemma 5 shows that the truncation of a random oracle is
indifferentiable from a random oracle.

Lemma 5 (Already stated in [27, Lemma 3]). If H is a random oracle that returns bitstrings
of length l, then the truncation H ′ of H to length l′ < l is (tD, tS , qH , qH′ , qH , 0)-indifferentiable
from a random oracle, where tS = O(qH).

Lemmas 6 and 7 deal with the composition of two random oracle calls in sequence. We
extended CryptoVerif to be able to prove indistinguishability between two games given by the
user. Thanks to this extension, CryptoVerif helps considerably with the proof of these lemmas:
it shows the indistinguishability result between the games G0 and G1 described in Section 4.1,
which implies the indifferentiability result. We present the proof of Lemma 6 as an illustration.

RR n° 9269

22 Lipp & Blanchet & Bhargavan

Lemma 6. If H1 : S1 → S′1 and H2 : S′1 × S2 → S′2 are independent random oracles, then
H3 defined by H3(x, y) = H2(H1(x), y) is (tD, tS , (qH1

, qH2
), qH3

, qH2
, ε)-indifferentiable from a

random oracle, where tS = O(qH1
qH2

) and ε = (2qH2
qH1

+ q2H1
+ qH2

qH3
+ q2H3

)/|S′1|.

Proof. Consider

• the game G0 in which H1 and H2 are independent random oracles, and H3(x, y) =
H2(H1(x), y), and

• the game G1 in which H3 is a random oracle; two lists L1 and L2 that are initially empty;
H1(x) returns y if (x, y) ∈ L1 for some y, and otherwise chooses a fresh random r in S′1,
adds (x, r) to L and returns r; H2(y, z) returns H3(x, z) if (x, y) ∈ L1 for some x, otherwise
returns u if ((y, z), u) ∈ L2 for some u, and otherwise chooses a fresh random r in S′2, adds
((y, z), r) to L2 and returns r.

CryptoVerif shows that the games G0 and G1 are indistinguishable, up to probability ε.

Lemma 7. If H1 : S1 → S′1 and H2 : S′1×S1 → S′2 are independent random oracles, then H ′1 = H1

and H ′2 defined by H ′2(x) = H2(H1(x), x) are (tD, tS , (qH1
, qH2

), (qH′1 , qH′2), (qH1
+ qH2

, qH2
), ε)-

indifferentiable from independent random oracles, where tS = O(qH2
) and ε = qH2

(2qH1
+ 2qH′1 +

qH′2 + 1)/|S′1|.

4.3 Indifferentiability of HKDF
The hkdf key derivation function is defined as follows [29]:

hkdf-extract(salt , key) = hmac(salt , key)

hkdf-expandn(prk , info) = k1‖ . . . ‖kn where
k1 = hmac(prk , info‖i0)

ki+1 = hmac(prk , ki‖info‖i+ i0) for 1 ≤ i < n

hkdfn(salt , key , info) = hkdf-expandn(hkdf-extract(salt , key), info)

where n ≤ 255, and i0 = 0x01 and i are of size 1 byte. In WireGuard, info is always empty, so
we omit it in Section 2. Let S, K, and I be the sets of possible values of salt , key , and info
respectively, andM the output of hmac.

We suppose that hmac is a random oracle, and we show that hkdf-expandn is indifferentiable
from a random oracle.

Lemma 8. If hmac is a random oracle, then hkdf-expandn is (tD, tS , qhmac, qhkdf-expandn , qhmac,
ε)-indifferentiable from a random oracle, where tS = O(qhmac) and ε = (3qhkdf-expandnqhmac +
q2hmac)/|M|.

Using this result, we show that hkdfn is indifferentiable from a random oracle, with the
additional assumption that the calls to hmac use disjoint domains. (We show that this assumption
is necessary and give full proofs of these results in the appendix.)

Lemma 9. If hmac is a random oracle and K ∩ (I‖i0 ∪
⋃n−1
i=1 M‖I‖i+ i0) = ∅, then hkdfn with

domain S × K × I is (tD, tS , qhmac, qhkdfn , qhmac, ε)-indifferentiable from a random oracle, where
tS = O(q2hmac) and ε = (q2hkdfn + 4qhkdfnqhmac + q2hmac)/|M|.

This result extends the proof given for hkdf2 in [27, Lemma 1]. Moreover, our proof is modular
and partly made using CryptoVerif, thanks to the basic lemmas of Section 4.2.

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 23

Proof sketch. Since the domains are disjoint, by Lemma 2, the (n + 1) calls to hmac are indif-
ferentiable from independent random oracles H0, . . . ,Hn. The constant i+ i0 can be removed
from the arguments of Hi+1 since it is fixed for a given Hi+1. By Lemma 7, the computation
of k2 = H2(H1(prk , info), prk , info) is indifferentiable from a random oracle k2 = H ′2(prk , info).
Applying this reasoning n times, the computation of ki for 1 ≤ i ≤ n is indifferentiable from
independent random oracles ki = H ′i(prk , info). By Lemma 3, concatenation of H ′i for 1 ≤ i ≤ n
is indifferentiable from a random oracle H, so hkdfn(salt , key , info) = k1‖ . . . ‖kn = H(prk , info),
where prk = H0(salt , key). By Lemma 6, we conclude that hkdfn is indifferentiable from a random
oracle.

4.4 Indifferentiability of a Chain of Random Oracle Calls

In this section, we prove the indifferentiability of a chain of random oracle calls defined as follows.

Definition 3 (Chain). Let m ≥ 1 be a fixed integer, let C and Cj with 0 ≤ j ≤ m+1 be bitstrings
of length l′, let vj with 0 ≤ j ≤ m be bitstrings of arbitrary length, let l be the length of the output
of H(Cj , vj), and let rj with 0 ≤ j ≤ m be bitstrings of length (l − l′). We define the functions
chainn, 0 ≤ n < m and the function chainm in the following way:

chainn(v0, . . . , vn) =
C0 = const
for j = 0 to n do Cj+1‖rj = H(Cj , vj)
return rn

(11)

chainm(v0, . . . , vm) =
C0 = const
for j = 0 to m do Cj+1‖rj = H(Cj , vj)
return Cm+1‖rm

(12)

The functions chainn, n < m, have an output of length (l − l′), and the output length of chainm
is l.

Lemma 10. If H is a random oracle, then chainn, for n ≤ m, are (tD, tS , qH, (qchainn)0≤n≤m,
(qH)0≤n≤m, ε)-indifferentiable from independent random oracles, where tS = O(q2H) and ε =(

(
∑m
n=0 n · qchainn) · qH + q2H

)
/2l
′
.

This lemma is proved in the appendix. We could probably prove it for small values of m using
CryptoVerif, but the generic result requires a manual proof because CryptoVerif does not support
loops.

4.5 Application to WireGuard

WireGuard employs BLAKE2s [2] both directly as the function hash and indirectly as hash
function in hmac and thus also in hkdf. In our proof, we assume that hash is collision-
resistant and use the random oracle assumption for usages of BLAKE2s via hkdf. Rigor-
ously, to be able to use two distinct assumptions, we need the domains of these two uses
to be disjoint. This is true in WireGuard: the length of the argument of hash is 64 bytes for
hash(H0‖Spub

r), hash(H1‖Epub
i), hash(H4‖Epub

r), and hash(H5‖π), 80 bytes for hash(H2‖Spub
i �),

60 bytes for hash(H3‖ts�), 48 bytes for hash(H6‖empty�), 40 bytes for hash(labelmac1‖Spub
r),

hash(labelmac1‖Spub
i), and hash(labelcookie‖Spub

m). In contrast, the length of the argument of
BLAKE2s in hmac(k,m) is 96 bytes or 64 + length(m), and in the computation of hkdf, info

RR n° 9269

24 Lipp & Blanchet & Bhargavan

is empty in WireGuard, so the length of m is 32 bytes (key), 1 byte (info‖i0) or 33 bytes
(ki‖info‖i+ i0), so the length of the argument of BLAKE2s in the computation of hkdf is 96, 65,
or 97 bytes.

Then by Lemma 2, we can consider two independent random oracles, hash for the direct uses
and hash′ for the uses via hkdf. Since hash is a random oracle, it is a fortiori collision-resistant.

Since hash′ is a random oracle, hmac-hash′ is indifferentiable from a random oracle by [20,
Theorem 3].

Moreover, the domains of the calls to hmac in hkdfn are disjoint. Indeed, K consists of
bitstrings of length 32 bytes, I‖i0 consists of bitstrings of length 1 byte, andM‖I‖i+ i0 consists
of bitstrings of length 33 bytes. By Lemma 9, hkdfn is indifferentiable from a random oracle.

In this section, we use the ‖ operator to concatenate blocks of 32 bytes and the placeholder _
for one unnamed 32-byte block. Since we prove Lemma 10 for a chain of calls to the same hkdfn
function, we rewrite the chain of hkdf calls in WireGuard to use only calls to hkdf3, as 3 is the
maximum number of outputs needed:

C0 ← const

C1‖_‖_ ← hkdf3(C0, v0)

C2‖k1‖_ ← hkdf3(C1, v1)

C3‖k2‖_ ← hkdf3(C2, v2)

C4‖_‖_ ← hkdf3(C3, v3)

C5‖_‖_ ← hkdf3(C4, v4)

C6‖_‖_ ← hkdf3(C5, v5)

C7‖π‖k3 ← hkdf3(C6, v6)

T→‖T←‖_ ← hkdf3(C7, v7)

Because of the way hkdfn is constructed, this is actually the same computation.
By Lemma 10, the computation above can be replaced with the following one:

‖ ← chain0(v0)

k1‖_ ← chain1(v0, v1)

k2‖_ ← chain2(v0, v1, v2)

‖ ← chain3(v0, v1, v2, v3)

‖ ← chain4(v0, v1, v2, v3, v4)

‖ ← chain5(v0, v1, v2, v3, v4, v5)

π‖k3 ← chain6(v0, v1, v2, v3, v4, v5, v6)

T→‖T←‖_ ← chain7(v0, v1, v2, v3, v4, v5, v6, v7)

where chaini for i ≤ 7 are independent random oracles.
The output of the random oracles can be truncated by Lemma 5 to avoid having to throw

away parts of the output:

k1 ← chain′1(v0, v1)

k2 ← chain′2(v0, v1, v2)

π‖k3 ← chain6(v0, v1, v2, v3, v4, v5, v6)

T→‖T← ← chain′7(v0, v1, v2, v3, v4, v5, v6, v7)

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 25

where chain′1, chain
′
2, chain6, and chain′7 are independent random oracles. In WireGuard, v7 =

empty , so T→ and T← only depend on v0, . . . , v6, as do π and k3 in the previous line. By Lemma 3,
we can replace the last two lines with one random oracle call:

k1 ← chain′1(v0, v1)

k2 ← chain′2(v0, v1, v2)

π‖k3‖T→‖T← ← chain′6(v0, v1, v2, v3, v4, v5, v6)

where chain′1, chain
′
2, and chain′6 are independent random oracles.

5 Modelling WireGuard
This section presents our model of the WireGuard protocol in CryptoVerif. We prove security
properties for that model in Section 6.

5.1 Execution Environment
In our model, we consider two honest entities A and B. In the initial setup, we generate the
static key pairs for these two entities and publish their public keys, so that the adversary can use
them. After this setup, we run parallel processes that represent a number of executions of A and
B polynomial in the security parameter.

The entities A and B can play both the initiator and responder role. These two entities can
run WireGuard between each other, but also with any number of dishonest entities included in
the adversary: for each session, the adversary sends to the initiator its partner public key, that
is, the public key of the entity with which it should start a session; the adversary sends to the
responder the set of partner public keys that it accepts messages from.

This setting allows us to prove security for any sessions between two honest entities, in a
system that may contain any number of (honest or dishonest) other entities. We prove security
for sessions in which A is the initiator and B is the responder. We do not explicitly prove security
for sessions in which B is the initiator and A is the responder, but the same security properties
hold by symmetry.

The processes for the entities A and B model the entire protocol, including the first two
protocol messages, the key confirmation message from the initiator, and then a number of transport
data messages polynomial in the security parameter, in both directions between initiator and
responder. The model also includes random oracles, and we allow the adversary to call any of the
random oracles that we use.

We consider 3 variants of this model:

Variant 1. This variant does not rely at all on the pre-shared key for proving security, so A and
B receive a pre-shared key chosen by the adversary at the beginning of each execution. That
allows the adversary to model both the absence of a pre-shared key (by choosing the value 0) or
a compromised pre-shared key of its choice.

We model the dynamic compromise of the private static key of A (resp. B) by a process that
the adversary can call at any time and that returns the private key of A (resp. B) and records the
compromise by defining a particular variable, so that it can be tested in the security properties
that we consider.

In WireGuard, four Diffie-Hellman operations and the pre-shared key contribute to the session
keys. If the pre-shared key is not used or compromised, security is based on the four Diffie-Hellman

RR n° 9269

26 Lipp & Blanchet & Bhargavan

operations. If one of them cannot be computed by the adversary, then the session keys are secret.
Therefore, we consider all combinations of compromises but those where both keys on one side
are compromised, that is:

1. A and B’s private static keys may be dynamically compromised;

2. A’s private static key may be dynamically compromised and B’s private ephemeral key is
compromised (by sending it to the adversary as soon as it is chosen);

3. B’s private static key may be dynamically compromised and A’s private ephemeral key is
compromised;

4. A and B’s private ephemeral keys are compromised.

We prove most security properties for clean sessions, that is, intuitively, sessions between honest
entities; cleanliness is the minimal assumption needed to hope for security. A session of A is clean
when either B’s private static key is not compromised yet and A’s partner public key is equivalent
to B’s static public key, or B’s private static key is compromised and the public ephemeral
key received by A is equivalent to a non-compromised ephemeral generated by B. B’s session
cleanliness is defined symmetrically. Intuitively, when B’s private static key is not compromised,
A can rely on that key to authenticate B, so A thinks she talks to B when she runs a session
with B’s public key. We consider a public key equivalent to B’s public key rather than equal to
B’s public key to strengthen the properties: the authentication property shown in Section 6 then
implies that when A successfully runs a session with a partner public key equivalent to B’s public
key, then these two keys are in fact equal. (We find an interesting scenario concerning equivalent
public keys and identity mis-binding with variant 3 of our model, we discuss it in §6.) When
B’s private static key is compromised, A cannot authenticate B, but we can still prove security
when the ephemeral key received by A has been generated by B. Like for static keys, when A
successfully runs a session with a received ephemeral equivalent to an ephemeral generated by
B, then these two ephemerals are in fact equal. (Instead of considering compromised ephemeral
keys, we could also have modelled dishonestly generated ephemeral keys. We expect that some
properties shown in §6, such as session uniqueness, would not hold in this case.)

Variant 2. This variant relies exclusively on the pre-shared key for security. In that variant, we
consider all private static and ephemeral keys as always compromised. We choose a pre-shared
key randomly in the initial setup, and run sessions between A and B with that pre-shared key. In
this model, A’s partner public key is always B’s public key and symmetrically, and these sessions
between A and B are always considered clean. The adversary can run A’s and B’s sessions
with other entities since A and B’s private static keys are compromised and these sessions use a
different pre-shared key.

Variant 3. In this variant, all keys are compromised: all private static and ephemeral keys are
always compromised and the pre-shared key is chosen by the adversary for each session. This
model is useful for proving properties that do not rely on session cleanliness, that is, properties
that hold even for sessions involving dishonest participants.

With this model, we analyse the whole WireGuard protocol as it is, tying together the authenticated
key exchange and the transport data phase. A similar approach was chosen by the creators of
the Authenticated and Confidential Channel Establishment (ACCE) [25] model to analyse TLS.
Instead of reasoning about key indistinguishability, ACCE looks at the security of the messages
exchanged encrypted using the key. We do the same, for the key confirmation and all subsequent
transport data messages.

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 27

In ACCE, the adversary has to choose one clean test session in which it tries to break security
by determining the secret bit. In all other sessions, it is allowed to reveal the session keys. In our
model, all clean sessions are test sessions, and we explicitly reveal the session keys in sessions
that are not clean.

5.2 Modelling Tricks

Apart from the HKDF chains where we prove that the way we model them is indifferentiable
from the real protocol in Section 4, we use the following modelling tricks:

• Timestamps: CryptoVerif has no support for time, so instead of generating the timestamp,
we input it from the adversary. In other words, we delegate the task of timestamp generation
to the adversary. In order to model replay protection for the first message, the responder
stores a global table (that is, a list) of triples containing the received timestamp, the partner
public key for that session, as well as its own public key. (This is equivalent to having a
distinct table of timestamps and partner public keys for each responder, represented by its
public key.) The responder rejects the first message when the triple (received timestamp,
partner public key, and responder public key) is already in the table.

• Nonces for the AEAD scheme: The nonces in WireGuard are computed by incrementing a
counter. CryptoVerif has no support for that, so we receive the desired value of the counter
from the adversary. We guarantee that the same counter is never used twice in the same
session for sending messages by storing all counters used for sending messages in a table
of pairs (session index, counter), where the session index identifies the session uniquely: it
indicates whether A or B is running, as initiator or as responder, and contains a unique
integer index for the execution of that entity in that role. This is equivalent to having a
distinct table of counters for each session. The message is not sent when the adversary
provides a counter that is already in the table. We guarantee that the same counter is never
used twice for receiving messages in the same way, using a separate table.

• We omit the MACs mac1 and mac2 in our model. This simplifies the proof but preserves
its soundness, since they can be computed and verified by the adversary: we deliver the
messages without MACs to the adversary, and the adversary can add the MACs; conversely,
the adversary can remove the MACs before delivering messages to the protocol model. We
let the adversary choose the key Rr that the responder uses for computing cookies. All
other elements needed to compute the MACs are public: constants and static public keys.
We reintroduce the MACs in a separate model that we use for proving resistance against
DoS.

Importantly, these modelling tricks increase the power of the adversary: the implementation
done in WireGuard is a particular case of what the adversary can do in our model, in which the
adversary chooses the current time as timestamp, increases the counter for sending messages at
each emission, accepts incoming counters in a sliding window, and computes and verifies mac1
and mac2 by itself. As a result, a security proof in our model remains valid in WireGuard.

6 Verification Results

In order to prove authentication properties, we insert events in our model, to indicate when
each message is sent or received by the protocol. Specifically, we insert events sent1, sent2,
sent_msg_initiator, and sent_msg_responder just before sending message 1, message 2, and

RR n° 9269

28 Lipp & Blanchet & Bhargavan

transport messages on the initiator and responder sides respectively, and corresponding events
rcvd1, rcvd2, rcvd_msg_responder, and rcvd_msg_initiator when these messages have been re-
ceived and successfully decrypted. The event rcvd2 and the events for transport messages are
executed only in clean sessions.

Mutual key and message authentication, resistance against KCI, resistance against
replay from message 2. We show authentication for all messages starting from the second
protocol message, by proving the following correspondence properties between events, in the first
two variants of our CryptoVerif model of Section 5.1:

inj-event(rcvd2(Spub
r , Epub

i , Spub
i � , Spub

i , ts�, ts, E
pub
r , empty�, T

→, T←))

⇒ inj-event(sent2(Spub
r , Epub

i , Spub
i � , Spub

i , ts�, ts, E
pub
r , empty�, T

→, T←)) ,

inj-event(rcvd_msg_responder(Spub
r , Epub

i , Spub
i � , Spub

i , ts�, ts,

Epub
r , empty�, T

→, T←, N→, P �, P))

⇒ inj-event(sent_msg_initiator(Spub
r , Epub

i , Spub
i � , Spub

i , ts�, ts,

Epub
r , empty�, T

→, T←, N→, P �, P)) ,

We also prove a third query (similar to the second one above) for transport data messages
in the other direction, with events rcvd_msg_initiator and sent_msg_responder. A proven
correspondence between two injective events (inj-event) means that each execution of the left-hand
event corresponds to a distinct execution of the right-hand event.

The first query means that, if the initiator session is clean and the initiator has received
the second message, then the responder sent it, and initiator and responder agree on their
static and ephemeral public keys, session keys, timestamp, and communicated ciphertexts. This
authenticates the responder to the initiator.

The second and third queries mean that, if the receiver session is clean and the receiver received
a transport packet, then a sender sent that transport packet, and the receiver and the sender
agree on their static and ephemeral public keys, session keys, timestamp, sent plaintext, message
counter, and communicated ciphertexts. In particular, for the key confirmation message, this
authenticates the initiator to the responder. These queries also provide message authentication
for the transport data messages.

All these properties hold when the pre-shared key is not compromised (variant 2 of Section 5.1).
They also hold when neither both Spriv

i and Epriv
i nor both Spriv

r and Epriv
r are compromised

and the receiver session is clean; this is true, in particular, when the sender’s static private key is
not compromised yet (variant 1 of Section 5.1).

The above queries include resistance against replays because the correspondences are injective:
each reception corresponds to a distinct emission. They also include resistance against KCI
attacks because the rcvd∗ events are issued even if the receiver’s static key has already been
compromised: the receiver session is still clean in this case. Note that, for the responder, resistance
against KCI attacks only starts after it receives the first data transport message. Indeed, the first
protocol message is subject to a KCI attack: if the private static key of the responder (Spriv

r) is
compromised, then the adversary can forge the first message and impersonate the initiator to the
responder.

Secrecy and forward secrecy. We show secrecy of transport data messages in clean sessions
by a left-or-right message indistinguishability game. In the initial setup, we randomly choose a
secret bit. For each transport data message in a clean session, the adversary provides two padded
plaintexts of the same length, and we encrypt one of them depending on the value of that bit.

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 29

CryptoVerif proves the secrecy of that bit, in variants 1 and 2 of Section 5.1, showing that the
adversary cannot determine which of the two plaintexts was encrypted.

The secrecy query includes forward secrecy, because we allow dynamic compromise of static
keys after the session keys have been established, if the ephemeral key of the same party is not
compromised. This assumes that the parties delete the sessions’ ephemeral and chaining keys
after key derivation.

In variant 2 of our model, the query also shows secrecy provided the pre-shared key is not
compromised, even if all other keys (static and ephemeral) are compromised. Our models do not
consider the dynamic compromise of the pre-shared key, due to a limitation of CryptoVerif. We
can still obtain forward secrecy with respect to the compromise of the pre-shared key using the
following manual argument. As mentioned above, variant 2 of our model shows authentication
when the pre-shared key is not compromised (all other keys are compromised in this model). This
authentication property is preserved when the pre-shared key is compromised after the rcvd∗
event, because the later compromise cannot alter the fact that the sent∗ event has been executed.
Furthermore, authentication guarantees that the ephemeral public key received by the initiator
was generated by the responder and conversely. Variant 1 of our model then guarantees secrecy in
this case, because the session is clean when the ephemeral received by the initiator was generated
by the responder and conversely. Hence, we get the desired forward secrecy property: we have
message secrecy when the pre-shared key is compromised after the session, and neither both Spriv

i

and Epriv
i nor both Spriv

r and Epriv
r are compromised.

We cannot prove key secrecy for the session keys in the full protocol, because the session keys
are used for encrypting transport data messages, and this allows an adversary to distinguish them
from fresh random keys. Instead, we prove key secrecy for a model in which all transport data
messages, including key confirmation, are removed. To prove this result, we need to strengthen the
session cleanliness condition. Indeed, the first message is subject to a KCI attack, as mentioned
above. Therefore, when the private static key of the responder is compromised, we additionally
require that the ephemeral received by the responder is equivalent to one generated by the
initiator. With this stronger cleanliness condition, we show that the session keys are secret, that
is, the keys for various clean sessions are indistinguishable from independent random keys. We
do not need this stronger cleanliness condition when we study the full protocol, since the key
confirmation message protects the responder against KCI attacks.

Resistance against replay for the first message. We prove that the first message cannot be
replayed but only if no static key is compromised when it is received. If Spriv

i were compromised,
the adversary can impersonate the initiator as the sender of this message. If Spriv

r is compromised,
we have a KCI attack, as described above. So we prove the following injective correspondence in a
model where the static keys cannot be compromised but the ephemeral keys may be compromised,
so we rely on the static-static Diffie-Hellman shared secret:

inj-event(rcvd1(true, Spub
r , Epub

i , Spub
i � , Spub

i , ts�, ts))

⇒ inj-event(sent1(Spub
r , Epub

i , Spub
i � , Spub

i , ts�, ts)) .

The first parameter of rcvd1 is true if the public static key received by the responder with the
first message is the public static key of the honest initiator: we prove this property only for
sessions between honest peers. Replay protection is guaranteed by each timestamp being accepted
only once. With this check removed, the first message can be replayed, but we still prove a
non-injective correspondence between the two events, replacing inj-event by event in the query.
This is a weaker property, meaning that, if an event rcvd1 has been executed, then at least one
event sent1 with matching parameters has been executed before. Thus, even with the replay
protection removed, we can prove that the origin of the first message cannot be forged in a model

RR n° 9269

30 Lipp & Blanchet & Bhargavan

without static key compromise.

Correctness. Correctness means that, if the adversary does not modify the first two messages,
then the initiator and responder share the same session keys and transcript hash H7. Actually,
it suffices that the adversary does not modify the ephemerals and ciphertexts of the first two
messages. We prove it with the following query:

event(responder_corr(Epub
i , Spub

i � , ts�, E
pub
r , empty�, T

→
r , T←r , Hr7))

∧ event(initiator_corr(Epub
i , Spub

i � , ts�, E
pub
r , empty�, T

→
i , T←i , Hi7))

⇒ T→i = T→r ∧ T
←
i = T←r ∧Hi7 = Hr7 .

The events initiator_∗ and responder_∗ used in this query and in the following ones are issued
after key derivation, in the initiator and responder respectively. Here, the two events given
as assumptions guarantee that the adversary did not modify the ephemerals and ciphertexts
of the first two messages, and the query concludes that the session keys and transcript hash
must be equal. However, in our main models, CryptoVerif is currently unable to prove that the
ciphertexts have not been created by the adversary, although this is true in the sessions considered
by the correctness query. Thus, we created a separate model to prove correctness, in which the
assumption is hard-coded by interleaving the initiator and responder in a single sequential process.
In this model, we prove correctness even if all keys are compromised.

Session Uniqueness. First, we prove that there is a single initiator and a single responder
session with a given T→ or T←. The query below shows that there cannot be two distinct initiator
sessions with the same T→:

event(initiator_uniq_T→(ii, T
→))

∧ event(initiator_uniq_T→(i′i, T
→))⇒ ii = i′i ,

where ii, i′i are replication indices: CryptoVerif assigns each execution of the initiator (or re-
sponder) process a unique replication index, so the query means that if we execute two events
initiator_uniq_T→ with the same T→, then they have the same replication index ii = i′i, hence
they belong to the same session. This query is proved in variant 3 of Section 5.1, so the property
holds even if all keys are compromised. (It relies on the choice of a fresh ephemeral at each
session.) The queries for the other cases are similar.

Second, we show similarly that there is a single initiator and a single responder session for a
given set of publicly transmitted protocol values.

Channel Binding. We prove channel binding with the query:

event(initiator_H7(params, H7))

∧ event(responder_H7(params ′, H7))⇒ params = params ′

This query shows that if the initiator and responder have the same value of the session transcript
H7, then they share the same value of all session parameters params (static and ephemeral
public keys, timestamp, pre-shared key, session keys). This query is also proved in variant 3 of
Section 5.1, so the property holds even if all keys are compromised. (It relies on the collision
resistance of hash.)

Identity Mis-Binding. For this property, we need to show that if an initiator and a responder
session share the same session keys T→ and T←, then they share the same view on the ephemeral

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 31

and static keys used in that session. This is formalised by the following query:

event(responder_imb(T→, T←, Epub
i,rcvd , E

pub
r , Spub

i,rcvd , S
pub
r))

∧ event(initiator_imb(T→, T←, Epub
i , Epub

r,rcvd , S
pub
i , Spub

r,rcvd))

⇒ Epub
i = Epub

i,rcvd ∧ E
pub
r = Epub

r,rcvd ∧ S
pub
i = Spub

i,rcvd ∧ S
pub
r = Spub

r,rcvd .

CryptoVerif proves it in variant 1 of our model, so it holds when neither both Spriv
i and Epriv

i nor
both Spriv

r and Epriv
r are compromised. However, the proof fails when all static and ephemeral

keys are compromised (variant 3 of our model): CryptoVerif can prove only the weaker property
that pow_k

(
Spub
i

)
= pow_k

(
Spub
i,rcvd

)
and pow_k

(
Spub
r

)
= pow_k

(
Spub
r,rcvd

)
. An adversary

can indeed break the equality of public static keys in this case:

• The adversary instructs A to initiate a session to a public static key Spub
r
′ equivalent

to our model’s honest responder public static key: pow_k(Spub
r) = pow_k(Spub

r
′) but

Spub
r 6= Spub

r
′. This is possible because Spriv

r is compromised. In this session, the adversary
acts as responder, and because the ephemeral is also compromised, gets A’s Epriv

i .

• The adversary now acts as initiator to start a session with B using a public static key
Spub
i
′ equivalent to the honest initiator public static key: pow_k(Spub

i) = pow_k(Spub
i
′)

but Spub
i 6= Spub

i
′. This is possible because Spriv

i is compromised. The adversary uses Epriv
i

as ephemeral. The ephemeral of this session is also compromised, so the adversary gets
Epriv
r .

• The adversary continues the session with A using the ephemeral Epriv
r .

If a pre-shared key is used, we assume that the adversary has the same pre-shared key with A
(presenting itself with key Spub

r
′) and with B (presenting itself with Spub

i
′). The session keys T→

and T← for these two sessions are computed as hashes of Epub
i , dh(Epriv

i , Spub
r), dh(Spriv

i , Spub
r),

Epub
r , dh(Epriv

i , Epub
r), dh(Spriv

i , Epub
r), and psk . They are the same in both sessions, so the

session keys are also the same.
This scenario, with a session between A and B′ and one between B and A′ that share the

same session keys, is an instance of a bilateral unknown key-share attack [17] and of a key
synchronisation attack [10]. It appears only when all static and ephemeral Diffie-Hellman keys are
compromised, and hence should be considered a corner-case. However, we note that this scenario
does not require the psk shared by A and B to be compromised, since this psk does not get used
in the execution above. We suggest a possible fix of this identity mis-binding issue in Section 7.

Resistance against DoS. As described in Section 2, WireGuard provides a cookie mechanism
that a peer under load can use to enforce a round trip per sender address, and thus to bind
a handshake message to a sender address; this permits per-address rate limiting. We model
this mechanism in a separate model in which a responder generates Rr, replies with a cookie
τ = mac(Rr, Ai) upon receipt of messages 1 from Ai with zero mac2, and verifies mac2 upon
receipt of messages 1 with non-zero mac2. The rest of the protocol is run by the adversary, which
has the long-term static keys. In particular, we do not model the encryption of the cookie τ , but
send it in the clear, assuming that the adversary carries out the encryption and decryption, which
depend only on values it knows.

In this model, we prove that, if a responder under load accepts a handshake message from a
sender with address Ai, then this sender passed through a round trip, that is, the responder did

RR n° 9269

32 Lipp & Blanchet & Bhargavan

indeed previously generate a cookie for the address Ai. This formalised by the following query:

event(accepted_cookie(Ai, ir, τ,msgβ ,mac2))

⇒ event(generated_cookie(Ai, ir, τ)) ,

where ir is an index that uniquely identifies the key Rr used for generating the cookie. This
query is proved under the assumption that mac is a pseudo-random function (PRF).

Identity Hiding. When the adversary has a candidate public key Spub
Y , it can determine whether

this public key is involved in WireGuard sessions, as already mentioned in the WireGuard speci-
fication [21]. In the first message, it can test whether mac1 = mac(hash(labelmac1‖Spub

Y),msgα)

and that reveals whether Spub
Y = Spub

r . A similar test on message 2 reveals whether Spub
Y = Spub

i .
When an entity with public key Spub

m sends a cookie reply, the adversary can try to decrypt
the encrypted cookie τ � with the key hash(labelcookie‖Spub

Y), the nonce nonce (obtained from the
cookie reply), and the associated data mac1 (obtained from a previous message). If decryption
succeeds, then the adversary knows that Spub

Y = Spub
m . In practice, the public keys of VPN

endpoints may be easy to obtain: they are often published to subscribers on a web page. In such
scenarios, WireGuard does not provide identity hiding.

If we consider the protocol without MACs and cookie reply, that is, basically the Noise protocol
IKpsk2, we can obtain stronger identity protection guarantees, however with the additional
assumption that the AEAD scheme also preserves the secrecy of the associated data. Indeed,
if the AEAD scheme is only IND-CPA and INT-CTXT, then the adversary may obtain the
associated data of the first ciphertext Spub

i �, that is, hash(hash(H0‖Spub
r)‖Epub

i). It can compare
this value with hash(hash(H0‖Spub

Y)‖Epub
i) since Epub

i is sent in the first message and H0 is a
constant. Thus, it can determine whether Spub

r = Spub
Y .

However, assuming that the AEAD scheme also preserves the secrecy of the associated data, we
prove using CryptoVerif that the protocol without MACs and cookie reply satisfies the following
identity hiding property: an adversary that has Spub

A1 , Spub
A2 , Spub

B1 , Spub
B2 cannot distinguish a

configuration in which the entity with public key Spub
A1 initiates sessions with Spub

B1 from one in
which the entity with public key Spub

A2 initiates sessions with Spub
B2 . ChaCha20Poly1305 indeed

preserves the secrecy of the associated data, because it satisfies the stronger IND$-CPA property,
which requires the ciphertext to be indistinguishable from random bits, as shown in [38].

We discuss possible solutions to strengthen the identity hiding for the protocol with MACs in
Section 7.

Proof Guidance and Metrics. CryptoVerif needs to be manually guided to perform these
proofs. We detail the instructions given to CryptoVerif for proving authentication and message
secrecy in variant 1 of our model, with dynamic compromise of the private static keys. The
guidance we give for other proofs follows similar ideas.

First, we set some options, in particular to speed up the proof and save memory.

set casesInCorresp = false;

reduces the number of cases that CryptoVerif considers in proofs of correspondences. This option
does not affect the soundness; in complex cases, CryptoVerif might just not be able to prove a
correspondence with this option set to false.

set mergeBranches = false;

prevents CryptoVerif from trying to automatically merge branches of tests when they execute the
same code.

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 33

set forgetOldGames = true;

tells CryptoVerif to remove games generated by previous instructions from memory, in order to
save memory. (However, that prevents undoing previous proof steps.)

set useKnownEqualitiesWithFunctionsInMatching = true;

tells CryptoVerif to apply known equalities that start with a function symbol when it tests whether
a term matches another term. CryptoVerif would not do that by default because it is costly.
However, when using Curve25519, we need to apply equalities of the form pow_k(·) = pow_k(·),
so we use this setting. We unset it later when it is no longer needed, to speed up the proof.

Next, we distinguish cases. In the initiator A, we add a test to distinguish whether the partner
public key S_X_pub is equivalent to B’s static public key S_B_pub. This test is added just after
the input that receives S_X_pub from the adversary on channel c_config_initiator, by the
instruction:

insert after "in(c_config_initiator\\["
"if pow_k(S_X_pub) = pow_k(S_B_pub) then";

In the instruction above, the test if pow_k(S_X_pub) = pow_k(S_B_pub) then is inserted after
the line that contains the regular expression in(c_config_initiator\\[. (\\[denotes the
character [in regular expressions.) This is an improvement that we implemented in CryptoVerif.
Before, CryptoVerif required indicating the program point at which a case distinction should
be inserted by an integer number, and this number often varied with very minor changes in
the protocol specification. We modified CryptoVerif to allow specifying program points as the
beginning of a line that matches a certain regular expression, or as the line that follows a matching
line. This is much more stable to small changes in the protocol model.

As a result, the initiator ephemeral is then chosen at two different places, in the then branch
and in the else branch of the test that was just introduced. We rename the variable E_i_pub_4
containing the initiator public ephemeral to two distinct names (these names are chosen by
CryptoVerif and are here E_i_pub_6 and E_i_pub_7) by the instruction:

SArename E_i_pub_4;

In the responder B, we distinguish whether the partner public key S_i_pub_rcvd_4 is equivalent
to A’s static public key S_A_pub, by the instruction:

insert after "let injbot(G_to_bitstring(S_i_pub_rcvd_4: G_t))"
"if pow_k(S_i_pub_rcvd_4) = pow_k(S_A_pub) then";

The test is inserted after the decryption of the ciphertext Spub
i � . In the responder B, we also

distinguish whether the received ephemeral E_i_pub_rcvd_3 is equivalent to an ephemeral
generated by A, E_i_pub_6[i] or E_i_pub_7[i] for any i. (E_i_pub_6 and E_i_pub_7 are
arrays containing one public ephemeral for each execution of the A.) This test is inserted after
the reception of the ephemeral by the responder B, by the following instruction:

insert after "in(c_init2resp_recv\\["
"find i <= N_init_parties suchthat defined(E_i_pub_7[i]) &&

pow_k(E_i_pub_rcvd_3) = pow_k(E_i_pub_7[i]) then
orfind i <= N_init_parties suchthat defined(E_i_pub_6[i]) &&

pow_k(E_i_pub_rcvd_3) = pow_k(E_i_pub_6[i]) then";

RR n° 9269

34 Lipp & Blanchet & Bhargavan

The construct find i <= N suchthat defined(x[i]) && M then P else P ′ looks for an in-
dex i such that x[i] is defined and the condition M holds. If it finds one, it runs P with that
index; otherwise, it runs P ′. It is extended to several branches by using orfind. Finally, in the
initiator A, we distinguish whether the responder’s ephemeral E_r_pub_rcvd_2 received with
the second protocol message is equivalent to an ephemeral generated by B, E_r_pub[j], by the
instructions:

insert after_nth 2 "in(c_resp2init_recv\\["
"find j <= N_resp_parties suchthat defined(E_r_pub[j]) &&

pow_k(E_r_pub_rcvd_2) = pow_k(E_r_pub[j]) then";
insert after_nth 1 "in(c_resp2init_recv\\["
"find j <= N_resp_parties suchthat defined(E_r_pub[j]) &&

pow_k(E_r_pub_rcvd_2) = pow_k(E_r_pub[j]) then";

We insert two tests because we need to insert one test in each branch of the initial case distinction
made in the initiator. These case distinctions allow us to isolate Diffie-Hellman shared secrets
that the adversary will be unable to compute because both shares come from honest participants.
We simplify the obtained game by

simplify;

Then, we apply the random oracle assumption for the 3 random oracles chain′6, chain
′
2, chain

′
1

(named rom3_intermediate, rom2_intermediate, and rom1_intermediate in the CryptoVerif
file). For the arguments of these oracles that are Diffie-Hellman shared secrets in the protocol
(and thus are in Gsub), we distinguish whether the argument received by the random oracle from
the adversary is in Gsub before applying the random oracle assumption. (When it is not in Gsub ,
it cannot collide with a call coming from the protocol.) This is done by the following instructions:

insert after "in(ch1_rom3"
"let rom3_input(x1_rom3, Gsub_to_G(x2_rom3), Gsub_to_G(x3_rom3), x4_rom3,

Gsub_to_G(x5_rom3), Gsub_to_G(x6_rom3), v_psk) = x_rom3 in";
crypto rom(rom3_intermediate);
insert after "in(ch1_rom2"
"let rom2_input(x1_rom2, Gsub_to_G(x2_rom2), Gsub_to_G(x3_rom2)) =

x_rom2 in";
crypto rom(rom2_intermediate);
insert after "in(ch1_rom1"
"let rom1_input(x1_rom1, Gsub_to_G(x2_rom1)) = x_rom1 in";

crypto rom(rom1_intermediate);

The first case distinction distinguishes whether the argument x_rom3 of rom3_intermediate
is of the form rom3_input(x1_rom3, Gsub_to_G(x2_rom3), Gsub_to_G(x3_rom3), x4_rom3,
Gsub_to_G(x5_rom3), Gsub_to_G(x6_rom3), v_psk), that is, a tuple in which the 2nd, 3rd,
5th, and 6th components are in Gsub . The next instruction applies the random oracle assumption
to rom3_intermediate. The other two random oracles are handled similarly.

Next, we apply the gap Diffie-Hellman assumption to the function exp_div_k ; the associated
private keys are the private static and ephemeral keys of the initiator and the responder:

crypto gdh(exp_div_k) S_B_priv E_i_priv_8 S_A_priv E_r_priv_4;

We modify settings to speed up the rest of the proof by the following instructions:

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 35

set useKnownEqualitiesWithFunctionsInMatching = false;
set elsefindFactsInSimplify = false;

The setting elsefindFactsInSimplify, when true, tells CryptoVerif to simplify games using the
information obtained from being in an else branch of a find. It is the default, but it can be
costly for large games.

We split the keys generated by chain′6 into 4 keys by

crypto splitter(concat_four_keys) **;

The indication ** means that we apply splitter(concat_four_keys) as many times as we can,
without performing a full simplification between each application. Avoiding that simplification
speeds up the proof a bit. splitter(concat_four_keys) means that a random bitstring of
length 4 times the length of a key is indistinguishable from the concatenation of 4 random keys.

By default, when a cryptographic transformation fails, CryptoVerif tries to determine syntactic
transformations that might make it succeed, applies those transformations, and retries the
cryptographic transformation. For speed, we disable this behaviour by the following instruction:

set noAdviceCrypto = true;

We apply ciphertext integrity of the AEAD scheme:

crypto int_ctxt(enc) *;

The indication * means that we apply int_ctxt(enc) as many times as we can. Then we try to
prove security properties:

success;

CryptoVerif shows the impossibility of nonce reuse in the AEAD scheme and the absence of
identity mis-binding attacks. We simplify the game

simplify;

For keys that the adversary may have after compromising the static keys, we apply a variant of
the ciphertext integrity transformation that allows corruption, as follows:

crypto int_ctxt_corrupt(enc) k_51;

The key k_51 is generated by the initiator when the partner static key is equivalent to B’s static
public key but the received ephemeral is not equivalent to an ephemeral generated by B, and B’s
static key is not compromised. In this case, the adversary cannot produce a valid ciphertext in
protocol message 2 (empty plaintext), thus the decryption will fail on the initiator’s side and the
protocol will not continue.

Then we try to prove security properties:

success;

CryptoVerif proves that the initiator can authenticate the second protocol message as well as
transport data messages sent by the responder. We simplify the game

simplify;

and again apply the variant of the ciphertext integrity transformation that allows corruption:

crypto int_ctxt_corrupt(enc) "T_i_send_[0-9]*";

RR n° 9269

36 Lipp & Blanchet & Bhargavan

We apply this transformation to all keys of the form T_i_send_n for integers n. We want to
apply this transformation to keys generated by the responder, in case the partner public key is
equivalent to A’s static public key, but the received ephemeral is not equivalent to an ephemeral
generated by A, and A’s static key is not compromised. In this case, the adversary cannot produce
a valid ciphertext for a transport data message, thus the decryption will fail on the responder’s
side and the protocol will not continue. The keys in question are many variables of the form
T_i_send_n; we apply the transformation to all variables of this form as it is easier and the proof
still works. Then we try to prove security properties:

success;

CryptoVerif shows that the responder can authenticate transport data messages sent by the
initiator. We again simplify the game

simplify;

That removes all events, which are no longer useful since all correspondence properties are proved.
Then we apply the IND-CPA property of the AEAD scheme as many times as we can:

crypto ind_cpa(enc) **;

and finally prove message secrecy:

success

In total, we give 36 instructions to CryptoVerif to perform this proof (not counting the
instruction to display the current game), and CryptoVerif generates a sequence of 168 games.
This proof takes 17 min, the proof of key secrecy with dynamic compromise of private static keys
takes 19 min, and the one for identity hiding 26 min on one core of an Intel Xeon 3.6 GHz; these
are our longest proofs.

7 Discussion
WireGuard is a promising new VPN protocol that aims to replace IPsec and OpenVPN, and is
being considered for adoption within the Linux kernel. We presented a mechanised cryptographic
proof for a detailed model of WireGuard using the CryptoVerif prover. Our model accounts for
the full Noise IKpsk2 secure channel protocol as well as WireGuard’s extensions for stealthy
operation and DoS resistance. We consider an arbitrary number of parallel sessions, with an
arbitrary number of transport data messages. Furthermore, we base our proof on a precise model
of the Curve25519 group.

We proved correctness, message and key secrecy, forward secrecy, mutual authentication,
session uniqueness, channel binding, and resistance against replay, key compromise impersonation,
and denial of service attacks. In some cases, our analysis pointed out potential improvements in
the protocol (which we did not prove secure using CryptoVerif):

Adding Public Keys to the Chaining Key Derivation. When analysing WireGuard for
Identity Mis-Binding attacks, our analysis uncovered a corner case. Suppose all the Diffie-Hellman
keys in a session between two hosts A and B were compromised, but the pre-shared key between
them is still secret. Then the adversary can set up a man-in-the-middle attack where A thinks it
is connected to B′, B thinks it is connected to A′, but in fact they are both connected to each
other, in the sense that the two connections have the same traffic keys, even though they have
different static keys.

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 37

In particular, once it has set up the session, the adversary can step away and let A and B
directly communicate with each other, while retaining the ability to read and modify messages at
will. Interestingly, this vulnerability only appears in our precise model of Curve25519; it cannot
be detected under a classic Diffie-Hellman assumption.

Although this attack scenario may be quite unrealistic, it points to a theoretical weakness
in the protocol that is easy to prevent with a simple modification. Noise IKpsk2 already adds
ephemeral public keys to the chaining key derivation; we recommend that the static public keys
be added as well. Alternatively, adding the full transcript hash to the traffic key derivation would
also prevent this corner case.

Separately, it is also worth noting that adding public keys to the key derivation significantly
helps with the cryptographic proof. For example, consider the Noise IK protocol, which is similar
to IKpsk2 except that it does not use PSKs. IK does not mix the ephemeral keys into the chaining
key, and it turns out that it is much harder for CryptoVerif to verify than IKpsk2, since we now
have to reason about mis-matched ephemeral keys. In particular, even if we use a public PSK key
of all-zeroes, the IKpsk2 protocol is easier to prove secure than IK. In fact, our recommendation is
to add further contextual information to the key derivation. It would not only prevent theoretical
attacks, but also make proofs easier.

Balancing Stealth and Identity Hiding. Our analysis also points out that the use of static
public keys in mac1 and mac2 in WireGuard negatively affects the identity hiding guarantees
provided by IKpsk2. This is a conscious trade-off that WireGuard makes to achieve stealthy
operation [21]. However, in deployment scenarios where identity hiding is more important than
stealth, we recommend that the protocol use a constant (say all-zeroes) instead of the static
public keys to compute the MACs and cookies.

While it is difficult to preserve stealth while hiding the responder’s identity, a modification
to the protocol can still hide the initiator’s identity. We recommend that the initiator should
send a MAC key (along with the timestamp) in the first handshake message, and the responder
should use this MAC key to compute mac1 in the second handshake message. The initiator can
verify this MAC to get DoS protection, but its static public key is kept hidden from a network
adversary. Essentially, the MAC key acts as an in-session cookie.

Related Work. The use of formal verification tools to analyse real-world cryptographic protocols
is now a well-established research area with hundreds of case studies (see e.g. [14]). CryptoVerif
itself has been used to analyse modern protocols like Signal [27] and TLS 1.3 [9]. We conclude
this paper by comparing our results with closely related work; Table 1 provides a condensed,
high-level overview.

WireGuard itself has been formally analysed before. Donenfeld et al. [22] symbolically analyse
the IKpsk2 key exchange protocol used by WireGuard for a number of security goals, including
identity mis-binding and identity hiding. However, they do not model the MACs or the cookie
mechanism, and hence they do not prove DoS resistance. Interestingly, their analysis concludes
the absence of identity mis-binding attacks even if all keys are compromised, because their model
does not include equivalent public keys. We disprove this property by considering a precise
model of Curve25519. An improved modelling of Diffie-Hellman groups in the symbolic model
has independently been proposed, using Tamarin [19]. It could probably be used to improve the
symbolic analysis of WireGuard.

Dowling et al. [23] present a manual cryptographic analysis of WireGuard. In particular, they
prove key indistinguishability for the WireGuard handshake based on the PRF-ODH assumption
in an extension of the eCK-PFS key exchange model. (Because of this difference in the used
assumption, our mechanisation cannot be used directly to find issues in proof steps; it is a different
proof.) Key indistinguishability no longer holds once the key is used, so they prove security

RR n° 9269

38 Lipp & Blanchet & Bhargavan

Table 1: Security models (upper part) and properties analysed (lower part) in different works on
WireGuard or Noise IKpsk2.

N
oi
se

E
xp

lo
re
r
[2
8]

Su
te
r-

D
ör
ig

[4
1]

G
ir
ol

[2
4]

D
on

en
fe
ld
,

M
iln

er
[2
2]

D
ow

lin
g,

P
at
er
so
n
[2
3]

th
is

w
or
k

verified protocol Noise IKpsk2 WireGuard

tool set PV T T T m CV
computational model x x x x X X

Curve25519 with equivalent keys x x x x x X
compromise static keys X X X X X X

compromise ephemeral keys x x X X X X
dishonest ephemeral keys x x X x x x

compromise pre-shared key X X X X X X
compromise all keys x x X X x X

both roles per static key x X X X X X

mutual authentication X X X X X X
key compromise impersonation X X X X X X

1st message replay — — — x x X
transport data replay x X X x x X

session uniqueness x X x X X X
channel binding x X x x x X
DoS resistance — — — x x X

forward key secrecy X X X X X X
forward message secrecy X X X x x X

identity hiding x x X X2 x X
identity mis-binding x x x X1 x X

Definitions differ between models.
T = Tamarin, PV = ProVerif, CV = CryptoVerif, m = manual.
X= included, x = not included, — = not applicable.
1) The identity mis-binding issue we found was not found.
2) Weaker identity hiding property using a surrogate term.

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 39

for a slightly modified variant of the IKpsk2 protocol that includes a key confirmation message
independent of the session keys. In contrast, our proof requires no changes to the protocol, since
we use an ACCE-style model. Furthermore, [23] focuses only on the key exchange, and does not
consider other properties like identity hiding or DoS resistance. Their analysis also does not find
the identity mis-binding issue since they do not consider a scenario where all Diffie-Hellman keys
are compromised.

Finally, the Noise Explorer tool [28] has been used to perform a comprehensive symbolic
analysis of numerous Noise protocols using the ProVerif analyser. Noise Explorer can be used to
find violations of secrecy and authentication properties for any protocol expressed in the language
defined by Noise, using per-message authentication and confidentiality grades. It includes a
symbolic analysis of Noise IKpsk2. A similar work has been done in Tamarin [24,41].

Acknowledgements

We thank Jason A. Donenfeld (the author of WireGuard), Nadim Kobeissi, and the anonymous
reviewers of EuroS&P’19 for their helpful feedback on our work. This research was partly funded
by the European Union’s Horizon 2020 NEXTLEAP Project (grant agreement nº 688722), ERC
CIRCUS (grant agreement nº 683032), ANR AnaStaSec (decision number ANR-14-CE28-0014-01),
and ANR TECAP (decision number ANR-17-CE39-0004-03).

References

[1] J. Alwen, B. Blanchet, E. Hauck, E. Kiltz, B. Lipp, and D. Riepel. Analysing the hpke
standard. Cryptology ePrint Archive, Report 2020/1499, 2020. https://eprint.iacr.org/
2020/1499. 18

[2] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein. BLAKE2: Simpler,
smaller, fast as MD5. In Applied Cryptography and Network Security, volume 7954 of LNCS,
pages 119–135. Springer, 2013. 23

[3] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In ASIACRYPT’00, volume 1976 of LNCS,
pages 531–545. Springer, Dec. 2000. 11

[4] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. In ACM CCS’93, pages 62–73. ACM Press, 1993. 11

[5] D. J. Bernstein. The Poly1305-AES message-authentication code. In FSE 2005, volume 3557
of LNCS, pages 32–49. Springer, 2005. 11

[6] D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In PKC 2006, volume 3958
of LNCS, pages 207–228. Springer, Apr. 2006. 12

[7] D. J. Bernstein. Extending the Salsa20 nonce, 2011. https://cr.yp.to/snuffle/
xsalsa-20110204.pdf. 9

[8] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, A. Pironti,
P. Strub, and J. K. Zinzindohoue. A messy state of the union: Taming the composite state
machines of TLS. In IEEE S&P (Oakland), pages 535–552, 2015. 3

RR n° 9269

https://eprint.iacr.org/2020/1499
https://eprint.iacr.org/2020/1499
https://cr.yp.to/snuffle/xsalsa-20110204.pdf
https://cr.yp.to/snuffle/xsalsa-20110204.pdf

40 Lipp & Blanchet & Bhargavan

[9] K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified models and reference implementations
for the TLS 1.3 standard candidate. In IEEE S&P (Oakland), pages 483–502, 2017. 37

[10] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and P. Strub. Triple handshakes
and cookie cutters: Breaking and fixing authentication over TLS. In IEEE S&P (Oakland),
pages 98–113, 2014. 3, 31

[11] K. Bhargavan and G. Leurent. On the practical (in-)security of 64-bit block ciphers: Collision
attacks on HTTP over TLS and OpenVPN. In ACM CCS’16, pages 456–467, 2016. 3, 4

[12] B. Blanchet. Computationally sound mechanized proofs of correspondence assertions. In
IEEE CSF’07, pages 97–111, July 2007. Extended version available at http://eprint.iacr.
org/2007/128. 4

[13] B. Blanchet. A computationally sound mechanized prover for security protocols. IEEE
Transactions on Dependable and Secure Computing, 5(4):193–207, Oct.–Dec. 2008. 4

[14] B. Blanchet. Security protocol verification: Symbolic and computational models. In Principles
of Security and Trust, POST’12, volume 7215 of LNCS, pages 3–29. Springer, 2012. 37

[15] B. Blanchet. Modeling and verifying security protocols with the applied pi calculus and
ProVerif. Foundations and Trends in Privacy and Security, 1(1-2):1–135, Oct. 2016. 3

[16] J. Brendel, M. Fischlin, F. Günther, and C. Janson. PRF-ODH: Relations, instantiations,
and impossibility results. In CRYPTO 2017, volume 10403 of LNCS, pages 651–681. Springer,
Aug. 2017. 19

[17] L. Chen and Q. Tang. Bilateral unknown key-share attacks in key agreement protocols.
Journal of Universal Computer Science, 14(3):416–440, Feb. 2008. 31

[18] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damgård revisited: How to
construct a hash function. In CRYPTO 2005, volume 3621 of LNCS, pages 430–448. Springer,
2005. 20

[19] C. Cremers and D. Jackson. Prime, order please! revisiting small subgroup and invalid
curve attacks on protocols using Diffie-Hellman. In IEEE CSF’19, June 2019. To appear.
Extended version at https://people.cispa.io/cas.cremers/downloads/papers/prime_
order_please.pdf. 37

[20] Y. Dodis, T. Ristenpart, J. Steinberger, and S. Tessaro. To hash or not to hash again?
(in)differentiability results for H2 and HMAC. In CRYPTO 2012, volume 7417 of LNCS,
pages 348–366. Springer, 2012. Full version at https://eprint.iacr.org/2013/382. 24,
43

[21] J. A. Donenfeld. WireGuard: Next generation kernel network tunnel. In Network and
Distributed System Security Symposium, NDSS, 2017. We use the up-to-date whitepaper
version for our analysis, which differs in how the MACs are defined: https://www.wireguard.
com/papers/wireguard.pdf, Nov. 2nd, 2017, draft revision ceb3a49. 3, 4, 5, 10, 32, 37

[22] J. A. Donenfeld and K. Milner. Formal verification of the WireGuard protocol, 2018.
https://www.wireguard.com/papers/wireguard-formal-verification.pdf. 3, 20, 37,
38

Inria

http://eprint.iacr.org/2007/128
http://eprint.iacr.org/2007/128
https://people.cispa.io/cas.cremers/downloads/papers/prime_order_please.pdf
https://people.cispa.io/cas.cremers/downloads/papers/prime_order_please.pdf
https://eprint.iacr.org/2013/382
https://www.wireguard.com/papers/wireguard.pdf
https://www.wireguard.com/papers/wireguard.pdf
https://www.wireguard.com/papers/wireguard-formal-verification.pdf

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 41

[23] B. Dowling and K. G. Paterson. A cryptographic analysis of the WireGuard protocol. In
Applied Cryptography and Network Security, ACNS 2018, volume 10892 of LNCS, pages
3–21. Springer, 2018. 4, 19, 20, 37, 38, 39

[24] G. Girol. Formalizing and verifying the security protocols from the Noise framework. Master’s
thesis, ETH Zürich, Mar. 2019. Available at https://doi.org/10.3929/ethz-b-000332859.
38, 39

[25] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security of TLS-DHE in the standard
model. In CRYPTO 2012, volume 7417 of LNCS, pages 273–293. Springer, 2012. 26

[26] S. Kent and K. Yao. Security Architecture for the Internet Protocol, 2005. IETF RFC 4301.
3

[27] N. Kobeissi, K. Bhargavan, and B. Blanchet. Automated verification for secure messaging
protocols and their implementations: A symbolic and computational approach. In IEEE
EuroS&P’17, pages 435–450, Apr. 2017. 21, 22, 37, 43

[28] N. Kobeissi, G. Nicolas, and K. Bhargavan. Noise Explorer: Fully automated modeling and
verification for arbitrary Noise protocols. In IEEE EuroS&P 2019, June 2019. To appear.
The tool is available at https://noiseexplorer.com/. 38, 39

[29] H. Krawczyk and P. Eronen. HMAC-based extract-and-expand key derivation function
(HKDF), 2010. IETF RFC 5869. 9, 22

[30] A. Langley, M. Hamburg, and S. Turner. Elliptic curves for security, Jan. 2016. IETF RFC
7748. 8, 9, 11, 17

[31] B. Lipp, B. Blanchet, and K. Bhargavan. A mechanised cryptographic proof of the WireGuard
virtual private network protocol. In IEEE EuroS&P 2019, June 2019. To appear. 19

[32] A. Luykx, B. Mennink, and S. Neves. Security analysis of BLAKE2’s modes of operation.
IACR Transactions on Symmetric Cryptology, 2016(1):158–176, Dec. 2016. 11

[33] M. Marlinspike and T. Perrin. The X3DH key agreement protocol, Nov. 2016. Available at
https://signal.org/docs/specifications/x3dh/. 3, 20

[34] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin. The TAMARIN prover for the symbolic
analysis of security protocols. In Computer Aided Verification, CAV’13, volume 8044 of
LNCS, pages 696–701. Springer, 2013. 3

[35] Y. Nir and A. Langley. ChaCha20 and Poly1305 for IETF Protocols, June 2018. IETF RFC
8439. 9, 11

[36] T. Okamoto and D. Pointcheval. The gap-problems: a new class of problems for the security
of cryptographic schemes. In PKC 2001, volume 1992 of LNCS, pages 104–118. Springer,
Feb. 2001. 18

[37] T. Perrin. The Noise protocol framework, July 2018. https://noiseprotocol.org/noise.
html. 3, 5, 10

[38] G. Procter. A security analysis of the composition of ChaCha20 and Poly1305. Cryptology
ePrint Archive, Report 2014/613, 2014. https://eprint.iacr.org/2014/613. 11, 32

RR n° 9269

https://doi.org/10.3929/ethz-b-000332859
https://noiseexplorer.com/
https://signal.org/docs/specifications/x3dh/
https://noiseprotocol.org/noise.html
https://noiseprotocol.org/noise.html
https://eprint.iacr.org/2014/613

42 Lipp & Blanchet & Bhargavan

[39] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3, 2018. IETF RFC
8446. 3

[40] M.-J. Saarinen and J.-P. Aumasson. The BLAKE2 cryptographic hash and message authen-
tication code (MAC), 2015. IETF RFC 7693. 9

[41] A. Suter-Dörig. Formalizing and verifying the security protocols from the
Noise framework. Bachelor’s thesis, ETH Zürich, Nov. 2018. Available at
https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/
information-security-group-dam/research/software/noise_suter-doerig.pdf. 38,
39

A Indifferentiability Results

A.1 Basic Lemmas

Proof of Lemma 2. Consider

• the game G0 in which H is a random oracle, and Hi(x) = H(x) for each x ∈ Di and i ≤ n,
and

• the game G1 in which H1, . . .Hn are independent random oracles defined on D1, . . . , Dn

respectively, and H(x) = Hi(x) if x ∈ Di for some i ≤ n, and H(x) = H0(x) otherwise,
where H0 is a random oracle of domain D \ (D1 ∪ · · · ∪Dn).

It is easy to see that these two games are perfectly indistinguishable, which proves indifferentiability.

Proof of Lemma 3. Consider

• the gameG0 in whichH1 andH2 are independent random oracles, andH ′(x) = H1(x)‖H2(x),
and

• the game G1 in which H ′ is a random oracle that returns bitstrings of length l1 + l2, H1(x)
is the l1 first bits of H ′(x) and H2(x) is the l2 last bits of H ′(x).

It is easy to see that these two games are perfectly indistinguishable, which proves indifferentiability.

Proof of Lemma 4. Consider

• the game G0 in which H is a random oracle, H ′1(x) is the first l1 bits of H(x), and H ′2(x)
is the last l − l1 bits of H(x), and

• the game G1 in which H ′1 and H ′2 are independent random oracles that return bitstrings of
length l1 and l − l1 respectively, and H(x) = H ′1(x)‖H ′2(x).

It is easy to see that these two games are perfectly indistinguishable, which proves indifferentiability.
(It is the same indistinguishability result as in Lemma 3, swapping G0 and G1.)

Proof of Lemma 5. This is a consequence of Lemma 4, by not giving access to oracle H ′2 to the
distinguisher (so qH′2 = 0). H ′2 is then included in the simulator. We assume that random oracles
answer in constant time.

Inria

https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/noise_suter-doerig.pdf
https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/noise_suter-doerig.pdf

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 43

Proof of Lemma 7. Consider

• the game G0 in which H1 and H2 are independent random oracles, H ′1(x) = H1(x), and
H ′2(x) = H2(H1(x), x), and

• the game G1 in which H ′1 and H ′2 are independent random oracles; H1(x) = H ′1(x); H2(y, z)
returnsH ′2(z) if y = H ′1(z) andH3(y, z) otherwise, whereH3 is a random oracle (independent
of H ′1 and H ′2).

CryptoVerif shows that these two games are indistinguishable, up to probability ε. (The oracles
H1 and H ′1 are considered as a single oracle, which receives qH1

+ qH′1 queries in total.)

A.2 Indifferentiability of HKDF

Much like for HMAC in [20] and as mentioned in [27], hkdfn is not indifferentiable from a random
oracle in general. Intuitively, the problem comes from a confusion between the first and the
second (or third) call to hmac, which makes it possible to generate prk by calling hkdf2 rather
than hmac. In more detail, let

prk‖_ = hkdf2(s, k, info)

salt = hmac(s, k)

x = hmac(prk , info′‖i0)

x′‖_ = hkdf2(salt , info‖i0, info′)

where the notation x1‖x2 = hkdf2(s, k, info) denotes that x1 consists of the first 256 bits of
hkdf2(s, k, info) and x2 its last 256 bits.

When hkdf2 is defined from hmac as above, we have prk = hmac(prk ′, info‖i0) where prk ′ =
hmac(s, k) = salt , so prk = hmac(salt , info‖i0). Hence, x′ = hmac(prk , info′‖i0) = x. However,
when hkdf2 is a random oracle and hmac is defined from hkdf2, the simulator that computes hmac
sees what seems to be two unrelated calls to hmac. (It is unable to see that prk is in fact related
to the previous call salt = hmac(s, k): we have prk‖_ = hkdf2(s, k, info) but the simulator does
not know which value of info it should use.) Therefore, the simulator can only return fresh
random values for salt and x, and x 6= x′ in general.

Proof of Lemma 8. In this proof, we write S[H1, . . . ,Hn] instead of SH1,...,Hn for a system S
with oracle access to H1, . . . ,Hn, because we need to write systems in which the oracles are
themselves systems that access other oracles. Consider the game G0 in which hmac is a random
oracle and hkdf-expandn is defined as above.

The different calls to hmac in the definition of hkdf-expandn use disjoint domains (the last
byte differs among the calls to hmac), so by Lemma 2, there exists a simulator S1 for hmac such
that G0 is perfectly indistinguishable from G1 in which hmac = S1[H1 . . . , Hn] and hkdf-expandn
is defined by

hkdf-expand1n(prk , info) = k1‖ . . . ‖kn where
k1 = H1(prk , info)

ki+1 = Hi+1(prk , ki‖info) for 1 ≤ i < n

where H1, . . . ,Hn are independent random oracles and the simulator S1 calls Hi at most qHi

times, with qH1
+ · · ·+ qHn

≤ qhmac, and runs in time O(qhmac).

RR n° 9269

44 Lipp & Blanchet & Bhargavan

Slightly reorganising the arguments of Hi, there exists a simulator S2 for hmac such that G1 is
perfectly indistinguishable from G2 in which hmac = S2[H1, . . . ,Hn] and hkdf-expandn is defined
by

hkdf-expand2n(prk , info) = k1‖ . . . ‖kn where
k1 = H1(prk , info)

ki+1 = Hi+1(ki, prk , info) for 1 ≤ i < n

where H1, . . . ,Hn are independent random oracles and the simulator S2 calls Hi at most qHi

times, with qH1
+ · · ·+ qHn

≤ qhmac, and runs in time O(qhmac).
By Lemma 7, there exists a simulator S3,2 for H2 (H1 is simulated by H ′1 = H1 itself) such

that G2 = G3,1 is indistinguishable up to probability ε2 from G3,2 in which hmac = S2[H ′1,
S3,2[H ′1, H

′
2], H3, . . . ,Hn] and hkdf-expandn is defined by

hkdf-expand3,2n (prk , info) = k1‖ . . . ‖kn where
k1 = H ′1(prk , info)

k2 = H ′2(prk , info)

ki+1 = Hi+1(ki, prk , info) for 2 ≤ i < n

whereH ′1, H ′2, H3, . . . ,Hn are independent random oracles; the simulator for hmac callsH ′1 at most
qH1 +qH2 times, H ′2 at most qH2 times, Hi at most qHi times for i ≥ 3, with qH1 +· · ·+qHn ≤ qhmac,
and runs in time O(qhmac + qH2

); and ε2 = qH2
(2qH1

+ 3qhkdf-expandn + 1)/|M|. Furthermore, by
definition of the simulator in the proof of Lemma 7, H ′1 is called at most qH1

times via the first
hole of S2 and H ′1 and H ′2 are called with the same arguments at most qH2

times via the second
hole of S2.

Repeating the same reasoning inductively, there exists a simulator S3,j for Hj such that
G3,j−1 is indistinguishable up to probability εj from G3,j in which hmac = S2[H ′1, S3,2[H ′1, H

′
2],

. . . , S3,j [H
′
j−1, H

′
j], Hj+1, . . . ,Hn] and hkdf-expandn is defined by

hkdf-expand3,jn (prk , info) = k1‖ . . . ‖kn where
ki = H ′i(prk , info) for 1 ≤ i ≤ j
ki+1 = Hi+1(ki, prk , info) for j ≤ i < n

where H ′1, . . . ,H ′j , Hj+1, . . . ,Hn are independent random oracles; the simulator for hmac calls H ′1
at most qH1

times via the first hole of S2, H ′i−1 and H ′i with the same arguments at most qHi
times

via the i-th hole of S2 for 1 < i ≤ j, Hi at most qHi
times for i > j, with qH0

+ · · ·+ qHn
≤ qhmac,

and runs in time O(qhmac + qH2
+ · · ·+ qHj

); and εj = qHj
(2qHj−1

+ 3qhkdf-expandn + 1)/|M|.
For j = n, we obtain a game G3,n in which hmac = S2[H ′1, S3,2[H ′1, H

′
2], . . . , S3,n[H ′n−1, H

′
n]]

and hkdf-expandn is defined by

hkdf-expand3,nn (prk , info) = k1‖ . . . ‖kn where
ki = H ′i(prk , info) for 1 ≤ i ≤ n

where H ′1, . . . ,H ′n are independent random oracles; the simulator for hmac calls H ′1 at most qH1

times via the first hole of S2, H ′i−1 and H ′i with the same arguments at most qHi times via the i-th
hole of S2 for 1 < i ≤ n, with qH1

+· · ·+qHn
≤ qhmac, and runs in time O(qhmac+qH2

+· · ·+qHn
) =

O(qhmac).
By Lemma 3, there exist simulators S4,j (1 ≤ j ≤ n) for H ′j such that G3,n is perfectly indistin-

guishable fromG4 in which hmac = S2[S4,1[H], S3,2[S4,1[H], S4,2[H]], . . . , S3,n[S4,n−1[H], S4,n[H]]]

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 45

and hkdf-expandn is a random oracle H where the simulator for hmac calls H at most qH1 +
· · · + qHn

≤ qhmac times, and runs in time O(qhmac). (Since H is the concatenation of the H ′i
for 1 ≤ i ≤ n and, for i > 1, the calls to H ′i−1 and H ′i via the i-th hole of S2 have the same
arguments, these two calls can be implemented by a single call to H, and hence there are at most
qHi

calls to H via the i-th hole of S2.)
The probability of distinguishing G0 from G4 is then at most

ε =

n∑
j=2

εj

=

n∑
j=2

qHj (2qHj−1 + 3qhkdf-expandn + 1)

|M|

=
1

|M|

(
3qhkdf-expandn(

n∑
j=2

qHj
) + 2

n∑
j=2

qHj
qHj−1

+

n∑
j=2

qHj

)

≤ 1

|M|

(
3qhkdf-expandnqhmac + 2

n∑
j=2

qHjqHj−1 +

n∑
j=2

q2Hj

)

≤
3qhkdf-expandnqhmac + q2hmac

|M|

Proof of Lemma 9. As in the previous proof, we write S[H1, . . . ,Hn] instead of SH1,...,Hn for a
system S with oracle access to H1, . . . ,Hn. Consider the game G0 in which hmac is a random
oracle and hkdfn is defined as above.

By hypothesis, the calls to hmac in hkdf-extract and hkdf-expandn use disjoint domains,
so by Lemma 2, there exists a simulator S1 for hmac such that G0 is perfectly indistinguish-
able from G1 in which hmac = S1[H0, H1] and hkdfn is defined by hkdf1n(salt , key , info) =
hkdf-expand1n(H0(salt , key), info), where hkdf-expand1n is defined from the random oracle H1 in-
stead of hmac and the simulator S1 calls Hi at most qHi

times, with qH0
+ qH1

≤ qhmac and runs
in time O(qhmac).

By Lemma 8, there exists a simulator S2 for H1 such that G1 is indistinguishable up to proba-
bility ε from G2 in which hmac = S1[H0, S2[H]], and hkdfn is defined by hkdf1n(salt , key , info) =
H(H0(salt , key), info), where H is a random oracle, S2 calls H at most qH ≤ qH1

times, runs in
time O(qH1

) = O(qhmac), and ε = (3qhkdfnqH1
+ q2H1

)/|M|. So the simulator for hmac calls H0 at
most qH0

times and H at most qH ≤ qH1
times and runs in time O(qhmac).

By Lemma 6, there exist simulators S3,1 for H0 and S3,2 for H such that G2 is indistinguishable
up to probability ε′ from G3 in which hmac = S2[H0, S2[H]]] with H0 = S3,1[hkdf3n] and H =
S3,2[hkdf3n] and hkdfn = hkdf3n is a random oracle, where the simulator for hmac calls hkdfn at
most qH ≤ qH1

≤ qhmac times, runs in time O(qhmac + qH0
qH) = O(q2hmac), and ε

′ = (2qHqH0
+

q2H0
+ qHqhkdfn + q2hkdfn)/|M|.
The probability of distinguishing G0 from G3 is then at most

ε = ε′ + ε

=
2qHqH0

+ q2H0
+ qHqhkdfn + q2hkdfn
|M|

+
3qhkdfnqH1 + q2H1

|M|

=
1

|M|

(
q2hkdfn + qhkdfn(qH + 3qH1) + q2H1

+ 2qHqH0 + q2H0

)
≤
q2hkdfn + 4qhkdfnqhmac + q2hmac

|M|

RR n° 9269

46 Lipp & Blanchet & Bhargavan

A.3 Chain of Random Oracle Calls

Proof of Lemma 10. We consider the following two games G0 and G1.

• The game G0 in which H is a random oracle and the functions chainn with 0 ≤ n ≤ m are
defined from H by (11) and (12).

• The game G1 in which the functions chainn with 0 ≤ n ≤ m are independent random
oracles and H is defined from them in Figure 2. In this figure, L is a list of triples
((C, v), (Cj+1, rj), j) such that Cj+1‖rj is the result of a previous call to H(C, v) and j
indicates the index of this H call in a chain of calls to H. If a call to H was not coming from
a chain of calls, the index j = −2 is used.

We shortly comment this simulator’s four cases informally. In case 1, it returns a previous
result because the same call has already been made before. In case 2, the call to H uses
const as first argument and is thus the first call in a potential chain of calls to H. Therefore,
the simulator uses chain0 to get the result and writes it to the list L with index 0. In case 3,
the simulator finds in L a previous call to H that returned the current call’s C value as
result. This means, with respect to the hypothesis we present just after this paragraph, that
the current call belongs to a chain of previous calls that was started with a call responded
to by case 2. The simulator collects the arguments vk of those previous calls to be able to
call the appropriate chainn oracle. If the simulator reaches case 4, then the call did neither
start a new chain nor belong to a previously started chain. Thus, it chooses fresh random
values as a result and adds them with an index to L that makes sure that it will never be
considered as part of a chain.

We name direct oracle calls to chainn or H calls that are done directly by the distinguisher, and
indirect oracle calls the calls to H done from inside chainn in G0 and the calls to chainn done
from inside H in G1. Note for clarification that in G0 there are no indirect calls to chainn and in
G1 there are no indirect calls to H.

We show that the two games G0 and G1 are indistinguishable as long as the following
hypotheses hold. In game G0:

H1. Consider Cj+1‖rj = H(Cj , vj), j ≤ n < m that gets called from inside a direct call to
chainn(v1, . . . , vj , . . . , vn). If the distinguisher calls H(Cj+1, vj+1) before or after the call to
chainn, then H(Cj , vj) has been called directly by the distinguisher before H(Cj+1, vj+1).

Stated informally, the distinguisher can only know Cj+1 if it was received as result from H.

In game G1:

H2. No fresh Cj is equal to the first argument of a previous call to H (including the call that
generates Cj).

Stated informally, the distinguisher cannot prepend to a chain of H calls.

H3. There are no collisions between the fresh Cj .

We have the following invariants:

P1. Given C, v, there is at most one pair ((Cj+1, rj), j) such that ((C, v), (Cj+1, rj), j) ∈ L.
Indeed, when L contains such an element, calls to H(C, v) immediately return Cj+1‖rj in
case 1, and never add another element ((C, v), (Cj+1, rj), j) to L.

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 47

H(C, v) =

1) if ((C, v), (Cj+1, rj), j) ∈ L for some Cj+1, rj , j then

return Cj+1‖rj
2) elseif C = const then

C1 ←$ {0, 1}l
′

r0 ← chain0(v)

add ((C, v), (C1, r0), 0) to L

return C1‖r0
3) elseif ((Cj , vj), (C, rj), j) ∈ L for some Cj , vj , rj and j with 0 ≤ j < m then

for k = j − 1 to 0 do

find ((Ck, vk), (Ck+1, rk), k) ∈ L for some Ck, vk, rk

set Ck and vk to the found values
endfor

if j + 1 = m then

Cj+2‖rj+1 = chainm(v0, . . . , vj , v)

else

Cj+2 ←$ {0, 1}l
′

rj+1 ← chainj+1(v0, . . . , vj , v)

endif

add ((C, v), (Cj+2, rj+1), j + 1) to L

return Cj+2‖rj+1

4) else

C−1 ←$ {0, 1}l
′

r−2 ←$ {0, 1}l−l
′

add ((C, v), (C−1, r−2),−2) to L

return C−1‖r−2

endif

Figure 2: Simulator for H

RR n° 9269

48 Lipp & Blanchet & Bhargavan

P2. Given ((Cj , vj), (C, rj), j) ∈ L, for some Cj , vj , rj and j with 0 ≤ j < m then there is, for
each k = j − 1 to 0, a single matching element ((Ck, vk), (Ck+1, rk), k) in L.

More informally, at no time there are entries in L that belong to chains that are incomplete
in the front, i. e. that did not start by a call to H with C = const. And yet differently stated,
the simulator can, in case 3, always reconstruct the whole chain of H calls and collect the
arguments vj .

We first show the existence of ((Ck, vk), (Ck+1, rk), k) in L for each k = j − 1 to 0. If there
is an element in L with j > 0, then case 3 was executed before for a matching H call and
its result was added to the list with j′ = j − 1. This is because of H2 and the fact that
only in case 3 elements with j > 0 are added to the list. This argument can be repeated
recursively until reaching j = 1. For j = 0, the matching element that started the chain
was added by case 2, once again because of H2 and because only in case 2 elements with
j = 0 are added to the list.

Moreover, the uniqueness of ((Ck, vk), (Ck+1, rk), k) comes from H3: when an element
((Ck, vk), (Ck+1, rk), k) is added to L, Ck+1 is always a fresh Cj , so by H3, there is a single
element in L with a given Ck+1.

We now treat all possible traces of calls in both games.

Case 1 Suppose the distinguisher makes a direct oracle call to H or chainn with the same
arguments as a previous direct call to the same oracle. Both G0 and G1 return the same result as
in the previous call.

Case 2 Suppose the distinguisher makes a direct call to chainn that has not been done before
as a direct call.

Case 2. a) In G0, the last H(C, vn) in the chain that simulates chainn(v0, . . . , vn) has already
been called directly. Then by H1 the distinguisher did all H calls in the chain that simulates
chainn(v0, . . . , vn) directly.

The result in G0 is

_‖chainn(v0, . . . , vn) = H(C, vn)

which is the last part of the result of the previous call to H, or in the case of n = m

chainm(v0, . . . , vm) = H(C, vm) .

In G1, because the whole chain of H calls was made in the right order, chainn(v0, . . . , vn) has
already been invoked indirectly by the call to H(C, vn). Thus, this current call to chainn returns
a previously fixed value, fulfilling the following equation:

H(C, vn) = Cj+1‖chainn(v0, . . . , vn)

or in the case of n = m

H(C, vm) = chainm(v0, . . . , vm) .

This is the same result as in G0.

Inria

A Mechanised Cryptographic Proof of the WireGuard VPN Protocol 49

Case 2. b) In G0, the last H(C, vn) in the chain that simulates chainn(v0, . . . , vn) has not
already been called directly. Like in the previous case, the result is

_‖chainn(v0, . . . , vn) = H(C, vn)

or in the case of n = m

chainm(v0, . . . , vm) = H(C, vm) ,

but as H(C, vn) and chainn(v1, . . . , vn) have not been called before directly, the result is indepen-
dent of previously returned values and thus looks like a fresh random value to the distinguisher.

In G1, chainn(v0, . . . , vn) has not been invoked before and thus returns a fresh random value.

Case 3 Suppose the distinguisher makes a direct call to H that has not been done before as a
direct call.

Case 3. a) In G0, this call to H(C, vi) has already been done from inside a chainn(v0, . . . , vn)
call. Hence all other H calls belonging to this chain have also been done from inside said chainn
call, in particular the call H(Ci−1, vi−1) directly before the current call (except for C = const,
thus if the current call is the beginning of a chain). H1 implies that the distinguisher has then
made a direct call to H(Ci−1, vi−1) before the current H call. By recursively applying H1, the
distinguisher has then directly made all H calls in the chain up to the current one, in the right
order.

Case 3. a) i) In G0, the current direct call to H(C, vn) has already been done as the last one
of the chain of calls indirectly invoked from inside a chainn(v0, . . . , vn) call.

In G0, the result fulfils the following equation:

Cn+1‖chainn(v0, . . . , vn) = H(C, vn) ,

and in the case of n = m:

chainm(v0, . . . , vm) = H(C, vm) .

This is similar to case 2. a) just that the order of the calls is inverted and the following small
difference: the parts of H’s result coming from chain are already known by the distinguisher, while
Cn+1 looks like a fresh random value.

In G1, because the whole chain of H calls was made in the right order, the current call will
invoke case 3 of the simulator’s algorithm and return

H(C, vn) = Cn+1‖chainn(v0, . . . , vn)

or in the case of n = m

H(C, vm) = chainm(v0, . . . , vm) .

The parts of H’s result coming from chain are already known by the distinguisher, while Cn+1 is
a fresh random value. This is indistinguishable from the result in G0.

RR n° 9269

50 Lipp & Blanchet & Bhargavan

Case 3. a) ii) In G0, the current direct call to H(C, vi) has already been done from inside a
chainn(v0, . . . , vn) call, but not as the last one. This implies that said chainn call was not chain0 –
this is covered by case 3. a) i).

In G0, the result is thus a value fixed by a previous indirect call to H, but is independent of
the results of previous direct calls, and thus looks like a fresh random value to the distinguisher.

In G1, because the whole chain of H calls was made in the right order, the current call will
invoke case 3 of the simulator’s algorithm and return a result via a chainn call. This chainn call
has not been made before by hypothesis and thus the result is a fresh random value.

Case 3. b) In G0, this call to H(C, vi) has not been done before, neither directly nor indirectly.2
Hence, H returns a fresh random value.

In G1, the simulator’s case 1 is not relevant because this call has not been done before.
Simulator’s case 2: If C = const, then H returns a fresh random C1 and a fresh random r0 via
chain0. This call to chain0 has not been done before because this would have invoked the H call
in G0, which is excluded by the hypothesis. Simulator’s case 3: If ((Cj , vj), (C, rj), j) ∈ L for
some Cj , vj , rj and 0 ≤ j < m, then the current call to H(C, vi) appends to a chain. Thus, a
fresh random Cj+2‖rj+1 is returned. The involved chainj+1 or chainm has not been called before
for the same reason as chain0 above. Simulator’s case 4: A fresh random C−1‖r−2 is returned.
To conclude, a fresh random value is returned in every case in G1.

The previous proof shows that the games G0 and G1 are indistinguishable assuming the
hypotheses H1, H2, and H3 hold. We will now bound the probability that they do not hold.
Suppose that there are at most qH direct queries to H and qchainn direct queries to chainn.

• When H1 does not hold, the distinguisher does an H call from a chain corresponding to an
earlier or later chainn call without having done the H calls starting from the beginning of
the chain, by using the matching C value. There are at most (

∑m
n=0 n · qchainn) different

C values from H, and the distinguisher has qH attempts to hit a matching one, so the
probability that H1 does not hold is at most (

∑m
n=0 n · qchainn) · qH/2l

′
.

• The probability that H2 does not hold at the q-th call to H is at most the probability that
a fresh random value in {0, 1}l′ collides with q values in {0, 1}l′ , hence q/2l′ . So in total,
the probability that H2 does not hold is

∑qH
q=1 q/2

l′ = qH(qH + 1)/2l
′+1.

• The probability that H3 does not hold is at most the probability that among qH random
values in {0, 1}l′ , two of them collide, so it is at most qH(qH − 1)/2l

′+1.

Hence, the probability that G0 and G1 are distinguished is at most

(
∑m
n=0 n · qchainn) · qH + q2H

2l′
.

2This means that there is no involvement of previous calls to chainn, but the distinguisher can build an H chain
with direct calls.

Inria

RESEARCH CENTRE
PARIS

2 rue Simone Iff - CS 42112
75589 Paris Cedex 12

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	WireGuard
	Secure Channel Protocol: Noise IKpsk2
	Extensions for Stealth and Denial-of-Service
	Instantiating the Cryptographic Algorithms
	Security Goals, Informally

	Cryptographic Assumptions
	Random Oracle Model
	IND-CPA and INT-CTXT for AEAD
	Curve25519 and Gap Diffie-Hellman

	Indifferentiability of Hash Chains
	Definition of Indifferentiability
	Basic Lemmas
	Indifferentiability of HKDF
	Indifferentiability of a Chain of Random Oracle Calls
	Application to WireGuard

	Modelling WireGuard
	Execution Environment
	Modelling Tricks

	Verification Results
	Discussion
	Indifferentiability Results
	Basic Lemmas
	Indifferentiability of HKDF
	Chain of Random Oracle Calls

