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Abstract

For a regenerative process, we propose various estimators of the density
function of the cumulative reward up to hitting a rarely visited set of states.
The approaches exploit existing weak-convergence results for the hitting-
time distribution, and we apply simulation (often with previously developed
importance samplers for estimating the mean) to estimate parameters of the
limiting distribution. We also combine these ideas with kernel methods. Nu-
merical results from simulation experiments show the effectiveness of the
estimators.

1 Introduction

A regenerative stochastic process on a state space S possesses an increasing se-
quence of time points at which the process “probabilistically restarts” [9]. An ex-
ample is the queue-length process (including any customer in service) of a stable
GI/GI/1 queue, with the starts of busy periods being regeneration times [9, Exam-
ple 1.2.2]. Suppose that there is a set A ⊂S of rarely visited states (e.g., large
queue lengths in a stable queue), and for a given reward function on the state space
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S , consider the cumulative reward R up to first hitting A . Our goal is to estimate
the density function f of R.

One reason for estimating f is that an analyst may glean important features of
the distribution of R from a graph of its density, arguably more easily than from a
plot of its cumulative distribution function (CDF) F . Another motivation arises in
quantile estimation [4]. A central limit theorem for the estimator of the q-quantile
ξ = F−1(q) for 0 < q < 1 has an asymptotic variance that includes f (ξ ), so con-
structing a confidence interval for ξ often entails estimating f (ξ ).

When sampling independent and identically distributed (i.i.d.) copies of R from
F via crude simulation (CS), we can estimate the density f through kernel methods
[17], a class of nonparametric techniques for function estimation. But since A is
rarely visited, generating an observation of R from F can be computationally costly
as it entails simulating the process for a typically large number of transitions. Rare-
event simulation techniques, such as importance sampling (IS), have exploited re-
generative structure to obtain efficient estimators of the mean E[R] (e.g., [5] and
Chapter VI of [1]). Rather than replicating i.i.d. copies of R from F , the IS meth-
ods instead sample cycles from a different distribution than the original, unbiasing
results by multiplying by a correction factor, the likelihood ratio. Compared to
their CS counterparts, the IS estimators of E[R] can have much smaller variance,
with also substantially less computation cost. But ordinary kernel methods are
then no longer applicable to estimate f because i.i.d. replicates of R from F are not
available.

We now consider estimating f by employing ideas from [6], which take ad-
vantage of known weak-convergence results based on regenerative properties in an
asymptotic regime in which visiting the set A becomes rarer. These limit theorems
[10] generalizes a classical result of Rényi [10, p. 3] establishing that for a geomet-
ric sum (i.e., the sum of a geometrically distributed number of i.i.d. nonnegative
random variables with finite mean), the ratio of the sum and its mean converges
weakly to an exponential as the geometric’s parameter p shrinks to 0. Then sim-
ulation is applied to estimate the limiting distribution’s parameters, where those
related to rare events are dealt with via existing IS methods for E[R].Applying this
approach, [6] develops so-called exponential and convolution estimators for the
CDF F of R, along with its q-quantile ξ = F−1(q) and the conditional tail expec-
tation γ = E[R | R > ξ ], the latter two being frequently employed risk measures in
finance, where ξ (resp., γ) is known as the value-at-risk (resp., conditional value-
at-risk); see, e.g., [8]. Our current paper extends the methods of [6] to handle the
density f , and also further combines the approaches with IS kernel techniques [11].

The rest of the paper proceeds as follows. Section 2 reviews (ordinary) kernel
density estimation. We then describe the assumed regenerative structure in Sec-
tion 3, and Section 4 explains the asymptotic regime for the weak-convergence
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results upon which our density estimators are based. Sections 5 and 6 extend the
exponential and convolution estimators, respectively, of [6] to instead estimate den-
sities. We then combine the convolution estimator with kernels in Section 7. Sec-
tion 8 presents numerical results, and we give concluding remarks in Section 9.

2 Review of kernel density estimation

Consider a stochastic process X = [X(t) : t ≥ 0] evolving on a state space S ⊂ℜd .
Let T = inf{t : X(t)∈A } be the hitting time (or first passage time) to a set A ⊂S ,
and let R =

∫ T
0 r(X(t))dt be the cumulative reward up to T for a reward function

r : S →ℜ+, where ℜ+ is the set of nonnegative real numbers. Let F be the CDF
of R; i.e., F(x) = P(R ≤ x), x ∈ ℜ. Under the assumption that F has a density f
(with respect to Lebesgue measure), the goal is to estimate f .

We first review estimating f via kernel methods. Suppose that R1,R2, . . . ,Rn

are n i.i.d. observations from CDF F . We can estimate F through the empirical
CDF F̂n defined by

F̂n(x) =
1
n

n

∑
i=1

I (Ri ≤ x), (1)

where I (·) is the indicator function, which takes value 1 (resp., 0) when its argu-
ment is true (resp., false). Thus, F̂n assigns a mass of size 1/n to each observed
Ri, and F̂n(x) is the fraction of the n data points that are at most x. As the deriva-
tive of F , the density f satisfies f (x) = limδ→0[F(x+δ )−F(x−δ )]/(2δ ), which
suggests estimating f by f̂n,δ with

f̂n,δ (x) =
F̂n(x+δ )− F̂n(x−δ )

2δ
(2)

for a small but fixed δ > 0 known alternatively as the bandwidth, window width,
or smoothing parameter. Sometimes called the naive density estimator [17, Sec-
tion 2.3], f̂n,δ (x) is a (central) finite difference; e.g., see Section VII.1 of [1]. We
next give an equivalent representation of f̂n,δ in terms of a uniform density function
to motivate the kernel estimators.

Let kU [−1,1) be the density function of a (continuous) uniform distribution on
the interval [−1,1), so kU [−1,1)(u) = I (−1 ≤ u < 1)/2. Using (1) allows us to
rewrite f̂n,δ (x) in (2) as

f̂n,δ (x) =
1

2nδ

n

∑
i=1

I (x−δ < Ri ≤ x+δ ) =
1
n

n

∑
i=1

1
δ

kU [−1,1)

(
x−Ri

δ

)
. (3)
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We can obtain other estimators of f by replacing kU [−1,1) in (3) with any density
or more generally a kernel k : ℜ→ℜ, which is a function with

∫
ℜ

k(u)du = 1; e.g.,
see [17, Section 2.4]. This then leads to the kernel density estimator f̂n,k,δ (with
kernel k) defined by

f̂n,k,δ (x) =
1
n

n

∑
i=1

1
δ

k
(

x−Ri

δ

)
=

1
n

n

∑
i=1

kδ (x−Ri), (4)

where kδ (u)= (1/δ )k(u/δ ) is the scaled kernel, and δ > 0 is the bandwidth. When
k is a density, the mean (resp., variance) of kδ equals that of k multiplied by δ

(resp., δ 2), and the kernel estimator (4) is a mixture of n scaled densities kδ , each
translated by an Ri and with equal mixture weight 1/n. In practice, δ = δn is usually
chosen as a function of the sample size n such that δn → 0 and nδn → ∞ as n→
∞. Kernel density estimators are generally biased, with the bias shrinking to 0 as
δn→ 0. (Chapter 5 of [17] also discusses adaptive estimators of f with bandwidth
depending on x or the distances between the data points, but for simplicity, we do
not consider these variants.)

The kernel is often taken as a density function that is symmetric (about the
origin). Although these properties are not required generally [17, Section 3.6.1],
we will simplify our discussion by assuming that k is a density (i.e., k(u) ≥ 0
for all u ∈ ℜ and

∫
ℜ

k(u)du = 1) but not necessarily symmetric. In addition to
kU [−1,1)(u), other common choices for a symmetric kernel k include the Gaussian
kernel kN (u) = φ(u) = (2π)−1/2e−u2/2 (with CDF Φ), and the Epanechnikov ker-
nel [17, p. 42].

Using a symmetric kernel k in (4) can lead to f̂n,k,δ assigning positive mass
to sets of negative values (i.e.,

∫ 0
−∞

f̂n,k,δ (x)dx > 0) when the bandwidth δ is suffi-
ciently large. This may be undesirable when the true density f of R has f (x)= 0 for
all x < 0, as is the case under our assumption that the reward function r(·)≥ 0. One
possible way to address this is to truncate f̂n,k,δ so that f̂n,k,δ (x) = 0 for x < 0, but
then f̂n,k,δ may not be a density as it may integrate to less than 1; [17], Section 2.10,
discusses other issues also arising from truncation. [2] suggests instead choosing
what we call a positive-support kernel, i.e., a density function k whose support is
contained in [0,∞), such as the uniform[0,2) kernel kU [0,2)(u) = I (0≤ u < 2)/2
and the exponential kernel kE (u) = e−uI (u≥ 0). When r(·)≥ 0, positive-support
kernels always result in

∫
∞

0 f̂n,k,δ (x)dx = 1, so f̂n,k,δ is a density. But the lack of
symmetry of k can lead to a less statistically efficient estimator of f . For a positive-
support kernel k and sample size n, [2] derives the bandwidth δ = δn (also depend-
ing on k and f ) that asymptotically (as n→ ∞) minimizes the mean integrated
squared error (MISE) E[

∫
( f̂n,k,δ (x)− f (x))2 dx] of the kernel density estimator.

The optimal δn shrinks at a rate of order n−1/3 as n→ ∞, leading to the MISE
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optimally decreasing at a rate of order n−2/3, worse than the order n−4/5 optimal
MISE rate for symmetric kernels with optimal bandwidth of order n−1/5; e.g., see
Section 3.3.2 of [17].

3 Regenerative process

A drawback of the kernel estimators of Section 2 is that generating i.i.d. copies of
R from F can be computationally expensive when A is rarely visited. To obtain
more efficient methods for estimating f , we will now impose additional structure
on the process X = [X(t) : t ≥ 0], which will enable us to adapt approaches from [6].
Specifically, we first approximate the CDF F of R using existing weak-convergence
results [10] in an asymptotic regime where visits to the set A become rarer (in the
sense of (7) below). We then apply simulation to estimate the limiting distribution’s
unknown parameters, some of which relate to rare events, and we will exploit pre-
viously developed IS methods designed to efficiently estimate E[R] to handle such
parameters.

To accomplish this, we now assume that X is a (non-delayed) regenerative pro-
cess [9]. Thus, X has a sequence of regeneration times 0 = Γ0 < Γ1 < Γ2 < · · · ,
so the process “probabilistically restarts” at each Γi. An example of a regenerative
process is a positive-recurrent continuous-time Markov chain (CTMC) on a dis-
crete state space S with a fixed starting state x0 ∈S , and successive entry times
to x0 form a regeneration sequence [9, Example 2.1 on p. 15].

For each i≥ 1, define τi = Γi−Γi−1, and [X(Γi−1+ s) : 0≤ s < τi] is called the
ith (regenerative) cycle, which has length τi. Also, define Yi =

∫
Γi
Γi−1

r(X(t))dt as the
reward accrued during cycle i. As X is regenerative, (τi, [r(X(Γi−1 + s)) : 0 ≤ s <
τi]), i≥ 1, is a sequence of i.i.d. pairs of cycle lengths and reward processes during
cycles. For i ≥ 1, let Ti = inf{t ≥ 0 : X(Γi−1 + t) ∈A } be the time elapsing after
Γi−1 until the next hit to A . For x,y∈ℜ, let x∧y=min(x,y) and x∨y=max(x,y).
For i≥ 1, let Di =

∫ Ti∧τi
Γi−1

r(X(t))dt be the reward accrued during the ith cycle up to
hitting A or the end of the cycle, whichever occurs first. The regenerative property
ensures that (τi,Yi,Di,I (Ti < τi)), i = 1,2, . . ., are i.i.d. 4-tuples. To simplify
notation, let (τ,Y,D,I (T < τ)) = (τ1,Y1,D1,I (T1 < τ1)).

We can give a stochastically equivalent representation for the cumulative re-
ward R up to time T in terms of independent quantities. To do this, let W1,W2, . . . be
i.i.d., each with CDF GW (x) =P(Y ≤ x | τ < T ), so Wi is distributed as the reward
in a cycle that does not hit A . Independent of the Wi, further define M as a geomet-
ric random variable with parameter p =P(T < τ) (and support starting from 0), so
P(M = l) = (1− p)l p for l = 0,1,2, . . .. Independent of M and the Wi, additionally
let V be a random variable with CDF H defined by H(v) = P(D ≤ v | T < τ), so
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V is distributed as the reward in a cycle up to hitting A given that T < τ . For G as
the CDF of the geometric sum S = ∑

M
i=1Wi, the regenerative property of X implies

R D
= S+V ∼ F, with S∼ G independent of V ∼ H, (5)

where D
= denotes equality in distribution, and ∼ means “distributed as”. Thus,

the independence of S and V ensures that F = G ?H, where ? is the convolution
operator; i.e., G?H(x) =

∫
G(x− y)dH(y).

If p > 0, then the expectation µ of the cumulative reward R up to T satisfies

µ =
E[D]

p
≡ ζ

p
, (6)

where ζ and p =E[I (T < τ)] are means of “cycle-based random variables” (i.e.,
measurable with respect to the sigma-field of X up to τ); e.g., see [7] and [5].

4 Asymptotic regime

We will exploit existing generalizations [10] of a classical result of Rényi [10,
p. 3] establishing that the ratio of a geometric sum and its mean converges weakly
to an exponential as the geometric’s parameter p shrinks to 0. For a theoretical
framework to accommodate this, we parameterize the problem by introducing a
rarity parameter ε > 0 and examine the behavior of R≡ Rε and S ≡ Sε as ε → 0,
where we assume that

p≡ pε → 0 as ε → 0, (7)

which is what we meant before by saying that the set A is “rarely visited”. We
next describe two stochastic models satisfying (7).

Example 1 For a stable GI/GI/1 queue, let X(t) be the total number of customers
in the system at time t ≥ 0, where the first customer arrives at time t = 0 to an
empty system. Thus, the state space is S = {0,1,2, . . .}, and the process X is
regenerative, regenerations occurring when a customer arrives to an empty system
[9, pp. 16–17]. Let A = {bε ,bε +1,bε +2, . . .} be the set of states in which there
are at least bε ≡b1/εc customers in the system, so for ε > 0 small, T represents the
first time when there is a large number bε of customers in the system. Theorem 1
of [15] shows that (7) then holds.

Example 2 A highly reliable Markovian system (HRMS) comprises a fixed num-
ber of components, each with exponentially distributed failure times, and a finite
number of repairpersons, who fix each failed component in an exponentially dis-
tributed time. Each state in the (discrete) state space S keeps track of the set of
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currently failed components, as well as any other necessary information, e.g., about
queueing of failed components. At time t = 0, all components are operational, and
the resulting process X on S is a positive-recurrent CTMC, making it regenerative.
The system fails when certain combinations of components are down, and let A
denote the set of those states, so T is the first time to system failure. The rarity of
system failures results from having failure rates as positive powers of ε and repair
rates as constants. Then [16] provides conditions guaranteeing (7).

In Example 1, rarity arises by letting the set A = Aε recede from state 0 as ε

shrinks, but the transition dynamics remain unchanged. In contrast, the set A in
Example 2 does not change as ε shrinks, but rarity instead comes from the failure
rates becoming smaller with fixed repair rates. As we are now actually considering
a family of models indexed by ε , we sometimes (but not always) add a subscript ε

in our notation (e.g., S = Sε , Wi = Wε,i, or F = Fε ) to emphasize the dependence
on ε .

To try to apply Rényi’s theorem for geometric sums in our regenerative setting,
consider Sε = ∑

Mε

i=1Wε,i in (5). Rényi’s result covers the case when the summands’
distribution remains fixed as pε shrinks, but our Examples 1 and 2 violate this
assumption. [10] provides generalizations to address this when (7) holds. For
example, the conditions in Theorem 3.2.5 of [10] ensure that the ratio of Sε to its
mean ηε = Eε [Sε ] converges weakly to an exponential: for all y ∈ℜ,

Pε(Sε/ηε ≤ y)→ 1− e−y+ as ε → 0, (8)

where x+ = max(x,0), x ∈ℜ. If the cumulative reward Rε = Sε +Vε in (5) further
has only a “negligible” contribution from Vε (e.g., pεEε [Vε ]→ 0 as ε → 0 when
Eε [Wε,i] = 1), then we also have

Pε(Rε/µε ≤ x)→ 1− e−x+ as ε → 0, (9)

where µε =Eε [Rε ]; e.g., see Theorems 3.2.5 and 3.4.1 of [10] for specific assump-
tions. [12] give an example (Section 8 provides a simpler model) where Vε is not
negligible relative to Rε , so (8) holds more generally than (9). [6] develops sim-
ulation methods that exploit (8) or (9), and we next extend those approaches to
construct density estimators.

5 Exponential estimator of the density f

The weak convergence in (9) suggests that for fixed but small ε > 0,

Fε(x) = Pε(Rε ≤ x) = Pε(Rε/µε ≤ x/µε)≈ 1− e−x+/µε ≡ F̃exp,ε(x), (10)
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which we call the exponential CDF approximation. This suggests approximating
the density f of F by

f̃exp,ε(x)≡ (1/µε)e−x/µε I (x≥ 0). (11)

[6] uses (10) to develop simulation estimators of the CDF F and associated risk
measures, and we now adapt this to estimate the density f .

Dropping the subscript ε to simplify notation, we next construct a simulation
estimator µ̂n of µ in (11). To do this, we apply measure-specific importance sam-
pling (MSIS; [7]), which independently estimates the numerator and denominator
in (6) using crude simulation and importance sampling, respectively. Let n be
our computation budget of the total number of cycles to simulate, and for a fixed
user-specified parameter β ∈ (0,1), we simulate nCS ≡ bβnc (resp., nIS ≡ n−nCS)
cycles using CS (resp., IS), where b·c denotes the floor (round-down) function.[7]
selects β to minimize the asymptotic variance (in the corresponding central limit
theorem as n→ ∞ for fixed ε > 0) of the resulting overall estimator of µ . To esti-
mate the numerator ζ = E[D] in (6), we generate Di, i = 1,2, . . . ,nCS, as nCS i.i.d.
copies of D sampled using CS. Generating each Di entails simulating a cycle until
either it ends or A is hit, whichever occurs first. A CS estimator of ζ is then

ζ̂n ≡
1

nCS

nCS

∑
i=1

Di. (12)

Independently of the simulation runs employed to construct ζ̂n in (12), we use
IS to estimate the denominator p =P(T < τ) in (6) as follows. Applying a change
of measure leads to

p = E[I (T < τ)] =
∫

I (T < τ)dP=
∫

I (T < τ)
dP
dP′

dP′ = E′[I (T < τ)L],

(13)
where P′ (resp., E′) denotes the probability measure (resp., expectation) under IS,
with P absolutely continuous with respect to P′, and L = dP/dP′ is the resulting
likelihood ratio. The representation (13) motivates the following approach to esti-
mate p. Let (I (T ′i < τ ′i ),D

′
i,L
′
i), i = 1,2, . . . ,nIS, be i.i.d. copies of the cycle-based

random vector (I (T < τ),D,L) generated via IS.Then an IS estimator of p is

p̂n =
1

nIS

nIS

∑
i=1

I (T ′i < τ
′
i )L
′
i, (14)

which is unbiased. Choosing P′ appropriately, which is problem-specific, can lead
to p̂n having much smaller variance than its CS counterpart, but a poorly selectedP′

can lead to larger (or even infinite) variance; see [1], Section V.1 and Chapter VI,
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and [14] for further details on IS and particular approaches for various settings,
including those in Examples 1 and 2.

We combine the estimators ζ̂n from (12) and p̂n from (14) to obtain the MSIS
estimator of µ in (6) as

µ̂n =
ζ̂n

p̂n
. (15)

Putting µ̂n into (11) results in the following.

Proposition 1 For a reward function r : S →ℜ+, the exponential density estima-
tor f̂exp,n of f based on (11) satisfies

f̂exp,n(x) = (1/µ̂n)e−x/µ̂nI (x≥ 0), (16)

where µ̂n is from (15).

6 Convolution estimator of the density f

With the rarity parameter ε reintroduced, the exponential approximation in (11)
essentially assumes that Vε makes a negligible contribution to Rε in (5). But for
stochastic models in which this is not the case (e.g., see Section 8 and [12]), [6]
gives other estimators for the CDF and risk measures of Rε based on a convolution
arising from (5) to more explicitly account for the contribution of Vε to Rε . The
resulting so-called convolution estimators can apply more generally than the expo-
nential estimators in Section 5, with the convolution estimators often having less
bias, especially when ε is not so small, which is useful in practice because actual
systems have a fixed ε > 0. We next extend this convolution approach to construct
a density estimator. Dropping again the subscript ε to simplify notation, we have
that (5) implies that the density f of S+V ∼ F , with S∼G independent of V ∼H,
satisfies

f (x) =
∫

g(x− y)dH(y), (17)

assuming that G has density g (with respect to Lebesgue measure); e.g., see [3],
eq. (20.37).

To develop an estimator of the density f based on (17), we will use (8) to
approximate the density g of S by an exponential with mean η . To construct an
estimator of H, [6] again applies MSIS with total sample size n and a user-specified
allocation parameter β ∈ (0,1), as in Section 5. Recall that H is also the conditional
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CDF of D given that T < τ and p = P(T < τ), so we have

H(y) = P(D≤ y | T < τ) =
P(D≤ y,T < τ)

p
=
E[I (D≤ y,T < τ)]

p

=
E′[I (D≤ y,T < τ)L]

p
(18)

through a change of measure, where as in Section 5, E′ is the expectation operator
under IS, and L is the corresponding likelihood ratio. We previously obtained in
(14) an IS estimator p̂n of the denominator p of (18). From the same IS data used
in (14), we then construct an IS estimator Ĥn of H as

Ĥn(y) =
1

p̂n nIS

nIS

∑
i=1

I (D′i ≤ y,T ′i < τ
′
i )L′i. (19)

Section 7 will consider instead replacing (19) with an IS kernel estimator of H.
We next develop an estimator of g in (17) by extending ideas from [6]. In (8),

Wald’s identity [13, Theorem 3.3.2] yields

η = E[S] = E[M]E[W ] = (1− p)E[W ]/p.

The CDF of W is GW (x) = P(Y ≤ x | τ < T ) = P(Y ≤ x,τ < T )/(1− p), so η =
E[YI (τ < T )]/p. We apply CS to estimate E[YI (τ < T )] via

1
nCS

nCS

∑
i=1

YiI (τi < Ti),

where (Yi,I (τi < Ti)), i = 1,2, . . . ,nCS, are i.i.d. copies of the cycle-based random
vector (Y,I (τ < T )) generated under CS.This then results in

η̂n =
1

p̂n nCS

nCS

∑
i=1

YiI (τi < Ti) (20)

as an MSIS estimator of η . Recalling (8), we obtain a parametric estimator of the
exponential approximation G̃exp(s) = 1− e−s+/η to the CDF G of S as Ĝexp,n(s) =
1−e−s+/η̂n . The corresponding estimator of the density g̃exp(s)= (1/η)e−s/ηI (s≥
0) of G̃exp is

ĝexp,n(s) = (1/η̂n)e−s/η̂nI (s≥ 0). (21)

The convolution estimator of the density f (x) in (17) is then

f̂?,n(x) =
∫

y∈[0,x]
ĝexp,n(x− y)dĤn(y), (22)

and the following works out an expression for f̂?,n(x).
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Proposition 2 For a reward function r : S → ℜ+, the convolution estimator f̂?,n
in (22) of the density f of R satisfies

f̂?,n(x) =
1

p̂n η̂n nIS

nIS

∑
i=1

I (D′i ≤ x,T ′i < τ
′
i )L′i e−(x−D′i)/η̂n (23)

where p̂n is from (14) and η̂n is from (20).

Proof. Putting (21) and (19) into (22) leads to

f̂?,n(x) =
∫

y∈[0,x]

1
η̂n

e−(x−y)/η̂nI (y≤ x)
1

p̂n nIS

nIS

∑
i=1

I (D′i ∈ dy)I (T ′i < τ
′
i )L′i

=
1

p̂n η̂n nIS

nIS

∑
i=1

I (T ′i < τ
′
i )L′i

∫
y∈[0,x]

e−(x−y)/η̂n I (y≤ x)I (D′i ∈ dy),

which equals (23).

7 Convolution-kernel estimator of the density f

The IS estimator Ĥn in (19) of the CDF H of V in (5) has a point mass at each
D′i, i = 1,2, . . . ,nIS. Assuming that H has a density h, we now devise an IS kernel
[11] estimator of h, which we then convolve with the exponential density estimator
ĝexp,n in (21) of the geometric sum S to obtain a convolution-kernel estimator of

the density f of R D
= S+V .

As h(y) = limδ→0[H(y + δ )−H(y− δ )]/(2δ ), this suggests using a band-
width δ > 0 to estimate h by the finite difference [Ĥn(y+δ )− Ĥn(y−δ )]/(2δ ) =

1
2δ p̂n nIS

∑
nIS
i=1 I (y− δ < D′i ≤ y+ δ )I (T ′i < τ ′i )L′i. Then just as the ordinary ker-

nel estimator (4) generalizes (3), replacing I (y− δ < D′i ≤ y + δ )/(2δ ) with
kδ (y−D′i) leads to the IS kernel estimator ĥ◦n,k,δ of h with

ĥ◦n,k,δ (y) =
1

p̂n nIS

nIS

∑
i=1

kδ (y−D′i)I (T ′i < τ
′
i )L′i. (24)

Recalling the convolution for f in (17), we next consider a convolution-kernel
density estimator

f̂ ◦?,n,k,δ (x) =
∫

∞

y=−∞

ĝexp,n(x− y) ĥ◦n,k,δ (y) dy (25)

of f , with ĝexp,n from (21). Proposition 3 below will derive an expression for
f̂ ◦?,n,k,δ . To do this, let ψk(θ) =

∫
eθuk(u)du, θ ∈ ℜ, be the moment generating

11



function (MGF) of a kernel k. Also, for z ∈ ℜ, define the lower incomplete (or
partial) moment-generating function (LIMGF) [18] of k as

ψ
↓
k (θ ,z) =

∫ z

u=−∞

eθuk(u)du, (26)

so ψk(θ) = limz→∞ ψ
↓
k (θ ,z). While the MGF ψk(θ) for a particular k may be

infinite for some θ , the LIMGF always satisfies

ψ
↓
k (θ ,z)< ∞, for all θ ∈ℜ+ and z ∈ℜ (27)

because θ ≥ 0 implies ψ
↓
k (θ ,z)≤ eθz ∫ z

u=−∞
k(u)du≤ eθz since k is a density. We

will later give simple expressions for ψ
↓
k (θ ,z) for particular choices of densities k.

Proposition 3 Consider a reward function r : S → ℜ+, a kernel function k that
is a density, and any bandwidth δ > 0. The convolution-kernel estimator f̂ ◦?,n,k,δ in
(25) of the density f of R satisfies

f̂ ◦?,n,k,δ (x) =
1

p̂n η̂n nIS

nIS

∑
i=1

I (T ′i < τ
′
i )L′ie

(D′i−x)/η̂nψ
↓
k

(
δ

η̂n
,
x−D′i

δ

)
(28)

for LIMGF ψ
↓
k (·, ·) in (26), where p̂n is from (14) and η̂n is from (20).

Proof. Putting (21) and (24) into the right side of (25) leads to

f̂ ◦?,n,k,δ (x) =
1

p̂n η̂n nIS

nIS

∑
i=1

I (T ′i < τ
′
i )L′i

∫
∞

y=−∞

e−(x−y)/η̂nI (y≤ x)kδ (y−D′i)dy

=
1

p̂n η̂n nIS

nIS

∑
i=1

I (T ′i < τ
′
i )L′ie

−x/η̂n

∫ x

y=−∞

ey/η̂nkδ (y−D′i)dy. (29)

In (29), substituting u = (y−D′i)/δ gives kδ (y−D′i)dy = k(u)du, so the integral
in (29) satisfies∫ x

y=−∞

ey/η̂nkδ (y−D′i)dy = eD′i/η̂n

∫ (x−D′i)/δ

u=−∞

e(δ/η̂n)uk(u)du = eD′i/η̂nψ
↓
k

(
δ

η̂n
,
x−D′i

δ

)
,

(30)

which (27) ensures is finite because r(·) ≥ 0 implies δ/η̂n ≥ 0. Putting (30) into
(29) establishes (28).

Evaluating f̂ ◦?,n,k,δ (x) in (28) requires computing ψ
↓
k (θ ,z), which we need to

do for only θ ≥ 0 because r(·) ≥ 0 implies δ/η̂n ≥ 0 in (28). We now give the

12



LIMFG ψ
↓
k (θ ,z) for some particular choices of kernel k. The uniform[−1,1) ker-

nel kU [−1,1) has a finite MGF ψkU [−1,1)(θ) = [eθ − e−θ ]/(2θ) for all θ ∈ ℜ, and

LIMGF ψ
↓
kU [−1,1)

(θ ,z) = [eθ((z∧1)∨−1)− e−θ ]/(2θ). The Gaussian kernel kN has a

finite MGF ψkN (θ) = eθ 2/2 for all θ ∈ℜ, and LIMGF ψ
↓
kN
(θ ,z) = eθ 2/2Φ(z−θ).

The uniform[0,2) kernel kU [0,2) has a finite MGF ψkU [0,2)(θ) = [e2θ −1]/(2θ) for

all θ ∈ℜ, and LIMGF ψ
↓
kU [0,2)

(θ ,z) = [eθ((z∧2)∨0)−1]/(2θ). While the exponen-
tial kernel kE has finite MGF for only θ < 1, in which case ψkE

(θ) = 1/(1−θ),
its LIMGF ψ

↓
kE
(θ ,z) = 1

θ−1 [e
(θ−1)z−1]I (z ≥ 0) is finite for any θ ∈ℜ; also see

(27).
Similar to the discussion in the last paragraph of Section 2, choosing a sym-

metric kernel k can lead to ĥ◦n,k,δ in (24) assigning positive mass to sets of negative

values (i.e.,
∫ 0
−∞

ĥ◦n,k,δ (y)dy > 0) when the bandwidth δ is sufficiently large. Thus,

(25) then shows that
∫ 0

x=−∞
f̂ ◦?,n,k,δ (x)dx > 0 is possible. This may be undesirable

when the true density f of R has f (x) = 0 for all x < 0, as is the case under our
assumption that the reward function r(·) ≥ 0. Selecting instead a positive-support
kernel avoids these issues, but can lead to a statistically less-efficient estimator of
f ; see the last paragraph of Section 2.

8 Numerical results

We next provide numerical results comparing the previous sections’ estimators of
the density f of the cumulative reward R up to a hitting time T to a set A for
a simple tractable model. A variation of a 3-state CTMC of [7], our model is a
semi-Markov process (SMP; Section 4.8 of [13]) X = [X(t) : t ≥ 0] on state space
S = {0,1,2} and A = {2}. The SMP starts in state 0, and returns to state 0 are
regenerations of X . Figure 1 shows the transition probabilities of the embedded
discrete-time Markov chain (DTMC) Z = [Z j : j = 0,1,2, . . .] of X . From state
0, the embedded DTMC moves to state 1 with probability p ∈ (0,1), and returns
to state 0 (regeneration) with probability 1− p. From state 1, the DTMC goes
to state 2 with probability 1, so P(T < τ) = p. (To make the embedded DTMC
regenerative, we also specify the probability of going from state 2 to state 0 to be
1.) Let E (λ ) denote an exponential distribution with rate λ > 0, and U (a,b) be a
uniform distribution on an interval (a,b) with a < b. Given Z, the holding times in
each state Z j visited are independent, where successive holding times for visits to
state 0 (resp., 1) are E (λ0) for some λ0 > 0 (resp., U (a,b) for some 0≤ a< b<∞).
(While the holding times in state 2 do not matter for the process up to T , we define
its distribution as E (λ2) for some λ2 > 0.)

13



0

E (εw0)

1

U (0,ε−w1)

2

E (λ2)

1− p

p = ε 1

1

Figure 1: The edge labels are the transition probabilities of the embedded DTMC
Z of an SMP X , with the holding-time distribution to each visit to a state below
that state, where w0, w1, and λ2 are constants.

Define the reward function r(·) ≡ 1, so the cumulative reward R is the hitting
time T to state 2. The SMP X has only two possible types of paths for T ∧ τ ,
corresponding to paths of Z with 0→ 0 and 0→ 1→ 2. Let M be the number of
cycles completed before the first visit to A , so M is geometric with parameter p
and support {0,1,2, . . .}; i.e., P(M = m) = (1− p)m p for m ≥ 0. Let A1,A2, . . .
be the successive holding times in state 0, where each Ai ∼ E (λ0). Also, let B ∼
FB = U (a,b) be the holding time in the first visit to state 1, so R = S+V with
S = ∑

M
i=1 Ai and V = AM+1 +B in (5).

To work out the CDF F of R, rewrite R as R = S′+B, where S′ = ∑
M+1
i=1 Ai ∼

E (pλ0) [10, p. 7]. As a consequence, F is the convolution of E (pλ0) and FB.
The density fB of FB = U (a,b) is given by fB(y) = I (y ∈ (a,b))/(b−a), so the
density f of R is

f (x) = I (x≥ 0)
∫ x

0
pλ0e−pλ0(x−y) fB(y) dy =

I (x≥ 0)
b−a

e−pλ0x
[
epλ0(b∧x)− epλ0(a∧x)

]
.

(31)

To incorporate the asymptotic regime of (7) into the model, we make visiting
A before regenerating rare by having p = ε for small ε > 0. We further set the
exponential holding time in state 0 to have rate λ0 = εw0 for a constant w0 ≥ 0,
and the holding time in state 1 is uniform on (a,b) = (0,ε−w1) for w1 ≥ 0. Varying
(w0,w1) allows investigating the viability of the various estimators. The mean of S′

(resp., S= S′−AM+1) is 1/(pλ0)= ε−(w0+1) (resp., 1/(pλ0)−(1/λ0)= ε−(w0+1)−
ε−w0), so both E[S′] and E[S] are of order ε−(w0+1) as ε→ 0. The mean of B (resp.,
V = AM+1 +B) is b/2 = ε−w1/2 (resp., (1/λ0) + (b/2) = ε−w0 + (ε−w1/2)), so
E[B] and E[V ] are of respective orders ε−w1 and ε−max(w0,w1) as ε → 0. Hence, if
w0 + 1 > w1 (resp., w0 + 1 < w1), S′ and S typically make the dominant (resp., a
negligible) contribution to R= S+V = S′+B compared to B and V . If w0+1=w1,
then S, S′, V , and B each typically contribute comparably to R. Thus, as we will

14



see in Figure 2, the weak convergence in (9) does not hold when w0 +1≤ w1, but
(8) is still valid. The exponential estimator of Section 5 is then only appropriate
for w0 +1 > w1, but the convolution estimators of Sections 6 and 7 are applicable
for all w0 and w1 as ε → 0.

For w0 = 1 and w1 ∈ {1,2}, Figure 2 plots the exact density f in (31), the ex-
ponential estimator (“Exp. est.”) f̂exp,n in (16), the convolution estimator (“Conv”)
f̂?,n in (23), and the convolution-kernel estimator (“Conv:k”) f̂ ◦?,n,k,δ in (28), for k
as the Gaussian kernel kN , the U [0,2) kernel kU [0,2), or the exponential kernel kE

(Section 2). All of the estimators apply MSIS (Section 5), where for IS, we change
p to p′ = 0.8 for Z (as in [7]) and use the original CDFs (given Z) for the holding
times. All estimators are based on simulating a total of n = nCS + nIS = 105 in-
dependent cycles, where we determined the MSIS allocation parameter β (used in
nCS = bβnc) to approximately minimize the variance of the MSIS estimator µ̂n in
(15) of µ , the variance estimated from a small pilot run. While the end of Section 2
mentions asymptotically optimal bandwidths δ = δn of order n−1/5 (resp., n−1/3)
for symmetric (resp., positive-support) kernels to minimize MISE, such asymp-
totics may take effect in practice for only enormous sample sizes, especially when
kernels are combined with IS. Instead, our kernel estimators used a bandwidth
δ = 500/

√
nIS, chosen based on ad-hoc experiments to avoid oversmoothing.

The top panels of Figure 2 have w1 = 1 < w0 +1, so the exponential and con-
volution (both without and with kernels) estimators are all valid: the estimators get
closer to the exact density as ε shrinks from 0.3 (left panel) to 10−2 (right panel).
For the larger ε , the true density has a mode at a positive x, which the exponential
estimator does not capture, but the convolution estimators do, although placing the
mode somewhat to the right of the true mode. For the smaller ε , the true mode’s
location moves left, making it virtually indistinguishable from the origin, which is
the mode of the exponential estimator.

Figure 2’s bottom panels have w1 = 2 = w0 + 1, invalidating the exponential
estimator, but the convolution estimators (without and with kernels) are all still
valid as ε → 0. The convolution estimators get closer to f as ε shrinks from 0.3
(left panel) to 10−2 (right panel), but the exponential estimator does not.

Zooming in on the left panels of Figure 2 reveals that the Conv:kN estimators
have been truncated at the origin as they assign positive mass to negative values (see
the last paragraph of Section 7). In contrast, the estimators with positive-support
kernels kU [0,2) and kE do not require truncation.

Figure 3 examines the convolution estimators (without and with kernels) in
more detail. The left panel shows the errors (i.e., differences of estimator and f )
for different kernels, where the Gaussian kernel kN does about the same as the
non-kernel convolution estimator. The kernels kU [0,2) and kE have larger errors,

15



ε = 0.3
ε = 10−2

0 20 40 60
0
2
4
6
8
·10−2

x

de
ns

ity
(w

1
=

1)

Exact
Exp. est.

Conv
Conv:kN

Conv:kU [0,2)
Conv:kE

0 2 4
·104

0

0.5

1
·10−4

x

de
ns

ity
(w

1
=

1)

0 50
0

2

4

6
·10−2

x

de
ns

ity
(w

1
=

2)

0 2 4 6 8
·104

0
2
4
6

·10−5

x

de
ns

ity
(w

1
=

2)

Figure 2: The exact density and estimators for the 3-state SMP with w0 = 1 are
plotted for w1 = 1 (top panels) and for w1 = 2 (bottom panels), with ε = 0.3 (left
panels) and ε = 10−2 (right panels).

in line with the theory (last paragraph of Section 2) for ordinary (non-IS) kernel
estimators. The right panel shows that for kN , varying the bandwidth δ can lead to
different errors, where δ = 500 results in some difference (with some improvement
for some small x) compared to the non-kernel convolution estimator.

9 Concluding remarks

We provided density estimators of the cumulative reward R = S+V until hitting
a rare set A of a regenerative process X . The estimators exploit known weak-
convergence results that show that S or R divided by its mean converges to an
exponential, which [6] uses to construct exponential and convolution estimators of
the CDF of R and related risk measures. We extended these approaches to esti-
mate the density and further incorporated kernels. We introduced a simple model
for which numerical results show that our density estimators can do well, and also
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Figure 3: When ε = 10−2 and (w0,w1) = (1,2), errors are plotted for different ker-
nels (left panel) and for different bandwidths for the Gaussian kernel (right panel).

demonstrate when the exponential estimator can lead to poor results. ([12] con-
siders another more complicated model that could also be used.) Further work is
needed to determine how to choose the bandwidth δ for the convolution-kernel
estimator.
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