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Array-RQMC to Speed Up the Simulation for
Estimating the Hitting-Time Distribution to a
Rare Set of a Regenerative System

Marvin K. Nakayama and Bruno Tuffin

Abstract Estimating the distribution of the hitting time to a rarely visited set of states
presents substantial challenges. We recently designed simulation-based estimators
to exploit existing theory for regenerative systems that a scaled geometric sum of
independent and identically distributed random variables weakly converges to an
exponential random variable as the geometric’s parameter vanishes. The resulting
approximation then reduces the estimation of the distribution to estimating just
the mean of the limiting exponential variable. The present work examines how
randomized quasi-Monte Carlo (RQMC) techniques can help to reduce the variance
of the estimators. Estimating hitting-time properties entails simulating a stochastic
(here Markov) process, for which the so-called array-RQMCmethod is suited. After
describing its application, we illustrate numerically the gain on a standard rare-event
problem. This chapter combines ideas from several areas in which Pierre L’Ecuyer
has made fundamental theoretical and methodological contributions: randomized
quasi-Monte Carlo methods, rare-event simulation, and distribution estimation.

1 Introduction

Monte Carlo (MC) simulation provides a primary tool to estimate the probability of
rare events or related indicators [27]. The extensive related literature focuses mainly
on estimating the mean of a relevant random variable, but its distribution provides
valuable additional information. For example, suppose a manufacturer wants to
specify an appropriate length of a warranty. While the product’s mean time to
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failure (MTTF) yields some relevant details, more useful are the random failure
time’s quantiles (i.e., inverse distribution). Setting the warranty length to, say, the
0.9-quantile leads to 10% of products resulting in warranty claims.

Distribution determination of a hitting time, especially related to a rare event
(e.g., system failure), poses numerous challenges. But when the simulated stochastic
process is regenerative [10], existing theory [11] shows that the hitting time to a
rare set converges weakly to an exponential random variable if the probability to hit
the rare set before regenerating converges to zero. This suggests approximating the
hitting-time distribution by an exponential, reducing distribution estimation to esti-
mating just its mean, which is broadly covered in the rare-event simulation literature.
Our papers [4, 5] present two MC estimators exploiting such approximations. The
exponential estimator directly applies this idea, further employing measure-specific
importance sampling (MSIS) [6] to efficiently estimate the mean. The other is the
convolution estimator, which first applies an exponential approximation to the dis-
tribution of the geometric sum of cycle lengths (i.e., the times elapsing between
successive regenerations) completed before the first visit to the rare set, and then
convolves this with the distribution of the hitting time given that it occurs in a cycle.

This chapter investigates how randomized quasi-Monte Carlo (RQMC) can be
used to improve the accuracy of the above estimators and the potential associated
gains. By distributing the sample points more evenly than independent sampling on
the considered domain, RQMC methods can reduce the variance of estimators and
even increase the convergence speed to the true value [13]. A naive implementation of
RQMC to simulate a stochastic process entails generating sequences whose dimen-
sion is at least the number of transitions in a simulated path, which is typically large
or even unbounded. But RQMCoften performs poorly in large or infinite dimensions.
Array-RQMC [15, 17, 19] has been designed precisely to simulate Markov chains
while retaining the power of RQMC, the dimension of the generated sequences being
“just” the required number of random values to simulate a single step of the chain.
Basically, array-RQMC simulates in parallel a set of realizations of a Markov chain
and makes use of a “sorting function” to reorder the chains according to their states
after each simulation step. We describe the array-RQMC implementations of the
exponential and convolution estimators and illustrate numerically the gains that can
be derived from it.

Interestingly, this work combines several research interests of Pierre L’Ecuyer:
rare-event simulation [16, 18]; RQMC techniques [13], among which array-RQMC
[15, 17, 19] is specifically designed by Pierre and his coauthors to simulate Markov
chains; and distribution determination [1, 21].

The remainder of this chapter unfolds as follows. Section 2 reviews the exponential
and convolution estimators devised in [4]. Section 3 recalls array-RQMC simulation
methods and how it can be implemented for our problem. As an illustration, we
apply the approach in Section 4 to a standard rare-event problem in the literature:
the hitting time to a large buffer threshold in an M/M/1 queue. Finally, Section 5
concludes the paper and provides further research directions to pursue on these ideas.
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2 Regenerative-Simulation-Based Estimators of the Distribution
of the Hitting Time to a Rarely Visited Set

2.1 Assumptions and Notations

ForR+ denoting the set of nonnegative real numbers, we consider a positive recurrent
Markov chain (X(t) : t ∈ R+) defined on a discrete state space S for ease of
exposition. Our goal is to estimate the cumulative distribution function (cdf) F of
the hitting time T = inf{t ≥ 0 : X(t) ∈ A} of a subset A of S, as well as the
q-quantile ξ = ξq = F−1(q) = inf{t : F(t) ≥ q} of F (or of T) for some q ∈ (0,1).

Define regeneration times 0 = Γ0 < Γ1 < · · · (always existing with our as-
sumptions of discrete S and recurrence: it suffices to consider return times to a
fixed state as regeneration times) and τk = Γk − Γk−1, the length between regenera-
tion k − 1 and regeneration k for k ≥ 1. The process “probabilistically restarts”
at each regeneration time Γk . The process between successive regenerations is
called a cycle, the k-th cycle being (X(Γk−1 + s) : 0 ≤ s < τk). The couples
(τk, (X(Γk−1 + s) : 0 ≤ s < τk) : k ≥ 1) are independent and identically distributed
(i.i.d.), and let τ denote a generic copy of τk . Let Tk = inf{t ≥ 0 : X(Γk−1 + t) ∈ A}
be the first hitting time to A after regeneration time Γk−1. We further define
M = inf{i ≥ 1 : Ti < τi} − 1 as the number of cycles completed before first
hitting A. As the cycles are i.i.d., M obeys a geometric distribution with parameter
p = P(T < τ) and support starting from 0; i.e., P(M = k) = (1 − p)kp for each
k ∈ {0,1,2, . . .}.

We can express

T = S + V ≡
M∑
i=1

τi + TM+1, (1)

where the regenerative property ensures the geometric sum S =
∑M

i=1 τi is indepen-
dent of V = TM+1. Define G as the cdf of S, and H the cdf of V . Note that H is the
conditional cdf of T1, given T1 < τ1. Figure 1 illustrates the notation, with the state
space S on the vertical axis and A the subset above the dashed line.

2.2 Exponential Limit

We consider a rare-event setting where the probability p to reach A before regener-
ation is small. To examine the asymptotic properties of estimators as the probability
shrinks, we index the model and all notation by a rarity parameter ε > 0, such that
p ≡ pε → 0 as ε → 0. But when unambiguous, we will omit the index ε to simplify
notation. Two well-known rare-event contexts having pε → 0 as ε → 0 are the
following [7]:

• Stable queueing system: For a single-server queuewith first-in-first-out discipline,
wewant to estimate the distribution of the hitting timeT to a large buffer size buffer
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Fig. 1 Illustration of the notation used to represent and analyze regenerative processes, where
M = 3.

size b ≡ bε = d1/εe. Specifically, X(t) denotes the total number of customers in
the system at time t ≥ 0, and the state space is S = {0,1,2, . . .}. Thus, the hitting
time is T = inf{t ≥ 0 : X(t) ∈ A} withA = Aε = {bε , bε + 1, . . . }. For a G/G/1
queue, regenerations occur when a customer arrives to an empty system, which
we assume occurs at time t = 0. In our numerical illustrations with an M/M/1
queue, returns to any fixed state constitutes a regeneration sequence, where we
take the fixed state to be 0 and X(0) = 0. The transition kernel does not depend on
ε , and rarity arises from bε being large for small ε , and [28] shows that pε → 0
as ε → 0. .

• Highly reliable Markovian system (HRMS) considered in dependability analysis:
The system consists of components of different types, each having a specified
redundancy. Each component is subject to failures and repairs, all being exponen-
tially distributed with rates depending on the component type. Failure propaga-
tions can occur, i.e., a component failure can cause others to simultaneously fail.
A state x ∈ S specifies the number of components failed of each type, as well
as any other necessary information (e.g., about queueing of failed components
waiting for repair) so that the resulting stochastic process on state space S is a
Markov chain. The entire system is considered down (i.e., in A) when specified
combinations of components are currently failed. We may want to estimate the
distribution of the hitting time toA when all components are operational at time
t = 0. Rarity comes from failure rates being small (depending on ε) with respect
to repair rates, leading to probabilistically long hitting times, and [29] provides
conditions ensuring that pε → 0 as ε → 0.

Let µε = Eε [Tε ] be the mean hitting time, with µε →∞ as ε → 0. Then existing
limit results (see [10, 11]) show that if pε → 0 as ε → 0, then the normalized random
variable Tε/µε converges weakly to an exponential, i.e., for t ∈ R and t+ = max(t,0),

lim
ε→0
Pε (Tε/µε ≤ t) = 1 − e−t

+

. (2)
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2.3 Exponential Estimators with Monte Carlo (MC)

From the limiting behavior (2), we can write for fixed small ε > 0

Fε (t) = Pε (Tε < t) = Pε (Tε/µε < t/µε ) ≈ 1 − e−t
+/µε ≡ F̃ε (t). (3)

Thus to compute the cdf of hitting time T (dropping now the subscript ε to ease
notation, as we will often but not always do in the following), we asymptotically
need to know “just” its mean. (This is analogous to the central limit theorem (CLT),
where the asymptotic normal cdf is fully specified through simply its mean and
variance). Estimating the mean µ has been extensively studied in the literature.
Doing this by averaging i.i.d. copies of T can be time-consuming because generating
each observation of T typically entails lengthy simulations (e.g., many transitions)
for small ε . Instead, we exploit the regenerative structure to rewrite µ as (see [6])

µ =
E[T ∧ τ]
P(T < τ)

≡
ζ

p
, (4)

where x ∧ y = min(x, y). The key point is that (4) expresses µ in terms of cycle-
based quantities, ζ and p, each of which can be estimated by simulating only cycles.
The numerator ζ = E[T ∧ τ] in (4) can usually be estimated well by crude Monte
Carlo, while the denominator p = P(T < τ) is a small probability for which rare-
event simulation techniques have to be applied for efficient estimation. Measure-
specific importance sampling [6] employs independent simulations to estimate the
numerator and denominator using crude simulation (CS) and importance sampling
(IS), respectively. Given a computation budget of simulating n cycles in total to
estimate µ, MSIS allocates a proportion γ ∈ (0,1) (resp., 1− γ) of the budget for CS
(resp., IS). More specifically,

• We use nCS ≡ γn cycles to estimate the numerator ζ in (4) by CS via

ζ̂n =
1

nCS

nCS∑
i=1

Ti ∧ τi (5)

from nCS independent observations Ti ∧ τi (1 ≤ i ≤ nCS) generated using the
original system dynamics, denoted by P.

• Because CS is unlikely to observe the event T < τ when p is small, MSIS instead
estimates the denominator p in (4) using nIS ≡ (1−γ)n cycles generated using IS.
IS entails simulating under another probability measure P′ rather than the original
measure P, where P′ is chosen so that T < τ is more likely and can depend on ε .
Letting I(·) be the indicator function, we apply a “change of measure” to write

p = E[I(T < τ)] =

∫
I(T < τ) dP =

∫
I(T < τ)L dP′ = E′[I(T < τ)L],

with L = dP/dP′ the likelihood ratio, and E′ denotes expectation under measure
P′. An unbiased estimator of p is then
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p̂n =
1

nIS

nIS∑
i=1
I(T ′i < τ′i )L

′
i , (6)

for i.i.d. copies (I(T ′i < τ′i ), L
′
i ), i = 1,2, . . . ,nIS, of (I(T < τ), L) under P′.

The resulting MSIS estimator of the mean µ in (4) is the ratio estimator

µ̂n =
ζ̂n
p̂n
. (7)

The proportion γ can be selected during a presimulation run tominimize the variance
per unit of computational budget of µ̂n (see [6] for details). To summarize [4]:

Definition 1 The exponential estimator of the cdf F(t) of T is

F̂exp,n(t) = 1 − e−t
+/µ̂n . (8)

For fixed q ∈ (0,1), the exponential estimator of the q-quantile ξ = F−1(q) is
ξ̂exp,n = F̂−1

exp,n(q) = −µ̂n ln(1 − q).

As a notational convention, for an unknown parameter (e.g., F), we use a tilde to
signify a non-simulation approximation (e.g., F̃ε in (3)) based on aweak-convergence
result, as in (2). A hatted variable (e.g., F̂exp,n) denotes a simulation estimator.

The exponential estimators in Definition 1 result from approximating the true cdf
F by F̃ε in (3), with (2) showing that the approximation becomes exact as the rarity
parameter ε → 0. But any actual system has a small but fixed ε > 0, which typically
leads to F̃ε , F. Because the exponential estimators are estimating quantities related
to F̃ε and not the actual F, the estimators have bias that does not vanish as the
computing budget n → ∞. For example, for fixed ε > 0 and t > 0, we have that as
n→ ∞, F̂exp,n(t) ≡ F̂exp,n,ε (t) converges almost surely to F̃ε (t) = 1 − e−t/µε , not to
F(t).

For fixed ε > 0, the exponential estimators obey CLTs as n → ∞, but the CLTs
will employ centering constants computed from F̃ε rather than F. For example, for
fixed ε > 0 and t > 0, the exponential cdf estimator satisfies

√
n[F̂exp,n(t)− F̃ε (t)] ⇒

N(0,ψ2
t ) as n→∞ for an asymptotic varianceψ2

t ≡ ψ
2
t ,ε that can be derived using the

delta method, where⇒ denotes weak convergence andN(a, b2) is a normal random
variable with mean a and variance b2. Similarly, for fixed ε > 0 and q ∈ (0,1),
the exponential q-quantile estimator also obeys a CLT (as n → ∞) with centering
constant ξ̃ε ≡ −µε ln(1 − q) rather than the true q-quantile ξ = F−1(q). Based on
these two CLTs, we can then provide confidence intervals (CIs) for the true values
F(t) and ξ, but the CIs are biased from fixing ε > 0, so the coverage probabilities
will converge to 0 as n → ∞. A CI may still have reasonable coverage when the
estimator’s bias makes a negligible contribution to its mean square error. This may
be difficult to determine in practice, as quantifying the bias is nontrivial, but may
occur for large (but not too large) n and fixed small ε > 0.
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2.4 Convolution Estimators with Monte Carlo

Rather than directly approximating the cdf F by an exponential, as done for the ex-
ponential estimator, we instead can use the decompositionT = S+V in Equation (1),
leading to expressing the cdf F as the convolution

F = G ?H, recalling that S ∼ G and V ∼ H are independent, (9)

where (G ? H)(t) =
∫

H(t − y) dG(y). Typically, the exponential limit (2) for the
scaled hitting time arises from S (scaled by its mean η = E[S] = E[M] ·E[τ | τ < T])
converging weakly to an exponential as ε → 0; e.g., see [11, Theorem 3.2.5]. Thus,
for small ε > 0, we approximate G(y) by G̃exp(y) ≡ 1 − e−y

+/η . As before with the
exponential estimator in (8), the approximation reduces estimation of the cdf G to
estimating just its mean η. Writing E[M] = (1 − p)/p and E[τ | τ < T] = E[τI(τ <
T)]/(1 − p) suggests estimating η = (1/p)E[τI(τ < T)] by

η̂n =
1

p̂n nCS

nCS∑
i=1

τiI(τi < Ti),

where we can employ the same CS and IS cycle data from (5) and (6) used for the
exponential estimator. This then yields the MSIS estimator of G in (9) as

Ĝexp,n(t) = 1 − e−t/η̂n . (10)

Estimating the cdf H of V in (9) also requires rare-event simulation techniques.
As H(x) = P(T ≤ x | T < τ) = P(T ≤ x,T < τ)/p, a change of measure gives

H(x) =
1
p
E[I(T ∧ τ ≤ x, T < τ)] =

1
p
E′[I(T ∧ τ ≤ x, T < τ) L].

Applying IS produces a sample (T ′i ∧ τ
′
i ,I(T

′
i < τ′i ), L

′
i ), i = 1,2, . . . ,nIS, of (T ∧

τ,I(T < τ), L) under P′ from nIS cycles (as for the exponential estimator), leading
to

Ĥn(x) =
1

p̂n nIS

nIS∑
i=1
I(T ′i ∧ τ

′
i ≤ x,T ′i < τ′i )L

′
i (11)

as an estimator of H. Convolving the two distributions Ĝexp,n from (10) and Ĥn from
(11), [4] obtains the following estimator of cdf F in (9).

Definition 2 The convolution estimator of the cdf F(t) is

F̂conv,n(t) = (Ĝexp,n ? Ĥn)(t) = 1 −
1

p̂n · nIS

nIS∑
i=1
I(T ′i < τ′i ) L

′
i e−(t−(T

′
i∧τ

′
i ))
+/η̂n .

The convolution estimator of the q-quantile ξ = F−1(q) is ξ̂conv,n = F̂−1
conv,n(q), which

typically requires numerical methods to compute.
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The basis of the convolution estimators is the weak convergence of the geometric
sum Sε in (1) (scaled by its mean) to an exponential as ε → 0, which can hold even
when the exponential limit for Tε = Sε + Vε in (2) does not. This can happen when
Vε is not “negligible” compared to Sε , as occurs, e.g., for the model described in [23,
Section 5]. By explicitly taking into consideration the contribution of Vε to Tε , the
convolution estimator can then have smaller bias than its exponential counterpart, as
seen in Figure 5 of [5].

Constructing (biased, as discussed in the last paragraph of Section 2.3) CIs based
on the convolution estimators requires that the estimators obey corresponding CLTs
(with centering constants derived from G̃exp ?H rather than G?H), which we have
not yet established (but are working on). This statement even applies for batching
CIs, as they also rely on an underlying CLT for each batch. A complication in
establishing such CLTs is that in contrast to, e.g., the exponential cdf estimator in
(8), the convolution cdf estimator is not simply a function of sample means, so the
delta method does not directly apply.

3 Array-RQMC Implementation of
Regenerative-Simulation-Based Estimators of Quantiles

3.1 RQMC and Array-RQMC

Quasi-Monte Carlo (QMC) is a deterministic numerical integration method (usually
considered over the s-dimensional unit cube [0,1]s without much loss of gener-
ality) to approximate an integral I ≡

∫
[0,1]s f (x) dx of a given function f . QMC

approximates I by an average of evaluations of f over m values from a deterministic
sequenceP = (θi)1≤i≤m of points from [0,1]s; i.e., the QMC estimator of the integral
is 1

m

∑m
i=1 f (θi). The sequence P of points is designed to “evenly” cover the space

[0,1]s and is known as a low-discrepancy sequence. Themost common constructions
are lattice points and digital nets, including Sobol’ sequences [2, 25]. Error bounds
exist [25] under restrictive assumptions, showing that the QMC error shrinks at a rate
in O(m−1(log m)s) as m→∞ (and sometimes even faster), better than the O(m−1/2)
convergence rate of MC’s root-mean-square error. (For non-negative functions g1
and g2, “g1(m) = O(g2(m)) as m→∞” means there are positive constants c and m0
such that g1(m) ≤ cg2(m) for all m ≥ m0.) But applying such bounds is impractical:
they are very difficult to compute and can be extremely loose for a given integrand
f or a given value of m. RQMC, which has several advantages over QMC, random-
izes the sequence P such that each point of the sequence is uniformly distributed
over [0,1]s but the points are correlated and keep the low discrepancy to gain the
improved convergence rate with respect to MC [13]. We can apply a central limit
theorem on r → ∞ i.i.d. randomizations to obtain a confidence interval for I (see
[24] for conditions).
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QMC and RQMC efficiency is sensitive to the problem’s dimension s (or actually
to the effective dimension representing the number of coordinates encompassing
“most of the variability” of the problem; see [26] for more details). But in a naive
implementation of (R)QMC to simulate paths of a Markov chain, the dimension
s corresponds to the maximum length of a simulated path, which can be large,
even infinite in many cases (as when generating paths up to an unbounded hitting
time). In most such situations, RQMC is typically considered useless, yielding no
improvement with respect to MC except if the effective dimension is small, which
happens only in restricted cases.

To cope with this dimensionality issue, the array-RQMC method has been de-
signed in [15] and further developed in [17] to adapt RQMC to the simulation of
Markov chains. As a randomization of the deterministic QMC version presented in
[12], array-RQMC simulates a Markov chain (Xj, j ≥ 0) defined on a state space S
as follows. It assumes a total ordering function h of states in S. Let the initial state
X0 be distributed according to some distribution ν0. (In our regenerative setting of
Section 2, we will assume that ν0 is degenerate, so there is a single fixed starting
state, but we recall here the nondegenerate-ν0 version introduced in [15] for sake of
generality.) Transitions of the chain are defined by the stochastic recurrence

Xj = ϕ(Xj−1,Uj), ( j ≥ 1), (12)

for a given transition kernel ϕ, where Uj (independent for different j) is a ran-
dom vector uniformly distributed over [0,1)d , meaning that d uniforms are used to
simulate a single transition step.

While MC typically simulates n chains sequentially and independently, array-
RQMC instead generates m chains in parallel, simulating the jth step of all the m
paths in a negatively correlated way (to reduce the variance in the estimation) before
moving to the next step for each path. For i = 1,2, . . . ,m, let (Xi, j : j = 0,1,2, . . .)
be the ith path generated, with Xi, j as the state visited after the jth step. To begin,
m initial states Xi,0 (for i = 0, . . . ,m) are generated from the initial distribution ν0
using an RQMC point set Pm,0 = {U0,0, . . . ,Um−1,0} in [0,1)d0 (that is, at most d0
uniforms are used to generate an initial state); from the property of RQMC points
being well distributed over the space, this results in m “well spread” (according to
ν0) initial points for the m chains. The m chains are then sorted (say in increasing
order of their state) according to h. Then for the transitions from step j − 1 to step
j (for j ≥ 1), the next state for each of the m chains is sampled from the previously
sorted ones. An RQMC point set Pm, j = {U0, j, . . . ,Um−1, j} in [0,1)d independent
from previous RQMC point sets is used such that for all i ∈ {1, . . . ,m}, the transition
of the i-th (ordered) chain is generated using the i-th point of Pm, j :

Xi, j = ϕ(Xi, j−1,Ui, j).

And again the states are re-ordered according to h. The process is iterated up to the
end of the paths. If the chains have different stopping times, the below algorithm
ignores those terminated paths (and not simulated anymore) and their states are
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specified as ∞ (an absorbing state used to indicate that those simulated paths have
already reached the stopping time.)

The algorithm can therefore be described as follows for a discrete-time Markov
chain, which we will later modify (at the end of Section 3.2) to handle a continuous-
time Markov chain, as needed for the array-RQMC convolution estimator:

Array-RQMC algorithm [15]:
1 (Initialization).
Generate a RQMC point set, P0 = {U0,0, . . . ,Um−1,0} ⊂ [0,1)d0 ;
∀ i ∈ {0,1, . . . ,m − 1}, generate Xi,0 from Ui,0;
2 (Simulate chains).
Simulate in parallel m copies of the chain, numbered 0, . . . ,m−1, as follows:

For ( j = 1; X0, j−1 < ∞; j++)
Generate an RQMC point set Pm, j = {U0, j, . . . ,Um−1, j} ⊂ [0,1)d

(independent of previous ones);
For all non-terminated chains i, let Xi, j = ϕj(Xi, j−1,Ui, j);
For terminated chains (i.e., stopping time reached), set Xi, j = ∞;
Sort (and renumber) the chains for which Xi, j < ∞ by increasing

order of their states (based on the ordering function h);
(The sorted states X0, j, . . . ,Xn−1, j result in an estimator F̂j

of the cdf Fj of the chain at the jth step Xj .)
3 (Output).
Return the estimator obtained from the m generated paths.

The algorithm simulates each transition step across the m chains according to
an RQMC point set with good coverage properties over the sampling space. The
re-ordering helps to obtain an empirical cdf of the random variable Xj at ( j − 1)-th
step of the chain, so that the RQMC point set at step j is actually generating step- j
values from this empirical cdf, from a (d + 1)-dimensional point set where the first
coordinate of the i-th point is i/m and the d other coordinates Ui, j (see [15, 17]).

But the main advantage of using array-RQMC with respect to traditional RQMC
techniques is that the dimension of the RQMC point sets is max(d, d0) for array-
RQMC, as compared to d0+d×τ′ for traditional RQMC, where τ′ is an upper bound
(possibly infinite) for the stopping time τ. Hence, array-RQMC drastically reduces
the dimension, from which efficiency improvements can be expected. Actually it is
shown in [15, 17] that if stratified sampling is used, the variance of a mean estimator
can be O(m−3/2) as m → ∞, much faster than the O(m−1) for MC. In fact, [17, 19]
present numerical results that suggest variances can even shrink as O(m−2).

We can easily obtain a confidence interval by considering r ≥ 2 independent
replications (i.e., randomizations) of groups of m chains.

The algorithm is sensitive to the choice of ordering function h. When the state
space S is a (one-dimensional) subset of R, the states have a natural order. But
difficulties arise for state spaces of higher dimension, for which it may not be
obvious how to design an effective ordering of the states. This issue is related to
that of defining an importance function for the levels in the splitting technique in
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rare-event simulation [16]: an effective ordering is problem-specific, depending on
both the stochastic model and on what is being estimated.

3.2 Array-RQMC Exponential and Convolution Estimators

We explain now how we propose to apply array-RQMC to the exponential and
convolution estimators of Section 2. Recall that we start in a fixed regenerative
state so the initial distribution ν0 in the Array-RQMC is degenerate; no sampling
is required to specify the initial state. We start with the exponential estimator in
Definition 1 of Section 2.3. Recall that this estimator exponentiates the ratio of
the estimators ζ̂n and p̂n in Equation (7), with ζ̂n an average over nCS cycles and
p̂n averaging over nIS cycles, where nCS and nIS may differ. For array-RQMC, we
propose to consider a set of (a fixed number) m chains generated in parallel and to
apply rCS and rIS independent randomizations of groups of m chains for estimating
ζ and p, respectively, from (4). Because (R)QMC methods often work best for
point sequences P of certain specific sizes (e.g., powers of 2), the array-RQMC
exponential estimator specifies the same number m of chains for CS and IS, but the
randomizations for CS and IS allow for unequal allocations (i.e., different rCS and
rIS). By applying independent sets of replications to estimate ζ and p, we are able
to estimate the variance of the exponential estimator and construct a (biased; see
the discussion at the end of Section 2.3 confidence interval based on a CLT (with
1− e−t/µ as the centering constant due to the bias from fixing ε > 0 in (3)), provided
rCS →∞ and rIS →∞.

Formally, denote by ζ̂
(k)
m (k ∈ {1, . . . ,rCS}) and p̂(k)m (k ∈ {1, . . . ,rIS}) as the

estimators of ζ and p respectively for the k-th independent group of cycles sampled
from array-RQMC. Specifically, we have

ζ̂
(k)
m =

1
m

m∑
i=1

T (k)i ∧ τ
(k)
i

with T (k)i ∧ τ
(k)
i the minimum of the hitting time and cycle length for the i-th

generated array-RQMC chain of the k-th independent replication of groups under
crude simulation. Also, we get

p̂(k)m =
1
m

m∑
i=1
I(T

′(k)
i < τ

′(k)
i )L

′(k)
i ,

with I(T
′(k)
i < τ

′(k)
i ) and L

′(k)
i as the indicator of hitting A before regenerating and

the likelihood ratio, respectively, for the i-th generated array-RQMC chain of the
k-th independent replication of groups under IS.

The estimators of ζ , p and mean hitting time µ are then
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ζ̂ aRQMC
m,r =

1
rCS

rCS∑
k=1

ζ̂
(k)
m , p̂aRQMC

m,r =
1

rIS

rIS∑
k=1

p̂(k)m , µ̂aRQMC
m,r =

ζ̂ aRQMC
m,r

p̂aRQMC
m,r

,

from which the array-RQMC exponential estimator of the cdf F(t) of T is

F̂aRQMC
exp,m,r (t) = 1 − e−t/µ̂

aRQMC
m,r . (13)

From the independent replications of groups of m parallel chains, we can obtain
variance estimators of ζ̂ aRQMC

m,r , p̂aRQMC
m,r , and µ̂aRQMC

m,r , leading to a (biased) CI for
F(t) derived similarly to what is done for MC in [4] from the CLT described in
the last paragraph of Section 2.3, where an estimator of the asymptotic variance
ψ2
t can be computed from the sample variances of ζ̂ (k)m , k = 1,2, . . . ,rCS, and p̂(k)m ,

k = 1,2, . . . ,rIS.
We specify an allocation of the r = rCS + rIS independent groups of chains

between the crude and IS simulations with rCS = γ′r and rIS = (1 − γ′)r for a
user-specified constant γ′ ∈ (0,1). From a pre-simulation, we can choose γ′ with
the goal to minimize the work-normalized variance [18] of the mean-hitting-time
estimator µ̂aRQMC

m,r , similarly to what is done for MC [6, 4]. The optimal allocation
parameter γ′ for array-RQMC can differ from γ for MC in Section 2.3.

As explained in the last paragraph of Section 2.4, providing a CI (even with
batching) using the convolution estimator requires a CLT, which we have not yet
established for MC (although we are currently working on it). If we then decide to
forgo a CI based on the convolution estimator, then we could just consider a single
group (i.e., r = 1) to decompose the full budget n = r × m = m into mCS and mIS
with mCS+mIS = m. But then the convolution estimator has an unfair advantage over
the exponential estimator with the same total budget because the former is based on
a larger QMC point sequence (and QMC has faster convergence than MC, which
corresponds to the randomizations). As such, our numerical experiments in Section 4
construct the convolution estimator with the same allocation (with rCS and rIS) that
is used for the exponential estimator.

As studied in [17, 19], the efficacy of array-RQMC depends critically on the
choice of the ordering function h, but we do not pursue that issue here. When the
state space S is a one-dimensional subset of R, as in the M/M/1 example that we
will study numerically in Section 4, there is a natural ordering of states, which can
be effective.

Recall also that d is the number of uniforms employed to simulate a single
transition step in (12). The exponential estimator in Definition 1 requires estimating
only the mean µ in (4), so discrete-time conversion [3, 9] can be applied. Specifically,
to estimate µ, we need to generate only the embedded discrete-time Markov chain
(DTMC), replacing the exponential holding times in each successive state visited
by its conditional mean (given the DTMC). In addition to reducing the number of
uniforms needed to generate each transition, discrete-time conversion (as a form of
conditional Monte Carlo) also reduces (asymptotic) variance. Thus, generating a
path of the DTMC typically has d = 1 in (12), as a single DTMC step requires only a
single uniform, even if for some applications using d > 1 may lead to more efficient
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implementations. But for the convolution estimator, discrete-time conversion cannot
be applied when estimating the cdf H in (11) since it further requires the actual
exponential holding times in each state visited. Thus, the number of uniforms needed
to generate each transition is in this case d ′ = d+dg, where dg stands for the number
of uniforms to generate the random holding time once the new state is selected.
In our examples, we will typically have dg = 1, those times being exponentially
distributed, generated from the inversion procedure of a single uniform.

4 Numerical Illustration of the Gain on the Simulation of an
M/M/1 Queue

To study the effectiveness of array-RQMC, consider the simulation of an M/M/1
queue, also studied in [15], with arrival rate λ = 1.0 and service rate µ′ = 4.0. For
the process (X(t) : t ∈ R+) with X(t) denoting the total number of customers in the
system at time t and X(0) = 0, our goal is to estimate quantiles and the cdf F of
the hitting time T to a given buffer size N . As in [4], we apply MSIS, where the IS
swaps the arrival and service rates, an approach known to be efficient when using the
ratio estimator (7) of the mean hitting time as the buffer size increases, and therefore
hitting times typically increase too. As explained in Section 3.2, the exponential and
convolution estimators will use r = rCS + rIS independent sets of randomizations
of m parallel chains to estimate the variances of ζ̂ aRQMC

m,r and p̂aRQMC
m,r and obtain a

(biased; see the last paragraph of Section 2.3) confidence interval. All the results
are each time compared with the MC exponential and convolution estimators with a
total of n = m × r MSIS cycles.

Our experiments test different sets of RQMC point sets, among classical ones:

• Sobol’ with a left matrix scrambling (named Matousěk scrambling [22]);
• Randomly-shifted lattice rule [14, 31] with lattice points selected using [20];
• (The same) Randomly-shifted lattice rule plus baker’s transformation [8];
• Randomly-shifted Sobol’ sequence (often yielding good numerical results, see

for example [30]).

Table 1 displays the outputs for three different quantiles F−1(q) (when q = 0.1,
0.5 and 0.9). For constructing the exponential estimator, array-RQMC uses r = 100
independent randomizations of m = 214 parallel chains, compared with r ×m cycles
for MC. To simplify the following discussion about array-RQMC, we will focus
on the exponential estimator (but similar comments also apply to the convolution
estimator). The array-RQMC exponential q-quantile estimator applies array-RQMC
to independently estimate ζ by CS and p by IS to handle the ratio µ from (4). The
performance of an array-RQMC estimator depends critically on the choice of the
ordering function h (Section 3), which should be tailored for the particular estimand.
We could try to select different h for ζ and p (see [16, 17] for discussions on this),
taking into account, e.g., the accumulated “reward” (time already spent for CS or
accumulated likelihoood ratio for IS) to which an approximation of the remaining
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reward is appended. But our experiments instead simply had that CS and IS used
the same ordering function h (the number of customers in the system), which gave
similar results.

Table 1 Results for the M/M/1 queue with λ = 1.0, µ′ = 4.0 when estimating q-quantiles F−1(q)
of hitting times to N = 10. We consider r = 100 andm = 214 for RQMC and a total of r ×m cycles
for MC. Exact values are 4.91036e+04 for q = 0.1, 3.230287e+05 for q = 0.5 and 1.073074e+06
for q = 0.9.

q Method Exp. Est. Conf. Interval Variance Conv. Est.

0.1 MC 4.9056e+04 (4.8990e+04, 4.9121e+04) 1.12e+03 4.9146e+04
0.1 Matousěk scrambling 4.9102e+04 (4.9099e+04, 4.9104e+04) 2.08e+00 4.9102e+04
0.1 Lattice-shift 4.9104e+04 (4.9099e+04, 4.9110e+04) 7.81e+00 4.9105e+04
0.1 Lattice-shift + baker 4.9104e+04 (4.9099e+04, 4.9109e+04) 5.66e+00 4.9100e+04
0.1 Sobol-shift 4.9102e+04 (4.9099e+04, 4.9105e+04) 2.14e+00 4.9101e+04
0.5 MC 3.2273e+05 (3.2230e+05, 3.2316e+05) 4.85e+04 3.2330e+05
0.5 Matousěk scrambling 3.2303e+05 (3.2301e+05, 3.2305e+05) 8.98e+01 3.2301e+05
0.5 Lattice-shift 3.2305e+05 (3.2301e+05, 3.2309e+05) 3.38e+02 3.2303e+05
0.5 Lattice-shift + baker 3.2305e+05 (3.2302e+05, 3.2308e+05) 2.45e+02 3.2300e+05
0.5 Sobol-shift 3.2303e+05 (3.2301e+05, 3.2305e+05) 9.25e+01 3.2300e+05
0.9 MC 1.0721e+06 (1.0706e+06, 1.0735e+06) 5.36e+05 1.0740e+06
0.9 Matousěk scrambling 1.0731e+06 (1.0730e+06, 1.0731e+06) 9.91e+02 1.0730e+06
0.9 Lattice-shift 1.0731e+06 (1.0730e+06, 1.0733e+06) 3.73e+03 1.0731e+06
0.9 Lattice-shift + baker 1.0731e+06 (1.0730e+06, 1.0732e+06) 2.70e+03 1.0730e+06
0.9 Sobol-shift 1.0731e+06 (1.0730e+06, 1.0732e+06) 1.02e+03 1.0730e+06

Column 5 of Table 1 shows that compared to MC for the same total number
of cycles generated, array-RQMC drastically reduces the variance of the estimators
for each quantile level q. The variance-reduction factor (i.e., ratio of variances for
MC and array-RQMC) is always well over 100, with the specific amount depending
on the randomization technique and choice of the low-discrepancy sequence. For
this example, the array-RQMC variances differ by up a factor of 4, with Matousěk
scrambling and randomly shifted Sobol’ sequence the most effective. From the
numerically computed exact quantile values 4.91036e+04 for q = 0.1, 3.230287e+05
for q = 0.5 and 1.073074e+06 for q = 0.9, we see that array-RQMC estimators
are more accurate than MC ones, and all competitive. Convolution estimators are
accurate as well, expected to reduce the existing bias with respect to exponential
ones [4, 5].

Figure 2 displays in a log-log scale the standard deviation of the exponential
estimators in terms of m = 2k with fixed r = 128 for the various array-RQMC
methods as well as for MC with n = r × m total cycles. We display only the results
for the q = 0.1 quantile since all other quantiles have the same curve up to a
multiplicative constant.

All array-RQMC estimators are of the same order of magnitude and outperform
the MC one. Larger m yields greater variance reduction with respect to MC, as
expected due to the benefit of the generated sequences’ low discrepancy.
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Fig. 2 Standard deviation of array-RQMC exponential estimators as a function of m = 2k , for the
M/M/1 queue with λ = 1.0 and µ′ = 4.0 when estimating q-quantiles of hitting times to N = 10
with r = 128. For MC, we consider n = m × r .

The log-log curves in Figure 2 are close to linear. It is interesting to investigate the
convergence rate of the standard deviation in terms of m. A standard procedure for
convergence-rate estimation ofQMCandRQMCmethods applies log-log regression.
Assume that the standard deviation σm as a function of m satisfies σm ≈ am−b for
some a, b > 0, which is equivalent to

ln(σm) ≈ ln(a) − b ln(m).

Applying a classical regression for the values of m = 2k with k ∈ {6,7, . . . ,19} in
Figure 2 leads to the regression coefficients in Table 2. The table verifies the m−0.5

Table 2 Log-log regression corresponding to values of Figure 2 for the standard deviation of
array-RQMC and MC exponential estimators as a function of m, on the M/M/1 queue model with
λ = 1.0, µ′ = 1.0 when estimating q-quantiles for of hitting times to N = 10. For MC, we consider
n = r ×m.

Method q = 0.1

MC 3702 ×m−0.4965

Matousěk scrambling 7943 ×m−0.9055

Lattice-shift 7068 ×m−0.8971

Lattice-shift + baker 6615 ×m−0.8902

Sobol-shift 8470 ×m−0.8969



16 Marvin K. Nakayama and Bruno Tuffin

convergence of MC. For all array-RQMC techniques, the standard deviation shrinks
at about rate m−0.9, much faster than MC.

From the known exact values for this M/M/1 model, Figure 3 displays in a log-log
scale the error of the exponential and convolution estimators in terms of m with
r = 128 fixed for the various array-RQMCmethods as well as for MCwith n = r ×m
(r × m is also used for all convolution estimators). Each plotted point is the average
of the absolute errors obtained over K = 10 independent replications to smooth the
curves with respect to drawing the error for a single replication.

Figure 3 shows that all array-RQMC techniques are of the same order ofmagnitude
of accuracy, and order(s) of magnitude better than the corresponding MC accuracy.
Also, for the “extreme” quantiles with q = 0.1 and q = 0.9, as m = 2k increases, the
array-RQMC errors for the estimators seem to stabilize and converge to a positive
(even if small) value, which results from the rarity parameter ε > 0 being fixed
in (3) because N is fixed. This suggests that the standard deviation is becoming
negligible with respect to bias for the exponential estimation, meaning that the bias
for the exponential estimator is larger than for the convolution estimator; this is more
visible when q is small, e.g., for q = 0.1 (see also [5, Figure 5]). (Also see the
related discussion for MC in the last two paragraphs of Section 2.3.) The stabilizing
constant seems smaller for the convolution estimators than for the exponential ones,
indicating a smaller bias for the convolution estimator. As noted before for MC in
the penultimate paragraph of Section 2.4, the convolution estimator more explicitly
accounts for the contribution of V to R = S+V in (1) than the exponential estimator.

5 Conclusions

Estimating distributions of hitting times by simulation presents substantial chal-
lenges, especially when related to rarely visited sets. We previously designed [4, 5]
MCmethods to estimate distributions and quantiles of hitting times in a regenerative
context, when hitting the rare set before regeneration is rare. Based on the limiting
behavior of a geometric distribution converging to an exponential as when the suc-
cess probability tends to zero, [4, 5] design two “simple” estimators using previous
importance sampling designed to compute means.We proposed in this paper to com-
bine the estimators with array-RQMC, a simulation method simulating paths of the
Markov chain in parallel and distributing the sample points to cover more efficiently
the space, hence reducing variance. We have illustrated on a standard example that
the combination can reduce the variance by several orders of magnitude.

There are nevertheless several questions warranting further study. As noted in
the last two paragraphs of Section 2.3, variance is not the only component of the
simulation error. There is also bias coming from the exponential approximations,
which become exact as the rarity parameter ε → 0 in, e.g., (2), but in practice
we always have a fixed ε > 0, resulting in bias in (3). Since array-RQMC can
substantially reduce the variance, bias may significantly contribute to the estimator’s
mean-squared error, and increasing the sample size will not eliminate this source of
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Fig. 3 Errors of the various exponential and convolution estimators as a function of m, for the
M/M/1 queue with λ = 1.0, µ′ = 4.0 when estimating q-quantiles for of hitting times to N = 10
with r = 128. For MC, we consider n = m × r . Each plotted point is the average of K = 10
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bias. Thus, increasing the number m of parallel chains in array-RQMC can provide
benefits up to a point, but eventually, bias from fixed ε > 0 becomes the dominant
issue. This issue deserves further study. Also, array-RQMC efficiency depends on
the dimension of the state space S and of the RQMC point set. More investigations
on this are required.
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