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Abstract
Privacy preservation calls for anonymization methods

which hide the speaker’s identity in speech signals while min-
imizing the impact on downstream tasks such as automatic
speech recognition (ASR) training or decoding. In the VoicePri-
vacy 2020 Challenge, voice anonymization methods have been
proposed to transform speech utterances in a way that preserves
their verbal and prosodic contents while reducing the accuracy
of a speaker verification system. In this paper, we propose to
further increase the privacy achieved by such methods by seg-
menting the utterances into shorter slices. We show that our
approach has two major impacts on privacy. First, it reduces the
accuracy of speaker verification with respect to unsegmented
utterances. Second, it also reduces the amount of personal in-
formation that can be extracted from the verbal content, in a way
that cannot easily be reversed by an attacker. We also show that
it is possible to train an ASR system from anonymized speech
slices with negligible impact on the word error rate.
Index Terms: anonymization, speaker verification, automatic
speech recognition, segmentation.

1. Introduction
With the increasing popularity of smart devices, more users
have access to voice-based interfaces. The underlying technolo-
gies, especially automatic speech recognition (ASR), are often
trained on speech data collected from the users to improve per-
formance and adapt to new domains. The collection and ex-
ploitation of this data raises privacy threats. Indeed, speech car-
ries personal or sensitive information about the speaker (e.g.,
gender, age, emotion) [1, 2] and it is a biometric characteris-
tic that can be used to recognize the speaker through, e.g., i-
vector [3] or x-vector [4] based speaker verification. To address
this privacy issue, various voice anonymization1 methods have
been proposed in the literature. These methods, which rely on
simple feature transformation [6–8], feature perburbation [9],
Gaussian mixture model based voice conversion [10, 11], or
neural network based voice conversion [12–14], aim to trans-
form speech signals in a way that preserves all content except
features related to the speaker identity, thereby making it hard
for an attacker to re-identify the speaker.

Besides speech signals, ASR system training also requires
the corresponding text transcripts, irrespective of whether the
speech signals have been subject to voice anonymization or
not. These transcripts can contain personal information about
the speaker too. Text sanitization methods, which redact or re-
place sensitive words in the text, can mitigate this issue for text-
only data [15–18]. Unfortunately, word replacement is unusable

1In the legal community, the term “anonymization” means that this
goal has been achieved. Following the VoicePrivacy 2020 Challenge
[5], we use it to refer to the task, even when the method has failed.

for ASR system training since it breaks the correspondence be-
tween the transcripts and the verbal contents of speech, while
word redaction often fails to detect and remove some sensi-
tive words. As a result, the transcripts (or the verbal content
of speech) could be exploited by an attacker to break the pro-
tection offered by voice anonymization.

The method we introduce in this paper follows a different
path. We propose to segment every speech utterance into shorter
slices after it has been anonymized. In this way, we reduce the
amount of speech available to the attacker in each slice, which
is expected to lower the risk of speaker re-identification with
respect to unsegmented utterances. On top of that, the amount
of personal information that can be extracted from the transcript
of each slice is also reduced, since it becomes isolated from its
context. We quantify the risk of speaker re-identification, and
the risk that an attacker could reverse the slicing procedure by
reassembling successive speech signals or text transcripts to-
gether. Most importantly, we also evaluate the impact of slicing
on the utility of the data for ASR acoustic model training. Our
experiments are conducted on LibriSpeech [19] and follow the
VoicePrivacy 2020 Challenge setup [5, 20] with a stronger at-
tacker. In particular, we use the x-vector based voice conversion
baseline [21, 22] of the Challenge for anonymization, not only
for reproducibility purposes but also because it is representative
of modern neural network based voice anonymization methods
and it still offers one of the best privacy/utility trade-offs today.

While slicing may be seen as a simple method, it has not
been studied in the context of privacy so far. Previous studies on
the impact of utterance duration on speaker verification perfor-
mance focused on clear (non-anonymized) utterances and did
not evaluate the utility for ASR [23–25]. Our study is the first
one that tackles privacy, utility and reassembling together. Our
results highlight a sweet spot in the choice of slice length for
which our method provides a large increase in privacy (larger
than the one provided by voice anonymization itself) with no
loss of utility. In addition, we show the difficulty for an attacker
to reassemble the utterance from short slices of speech or text.

The structure of the paper is as follows. We describe the
threat model in Section 2 and introduce the slicing method in
Section 3. Section 4 reports the evaluation on real data in terms
of both privacy and utility. We present our study on the re-
versibility of the slicing in Section 5. We conclude in Section 6.

2. Threat Model
The attack scenario is depicted in Fig. 1. Speakers process their
voice through an anonymization method. This anonymization
step takes as input one or more private speech utterances along
with some configuration parameters, and outputs a new speech
signal. The transformed utterances from one or more speakers
form a public speech dataset that is processed by a third-party



Figure 1: Anonymization procedure and attack model.

user for, e.g., ASR training/decoding or any downstream task.
Given unprocessed or anonymized utterances from a known

speaker, an attacker attempts to find which anonymized utter-
ances in the public dataset are spoken by this speaker [26, 27].
Formally, an attacker has access to two sets of utterances: A
(enrollment/found data) and B (trial/public speech), but knows
the corresponding speakers in A only. The attacker designs a
linkage function LF (a, b) that outputs a score for any a ∈ A
and b ∈ B. Typically, this score is a similarity obtained through
a speaker verification system. The attacker then makes a binary
decision (same vs. different speaker) based on this score. We
also consider that the attacker knows the anonymization method
used and can leverage it to enhance the attack.

Anonymization techniques must achieve a suitable pri-
vacy/utility trade-off. On the one hand, privacy is measured
by the attacker’s ability to re-identify the speaker using met-
rics such as equal error rate (EER) or linkability [28]. On the
other hand, utility is measured by the performance of the de-
sired downstream task(s), e.g., the word error rate (WER) of an
ASR system or the intelligibility for a human listener. In the
following, we are interested in the utility of the data for training
an ASR acoustic model, assuming that the other components of
the ASR system (lexicon, language model) are available or have
been trained on text-only data (see Fig. 2).

Figure 2: ASR system architecture.

3. Word-Level Slicing of Speech
To increase privacy beyond the level achieved by the voice
anonymization methods mentioned in Section 1, we propose
to cut the anonymized utterances into multiple, shorter slices.
To ensure that the sliced transcripts match the sliced spoken
content, we constrain these cuts to happen between successive
words rather than in the middle of a word. At the same time, we
wish the duration of the slices to be close to a target duration δ
in order to control the trade-off between privacy and utility.

This is achieved by force-aligning each original (unseg-
mented) transcript with the corresponding utterance. For a
given utterance u and transcript w = w1 . . . wn, alignment

yields two series of timestamps (tsk)1≤k≤n and (tek)1≤k≤n

where [tsk, t
e
k] is the time interval when word wk has been ut-

tered in u. To create the first slice, we start from the first word
and include the following words one by one until we reach a
number k such that the duration becomes at least δ. Besides the
words, we keep the silence between them, as well as the silence
before the first word and after the last word. We then start again
from the (k + 1)-th word to create the second slice, and so on.
The final segment (if any) whose duration is shorter than δ is
discarded. See Algorithm 1 for details.

Algorithm 1 Word-level slicing method.
1: function SLICE(u: speech signal, w: transcript, δ: target

(minimum) duration)
2: slices← ∅
3: A← Align(u,w)
4: tprv ← 0
5: kprv ← 0
6: for k in range(|w|) do
7: tsk, t

e
k ← A[k] # wk is uttered in [tsk, t

e
k]

8: if k + 1 ≤ |w| then
9: tsk+1, t

e
k+1 ← A[k + 1] # Next word

10: else
11: tsk+1 ← duration(u) # Last word
12: end if
13: if tsk+1 − tprv ≥ δ then # Slice complete
14: slices← slices∪(u[tprv : tsk+1], w[kprv : k])
15: tprv ← tek # Start of new slice
16: kprv ← k + 1 # Update starting word
17: end if
18: end for
19: return slices
20: end function

4. Utility and Privacy Evaluation
In this section, we evaluate how the duration of the slices im-
pacts the privacy/utility trade-off.

4.1. Experimental Setup

Voice anonymization: We use the first baseline of the VoicePri-
vacy 2020 Challenge [5] as the voice anonymization method.
This method extracts pitch, bottleneck, and (source) x-vector
features from the input speech. It then re-synthesizes a speech
signal using the original pitch and bottleneck features and a new
target x-vector generated from a public pool of x-vectors us-
ing one of several possible strategies. In the following, we do
not use the default strategy reported in [5]. Instead, we choose
the so-called dense strategy with random gender, which was re-
ported to be the most successful in [22]. Data which have not
been anonymized are referred to as clear data.

Slicing: Slicing is performed using forced-alignments
obtained using the pretrained model Gentle (https://
lowerquality.com/gentle/).

Privacy metric: The attacker assesses the speaker similar-
ity between an enrollment and a trial utterance using the proba-
bilistic linear discriminant analysis (PLDA) score between their
x-vectors. Privacy is evaluated via the linkability Dsys

↔ , which
measures the non-overlap between the distributions of same-
and different-speaker scores [28]. Lower linkability means
higher privacy. We assume a semi-informed attacker who knows
the anonymization method (but not the mapping from source to

https://lowerquality.com/gentle/
https://lowerquality.com/gentle/


target x-vectors) and uses that knowledge to anonymize the en-
rollment data and the training data for the x-vector and PLDA
models [27]. In contrast to the VoicePrivacy 2020 Challenge
where all training utterances of a given speaker are mapped
to the same target x-vector, our attacker maps each training
utterance to a different target.2 This greatly increases the at-
tacker’s strength and highlights the limited privacy offered by
voice anonymization alone, with linkability jumping from 0.18
in [22, Fig. 11 right] to 0.63 here. The x-vector and PLDA
models are trained and tested using the Kaldi [30] recipe in [5],
except that the enrollment and trial data are sliced.

ASR system and utility metric: To evaluate the utility of
sliced utterances for ASR acoustic model training, we use the
state-of-the-art Kaldi [30] ASR recipe for LibriSpeech involv-
ing a factorized time delay neural network (TDNN-F) acoustic
model and a 3-gram language model. The recipe is identical
to [5], except that we train it on sliced utterances and test it on
unsegmented utterances. We report the resulting WER.

Datasets: The experiments are conducted on LibriSpeech
[19]. The x-vector and PLDA models and the ASR system are
trained on the train-clean-360 set (∼1k speakers, ∼100k utter-
ances and 360 h of speech). Part of the test-clean set (40 speak-
ers, 1,496 utterances) forms the trial/public data. The remaining
part (29 speakers, 438 utterances) forms the enrollment/found
data. This is the established VoicePrivacy 2020 setup [5].

4.2. Effect of Slicing on Utility

We first explore which utterance durations are suitable for train-
ing an ASR acoustic model. Table 1 reports the WERs achieved
in four cases, depending on whether the training data has been
anonymized or not before slicing and whether the test data
has been anonymized or not. In each case, we report the re-
sults achieved with the original training utterances and with
different slicing durations. We notice an increase in the WER
when decoding anonymized data with an ASR acoustic model
trained on clear data and vice-versa, which can be attributed
to a training/test mismatch. Nevertheless, the WER obtained
when training and testing on unsegmented anonymized data
(4.86%) is similar to training and testing on unsegmented clear
data (4.26%). As for the effect of slicing itself, we notice that,
for clear training data, 1.5 s is the shortest possible duration be-
low which the WER degrades a lot. With anonymized training
data, the duration can be shortened to 1 s only when decoding
anonymized speech. The resulting WER (4.92%) is statistically
equivalent to training on unsegmented anonymized data.

4.3. Effect of Slicing on Privacy

In terms of privacy, we present in Fig. 3 the linkability achieved
with utterances of different durations. We consider the setting
where the attacker aims to re-identify speakers in the trial/public
data, hence the focus is now on test data (instead of training
data). The purple and orange curves are obtained by short-
ening the utterances to a fixed duration (irrespective of word
boundaries). The results on clear data illustrate the positive im-
pact of shorter utterances on linkability, especially for durations
shorter than 1 s. Unfortunately, our utility experiment demon-
strated that utterances shorter than 1 s are too short to train an
ASR system. Also, for durations longer than 1 s the level of
privacy offered by shortening alone is insufficient. For this rea-
son, shortening must be used together with anonymization: this

2This newly proposed attacker has recently been selected for eval-
uation in the VoicePrivacy 2022 Challenge [29].

Table 1: WER (%) achieved on (unsegmented) test data when
training the ASR acoustic model on sliced data.

Training
Data Slicing Test Data

Clear Anonymized

Clear

None 4.26 7.56
δ = 3 s 4.31 7.36
δ = 2 s 4.44 7.58
δ = 1.5 s 4.66 8.00
δ = 1 s 6.11 11.4
δ = 0.5 s 26.59 35.67

Anonymized

None 10.93 4.86
δ = 3 s 13.38 4.90
δ = 2 s 15.94 4.95
δ = 1.5 s 21.46 4.90
δ = 1 s 30.13 4.92
δ = 0.5 s 71.28 8.77

combination yields a high level of privacy for δ = 1 s.
In addition, we show the results obtained with word-level

slicing (Algorithm 1) and with unsegmented anonymized utter-
ances. Word-level slicing achieves consistent results with short-
ening to a fixed duration of 1 s or 1.5 s. We observe that the
word-level constraint, which is desirable for ASR training, does
not come at the cost of a privacy loss. The linkability achieved
when slicing anonymized utterances with δ = 1 s decreases to
0.14, compared to 0.63 before slicing.3

To sum up, the results of Sections 4.2–4.3 show that slicing
anonymized data with δ = 1 s greatly decreases the linkability
while maintaining the utility for ASR training.

Figure 3: Linkability achieved by shortening utterances to a
fixed duration (purple and yellow curves), by word-level slic-
ing (short horizontal bars) and without slicing (long horizontal
bar). The horizontal bar of a given setup is positioned by the
set’s overall linkability and spans the mean and standard devi-
ation of the utterance durations.

5. Reversibility of the Slicing
We assess the risk that an attacker manages to reverse the slicing
and reassemble speech slices or text transcripts together. We fo-
cus on the task of linking two successive slices, since an attacker

3Surprisingly, the linkability achieved on unsegmented utterances
(0.63) is lower than on utterances shortened to 7 or 10 s (up to 0.79).
We attribute this to the wide range of utterance durations (8.6 s average
with ±5.2 s standard deviation), which increases x-vector variability.



who performs poorly on this task is unlikely to reassemble en-
tire utterances. Due to the novelty of slicing for privacy, there
exists no reassembling method which we can compare to.

5.1. Text Successiveness

Regarding text, we design an attacker that leverages a language
model (LM) to construct a “text successiveness score” to be
used as linkage function, similarly to the speaker verification
attack described in Section 2. The LM estimates the probabil-
ity P (w) of any sentence w. The attacker uses P to compute a
score function SF (w, v) between two transcripts w and v. The
higher the score, the higher the chance that the transcripts are
successive. In our experiments, we used a 3-gram LM

P (w)
3-gram
≈ P (w1)P (w2 | w1)

len(w)∏
k=3

P (wk | wk−2:k−1), (1)

where wi:j = wiwi+1 . . . wj and wpwq denotes concatenation
between words/sentences. To restrict our attention to the terms
involving both w and v, we define the score function as

SF (w, v) = P (wn−1wnv1v2). (2)

To retrieve the successor of a given slice w in the public
dataset, the attacker computes the scores SF (w, v) for all other
slices v in the dataset and sorts them in decreasing order. The
success of the attack can be quantified via the rank r(w) of the
correct successor. We consider the following ranking metrics:
(1) Average normalized rank: mean of r(w) over all w, divided
by the maximum possible rank (that is the number of slices mi-
nus one); (2) Median normalized rank: median of r(w) divided
by the maximum possible rank; (3) Precision at top-1: how of-
ten the slice with top score is the successor; (4) Precision at top-
10%: how often the successor belongs to the top-10% scores. In
addition to the LibriSpeech test set, which may be more easily
attacked due to speakers reading text from distinct books in-
cluding specific words like character names, we also consider
the Mozilla Common Voice test set. In the latter case, we slice
the transcripts into 3-word slices (the average number of words
per second is 2.7) and we retrain the LM.

Table 2 presents the results. We notice that the correct suc-
cessive slice usually has large rank (27%–32% normalized rank
in average and 16%–23% median rank) meaning that thousands
of wrong successive slices have a better score. We also see that
the correct slice almost never ranks first (less than 3% of the
cases), and rarely in the top-10% (only one third of the cases).

Table 2: Text-based successor identification performance.

Test set LibriSpeech Common
Voice

Target slice duration δ (s) 1 1.5 3 4 /

Number of slices 14,931 11,330 5,407 5,487 5,292

Average normalized rank (%) 27.25 28.31 29.37 30.24 32.38
Median normalized rank (%) 16.11 17.87 18.81 20.92 23.14

Precision at top-1 (%) 1.39 1.41 2.18 2.56 0.75
Precision at top-10% (%) 40.48 37.8 38.36 37.84 33.89

5.2. Speech Successiveness

We now consider the problem of linking two successive speech
signals. Our approach is to concatenate the two signals and
score them by the softmax score of a binary classifier trained

Table 3: Speech-based successor identification performance.
We report the average results of 5 repeated experiments (the
standard deviation is not reported as it is lower than 0.01)

Anonymized
Librispeech

Test Set

Number
of slices

Average
normalized
rank (%)

Median
normalized
rank (%)

Precision at
top-1 (%)

Precision at
top-10% (%)

Sliced δ = 1.5 s 364 43.48 19.83 2.48 38.29

Sliced δ = 1 s 627 42.77 25.28 1.34 29.52

to distinguish successive vs. non-successive pairs. We use the
TDNN architecture proposed in [4] for speaker classification.
To prevent the model from learning to classify most examples
as non-successive, we train it on a balanced dataset: half of the
training examples are successive, one fourth are non-successive
from the same speakers and one fourth are non-successive from
different speakers. The training data are taken from LibriSpeech
train-clean-360 sliced with δ = 1 s or (resp., δ = 1.5 s) and
anonymized. To evaluate the attacker’s performance, we sam-
ple five times 100 utterances from Librispeech test-clean sliced
with δ = 1 s (resp., δ = 1.5 s) and anonymized. This al-
lows us to construct on average for δ = 1 s, 528 successive
pairs, 15, 142 non-successive same-speaker pairs, and 378, 821
non-successive different-speaker pairs. For δ = 1.5, we obtain
on average 232 successive pairs, 5, 378 non-successive same-
speaker pairs, and 125, 796 non-successive different-speaker
pairs. We observe that, even though the overall accuracy of the
classifiers is 80%, the vast majority of correct classifications are
for the easier, non-successive different-speaker class.

We consider the same ranking metrics as in Section 5.1.
The results given in Table 3 show that for δ = 1, the average
rank of the correct slice is 268 (top-43%), with a median of
158 (top-25%). Furthermore, the top-1 precision is again lower
than 2%. Overall, these results show that it is very difficult for
an attacker to consistently find the correct successive slice, and
thus it is even harder to reassemble entire utterances.

6. Conclusion
We provided the first study on slicing speech utterances into
shorter segments in the context of speech anonymization. Com-
bining our slicing approach with state-of-the-art x-vector based
anonymization methods, we showed that slices of 1 s of speech
can be used to train an ASR system with 4.92% WER (com-
pared to 4.86% without slicing) while reducing speaker verifi-
cation performance to 0.14 linkability (compared to 0.63 with-
out slicing). In addition, our approach naturally helps to ob-
fuscate sensitive information contained in the verbal content as
each slice contains few words that become isolated from their
context. Finally, we showed that reversing the slicing to recon-
struct the original utterances is a very difficult task.
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