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Abstract

We investigate the dynamics of stage II retinal waves via a dynamical system,

grounded on biophysics, and analysed with bifurcation theory. We show how

the nonlinear cells coupling and bifurcation structure explain how waves start,

propagate, interact and stop. Especially, we analyse how the existence of a

small region in parameter space, where dynamics returns in a recurrent way,

gives rise to a very rich dynamics. In this context, we propose a non linear

transport equation characterizing the waves propagation and interaction.

Keywords: Retina development, neuroscience modelling, nonlinear dynamics,

bifurcations.

1. Introduction

The visual system is an important part of the central nervous system. Al-

though its functionality seems effortless, it carries out complex tasks including

the reception of light and the formation of visual representations, the identifica-

tion and categorization of visual objects, computing distances to and between5

objects and guiding body movements in relation to the environment [76, 21, 25].

How the visual system acquires such abilities during development, pre- and post-

natal, is a fascinating question.

Vision starts at the retina, a light-sensitive tissue at the back of the eye that

covers about 65 percent of its interior surface [11]. The overwhelming capac-10

ity of the retina to convert complex visual scenes into spike trains - that send

information to the visual cortex - is largely due to its layered structure and to
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dynamical interactions between retina-specific neurons, resulting in a complex,

stimulus driven network dynamics. It is known that part of the shaping of the

visual system during development is due to such network dynamics. Indeed,15

before retina is responsive to light, in early development, a wave activity is ob-

served. The so-called retinal waves, reported in many vertebrate species - chicks

[84], ferrets [33], mice [73], turtles [85], macaques [106], are spontaneous bursts

of activity propagating in the developing retina and playing a fundamental role

in shaping the visual system (retinotopy, binocular vision) and retinal circuitry.20

Certainly, there are genetic instructions organizing development and, in par-

ticular, visual system shaping and retinal waves occurrence. However, these

instructions could either be quite detailed, tightly organizing each step of devel-

opment, or, they could be less constrained, just setting up the main steps. In this

perspective, retinal waves would emerge due to purely dynamical mechanisms25

broadly controlled by a genetic program. Then, the prevalence of retinal waves

showing very similar patterns across many different species and developmental

stages, would suggest that they are generated by common, generic, collective,

non-linear mechanisms that still needs to be unravelled. Developing mathemat-

ical models constitutes a way to extract these putative underlying mechanisms,30

a strategy that has been applied over the last twenty years for retinal waves.

Indeed, several models have been proposed to describe this phenomenon,

mainly in the stage of development called stage II, mediated by Starbust Amacrine

Cells (SACs) coupled via the acetylcholine neurotransmitter and nicotinic re-

ceptors [33, 19, 44, 43, 50, 69], (see section 2.1 for more detail). For an extended35

review, see also [43, 42]. All these models, mostly based on numerical simula-

tions, have been able to reproduce experimental characteristics of retinal waves

such as their size, duration, speed and frequency. However, their approaches

mainly lie on capturing phenomenological features of waves and most of them

do not analyse mathematically the model dynamics and mechanisms responsi-40

ble for retinal waves generation, propagation and termination. In addition they

require fine tuning of some parameters. A natural question is what happens if

these modelling parameters are modified? Addressing this issue requires a theo-
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retical analysis of the model’s structural stability (stability of a behaviour with

respect to parameters variations). This is actually a salient question as phys-45

iological parameters such as the reversal potential for GABA receptors or the

efficacy of cholinergic synapses [109] are known to change during development,

thereby inducing potential changes in wave dynamics.

Especially, in [109], Zheng et al. have experimentally shown that the spon-

taneous stage II retinal waves are mediated by a transient network of SACs,50

connected through excitatory cholinergic connections [110], which are formed

only during a developmental window up to their complete disappearance. Es-

pecially, the intensity of the acetylcholine coupling is monotonously decreasing

with time (see Fig. 3B in [109] and table 1 below). How do stage II retinal waves

dynamics depend on this parameter? How do their characteristics (e.g. size,55

duration, speed) evolve when acetylcholine coupling decreases? What could be

the impact on visual system development? In the present paper, we investi-

gate the question of the dynamic origin and structure of stage II retinal waves,

their distribution, and the stability of their behaviour, during the stage II de-

velopmental window, upon a decreasing acetylcholine coupling compatible with60

experimental findings.

This paper is the continuation of a study starting with [63] and fully exposed

in the PhD thesis [61] aiming to: (1) propose a detailed biophysical modeling of

the cellular mechanisms of the spontaneous activity in immature SACs, address-

ing questions directly accessible and linked to pharmacological manipulations65

on retinal waves; (2) develop a mathematical analysis of this model, based on

dynamical systems and bifurcation theory so as to propose generic mechanisms

for wave initiation, propagation and stop. In addition, such analysis allows

to question the structural stability of the model; (3) validate the working hy-

pothesis that SACs produce a wide spectrum of waves duration, size, interwave70

period, across species, thanks to a single fact: they are close to specific bifur-

cations generating what Izhikevich calls Type 1 excitability [54, 55]. Although

point (2) and (3) might look contradictory we will show here that this is not

the case.
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The paper [63] was devoted to the study of single, isolated cells dynamics.75

The detailed modelling of individual SACs dynamics as autonomous, rhythmic

bursters and the mathematical analysis of our dynamical system using bifur-

cation theory helped us identify the key parameters which control bursting in

immature SACs. Especially, we exhibited that few biophysical parameters reg-

ulating calcium and potassium activity control bursting and we proposed a80

testable experimental prediction on the role of voltage-dependent potassium

channels on the transitory excitability properties of SACs along development.

We also proposed an explanation on how SACs can exhibit a large variability in

their bursting periods across different species , as observed experimentally, yet

based on a simple, unique, mechanism.85

In the present paper, extending the single neuron dynamics, we model in

detail the mutual cholinergic synaptic connections between SACs, ending up

exploring the mechanisms of SACs synchronization and waves. In section 2, we

give a brief account of retinal waves properties, for non expert readers, before

introducing a multi-dimensional model of SACs featuring their intrinsic dynam-90

ics (bursting and hyperpolarization) and their non linear coupling via acetyl-

choline. We argue that the dynamics of SACs waves is essentially controlled

by two parameters slowly evolving in time: one, GA, controlling the excitatory

cholinergic cells coupling, and the other, GS , controlling cell’s hyperpolarisation

and refractoriness. Thanks to a bifurcation diagram in the space {GS , GA}, we95

analyse, in section 3, how waves start, propagate, interact and stop. Mostly,

the variety observed in waves dynamics comes from the fact that they start in

a tiny region in the space {GS , GA} delimited by bifurcation lines, where waves

initiation is quite sensitive to perturbations such as noise, which is a feature of

type 1 excitable systems [54, 55]. Although this region is tight, the slow dy-100

namics returns to it in a recurrent way, regenerating the potentiality to trigger

new waves sensitive to perturbations with a wide variation in waves character-

istics. In addition, this scenario holds on an interval of acetylcholine coupling,

explaining the apparent contradiction between a variability induced by close-

ness to bifurcations and stability to variations in developmental parameters. On105
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these tracks we numerically investigate, in section 4, the effect of varying acetyl-

choline coupling during development, in a range of parameters extracted from

the experimental literature. Simulations are done in a 1-dimensional lattice,

with nearest neighbours interactions. To extend our analysis to larger dimen-

sions we derive, in section 5, transport equations for GS , GA, now considered as110

propagating fields shaping waves dynamics. From this, we are able to compute

the wave speed as a function of acetylcholine coupling, as well as to show the

existence of a critical value of this coupling, below which no wave can propa-

gate. As we argue, these transport equations bare interesting analogies with

the Kardar-Parisi-Zhang (KPZ) equations of interface growth [60] on one hand,115

and Self-Organized Criticality [7] on the other hand, opening up perspectives

for future research.

2. Stage II retinal waves model

2.1. The biophysics of retinal waves

Retinal waves are bursts of activity occurring spontaneously in the develop-120

ing retina of vertebrate species, contributing to the shaping of the visual system

organization [107, 34, 86, 36]. They are characterized by localized groups of neu-

rons becoming simultaneously active, initiated at random points and propagat-

ing at speeds ranging from 100 µm/s (mouse, [92], [73]) up to 400 µm/s (chick,

[84]), with changing boundaries, dependent on local refractoriness [36, 35]. This125

activity, slowly spreading across the retina, is an inherent property of the retinal

network [110]. More precisely, the generation of waves requires three conditions

[42, 36]:

(C1) A source of depolarization for wave initiation (”How do waves start?”).

Given that there is no external input (e.g. from visual stimulation in the130

early retina), there must be some intrinsic mechanism by which neurons

become active 1.

1Recent experimental works by E. Sernagor lab, suggest that some specific cells, whose type
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(C2) A network of excitatory interactions for propagation (”How do waves prop-

agate?”). Once some neurons become spontaneously active, how do they

excite neighboring neurons?135

(C3) A source of inhibition that limits the spatial extent of waves and dictates

the minimum interval between them (”How do waves stop ?”).

Wave activity begins in the early development, long before the retina is respon-

sive to light. It emerges due to several biophysical mechanisms, which change

during development, dividing retinal waves maturation into 3 stages (I, II, III)140

[86]. Each stage, mostly studied in mammals, is characterized by a certain type

of network interaction (condition C2): gap junctions for stage I; cholinergic

transmission for stage II; and glutamatergic transmission for stage III. In this

work, we focus on stage II.

During this period, the principal mechanism for transmission is due to the145

neurotransmitter acetylcholine (Ach) with nicotinic receptors [33, 110, 86]. The

first functional cholinergic connections are formed around birth, firstly at the

level of Starburst Amacrine Cells (SACs). The emergence of waves depends

on cellular mechanisms studied by [110] (for rabbits), where it is found that

Starburst Amacrine Cells emit spontaneous intrinsic calcium bursts (condition150

C1). When bursting a SAC emits acetylcholine thereby increasing the level of

excitability of its neighbours. When the bursts occurring in a neighbourhood

of a quiet SACs are synchronized, they eventually lead it to burst, inducing

a wave propagation. Stage II waves are therefore spatiotemporal phenomena

resulting from the spatial coupling of local bursters (SACs) via acetylcholine155

(condition C2). In addition, a strong after hyperpolarization current (sAHP)

induces a long refractory period for the recently active neurons, preventing the

propagation of a new wave for a period of order of a minute, in the region where

a wave has recently spread [110]. More generally, sAHP plays a prominent role

has not yet been identified, act as pacemaker triggering waves [27]. We shall not consider this

aspect in our work although it could be included in the proposed formalism.
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in shaping waves periodicity and boundaries (condition C3), as we discuss in160

this paper.

2.2. The model

Among the 3 stages of retinal waves, stage II is the one which received

the most attention from modellers [33, 19, 44, 43, 50, 42, 69] (see [58] for a

recent model on stage I, and [23] for a model of stage III). The model we165

propose is inspired by the work of [50] and [69], with strong modifications,

in the model itself and in the methods used for study. It was introduced in

[63] at the level of single cells (no network) where it was thoroughly justified on

biophysical grounds, leading to experimental predictions. The approach to study

its dynamics, based on a bifurcation analysis of an individual SAC dynamics170

was original too. Here, we extend the study to a network of SACs, with an

analysis still grounded as well on bifurcation theory. In this section, we define

the equations ruling the model’s dynamics.

Note that SACs display a regular tiling of the retina with a disk-shaped

dendritic tree [96]. Their average distance is a ' 50µm. We thus define a175

network of Starburst Amacrine Cells distributed on a regular lattice in Z
d,

d = 1, 2, with lattice spacing a, where sites/neurons are labelled with an index

i = 1 . . . N . The state variables characterizing neuron i are: Vi(t), the membrane

potential, Ni(t), the gating variable for fast K+ channels, Ri(t) and Si(t), the

gating variables for slow Ca2+-gated K+ channels, Ci(t), the intracellular Ca2+
180

concentration, Ai(t), the extracellular acetylcholine concentration emitted by

neuron i. We note Bi the set of SACs which are in synaptic contact with SAC

i. A SAC is not connected to itself, (i 6∈ Bi). The structure of neighbours is

nearest neighbours. This is mainly because it allows to write explicit transport

equations in term of a Laplacian (see section 5). More complex structures have185

been considered in [61] or [62] for this model. We come back to this point in

the discussion section.

The parameters values are carefully calibrated with respect to biophysics,

found in the literature or fitted from experimental curves in [1], [109] and [110]
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(see [61] for detail on the fitting procedures). Parameters values and units are190

given in appendix 6.3.

Dynamics has several time scales, from fast (a few milliseconds) to slow (a

few seconds) to very slow (about one minute). These multiple scales are at the

source of the dynamic complexity and the core of the present analysis, so we195

present the equations ruling the evolution of SACs taking into account this time

scale separation. First, the membrane potential of SAC i obeys:

Cm
dVi
dt = ILi + ICi + IKi + ISi + IAi ; (1)

where Cm is the membrane capacitance, ILi = −gL (Vi − VL ) is a leak current,

with leak conductance gL and leak reversal potential VL. The current:

ICi = −gCM∞(Vi)(Vi − VC), (2)

is a calcium current of the Morris-Lecar form [81], with maximal calcium con-200

ductance gC , calcium reversal potential VC and M∞(V ) = 1
2 [1 + tanh(V−V

(1)

V (2) )].

The fast potassium current IKi takes the form IKi(Vi, Ni) = −gK Ni (Vi−VK),

where the evolution of the voltage-gated K+ channel gating variable Ni(t) is

given by:

τN
dNi
dt

= Λ(Vi) (N∞(Vi)−Ni ) , (3)

with Λ(Vi) = cosh(Vi−V
(3)

2V (4) ), and N∞(Vi) = 1
2 [1 + tanh(V−V

(3)

V (4) )]. Here τN , the205

characteristic time of the activation variable N , is of order 5 ms. IKi is therefore

quite fast, in contrast to the original Morris-Lecar paper, calibrated in order to

capture the frequency of the fast repetitive firing of SACs, (around 20 Hz [110]).

V (1), V (2), V (3), V (4) are tuning parameters whose value is given in the appendix

6.3.210

The slow After Hyperpolarization (sAHP) current ISi = −GSi (Vi − VK ) is

a calcium-gated potassium current, whose effective conductance is:

GSi = gS R
4
i , (4)
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gS being the maximal sAHP conductance, evolves very slowly (time scale of

order one minute). This conductance is controlled by a cascade of mechanisms

involving the entrance of calcium in the cell, and, thus, the increase of the215

intra-cellular calcium concentration, Ci, upon membrane potential increase. In-

creasing Ci increases the fraction, Si, of saturated calmodulin that binds to

slow calcium-gated potassium receptors. This increases the fraction, Ri, of

bounded terminals in the corresponding potassium channels, thereby increasing

GSi . There is a power 4 because 4 bound terminals are needed to open a Ca2+-220

gated K+ channel. This large exponent, 4, is actually quite important for the

waves dynamics, as developed below.

The corresponding equations are [63]:
τC

dCi
dt = − αC

HX
Ci + C(0) + δC ICi(Vi);

τS
dSi
dt = αSC

4
i (1− Si)− Si;

τR
dRi
dt = αR Si (1−Ri)−Ri;

(5)

where ICi is given by (2). The value of the tuning parameters αC , C
(0), HX , δC , αS , αR

used in this paper are given in the appendix 6.3. The time scale τC is of order225

2 s whereas τS , τR are of order one minute in real SACs. Actually, in the sim-

ulation displayed in section 4.1 we will consider shorter time scales, of order 10

s, to reduce the computational time.

All the terms in (1) considered up to now correspond to local, uncoupled,230

dynamics of SACs. In addition, SACS are coupled via the Ach current:

IAi = −GAi (Vi − VA), (6)

with:

GAi = gA
∑
j∈Bi

A2
j

γA +A2
j

, (7)

where gA is the maximal Ach conductance and γA = K2
d , Kd is the half-

activation constant of Ach production (∼ 1 − 4 nM). The effective Ach con-

ductance depends on the Ach concentration produced by SACs j connected to235
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i. The exponent 2 comes from the physiology of nicotinic receptors: two Ach

molecules have to bind to the receptor to open the corresponding ion channel

(permeable to sodium and potassium, resulting in a reversal potential VA close

to 0 mV). The Ach concentration Aj depends on the pre-synaptic cell’s voltage

via the differential equation:240

dAj
dt

= −µAAj + βATA(Vj), (8)

where µA is a degradation coefficient (of order 2 s−1), βA is the maximal pro-

duction rate of A (in nMs−1), and the production term is:

TA(Vj) =
1

1 + e−κA(Vj−VA)
. (9)

The parameters µA, κA, βA, VA have been fitted from experiments [110, 61].

They are uniform on the SACs population (independent of i). The set of equa-

tions (1)-(9) constitutes a non linear dynamical system of dimension 7×N on245

a spatial lattice of N SACs. All parameters value are reported in appendix 6.3.

Note that the sAHP conductance, GSi , depends on cell i intrinsic activity,

whereas the Ach conductance, GAi , depends on the activity of cells connected

to cell i. Also note the notations: gS , gA are physiological parameters (maximal

conductance), whereas GS , GA are dynamical variables depending non linearly250

on the system evolution. The time scales of evolution are rather different: GA

has a time scale of order seconds (due to the evolution of A, eq. (8)), GS has

a time scale of order a minute (due to the evolution of R). Finally, later in

the paper (section 4.1) we are considering the evolution of gA corresponding,

physiologically, to a time scale of order a day (see Tab. 1).255

2.3. Bifurcation analysis

The key observation affording the model analysis is that the evolution of the

effective conductance GSi (sAHP) and GAi (Ach) of a SAC, i, is slow compared

to the fast dynamics of Vi, Ni. The idea is thus to consider GSi , GAi as slow

parameters tuning the evolution of the fast dynamics (1),(3). In addition, we will260

see that the pattern of slow-time evolution of GSi , GAi during a wave is pretty
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similar for all cells. So, the central idea is to consider first equations (1)-(3)

with tunable parameters, the sAHP conductance, GS , and the Ach conductance,

GA, independent of the cell. The core of this analysis is then displayed in the

bifurcation diagram of Fig. 1. We explain the diagram in this section. Later, we265

will let GS , GA slowly evolve in time for each cell, so as to describe the dynamics

of waves initiation, propagation and stop.

Let us now comment about Fig. 1. More details are given in the legend.

Additional information, not necessary for the understanding of the paper, are

available on the web page https://team.inria.fr/biovision/bifurcations-map-of-270

the-retinal-waves-model/. Especially, the region in the interval ∼ (GS , GA ) ∈

[2.2, 3.2[×[1.3, 2.7[, containing the SNH, BT, and SNH points, is not discussed in

the paper, for a simple reason: the dynamics of our model, with its parameters

grounded on experiments, never enters in this region (see Fig 6). A zoom on

this region, with the corresponding bifurcation diagram, can nevertheless, be275

found at the aforementioned web page. Let us also mention that, in this region,

dynamics ought to be very close to the model studied by Moreno-Spiegelberg

et al [3, 79] dealing with traveling pulses in Type 1 excitable media with some

important differences though: (1) the presence of noise in our model; (2) the fact

that our parameters GS , GA are slowly evolving according to the fast dynamics;280

(3) the presence of long lasting refractory regions shaping waves propagation.

Although it could actually be interesting to see what happens in our model

when entering this region, note that this would require values of gA about 10

times higher than what we have inferred from experimental data (see Table 1).

Excluding this region, Fig. 1 reveals that the parameter space GS , GA is285

divided into four regions, A,B,C,D. In region A, there is a stable fixed point

(Sink, noted Si), corresponding to a rest state, and an unstable focus (UF),

separated by a Saddle point (Sd) whose stable (Ws, in cyan) and unstable (Wu,

in red) manifolds are shown. These manifolds are important as they trigger

the homoclinic bifurcation discussed below. The corresponding phase portrait290

is plotted in Fig. 1, middle, left. In region B, there is a unique stable fixed

point (Si), a rest state, whose voltage V and activation variable N depend on
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GS , GA (Fig. 1, middle, right). In region C, there is a stable periodic orbit

(sPO) corresponding to fast oscillations in the voltage and activation variable

(Fig. 1, bottom, left).295

Finally, in region D, which lies in between the cyan Hc and the brown

SN2 lines in the bifurcation diagram, with GS ∈ [0, 0.7] (see inset), there is a

stable fixed point Si, corresponding to a rest state, and a stable periodic or-

bit (Fig. 1, bottom, right). These two attractors are separated by a Saddle

point (Sd). Region D is very narrow in the parameters space and hardly vis-300

ible on the diagram at this scale. That’s why, in the inset zooming on this

region, we use log scale. This is nevertheless an essential zone as discussed

below. The web page https://team.inria.fr/biovision/bifurcations-map-of-the-

retinal-waves-model/ actually proposes several movies showing the evolution of

the phase portrait when moving in the plane {GS , GA} along several pathways.305

When varying GS , GA the transition between regions correspond to the bi-

furcation lines displayed in Fig. 1 top. ”SN” refers to Saddle-Node, ”Hc” to

homoclinic, ”Hopf” to Hopf bifurcation, and ”SNIC” to Saddle-Node on an In-

variant Cycle (see [48] or [32] for a classification of bifurcations). One goes

from region A to region B by the saddle-node bifurcation SN1 where the Sd310

and UF of region A coalesce and disappear. For the transition from A to C

there are two situations: (1), crossing region D. Here, the stable and unstable

manifold of Sd give rise to a limit cycle by homoclinisation (Hc), then, Si and

Sd coalesce by the saddle-node bifurcation SN2, leaving a unique attractor, the

stable periodic orbit of region C. (2) Direct transition from A to C by a SNIC315

bifurcation (green line in Fig. 1). Movies illustrating these bifurcations are

available on the web page https://team.inria.fr/biovision/bifurcations-map-of-

the-retinal-waves-model/.

The equation characterizing the bifurcation line of the transition between

region D and C via the SN2 bifurcation will be used later. It is given by [63]:320

−GA (VSi − VA )−GS (VSi − VK ) = ISN , (10)

where VSi < 0 is the rest voltage on the sink in region D. VSi is actually a
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Figure 1: 1. Top. Bifurcation diagram of the fast dynamics (1)-(3) in the plane GS , GA.

”SN” stands for ”Saddle-Node bifurcation”, ”Hc” for ”Homoclinic bifurcation”, ”Hopf” for ”Hopf

bifurcation”, ”SNIC” for ”Saddle-Node on an Invariant Cycle”,”SNH” for Saddle-Node-Homoclinic

point (also called saddle-node separatrix loop[83], SNSL), ”BT” stands for Bogdanov-Takens. At

the SNH codim-2 bifurcation point, there is a Hc bifurcation line connecting to the BT point with

a SNIC emerging from the opposite side of the SNH in which the SN2 and Hc are tangent. At the

BT point, there is, on one side the SN1 line and, on the other side the Hc, the SN1 and a Hopf line,

tangent at the BT point (see https://team.inria.fr/biovision/bifurcations-map-of-the-retinal-waves-

model/ for a zoom on this region, explanations and movies). Inset: Zoom on region D, in log scale.

The Hc and SN2 line meet tangentially at the SNH point and a SNIC line emerges on the other

side. 2. Phase portraits of regions A,B,D,C with nullclines (NV , in black, is the V nullcline,

NN , in grey, is the N nullcline), stable manifold of hyperbolic fixed points (Ws in cyan), unstable

manifold of the saddle-fixed points (Wu in red), stable periodic orbit (in blue). ”Si” means ”Sink”,

”Sd” means ”Saddle”, ”UF” means ”Unstable Focus”, ”SPo” means ”Stable Periodic orbit”.
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function of GS , GA given by eq. (11) below. The current ISN ∼ 0.3 pA [63]. A

similar equation holds for the homoclinic transition where ISN is replaced by

IHc, with a value quite close to ISN .

In regionD there is bi-stability between a rest state and an excited oscillatory325

state (in contrast to region A where there is bistability between two stationary

states, one with low and the other with high voltage). Noise allows to switch

from rest to oscillatory state, as developed below. This corresponds to what

Izhikevich call Type 1 excitability [54, 55]. Now, in the bifurcation diagram,

which has been represented in large range of parameters values GS , GA for330

completeness, region D looks quite small and may appear as probably irrelevant,

but we show that it is not. Recall first that GS corresponds, in the model, to

gS R
4 where gS is the maximal sAHP conductance, whereas R ∈ [0, 1] is a

probability. For our parameters value, in the absence of waves, cells are at rest

with R ∼ 0.3 (see Fig. 2), so that GS ∼ 0.0162 nS for gS = 2 nS, and GS ∼ 0.081335

nS for gS = 10 nS. In addition, at rest too, (V ∼ −70 mV), TA(V ) ∼ 0 (eq. (8)),

so that the Ach production is essentially zero, therefore GA ∼ 0. This implies

that, at rest, cells are in region D. More generally, we argue below that there

is long period, at the end of sAHP time course, where the cell lies in region D

(see also Fig. 6). As we will see, this has a big impact on wave initiation and340

propagation.

2.4. The mechanism of bursting

Bursting, the succession of fast oscillations and rest state, is a well known

phenomenon, widely studied in the literature of mathematical neuroscience

[55, 32]. Here we describe its mechanism in our model (for more detail, see345

[63]). Consider a cell, at rest (non oscillating), thus either in region A,B of the

bifurcation map or in the rest state (Si) of region D. This cell can be lead to

an excited state with fast oscillations (stable limit cycle in region C or D) from

different scenarios discussed in the next section. Here, we are just interested in

what happens when the cell starts to produce these fast oscillations.350

In this situation, the average voltage is high (∼ −30 mV, see in Fig. 1, the

14



phase portraits of region C, D). The rising in voltage increases the intracellular

calcium concentration and triggers the generation of an increasing sAHP cur-

rent, according to eq. (5). In the bifurcation diagram this corresponds to an

increase in GS , which eventually leads the cell to region A or B where no stable355

limit cycle exists. Thus, fast oscillations stop and the cell is feeling a strong,

slow, after hyperpolarization current that slowly decreases its voltage. As a

consequence, its intracellular calcium production decreases, thus sAHP, leading

the cell slowly back to its rest value. This process takes around one minute

during which the cell is hyper-polarized. This is how bursting is produced (see360

Fig. 3 in [63]).

Note that this corresponds to a pseudo-cycle, shown in Fig. 2, in the sub-

space of variables C,R, S, controlling the sAHP production. The following

remark is important. The values taken by R during the cycle, R ∈ [0.3, 0.7],

correspond, for gS = 10 nS, to GS ∈ [0.081, 2]. As already mentioned, R is quite365

slow compared to Ach. So, during the re-polarization phase, GA has a very low

value close to 0 (see e.g. Fig. 6). Thus, when getting back to rest with a low

GA value the SAC successively crosses region B,A then D. When a cell is in

region B or A the only possibility to excite it is to shift it to region C, requiring

that GA is large enough, namely, that neighbours cells are bursting and gA, the370

maximal Ach conductance is very large. Otherwise, it is not possible to excite

it. When a cell is in region D it can be excited, either by increasing GA and

shifting it to region C, or, by jumping from the rest state (Si) to the period or-

bit, e.g. by a small amount of noise as developed in section 3.1.1. All in all, this

implies that, on its way back to rest after hyperpolarization, a cell undergoes375

two sub-phases. An absolute refractory (AR) phase where it is not possible to

excite it and a relative refractory phase (RR) where it can be excited again. In

particular, in region D, cells are in the RR phase. Actually, the cell spends a

relatively long time in the relative refractory phase. Although it can be excited

anywhere in this phase, the level of excitation required to make it enter in the380

fast oscillations strongly depends on its location in region D (see Fig. 4), i.e.

on the actual value of GS and GA.
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”FP” means ”Fixed Point”, ”Repol” means ”Repolarization”. Here, we have plotted one piece

of trajectory corresponding to a single bursting period. In general, successive burst correspond

to non superimposing trajectories, due to the effect of coupled cells.

3. From single cell dynamics to waves

From the previous analysis we have learned that a SAC can either be: (1) at

rest (region D); (2) excited with fast oscillations (region C or D); (3) hyperpo-385

larized, either in the absolute refractory period where it is not possible to excite

it (region A or B), or, in the relative refractory phase (region D, stable fixed

point). When excited, each SAC undergoes the excitation-hyperpolarization

cycle (Fig. 2) before eventually returning to rest.

We now analyse how this individual dynamics, coupled via Ach, induces390

retinal waves and controls waves initiation, propagation and stop.

3.1. The mechanism of wave initiation

Let us consider a situation where all cells are at rest so that they cannot

burst without an external influence. By assumption, no cell is excited and no

external influence can come from other cells. Actually, as the dynamics (1)-(9) is395

deterministic, a SAC at rest would therefore stay at rest indefinitely, without a

possibility to trigger a wave. However, there is always noise in real neurons due
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e.g. to fluctuations in ionic currents from the random opening of ionic channels.

We model this by a white noise ξ(t), whose amplitude is constant with time and

controlled by a parameter η. In our formulation η ξ(t) has the physical dimension400

of a current, hence the white noise ξ(t) has a physical dimension of ms−
1
2 , η is

in pAms
1
2 . The influence of this noise is studied in detail in the paper [63] for

single and isolated neurons. Here, we outline the main consequences on retinal

waves. Another scenario of wave generation, not requiring noise, is discussed in

the discussion section 6.1.405

3.1.1. Noise Induced Bursting

In region D, neurons are bistable: a neuron in the rest state (Si) can go to the

excited oscillatory state (sPO) provided it receives a kick (here, noise) allowing

its state, in the fast-dynamics phase space V −N , to jump above the Sd barrier

and to be trapped in the attraction basin of the stable periodic orbit (Fig. 1).410

Crossing the saddle barrier leads to the stable periodic orbit where the neuron

stays a certain time, producing fast oscillations, returning eventually back to

the Si attraction basin. So, in region D we observe periods of fast oscillations

punctuated by return to rest. Note that, in region A, it is possible to observe

isolated spikes, with fast return to rest, because noise can make the trajectory415

going beyond the saddle barrier. As there is no attractor beyond this barrier,

the trajectory eventually returns back to the attraction basin of Si, following

the unstable manifold of Sd, which is attracted to Si. This takes a bit of time

though. In the trajectory, this effect is manifested by one or a few short spikes in

the voltage. We want to differentiate these two situations focusing on bursting420

cells. Indeed, to anticipate on waves propagation, we need SACs to be in the

excited state long enough to produce Ach emission so as to eventually excite

the neighbours. As the characteristic time of Ach growth is of order 1 − 2s (a

few µ−1
A = 0.53 s), the cell must be excited for a duration of this order. This

does not happen in region A. In region D it does happen, although it depends425

on the noise intensity.

A good, numerical and automatic indicator to ensure that a SAC is excited
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long enough, is to fix a threshold θ on calcium concentration (here θ = 4C(0),

where C(0) is the baseline calcium concentration). We consider that a burst

arises at time t when C(t) > 4C(0). As we checked, this condition is a good430

criterion to ensure that a sAHP current is generated. Note that the charac-

teristic time for calcium rising, τC = 2 s (eq. (2)) is of the same order as the

characteristic time for Ach production, so this criterion is also valid to ensure

that SAC is excited long enough to produce Ach.

Figure 3: Noise induced bursting. Both figures show the join evolution of voltage (upper trace)

and calcium concentration (lower trace) for η = 10 pAms
1
2 . Left. Region D. Right. region A. In

region D the trajectory stays long enough onto the stable periodic orbit to trigger a high increase in

calcium concentration. In region A noise can make the trajectory go in the region delimited by the

saddle and its unstable manifold, leading to a short spike in V , not long enough to let the calcium

concentration grow above the threshold θ (black line).

3.1.2. Bursting probability map435

Here we want to compute the probability that calcium dynamics crosses the

threshold θ ensuring the generation of Ach and sAHP for the full dynamics. As

in the previous section, we consider GS , GA as constant.

The rest state corresponds to dV
dt = 0 and dN

dt = 0 (fast dynamics) in the

absence of noise, and for fixed values of GS , GA. This corresponds to a voltage:440

VSi =
gL VL + gCM

∗ VC + gKN
∗VK +GS VK +GAVA

gL + gC + gK +GS +GA
(11)

where M∗ ≡ M∞ [VSi ], N∗ ≡ N∞ [VSi ]. This is thus, in general, a non linear
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function of the parameters GS , GA.

Now, due to noise, the voltage V has fluctuations δV around the rest state,

V = VSi+δ V . Assuming that δV is small enough so that M∞(V ) ∼M∞(VSi) +445

δV M ′∞(VSi), N∞(V ) ∼ N∞(VSi) + δV N ′∞(VSi), the fluctuations are given, to

the first order in δV , by the stochastic differential equation dδV
dt = − 1

τ(GS ,GA) δV+

η
Cm

ξt, where the characteristic time τ ≡ τ(GS , GA) = Cm
G∗(GS ,GA) with:

G∗(GS , GA) = gL+gC

(
M∗ +M

′∗ (VSi − VC )
)

+gK

(
N∗ +N

′∗ (VSi − VK )
)

+GS+GA,

(12)

where M
′∗ = M ′∞(VSi) and the same for N

′∗. Thus, δ V is, in this first

order approximation, a Ornstein-Uhlenbeck process with mean zero, covari-450

ance C(t, t′) = η2

2C2
m
τ
(
e−

t−t′
τ − e− t+t

′
τ

)
, for t ≥ t′, and variance σ2(t) =

η2

2CmG∗

(
1− e− 2 t

τ

)
. When t is large enough, t� τ , this variance converges to

a constant σ2 ≡ σ2 (GS , GA ) with:

σ(GS , GA) =
η√

2CmG∗(GS , GA)
. (13)

Let us now call VSd the voltage of the saddle point in region D. A necessary

condition for bursting to occur is that, at some time t, VSi + δV (t) > VSd455

corresponding to a probability 1 − Π
(
VSd−VSi
σ(t)

)
, where Π(x) =

∫ x
−∞

e−
y2

2√
2π

dy.

This probability is a sigmoidal function, where the inflexion point depends on

GS , GA (via G∗), as well as the slope (via σ(GS , GA)) (see Fig. 4). More

generally, the density and the cumulative distribution of the first passage time

can be computed exactly [15, 2]. In the simplest case, it is given by an erf460

function, and more generally, by Hermitte polynomials.

However, this is not enough for what we want here. We want to compute

the probability, ν(GS , GA), that, for given values of GS , GA the calcium concen-

tration crosses the threshold θ. In terms of V , this means we want to estimate

the probability that, starting from V = VSi at time 0, V (t) crosses the Sd bar-465

rier and stays long enough beyond this barrier to let calcium rise and cross the

threshold. We have not been able to compute analytically this probability. This

could may be analytically done using Girsanov-Freidlin-Wentsel [37] estimates
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(considering the stable limit cycle, an ω-limit set, as an equipotential set), but

this is beyond our technical reach.470

We made therefore numerical simulations to compute this probability in the

plane {GS , GA}. We proceeded as follow. For each value of GS , GA on a grid

with resolution 10−2, one generates Nsamp = 100 trajectories where, for each

trajectory, one starts from the rest state, iterates the dynamics with noise over

a maximal time duration T = 20 s, and seeks the occurrence of an increase475

in the calcium conductance above the threshold θ. The estimated probability

ν(GS , GA) is the number of occurrence of such long bursts divided by Nsamp.

The result is shown in Fig. 4. As expected, this is a sigmoid function, well

approximated by a form:

ν(GS , GA) ∼ f
(
GA −GAc(GS)

σ(GS , GA)

)
(14)

(Fig. 4, top) where f is a sigmoid. Here, GAc is a threshold value of GA, de-480

pending on GS and constrained by the SN2 and Homoclinic bifurcation line (eq.

(10)). Likewise, σ(GS), the inverse slope of the sigmoid function, is constrained

by the Homoclinic and SN2 bifurcation lines. σ(GS) depends on η, the noise

intensity and tends to zero as η → 0. Also, it decays to zero like the distance

between the SN2 and homoclinic bifurcation line. Thus, beyond the point where485

SN2 and Hc meet (at the SNH point), the transition is zero-one, corresponding

actually to direct transition from region A to region C by a SNIC.

Let us make a few remarks to conclude this section. First, on the role of

noise intensity. When η → 0 (deterministic case), ν → 0: there is no possibility

to burst in the absence of noise. For ν > 0 the probability is a sigmoid function490

with a transition zone delimited by the boundaries of region D. When noise

level is low, it takes a long time to the cell to jump to the stable periodic orbit,

but when it is there, it stays sufficiently long to produce Ach dynamics, and,

for calcium dynamics to reaches the threshold θ. When η increases, the time

to jump on the sPO decreases, but the time where the trajectory stays on it495

decreases too. If η becomes too large the cell cannot stay long enough on the

stable periodic orbit to produce enough Ach to excite its neighbours. This
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Figure 4: Probability that a cell enters in the bursting regime where calcium exceeds the

threshold 4C(0), in the space GS , GA, for η = 10 pAms
1
2 . Left. 3 D view of the probability

with color map. Right. Color map of the bursting probability, plotted together with the

Homoclinic bifurcation line (dashed orange) and the SN2 bifurcation line (dashed black).

This is a zoom of region D (which extends further in the directions GS and GA). Black

corresponds to a 0 probability while yellow corresponds to a probabilty 1. The intermediate

scales are shown in the color bar.

implies that there is an interval of η values where retinal waves can actually

propagate.

Second, the probability to trigger a burst is highly sensitive to the value of500

GS , GA because ν is quite sharp. Consider now a SAC on its way back to rest in

the cycle of Fig. 2, somewhere in region D, thus in the relative refractory phase.

Its level of GS depends on its position in the cycle, its level of GA depends on the

state of its neighbours. And a tiny change in these value dramatically change the

probability that this cell becomes excited. Especially, taking again into account505

the time scale separation between hyperpolarization and cholinergic coupling,

and considering the GA dynamics for a constant GS , a tiny change in the level

of excitation of its neighbours dramatically impacts the probability the SAC has

to become excited. This has a strong impact on waves propagation and waves

distribution.510
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3.2. The mechanism of waves propagation and stop

When a cell is in the excited, oscillating, state, it produces Ach, according to

(8), (9), on a time scale of order 2 seconds, increasing the Ach current received by

its post-synaptic neighbors. This increases the GA conductance of its neighbours

cells. We investigate what happens to a cell receiving an Ach current from its515

neighbours. There are actually 3 cases, depending where the cell is located in

the bifurcation map.

1. The cell is already excited (region C or sPO in D). Then, it produces

Ach thereby exciting the cells which are exciting it, inducing a strong non

linear feedback coupling mechanism, enhancing the Ach production, until520

the sAHP production takes place. This is illustrated, for two cells, in Fig.

5. This mutual coupling increases the Ach conductance GA of coupled

cells, corresponding to moving vertically in the bifurcation map of Fig.

1. So, a cell initially on the sPO of region D (e.g. excited by noise)

is eventually lead to region C where its oscillations are now essentially525

insensitive to noise.

2. The cell is hyperpolarized, in the absolute refractory regime,

(region B or A too far from region C to be lead in C by an increase of

GA). Here, the cell cannot be excited no matter how it is perturbed. SACs

in this state constitute therefore an impassable barrier where no wave can530

go through.

3. The cell is hyperpolarized, in the relative refractory regime.

Here, the cell can actually be excited thanks to different modalities, which

can combine. First, because the cell feels an increasing GA it moves ver-

tically in the bifurcation map and can be eventually lead to region C.535

Second, it can be excited by noise, when it is in region D, either in the

rest state or on its way back to rest in the excitation-hyperpolarisation

cycle of Fig. 2. This last case is the most interesting. Indeed, as discussed

in the previous section, when a cell is moving in region D the probability
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Figure 5: . Left. Evolution of Ach concentration for 2 coupled cells, during a burst,

for different values of gA in nS. Row 1 corresponds to cell 1 and row 2 to cell 2. Here, cell

1 bursts first due to a small pulse in V while cell 2 is driven by cell 1: it bursts due to the

Ach current generated by 1. Right. Burst duration, τ1,max, and Ach peak, A1,max,

of cell 1 under the feedback of cell 2. Region I,II,III are explained later in the paper.

The blue dashed line correspond to a value of gA, computed in section 5.2.1, eq. (25), below

which cell 1 can not trigger a burst in cell 2. These two figures illustrate the mutual non

linear interaction of two bursting cells. Especially, the Ach current generated by 2 prolongs

the burst of 1. Compare, indeed, the black trace for cell 1 (no coupling so that cell 2 stays at

A = 0), to e.g. the blue trace of cell 1 (gA = 0.05) where the burst is longer. Both cells are

then mutually coupled and this mutual coupling reinforces their synchrony. As shown on the

right, the effect of this coupling on burst duration τ1,max depends on the regime, I,II,III.

to become excited due to noise depends dramatically on its position in540

D which is moving since the value of GS , GA slowly evolve in time, with

different time scales. Wave propagation in this regime is essentially driven

by noise.

From this simple description we anticipate that there is a minimal value

gA0 ≡ gA0 (GS , η ) for gA, the maximum Ach conductance, below which a wave545

cannot propagate. This value is computed in section 5.

We have here the core mechanism of waves propagation and stop. When a
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SAC starts to burst it excites its post-synaptic neighbours. This corresponds,

for those excited neighbours, to an increase in GA, which either increases their

probability to be excited by noise in regionD or, if gA is large enough, leads them550

to region C. This way, one can generate a chain reaction, a retinal wave. Now,

due to the sAHP activation, excited SACs eventually leave the bursting phase

and go to an hyperpolarized state where they cannot be excited any more during

a few tens of seconds. Thus, a wave leaves, behind it, an absolute refractory

region where the forthcoming waves cannot go through for a long period. This555

induces spatio-temporal waves interactions where each wave has to propagate

into a transient landscape of excitable/absolute refractory/ relative refractory

cells and can collide. Before addressing the detail of waves propagation let us

finish this section with two important remarks.

3.3. Link to forest fires560

This dynamics bares some analogy with forest fires [6, 22, 31, 45], as dis-

cussed in [50, 69]. However, there is fundamental difference, illustrated in Fig.

5: the mutual non linear coupling between cells prolongs the bursts, a feature

which is definitely not present in forest fire models. Actually, this prolonga-

tion effect has been reported in Zheng et al experiments [110]. It is possible to565

block Ach receptors with a chemical cocktail. In the presence of this cocktail

the burst duration is reduced. Another consequence of this non linear coupling,

observed as well in experiments, is to increase the sAHP duration, hence, the

persistence of refractive zones, with strong consequences on waves propagation.

Therefore, due this non linear interaction, retinal waves do not reduce to ”clas-570

sical” paradigm of forest fire as proposed e.g. in [6, 31] or in [50, 69] for retinal

waves.

However, the so-called ”fire-diffuse-fire” model, appearing for intracellular

calcium waves and introduced in [26] actually present some important features

of what we observe in our model: bi-stability, continuous versus saltatory propa-575

gation depending on a threshold for a characteristic parameter. The mathemat-

ical study presented in [97], exhibits conditions to have this ”fire-diffuse-fire” in
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a spatial landscape with bidomains and, in particular, the wave speed is com-

puted. More generally, intracellular calcium waves share many properties with

retinal waves: the necessity of an initial nucleus to seed the wave, the spread of580

excitability and the emergence of refractory domains, the effect of stochasticity

(which renders calcium waves functionally robust and adaptive to changing envi-

ronmental conditions [98]). In contrast to these works, focusing on Ca dynamics

modelled by phenomenological equations of reaction-diffusion type, in our work

Ca dynamics is part of a process involving bursting at fast time scale and Ach585

coupling at medium scale: cholinergic waves generate calcium waves which are

related to the existence of refractory sAHP domains. Therefore, a possible mod-

elling would be to couple our Ach dynamics to calcium waves shaping the sAHP

landscape. This opens up a way to interesting studies at least on the numerical

side, the mathematical analysis being seemingly (at least to us) out of reach.590

3.4. The typical pathway of a SAC in the GS , GA plane depends on gA

A SAC involved in a wave undergoes a pseudo-cyclic pathway in the plane

{GS , GA}, driving it from rest (in region D of Fig. 1) to burst (limit cycle of

region D or of region C) to region A or B during hyperpolarization. Then, the

cell returns back to region D where it is likely to be reactivated by noise, with595

a probability depending on its location in region D (Fig. 4). The important

remark now is that the time spent by the pseudo-cyclic pathway in the different

regions depend on gA, the maximal Ach conductance, as shown in Fig. 6 top.

At the bottom row of this figure we have displayed heat maps, showing the

probability of occupancy of SACs in the plane {GS , GA} during waves, with600

labels corresponding to regions A,C,D and lines corresponding to bifurcations

frontiers.

We observe that for low values of gA (left-most column, corresponding to

regime I introduced below), bursting cells are mostly located in region D. Here,

bursting is induced by noise where two cells have little chances to burst at the605

same time. In contrast, in the central columns 2, 3 (corresponding to regime

II introduced below) cells are in-between region D and region C where Ach
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Figure 6: Top. Example of trajectory of a bursting cell in the plane {GS , GA} for, from left to right,

gA = 0.04, 0.08, 0.1, 0.2 nS. Note the oscillations in GA coming from the bursting of neighbours even

if the cell itself is not bursting (e.g. region A). Green and orange lines respectively correspond to

SN and Hc bifurcation. Bottom. Probability density of cells state in the plane {GS , GA} for the

same gA values as in Fig. 8. Color bar on top indicates the corresponding value of probabilities

(estimated on boxes with size 1 pS2 in the plane {GS , GA}). Note that the scales are different in

the different figures. Green and orange lines respectively correspond to SN and Hc bifurcation.

production is high enough to provoke cells synchronization and waves. As gA

grows, cells have a decreasing probability to be in regionD and wave propagation

becomes less sensitive to noise. Finally, the right most column (regime III)610

corresponds to cells mostly located in region C, with high Ach production,

inducing a high global activity.

4. The effect of varying Ach coupling during development

In this section we analyse numerically waves dynamics as gA, the maximal

Ach conductance, varies.615
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4.1. Ach coupling decays during development

We extrapolate here the potential behaviour of gA during development from

Fig 3B in Zheng et al, [109]. They puff Ach with a concentration 1 mM while

they block synaptic transmission with C2+
d . They monitor the induced Ach

current and plot its maximum (arising after ∼ 2s) as a function of the develop-620

mental time. They observe a clear decay. From this figure we extrapolated the

table 1 below and the plausible behaviour of gA.

The Ach conductance of a nicotinic channel is proportional to A2

γA+A2 with

γA ∼ 1 nM. Even if the Ach concentration resulting from the puff has been

reduced when the maximum of the induced current is reached we may assume625

that the remaining Ach concentration is quite larger than Kd. This means that

A2

γA+A2 ∼ 1 (saturation). Note that receptor desensitisation is quite important

during a puff, as the receptors are completely overwhelmed with transmitter, so

this assumption seems reasonable. Therefore, in our model the current resulting

from the puff is Ipuff = −ngA(Vclamp−VA) where n is the number of activated630

cholinergic synapses connecting a SAC, Vclamp = −70 mV (patch clamp in

Zheng et al experiment) and VA = 0 mV. Thus gA = − Ipuff
nVclamp

. The number n

is difficult to estimate from experiments. From [110] we may fix n ∼ 25− 30 so

that gA ∼ Ipuff
2000 , which gives us hints on the conductance per synapse (assuming

actually that n is constant during development).635

This gives the following table of values for gA, where we added, in the com-

ments line, the corresponding stage of development (rabbit). Stage III corre-

sponds to glutamatergic waves birefly commented in section 2.1. What is impor-

tant here is the huge decay of gA during development (2 orders of magnitude).

640

Beyond the important observation of a rapid decay of the cholinergic synapses

during maturation, this table provides us hints to explore the central topic of

this paper: how could stage II retinal waves dynamics be impacted by a contin-

uous change in the cholinergic coupling ? In the next sections we address in

more detail the mechanism of wave propagation and interaction in a random,645

slowly evolving, landscape of GS , GA. We also study numerically the wave sizes
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Date (days after

birth)

Ipuff (pA) gA (nS) Comments

-2 1500 0.765 Stage II

-1 1150 0.587 Stage II

1 900 0.459 Stage II

2 800 0.408 Stage II

3 700 0.357 Stage II

4 500 0.255 Stage II

5 220 0.112 Stage II

8 120 0.061 Stage II

10 80 0.041 Transition II-III

11 50 0.025 Transition II-III

14 50 0.025 Stage III

17 30 0.015 Stage III, huge error bars

18 20 0.01 Stage III, huge error bars

19 20 0.01 Stage III, huge error bars

21 10 0.005 Stage III, huge error bars

Table 1: Values of gA versus perinatal days, extrapolated from Fig. 3B in [109].

and durations distribution. As we show, it strongly depends on the maximal

intensity of Ach coupling gA. The values of gA displayed in Table 1 are actually

only indicative on the modelling side, as we are considered, in simulations, a

nearest neighbours topology different from the real connectivity. Nevertheless,650

we tune model parameters to have stage II waves in a similar range of values for

gA. Especially, the wave speed we observe are in agreement with experimentally

measured values [73], (see Fig. 8) .

4.2. The setting of numerical simulations

Let us start with a few operational definitions used for numerical investiga-655

tions. We consider a wave as a causal event. The bursting of a cell at time
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t is either spontaneous, or caused by bursting cells connected to it. As a con-

sequence, a wave is mathematically a list of events of type (tstart,St). St is a

subset of bursting cells at time t defined by the following constraints:

(1) The wave starts from a cell, or a group of connected cells, Sstart starting to660

burst at time tstart.

(2) For t > tstart, St must intersect St−dt ∪ ∂St−dt, where ∂St−dt is the neigh-

bourhood of St−dt. This mathematically corresponds to causality and con-

nectedness.

(3) The wave stops at the last time t where St is non empty. This time is called665

tend.

Therefore, two disjoint clusters St, S
′
t (i.e. with no common cell even at the

boundary) correspond to two distinct waves. When two waves intersect we still

consider them as distinct, they do not penetrate each other. Thus, from this

perspective, they do not spread any more at the intersection points.670

We call ”size” the total number of cells involved in a wave, i.e. s =
∑tend
t=tstart

#St,

where #St is the cardinal of the set St. The sum is discrete because time is

discrete in simulations. The duration of the wave is D = tend − tstart. The

global activity, noted n, is the total number of active cells at a given time.

All our simulations are limited to a one dimensional space. This is due675

to several reasons. First, considering the huge difference between the fastest

and slowest time scales in the model, simulations in 2D, for reasonable sizes

(∼ 100× 100 cells) are enormously time consuming. In addition, the definition

of waves boundaries is easy in 1D (boundaries are points), while these are ir-

regular frontiers in 2D, requiring sophisticated algorithms. As we show in the680

next section, it is actually important to separate waves when studying their

statistics, instead of considering the total number of active cells per unit time,

independently of their localisation. Finally, these simulations are intended to

illustrate the main content of this paper, which is theoretical. We discuss about

the effect of dimensionality and connectivity in section 5.3.3.685
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In the simulations we considered characteristic times τS and τR, which fix

the time scale of sAHP, of order 10 s, while, in experiments, they are rather of

order a minute. We did that to reduce the computational time, especially, the

refractory times between successive waves.

4.3. Waves dynamics and scaling690

We now illustrate the effect of increasing gA on waves dynamics in our model.

We essentially observe 3 regimes, already commented above and now more pre-

cisely defined and illustrated by Fig. 7, 8, 9. Note that we used the labelling

I,II,III for these regimes, not to be confused with the retinal waves stages I,II,III.

Our analysis sticks at stage II retinal waves.695

4.3.1. Quantitative description of the regimes

Regime I. Localized waves. When gA is small, cells can be excited by noise but

the Ach they produce does not increase sufficiently the probability of ex-

citation of their neighbours to induce a large scale propagation.

Regime II. Waves are competing through the sAHP landscape. When gA700

further increases, a bursting SAC increases enough the probability of this

neighbours to be excited so that some neighbours become eventually ex-

cited. The mutual excitation drives the cells in a robust synchronisation

regime, as illustrated in Fig. 5. Waves can propagate but they are blocked

by the sAHP landscape left by previous waves. Here, therefore, waves size705

is dramatically dependent on the waves history. In this regime waves

characteristics (size, duration, activity) are quite sensitive to gA and their

probability laws have a large tail.

Regime III. Waves are cooperating through Ach coupling. When gA is large

enough, waves may eventually spread through the whole lattice. In this710

regime, waves born at different times, from different sites, eventually col-

lide with the effect of prolonging the burst durations. When gA increases

further, one is progressively driven to a full synchrony regime where all
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cells fire synchronously with a period fixed by sAHP characteristic times

(τS , τR).715

These 3 regimes are first roughly indicated in Fig. 7, where we plotted, in Fig.

7(a) (left), the probability ρ that a cell is bursting at a given time, as a function

of gA for N = 20, 50, 100, 200, 400. We essentially see abrupt changes in the

slope of ρ, allowing to (broadly, for the moment) locate these 3 regimes (Inset

of Fig. 7 (a)). The separation between regime I and II holds at the unique720

point where ∂ρ
∂gA

is maximum, that is the point where the probability ρ that

a cell bursts at a given time has the maximum sensitivity to variations of gA.

Regime III is the range of gA values where ρ increases linearly. We have also

indicated, in red, 4 points corresponding to the three regimes (with one point

at the transition between regime I and II), used to characterize in more details725

waves behaviour. In Fig. 7, center, we have plotted the average wave size (label

(b)) and duration (label (c)) as a function of gA, for the same values of N .

Recall (section 4.2) that we call ”size” the total number of cells involved in a

wave, where a wave is composed of connected bursting cells. The global activity

(total number of cells bursting at a given time) is plotted on the right of Fig. 7.730

Similar regimes have been reported in the literature, especially in [50, 69].

What these studies neglected though is the role of closeness to bifurcations, non

linear feedback, and their consequences on waves propagation.

4.3.2. Waves propagation in the different regimes

This propagation is illustrated in Fig. 8. From left to right each column735

corresponds respectively to regime I (gA = 0.04 nS); regime II (gA = 0.08 nS

corresponding to the point II1 in Fig. 7 (a) and gA = 0.1 nS, point II2 in Fig. 7

(a)); regime III (gA = 0.2 nS). The top row shows the time evolution (vertical

axis) of calcium concentration in the lattice (horizontal axis) in these different

regimes. We can see the initiation and propagation of waves. The bottom row740

shows the normalized correlation of calcium activity of the center cell (index

ic) with another cell in the lattice (index i). The correlation is numerically
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Figure 7: Left (a). Probability ρ that a cell is bursting at a given time as a function of gA,

for N = 20, 50, 100, 200, 400. The inset shows the numerical derivative of ρ for N = 400. The

maximum of the derivative defines the transition between regime I and II (leftmost dashed

line). This transition is further explained in section 5. The second dashed line, roughly defines

the transition between regime II and III and arises at gA ∼ 0.14 nS. Red points with labels

correspond to specific values of gA : one in regime I, two in regime II (II1 at the transition

between I and II and II2) and one in regime III, used for representative plots in the subsequent

figures. Center. Average wave size, 〈 s 〉, label (b), and duration, 〈D 〉, label (c), in seconds,

as a function of gA, for the same values of N (in logscale). Vertical black lines correspond to

the separation in 3 regimes. Right (d). Mean activity, 〈n 〉, (see text for a definition) in the

same conditions. Note that size and duration do not depend on N , the lattice size, in contrast

to n, which, actually grows further for larger values of gA (not shown).
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computed as:

C (i) =
1

T

∫ T

0

Ci(t)Cic(t) dt−
1

T

∫ T

0

Ci(t) dt
1

T

∫ T

0

Cic(t) dt, (15)

where T is the total duration of the simulation, ic is the label of the center cell,

and i the label of a cell in the lattice. In Fig. 8, bottom row, we have displayed745

the normalized correlation C (i)
C (ic)

so that the maximum is 1.

In regime I, (left column) the entrance of a SAC in the bursting regime

initiates a propagation which ends very soon. This is because, for this regime

of parameters, the Ach current, even at its maximum, is not sufficient to cross750

the Sd barrier. Only noise affords it, with a low probability, depending on noise

intensity and on gA. As a consequence, ρ, 〈 s 〉, 〈D 〉, 〈n 〉 grow slowly with

gA. In regime I the calcium correlation decays rapidly with the distance to the

center cell: cells are essentially decorrelated.

On the opposite, in regime III, (right column), top, we see waves spreading755

through the whole lattice. Waves appear almost periodically with a frequency

∼ 35 s, essentially constrained by sAHP dynamics (i.e. the return time to region

D dependent on the times τS , τR) and the time necessary to activate a cell and,

thereby, restart a wave. In this regime ρ grows slowly, and 〈 s 〉, 〈D 〉, 〈n 〉

saturate. The saturation of 〈 s 〉, 〈D 〉 is due to our modelling choice: when two760

waves intersect we consider them as distinct. Thus, they do not spread any more

at the intersection points. As a consequence, these quantities do not depend

on the lattice size. The plateau is actually determined by the probability to

start a wave and the wave speed. In this regime, n, the total activity, behaves

in a different way. One expects the total number of active cells to increase765

with the lattice size, but, as we see in figure 8, all cells in the lattice are not

necessarily simultaneously active. As gA further grows, however, one achieves

a full synchronisation where all cells are active. These full synchrony regime is

periodic and alternate of full lattice refractoriness. Finally, the instantaneous

calcium correlation is strictly positive throughout the lattice, confirming that,770

in this regime, the correlation length is the lattice size.
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The intermediate regime II is shown in Fig. 8, middle columns. On the top

row, we see how waves propagation has to cope with the sAHP landscape left by

the previous waves. Spreading waves are stopped by the sAHP trace left by pre-

vious waves. Therefore, waves have a widespread distribution (see also Fig. 9).775

Calcium correlation also shows an interesting profile. It reveals that correlation

alternate from positive to negative as the distance to the center cell increases.

Positive correlations correspond to cells in the same state as the central cell ic

(i.e. bursting when ic is bursting; hyperpolarized when ic is hyperpolarized),

whereas negative correlations correspond to cells in the opposite states. Thus,780

calcium correlations is another way to reveal the existence of refractory/active

domains shaping waves propagation and interactions. Increasing gA from regime

I to regime III via regime II leads to an increase of the correlation length, which

has the size of the lattice in region III.

In these figures one clearly see what has been announced in the beginning785

of this section. In regime II waves interact via their sAHP landscape, thereby

obstructing each other. In contrast, in regime III they have a direct interaction

and the mutual Ach feedback prolongs the cells activity. The transition between

these two regimes is reminiscent of a percolation transition, as anticipated in

[50]. However, the transition we observe holds at a specific gA value and is790

therefore not robust to changes of gA during development. This aspect is further

discussed in section 5.3.3.

4.3.3. Waves statistics

A synthesis of the observed waves statistics is shown in Fig. 9, where we plot

the probability distribution of s (top row), D (middle row), n (bottom row),795

for N = 50, 100, 200, 400, in the 3 regimes. As before, each column corresponds

to a regime (I, II1, II2, III from left to right) The plots are in log-log scale

to investigate potential power laws. We observe first that the distribution of s

and D do not depend on N , as expected from waves interactions. In contrast,

P (n) does. One also remarks that the shape of these probabilities evolves with800

gA. Let us interpret what we observe thanks to the previous dynamical analysis
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Figure 8: Spatial characterization of the 3 wave regimes. Top. Propagation of

waves in the presence of noise (η = 6 pAms−
1
2 ) for 200 cells illustrated by the evolution

of calcium concentration. From left to right: gA = 0.04 nS (regime I); gA = 0.08 and

gA = 0.1 nS (regime II, point II1, II2 in Fig. 7); gA = 0.2 (regime III). Hot zones (orange,

yellow) are active (bursting) zones; black zones are absolute refractory zones; purple zones

correspond to SACs in the rest state. Propagating waves are stopped by absolute refractory

regions. Bottom. Normalized calcium correlation
C (i)
C (ic)

between the central cell and

other cells for the same values of gA. There are zones of positive correlation and negative

correlations (see text).
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and especially Fig. 6.

In regime I, the bursting of cells is only induced by noise. When bursting,

a cell produces Ach and thereby increases the probability that a neighbour

cell bursts, due to noise. As a consequence, there is an important probability to805

observe waves of size 1 and quite a smaller probability to observe waves of larger

size. The probability distribution of waves duration D is more interesting. After

a flat maximum, for D ≤ 1.2 s, this probability decreases to a local minimum,

at D ∼ 1.8 s before increasing to a secondary maximum, at D ∼ 2 s. The first

maximum corresponds to waves of size 1. Their duration probability decreases810

as the duration increases. However, waves of size 1 with a sufficiently large

duration produce more Ach (in a time scale of the order 1−2 s, a few µ−1
A = 0.53

s) thereby increasing the probability to have a neighbouring cell that starts to

burst, thanks to noise. But, from Fig. 5 we know this neighbouring bursting

cell will increase the burst duration of the initial cell. This explains the second815

peak. In other words, the local minimum in the distribution marks a threshold

above which the mutual coupling between two bursting neighbours prolongs

the (size 2) waves duration. Finally, the probability distribution of the global

activity has a bell shape with a maximum ∝ N〈 s 〉. Indeed, the probability of

this variable is constrained, on one hand, by the number of coexisting waves820

and on the other hand by the joint probability that each of these waves has a

certain size and that these sizes sum up to n. This explains the bimodal shape
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of the distribution2. Actually, this bimodal shape is observed in each regime 3.

In regime II, as illustrated in Fig. 6, there is a small probability for a cell

to penetrate in region C where it bursts without requiring a noise kick. Waves825

propagate until they rich a sAHP barrier, limiting their size and generating

a long tail in the distribution. There are still waves of size 1 though, whose

probability decreases with gA. For the duration we still see the local minimum

and second maximum, reminiscent of regime I, but beyond the second maximum

waves duration probability has, like sizes probability, a longer and longer tail830

as gA increases. The global activity probability still has a bell shape, but it

looks as a mix of two regimes where it growths linearly (in log-log scale) up to

the maximum and decreases also linearly. The maximum appears therefore as

a crossover point between two power laws regimes.

In regime III, the probability to have waves of size 1 is very small. A bursting835

cell triggers a wave which propagates through the lattice until it meets another

wave. The distribution of size is bell-shaped, with a maximum corresponding

to our definition of waves size: although, in regime III, waves cooperate, when

two waves meet their size does not increase. The durations distribution has a

similar bell shape, starting, for gA = 2, around 2 s with a maximum around 3 s840

(the average duration being 5.6 s).

2The probability of n is related to the probability of sizes by P (n) =∑N
m=1

∑
s1+s2+···+sm=n P (s1, . . . , sm) where the sum

∑
s1+s2+···+sm=n means the sum

over all possible configurations with m sets of connected active cells (waves), each of size

si, i = 1 . . .m with s1 + s2 + · · · + sm = n, and with the constraint that the total

number of cells is N . As, in regime I, waves are small and not interacting, P (n) =∑N
m=1

∑
s1+s2+···+sm=n P (s1) . . . P (sm).Assuming, for the simplicity of the argumentation,

that P (s) ∼ Kγ−s we obtain P (n) = γ−n
∑N
m=1 K

mSN (m,n) where SN (m,n) is the num-

ber of possibilities to make, over the set {1 . . . N}, m connected group with si elements and

with
∑m
i=1 Si = n. We therefore see that P (n) is a combination of a term decaying with n

multiplied by a combinatorial term SN (m,n) which first increases with n, then decays.
3In the other regimes the argument developed in the footnote 2, extends as we essentially

need that the joint probability P (s1, . . . , sm) decays sufficiently fast (power low or exponential)

with n.
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There is no clear evidence that the probabilities of connected waves observ-

ables (s and D) have a power law tail, although this tail is large, especially for

duration which goes from 1 to 20 s. Actually, probability distributions might

depend on the dimension and the connectivity, as developed in section 5.3.3.845

4.3.4. Transport

Finally, we analysed the wave speed as a function of gA. First, we remarked

that, due to waves interactions and sAHP lanscape, waves are not necessarily

propagating ballistically, that is r(t) = c.tz, where r(t) is the wave radius, z

the anomalous diffusion exponent and c the wave ”speed” (which actually is the850

classical speed for z = 1, whereas, it is e.g. the diffusion coefficient if z = 1
2 ).

Anomalous diffusion is further analysed in section 5.

We show a plot of c, z as a function of gA in Fig. 10. Note that the estima-

tion of these quanties is difficult in regime I as waves are very small. We observe

that z is (on average, with large error bars) smaller than 1 in regime I and III855

corresponding to anomalous transport. This is due to different effects though.

In regime I, waves are small and propagation is due to the effect of noise for

cells essentially located in region D (see next section and Fig.6). Thus, wave

propagation is slower than ballistic. In contrast, in regime III, waves interact

together. When a wave intersects another wave its radius does not evolve any860

more whereas its duration is incremented. Thus, the effective exponent z is

lower than 1. Although it might look as an artefact of our wave definition, this

criterion actually clearly shows when direct wave interactions becomes signifi-

cant. To illustrate this point we have added in the figure the lines separating

the 3 regimes where we clearly see how propagation is slowed down in regime I865

and III.

We also plot, at the bottom of Fig. 10, the speed c, together with the

theoretical computation, eq. (26) developed in section 5. Considering that

SACs are spaced by a ' 50µm our speed would correspond to real waves speed

in the range [ 50, 200 ] µm/s in agreement with experimentally observed ranges870

[92, 73, 84].
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Figure 9: Probability distributions of waves quantities for different values of N in the

3 regime corresponding to points I, IIa, IIb, III in Fig. 7 (from left to right). Top. Sizes

distribution; Middle. Durations distributions; Bottom. Activities distributions.

39



 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

 0  0.05  0.1  0.15  0.2  0.25  0.3

I II III

z

gA (nS)

 0
 50

 100
 150
 200
 250

 0  0.05  0.1  0.15  0.2  0.25  0.3

I II III

gA0

c
 (

µ
 m

/s
)

gA (nS)

Figure 10: Anomalous propagation of retinal waves. The three regimes are separated by a black

dashed arrow and are indicated with labels. The blue dashed line corresponds to gA0
= 0.04, the

minimal value of gA below which waves cannot propagate (eq. (25) below). Top. Anomalous

diffusion exponent z versus gA with error bars. The exponent in regime I is lower than 1 corre-

sponding to anomalous diffusion where propagation is mainly driven by noise. In regime II, z = 1

corresponding to ballistic transport. It decreases in regime III illustrating direct waves interactions.

Here, transport is ballistic too but the radius of a wave stops to grow, in our definition, when two

waves collide, whereas duration is incremented. This explains why z < 1. Bottom. ”Speed” c i.e.

proportionality coefficient in the relation x(t) = c tz (see text). The orange line corresponds to the

theoretical derivation (26). The deviation from the theoretical curve in regime I and III is explained

in the text.

5. Transport equations

Up to now, we have shown how the non linear coupling between bursting

cells and the recurrent return in region D give rise to a rather rich dynamics

with different regimes of waves. Still, the numerical illustrations have been done875

in one spatial dimension, with nearest neighbours interactions. So, one may ask

whether a larger dimensionality or a different connectivity could notably impact

the global dynamical picture. To avoid multiplying tedious numerical simula-

tions with a larger range of possibilities when considering connectivity patterns

4, an alternative idea is to derive canonical transport equations, holding in 1880

4Even if the real SACs connectivity is known at maturation [96], we don’t know about

papers reporting how connectivity evolves during development.
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and 2 dimensions.

In this section, we derive such a transport equation characterising the reti-

nal waves propagation in a landscape of sAHP. These equations are constructed

in the spirit of the bifurcation diagram exposed in section 2.3, with a main

idea: waves transport Ach and sAHP conductances, i.e. a wave is mechanism885

where GS and GA, considered as fields, propagate, obeying a transport equa-

tion that we derive. This is done taking into account the time scales separation

between GS and GA. From this approach we are able to compute a few impor-

tant characteristics of waves dynamics, like speed in the ballistic regime. We

also compare our transport equation to known equations in the non linear and890

statistical physics literature.

5.1. Ach conductance transport

5.1.1. Approximations

The equation for Ach production of neuron i is given by (8). We introduce

the variable:895

Γi =
∑
k∈Bi

U(Ak) (16)

with U(A) = A2

γA+A2 . Then, the Ach conductance of neuron i at time t is

GA(i, t) = gAΓi(t).

Differentiating Γi with respect to time gives:

dΓi
dt

=
∑
k∈Bi

U ′(Ak) [−µAAk + βATA(Vk) ] .

The goal here is to obtain a closed-form equations for the time evolution of Γi,

thus for GA(i, t). For this we are going to make several approximation based on

the preliminary analysis of dynamics.900

(i) Piecewise linear approximation for U . We remark that U(A) is a

sigmoid that can be approximated by the piecewise linear function (Fig.
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12, left, top):

U(A) ∼


A

2
√
γA
, 0 ≤ A ≤ 2

√
γA;

1, A ≥ 2
√
γA.

(17)

In this approximation a cell k such that Ak > 2
√
γA does not contribute

to the variation of Γi because U ′ ∼ 0. We observe that in our simulations905

A < 2
√
γA = 2. Note that the form of T is inspired from biophysics but

its shape (sigmoid) matters more than its detailed mathematical form.

Under the approximation (17) U(A) ∼ U ′(A)A so that dΓi
dt = −µAΓi +

βA
2
√
γA

∑
k∈Bi

TA(Vk).

(ii) Mean-field approximation for TA. The time scale of Ach evolution910

(∼ 2s) is quite fast compared to the time scale of evolution of V (a few

ms). As we are interested in transport when GS , GA vary it is relevant

to replace TA(V ) by its time average on the fast time scale, 〈TA(V ) 〉 =

limT→+∞
1
T

∫ T
0
TA(V (s)) ds where GS , GA are kept constant. We then

make the assumption that the time average of Ach production can be915

approximated as 〈TA(V ) 〉 ≡ Ω(GS , GA) ∈ [ 0, 1 ]. On the time scales of

GS , GA Ω(GS , GA) evolves along the pathway described by GS , GA in the

bifurcation map (Fig. 6). The function Ω(GS , GA) is shown in Fig. 12

right top. It has a sigmoidal shape, with a maximal slope in region D.

In this figure, bottom, we also show a plot of the gradient ∂Ω
∂GS

, ∂Ω
∂GA

and920

Hessian of Ω.

(iii) Continuous space limit. Cells are located at the nodes of a Zd lattice

with small lattice spacing a ∼ 50 µm, d = 1, 2 (see section 2.1). We now

consider GS , GA as continuous fields in space and time, GA ≡ GA(x, y, t).

Then, using the smallness of a (compared to the waves characteristic size):

∂Γ

∂t
= −µAΓ +

d βA√
γA

Ω(GS , GA) +DA ∆ Ω(GS , GA).

where we have set:

DA = a2 βA
2
√
γA
, (18)
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the diffusion coefficient (∼ 62.500µm2s−1), ∆ being the Laplacian opera-

tor. The first term of the right hand side comes from Ach degradation, the

second comes from the local Ach production, and the third corresponds925

to Ach transport by cells interactions, as we develop now. From now on

we will write Ω instead of Ω(GS , GA) to alleviate notations whenever it

makes no confusion.

5.1.2. Non linear diffusion

Using GA = gA Γ, for obtain a transport equation for Ach conductance:930

∂GA
∂t

= gADA ∆ Ω + S. (19)

with:

S = −µAGA + gA
d βA√
γA

Ω, (20)

The transport equation is a non linear diffusion equation, because Ω depends

non linearly on the fields GS , GA via eq. (14). Note that this is not a reaction-

diffusion equation, in contrast e.g. to Lansdell et al approach [69]. Indeed,

in their case Ach freely diffuse in the medium and non linearity is taken into935

account in a reaction term whereas, in our case, non linearity is in the diffu-

sion coefficient, characterizing how waves non linearly interact with the sAHP

landscape. The equation we obtain is also different from transport equation in

calcium fire diffuse models [26, 97] although propagation and underlying mech-

anisms are very similar (see section 3.3).940

The equation (19) contains also a ”source” containing both the degradation

term and a local production term. It can therefore be either positive or negative

and depends on space-time via GS , GA. This source term is shown in Fig. 11.

Although it has a very different shape in the different regimes, it is slightly

negative on average so that dissipation dominates. The source term is purely945

deterministic here, although it should contain as well a stochastic term that

mimics noise induced bursting, at the time scale of Ach evolution. This is

briefly discussed in section 5.1.4. The almost-vanishing of the source term, in

regime I, expresses that the local degradation of acetylcholine is compensed by
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Figure 11: Histogram of the source term, S, in equation (19) in the 3 regimes (from left to

right).

the local production coming from SACs neighbours. In this regime dynamics is950

ruled by fluctuations around the threshold, not by the leading source term.

Let us comment more on the effects of this non linear diffusion. It is actually

useful to let the gradients of GA and GS appear in eq. (19). We also introduce

the Hessian of Ω:

HΩ =

 ∂2Ω
∂G2

S

∂2Ω
∂GS∂GA

∂2Ω
∂GA∂GS

∂2Ω
∂G2

A

 . (21)

This symmetric matrix characterizes the local convexity of Ω. It also defines a955

metric. Indeed the transport equation(19) can now be written:

∂GA
∂t

= gADA

 (∇GS ,∇GA )HΩ

 ∇GS
∇GA

+
∂Ω

∂GS
∆GS +

∂Ω

∂GA
∆GA

+S.

(22)

This a Laplace-Beltrami diffusion on a manifold whose metric is constrained

by (21). In other words, the diagram shown in Fig. 6 has now to be thought

on top of the Ω manifold, Fig. 12 top, right, whose gradient and curvature,

shown in figure 12 middle and bottom row, constrain the diffusion. We see960

that the transport of GA depends on the spatial profile of sAHP. In particular,

the extra-diagonal terms of HΩ couples ∇GS and ∇GA, the gradients of sAHP

conductance and Ach conductance. As expected, the first and second partial
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derivatives are non vanishing essentially near the bifurcation lines delimiting

region D. Interestingly, ∂Ω
∂GS

< 0 in this region corresponding to an anti diffusion965

(focalisation) mechanism whereas ∂Ω
∂GA

> 0.

In view of the shape of Ω and, more specifically, on its derivatives, one sees

that there are 3 main phases for cells, corresponding to specific regions in the

plane {GS , GA}. At a given time, the cells are in one of these 3 phases, with

spatial continuity due to the diffusion term.970

(a) Quiescent phase. In regions where Ω is small and its derivative vanish

(19) reduces to ∂GA
∂t = −µAGA + gA

dβA√
γA

Ω, so that GA ∼ gA
dβA

µA
√
γA

Ω is

small. These cells do not participate to propagation.

(b) Bursting phase. For cells which are located in region C, Ω is large but its

derivatives are small thus the Laplacian term in (19) vanishes too. There975

is stationary solution of the same form as above, but GA = gA
dβA√
γA µA

Ω is

now large. These cells are the bursting cells participating to waves.

(c) Intermediate phase, for cells in the relative refractory period, in region

D starting to burst or close to burst. Here, Ω depends sharply on GS , GA

and its variations impact dramatically the wave propagation, according to980

eq. (19). These cells constitute waves boundaries (fronts).

The physical picture which emerges from eq. (22) and Fig. 12 is actually

very close to the description made by Bantay and Janosi [8], in a beautiful pa-

per about Self-Organized Criticality that we essentially rephrase, although the

situation we have here is a bit more complex due to the dependence in sAHP. At985

a given time, one may distinguish three different spatial regions corresponding

to cells in one of the 3 phases above. In the quiescent and bursting phase the

diffusion is very small, while at the interface between these two phases, the dif-

fusion grows steeply so that there is a large flux which enters the intermediate

region. In the intermediate region the diffusion is very large, thus any spatial in-990

homogeneity disappears quite fast. Consequently, the inflow flux is transported

through the intermediate region to the quiescent phase boundary increasing the
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Figure 12: Top, left. Piecewise linear approximation for U with γA = 1 nM
1
2 . The dashed line

corresponds to 2
√
γA. Top, right. Average value Ω ≡ 〈TA 〉 as a function of GS , GA. Note the

level lines, at the bottom, and compare to the bifurcation diagram Fig. 1. Middle row, left.

Gradient of Ω, ∂Ω
∂GS

. Middle row, right. Gradient of Ω, ∂Ω
∂GA

. Gradients are essentially non

zero in region D where ∂Ω
∂GS

< 0 and ∂Ω
∂GA

> 0. Bottom row. Eigenvalues and eigenvectors of

the Hessian of Ω. Left. First eigenvalue λ1 as a function of GS , GA. The color bar, on the right,

displays the amplitude of λ1. The arrows correspond to the normalized eigenvector of the Hessian

(depending on GS , GA) associated to λ1. Right. Same representation for the second eigenvalue,

λ2. λ1 and λ2 have an abrupt variation in between the bifurcation lines delimiting region D. The

motion in the plane {GS , GA}, as illustrated in Fig. 6 up, is driven by the transport equation with

a second order term, depending on HΩ, where the trajectory is tangent to a linear combination of

these two eigenvectors. It also depends on the gradients.
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level of activity of quiescent cells until they become excitable. As a result, the

boundary of the quiescent phases moves towards the bursting region, until this

later is completely absorbed by the intermediate phase. The behaviour of the995

other boundary is completely similar, the only difference is that the direction

of the flux is opposite. Now, the motion of boundaries is, in our case, strongly

constrained by sAHP.

5.1.3. sAHP conductance

Equation (22) illustrates how dynamics depends on the dynamics of the1000

sAHP conductance GS , a very slow variable (of order a minute). Using slow-

fast analysis one can see that V,N,C and A evolve, at the time scale of R,S,

along a slow manifold parametrized by R,S. In particular, at this time scale,

the calcium concentration is a function C(R,S) of R,S, whose shape can be

guessed from Fig. 2, with 4 phases. It results that the coupled dynamics of1005

S,R at the slow time scale, ts, has the form dS
dts

= αSC(R,S)(1− S)− S; dRdts =

αRS(1−R)−R and is deterministic. This generates an invariant closed curve

represented in Fig. 13, left, while, on the right, we see the evolution of GS as a

function of t. This is, actually, a deterministic curve of the form GS(t) = u(t−tb)

where tb is the time when a cell starts to burst. This means that we may1010

write GS(X, t) ≡ u ( t− tlast(X, t) ) where tlast(X, t) is the last bursting time

anterior to t, for the cell located at X. Thus, tlast(X, t) is a stochastic process,

whose probability depends on GS , GA and therefore evolves along the waves

propagation landscape. Fig. 13 is only illustrative though as the shape of GS(t)

can be quite more complex depending on parameters such as gsAHP . This1015

complex dependence on GS , which makes retinal waves dynamics extraordinary

rich, lifts the general analysis of transport equations out of our technical reach

and we are considering simplified situations in the next sections.

GS depends therefore on the network history via tB(x, t). This is the mathe-

matical expression of what was anticipated earlier (section 3.2). When a retinal1020

wave propagates, transporting Ach conductance, it leaves, behind it a refrac-

tory trace in which subsequent waves have to propagate. This induces complex
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Figure 13: Left. Trajectory of R,S during the cycle bursting, hyperpolarization, repolari-

sation. ”FP” means ”Fixed Point”. Right. Trajectory of GS (τS , τR = 8.3 s) in the same

conditions. Note that the shape can be more complex depending on parameters such as

gsAHP .

interactions between waves, history depend, as depicted e.g. in Fig. 8.

5.1.4. Noise at the medium time scale

The transport equations are deterministic. They lack a ”noise” term that1025

mimics the random initialisation of waves. The detailed form is this ”noise”

is not completely clear though. It can be obtained by adding, in the equation

of Ach production, a stochastic term δV to the voltage, as we did in section

3.1.2 and then integrate over time TA (V + δV (t) ), e.g. by expanding TA in

series, generating terms in powers of κAδV . One obtains a term proportional to1030

gA κA σ
βA√
γA

which is the time integral of a Gaussian process passing through

a highly non-linear function (TA). The resulting process is therefore neither

Gaussian nor Brownian. In addition it must be proportional to ν, the probability

(14) that a cell burst. A possible spatio-temporal scaling for such a noise has

been proposed in [104]. Its main interest is to afford a renormalisation group1035

analysis of the dynamics, which could be helpful for the characterization of

retinal waves statistics in 1 and 2 D.

48



5.2. Consequences

5.2.1. Threshold value of gA

A first consequence of these approximations is that there exists a threshold1040

value of gA, gA0
, such that for gA < gA0

no wave can propagate.

Consider the situation shown in Fig. 5. Cell 2 is at rest while cell 1 starts to

burst at time t = 0. Under which condition is cell 2, initially in the quiescent

phase, going to burst upon the excitation of cell 1 ? As cell 1 starts to burst

at time 0, from (8), the concentration of Ach it produces is A1(t) = A−1 e
−µAt +1045

βA
∫ t

0
TA(V1(s))e−µA(t−s)ds, where A−1 =

βATA(VSi1 )

µA
is the Ach concentration

for cell 1 at rest (note that VSi1 depends on GS1
, GA1

via (11)). Now, using the

mean-field approximation (ii) above we can write
∫ t

0
TA(V1(s))e−µA(t−s)ds ∼

Ω(GS1
,GA1

)

µA
[ 1− e−µAt ] so that:

A1(t) = A−1 e
−µAt +

βAΩ(GS1
, GA1

)

µA

[
1− e−µAt

]
. (23)

Note that GS1 depends on cell 1’s state whereas GA1 depends on the state of1050

its neighbours, here cell 2, which is initially in the quiescent phase, so that

GA1
∼ 0.

From (23) A1 increases, thereby increasing the Ach current seen by cell 2.

Without noise, the condition for cell 2 to burst is given by eq. (10) characterizing

the crossing from region D to region C. Indeed, without noise a cell at rest in

D cannot reach the limit cycle. Now, the Ach conductance GA2
seen by cell 2

is, under the approximation (i) above, GA2
(t) = gA

2
√
γA
A1(t). Thus, eq. (10)

reads:

− gA
2
√
γA

A1(tB2
) (VSi2 − VA )−GS2

(VSi2 − VK ) = ISN

where tB2 is the time where cell 2 starts to burst by crossing the bifurcation

line. Assuming that A−1 is so small 5 that we can neglect it, gives:

tB2 = − 1

µA
log

[
1 +

1

gA

2µA
√
γA

βA Ω

ISN +GS2
(VSi2 − VK)

VSi2 − VA

]
. (24)

5Compared to gA
2
√
γA

βA Ω

µA (VSi2−VA )
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This equation is sufficient to characterize the wave propagation in the geom-1055

etry we are considering in this paper: one dimensional and nearest neighbours

interactions. Note however that is generalizes to a cell at rest surrounded by n

bursting neighbours whose Ach concentration increases according to (23) pro-

vided these neighbours started to burst at the same time (synchrony). Let us

now comment on this result.1060

1. This equation is actually implicit. Indeed, Ω depends on GS1
, GA1

which

depend on t. Thus, Ω actually depends on tB2
via GS1

, GA1
. Likewise,

VSi2 depends on GA1 . However, using the methodology developed in this

paper, we may consider that tB2 is a function of the parameters GS1 , GA1

which slowly move with time in the bifurcation map as shown in Fig. 61065

(growing of Ach conductance upon bursting of neighbours).

2. Likewise, tB2
depends on GS2

, characterizing the level of hyperpolarization

of cell 2. The higher GS2 the longer it is for cell 2 to eventually burst,

until a value of GS2
where tB2

becomes infinite.

3. More precisely, for eq. (24) to have a solution with a positive tB2
one1070

needs that −1 < 1
gA

2µA
√
γA

βA Ω

ISN+GS2
(VSi2−VK)

VSi2−VA
< 0 with VSi2 − VA < 0.

As ISN +GS2 (VSi2 − VK) > 0, this implies that there is a minimal value

of gA,

gA0
≡

2µA
√
γA

βA Ω

ISN +GS2
(VSi2 − VK)

VA − VSi2
, (25)

such that the cell 2 is excited by cell 1 only if gA > gA0 . This value depends

on GA1
, GS1

via Ω, and also on GS2
. The most important here is that gA0

1075

depends on GS2
, the level of hyperpolarisation of cell 2. As GS2

increases

gA0
increases so that the conductance gA necessary to trigger excitation

propagation to a quiescent cell depends of its level of hyper-polarisation,

as expected. For a cell at rest, we found, with our parameters value (Table

2) gA0
∼ 0.04 nS. This corresponds to the blue dashed line in Figs. 5 right,1080

10.
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5.2.2. Propagation speed

The time tB2 gives the time for a rest cell, excited by its neighbour, to

burst. Now, to numerically compute the wave propagation speed, as in Fig. 10,

bottom, we actually consider waves of calcium activity i.e. a cell is considered1085

as bursting if its calcium concentration reaches a certain threshold (see section

4.2). The time to reach this threshold from the moment where cell 2 starts to

burst is a time tC weakly depend on gA but that can be estimated numerically

to a few hundreds of milliseconds. The inverse time tC + tB2
gives therefore the

speed of propagation, in this specific geometry, and in the deterministic case:1090

c =
a

tC − 1
µA

log
[

1 + 1
gA

2µA
√
γA

nβA Ω

ISN+GS2
(VSi2−VK)

VSi2−VA

] . (26)

This corresponds to the theoretical curve displayed in Fig. 10 bottom. Note

that this equation is valid only in the ballistic case, because we have assumed

a deterministic propagation without wave interactions. This corresponds to

regime II.

5.3. Specific propagation regimes1095

Let us now consider several interesting limits for the transport equation.

5.3.1. Flat sAHP landscape and Kardar-Parisi-Zhang equation

We consider the situation where GS is homogeneous in space (flat sAHP

landscape). This characterizes e.g. the propagation of a wave in a region which

has not seen a previous propagation since a time larger than the characteristic1100

time of return to rest. The terms ∇GS and ∆GS vanish and the transport

equation (22) reads now:

∂GA
∂t

= gADA
∂2Ω

∂G2
A

‖∇GA‖2 + gADA
∂Ω

∂GA
∆GA + S(GS , GA) (27)

Here GS acts therefore as a parameter changing the characteristics of the trans-

port coefficients. Especially it constrains the diffusion coefficient:

D ≡ D(GS , GA) = DA
∂Ω

∂GA
(28)
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Note that we may write:1105

∂GA
∂t

= gA
∂D
∂GA
‖∇GA‖2 + gAD∆GA + S. (29)

which has the form of the Kardar-Parisi-Zhang equation (KPZ) [60].The KPZ

equation models interface growth: the first term mimics surface growth in

a direction normal to the surface whereas the second term corresponds to

diffusive motion along the surface. However, in contrast to KPZ the terms

D(GS , GA), ∂D(GS ,GA)
∂GA

are not constant. Additionally, the source term is white1110

noise in KPZ whereas, in our case this is a function of GA, GS . This suggests

interesting questions that could be addressed in further studies. Are there scale

invariant solutions ? Assume that GS has such a scale invariance, what are the

consequences for GA ? Is it possible to characterize (anomalous) tranport in

this context ?1115

5.3.2. Transition between regime I and II

In regime I waves are weakly interacting with the sAHP landscape so that

one can consider it as uniform along the path of the waves. This assumption

leads to an explicit gA value for the transition between regime I and II.

Let us approximate, in region D, Ω(GS , GA) by a linear function of GA,

Ω(GS , GA) = Ω0 +Ω1(GS)GA with Ω1(GS) ≡ ∂Ω
∂GA

(GS) > 0. As GS is assumed

spatially uniform here, the transport equation (19) reads, using (18):

∂GA
∂t

= P − λGA + κ∆GA

with P = gA
dβA√
γA

Ω0, λ = µA − gA dβA√
γA

Ω1, κ = gA
βA Ω1

2
√
γA

a2. Taking the spatial

Fourier transform gives:

∂ĜA
∂t

= Pδ(k)− σ(k) ĜA

with σ(k) = λ + κ k2. Solutions are stable if σ(k) > 0 and marginally stable if1120

σ(k∗) = 0.

This last condition reads:

k2 =
2d

a2

(
1− 1

gA

µA
√
γA

d βA

1

Ω1

)
(30)
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and has a solution if gA ≥
µA
√
γA

d βA
1

Ω1
. Let us interpret this condition. If gA <

µA
√
γA

d βA
1

Ω1
then σ(k) > 0, ∀k, so that linear solutions are damped and converge

to P
σ(0) = gA

dβA
µA
√
γA

Ω0. This corresponds to a uniform quiescent phase. In this1125

range of value of gA there is no wave propagation so that
µA
√
γA

d βA
1

Ω1
corresponds

to the critical value gA0
, eq. (25) found in section 5.2.1 in the case of two cells.

There are slight differences though. While (25) was holding for two cells without

linear approximation on Ω, here, we find the critical value without constraint

on dimension, but assuming that Ω is linear in GA.1130

Using this we can rewrite the positive solution (30) as k∗ ≡ k∗(gA) =
√

2d
a

√
1− gA0

gA
. This defines a characteristic length:

Λ(gA) =
a√
2d

1√
1− gA0

gA

, (31)

which interprets as follows. Consider cells in the quiescent phase and excite

a connected cluster of cells, with radius r. If r < Λ(gA) this perturbation is

damped, whereas for r ≥ Λ(gA) it is amplified, getting rapidly (exponentially1135

fast) out of the range of GA where the linear approximation on Ω holds. This

corresponds to drawing cells to region C. Thus, Λ(gA) is a critical size for a

cluster of excited cells to nucleate a wave.

As a consequence, the value of gA such that Λ(gA) = a corresponds to

a regime where exciting one cell is enough to propagate a wave in a uniform1140

landscape of GS . This value is gA =
gA0

1− 1
2d

, so that, in one dimension, gA = 2 gA0
.

This is the value drawn in Figs. 5, 7, 10, at the vertical dashed line separating

regime I and regime II. Note that this theoretical value is obtained in a purely

deterministic setting (without noise).

5.3.3. ”Self-Organized” Criticality and beyond1145

Let us now explore another regime. In the zero noise limit, the transition

to bursting can be only achieved when a cell switches from region D to region

C. This corresponds to a sharp threshold condition where Ω(GS , GA) takes the

form πAH [GA −GAc(GS) ], H being the Heaviside function and GAc the bifur-

cation value given by eq. (10). Then, eq. (19) has the form of a continuous state1150
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sandpile, proposed by several authors [108, 8] in the context of Self-Organised

Criticality [7, 5, 56, 24, 75, 17]. More generally, the presence of noise smooths

the Heaviside function leading to a sigmoid of the form displayed in Fig. 12, al-

lowing, in SOC models, power expansions and dynamical renormalisation group

analysis [29, 104].1155

In comparison with a SOC model there are some important differences

though. First, we have, in our case, an extra term S violating the local con-

servation required to reach a Self-Organized Critical regime [52, 56, 102, 20].

Actually, S behaves in a different way in the 3 regimes as shown in Fig. 11.

Second, in contrast to early SOC models the ”dissipation” does not occur at1160

the boundary but in the bulk, similarly to extended SOC models studied in

[4, 52, 53, 46, 101, 30, 20, 74]. Indeed, S is negative on average, leading to a

small bulk dissipation. Finally, the wave activation in our case is not ”adiabatic”

as in SOC model where one waits that an avalanche stops before activating a

new one, thereby preventing avalanches interactions. Thus, we don’t have the1165

infinite time scale separation necessary to reach SOC [47, 93, 46]. In contrast,

several retinal waves can propagate simultaneously and strongly interact, as il-

lustrated in Fig. 8. These interactions limit the size of each wave in the regime

II.

In a series of recent papers, Buendia et al report on the different scenar-1170

ios leading to SOC-like behaviours [17, 18]. Even if ”perfect” SOC is not

reached there exist observed regimes close to it, such as ”self-organized bistabil-

ity” (SOB), ”self-organized quasi-criticality” (SOqC), ”self-organized collective

oscillations” (SOCO). In addition, the paper [18] exhibits, in Fig. 1, a bifur-

cation diagram quite similar to ours although it deals with a different model1175

(Kuramoto) and different parameters. Also, the paper [17] shows, in Fig. 2, a

behaviour for the equivalent of our source term quite similar to ours. This sug-

gests that our model, and especially equations (19), (22), may exhibit different

regimes corresponding to different modalities of transport equations reported in

[17] especially ”SOC like” behaviours. The fact that we do not observe anything1180

striking in this direction with our simulations may just signify that one has to
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consider other settings. That is:

1. Dimension. We have only considered 1 dimensional simulations here.

One could happen in 2 dimensions ? We observed that the slow hyper-

polarization current following the bursting phase generates a landscape in1185

which subsequent waves have to propagate. In particular, a cell in the ab-

solute refractory state cannot be excited by its bursting neighbours. This

way, absolute refractory cells constitute temporary forbidden zone where

waves cannot go through, thereby compartmentalizing space with slowly

varying boundaries. Clearly, these boundaries are quite different in one1190

and in two dimensions. In 1D, these boundaries are just points; in 2D these

are lines with complex geometry. As the topological structure of active

and refractory regions could play an important role in shaping the visual

system, it is important to consider them in detail. This actually means,

as outlined in this paper, that it is not sufficient to consider indicators for1195

the global activity of the network, it is also essential to consider the shape

and size of connected regions where activity holds. Unfortunately, this is

easy to do in 1D, but is complex in 2D. (Fortunately, SACs are physiolog-

ically organized in a two dimensional layer, so, a priori, there is no need

to consider 3 dimensional lattices). The detailed study of this question1200

deserves thorough investigations beyond the scope of this paper. Yet, we

want to make some comments coming out from the present analysis.

First, a large part of the mechanism of retinal waves can be explained by

local dynamics and does not depend on dimensionality. Yet, the synchro-

nisation mechanism is a non local effect, depending, as we saw, on the non1205

linear coupling intensity gA, sAHP conductance gS and noise η, fixing the

characteristic size of active and refractory regions. It is also constrained

by boundary conditions. Especially, zero boundary conditions imposes

quiescent cells at the boundaries, thereby constraining the way how waves

propagate and interact and their characteristic size. Here, we can make1210

a formal analogy with statistical mechanics and Ising model. SACs den-
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dritic tree is rather short compared to the size of the retina (2 mm in

the mouse, compared to 50µm for the dentritic tree radius of a SAC),

so SACs interaction can be considered as local. Yet, Ising model, taught

us that local interactions can induce long range correlations at a phase1215

transition point. However, phase transitions in Ising model, and more

generally, models with short range interactions do not appear in 1D. In

this sense too, the behaviour of retinal waves could be quite different in

1D and 2D.

2. Potential phases transition and connectivity. The formal analogy1220

with Ising model actually raises further comments and questions. First,

dynamics here is quite more complex than an Ising model (or classical

forest fires) as couplings are slowly evolving in time, and depend non

linearly in dynamics. Refractory domains constitute somewhat a glassy

phase, evolving on a very slow time scale, so an analogy with spin glasses1225

could be more relevant [12, 78]. In particular, it would be interesting to

investigate if evidences of ageing appear in the model when taking the

thermodynamic limit. This might be a pure academic question, however,

as the meaning of a ”thermodynamic limit” in a retina remains to be

clarified. Another question coming out from the analogy with an Ising1230

model is ”what could play the role of the external field”. Photoreceptors

become more and more active during the first weeks of development and

it could be interesting to investigate if they could play a role, in stage II,

by acting on Bipolar cells and thereby on Starburst Amacrine cells.

Finally, we considered here nearest neighbours interaction. Although, this1235

coupling shouldn’t be taken ”a la lettre” as a real connectivity but an

effective one [69] one may be willing to consider more realistic connectiv-

ities. In particular, using random graphs (Erdos-Reyni) dramatically im-

pacts the phase diagram of the Kuramoto model [18], exhibiting a range

of parameters with a Griffith phase. Griffith phase is characterized by1240

power-laws extending over broad regions in parameters space. In mag-
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netic systems, it was shown that Griffith phases may have many different

origins, e.g., phase separation, occurrence of clusters of sizes ranging from

nano-meters to micrometers, competing intra- and interlayer magnetic in-

teraction. In general, it stems from the presence of quenched disorder (e.g.1245

structural heterogeneity) in classical, quantum, and non-equilibrium dis-

ordered systems [103] with local regions characterized by parameter values

which differ significantly from their corresponding system averages. This

is very close to what we observe in our model. In the neuroscience field,

Griffith phases were observed by Moretti - Munoz [80] for the whole brain,1250

and Girardi-Schappo et al [39] for the V1 cortex. It was argued by these

authors that Griffith phase yield enhanced functionality in a generic way,

facilitating the task of self-organizing, adaptive and evolutionary mech-

anisms selecting for criticality. As the retina is the entry of V1 and as

retinal waves conduct the development of the visual system it might inter-1255

esting to relate the potential existence of a Griffith phase in retinal waves

to the observation of such a phase in V1.

3. Percolation. In their paper [50] Hennig et al. conclude that ”the network

of SACs participating in stage II retinal waves is capable of operating at a

transition point between purely local and global functional connectedness,1260

corresponding to a percolation phase transition”, where waves of activity -

often referred to as ”avalanches”- are distributed according to power laws

(see Fig. 4 of [50], although it is not completely clear if this is a power

law). They interpret this regime as an indication that ”early spontaneous

activity in the developing retina is regulated according to the following1265

principle: maximize randomness and variability in the resulting activity

patterns”. A similar point of view is defended in [69]. The equivalent of

a percolation transition in our model is at the transition between regime

II and regime III. One switches from a competitive regime where waves

interact with the sAHP landscape, preventing them to propagate, to a1270

cooperative regime where waves collides, with the effect of non linearly
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enhancing their activity, as shown in Fig. 5 and activity spreads through

the whole lattice. Thus, in contrast to classical percolation, here cells

interaction is active, potentially leading to a different ”critical” behaviour

(critical exponents) than in directed percolation or forest fires. Note also1275

that the transition corresponds to a determined value of gA whereas gA

is evolving during development, so that the ”percolation” phase is a brief

instant. Thus, regime II, extending on a whole interval (Griffith phase),

might be more relevant for visual system development.

4. Self-organization. Assume that their exist some notion of criticality in1280

retinal waves how could the retina manage to maintain a critical state as

gA is evolving ? Several biological mechanisms have been proposed in the

literature to explain how the brain could achieve to maintain a critical

state: synaptic adaptation [70, 71, 13, 105, 28, 65] , dynamic neuronal

gains [16, 65], adaptive firing thresholds [40], topological self-organization1285

[14] (see [67] and references therein for a recent review), homeostasy [77].

We first would like to remark that most of these models where made

for cortical, spiking neurons. In contrast, most neurons in the retina,

including SACs, do not spike 6. Also, there is no evidence of long term

plasticity although short term plasticity has been reported [64] (dealing1290

with non spiking neurons). It is therefore not clear to us which mechanism

could apply. Note however that the most important aspect revealed by

our paper, making dynamics so rich, is that region D is a recurrent region

close to bifurcations. Dynamics naturally drives the cell back to this region

where it is quite sensitive to perturbations thanks to basic mechanisms1295

observed in experiments. In this way, the mechanism of ”critical stability”

could be close to the scenario called ”Mapping Self-Organized Criticality

onto Criticality” introduced by D. Sornette and co-workers in [94]. In the

6Neural spikes are produced by sodium and potassium fluxes, whereas it was shown by

Zhou et al [109] that sodium plays no role in SACs bursting.
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past, this line of thought has collected a broad consensus and resulted in

numerous interesting results [94, 70, 71, 28, 82, 88]. Yet, the recurrence1300

to region D is not sufficient to ensure criticality, requiring also long range

correlations via Ach coupling. A thorough investigation of criticality in

our model would reveal whether the dynamics we propose is sufficient or

if we need extra mechanisms such as the one proposed in [68] where the

feedback of the control parameter to the order parameter is carried out1305

through the dynamics of the synaptic tree radius.

6. Discussion

In this paper, following [63], we answered several questions with respect to

our understanding of retinal waves. Which is the biophysical mechanism that

generates sustained periodically bursting in immature SACs and which are the1310

parameters that control it? Is there a potential, universal, mechanism of waves

generation yet accounting for the observed waves variability ? How do SACs

synchronize in order to produce propagating waves? How do waves propagate ?

How do they stop? How do the characteristics of waves depend on biophysical

parameters ?1315

The scenario that we proposed relies on a detailed modeling of Starbust

Amacrine Cells, based on the experimental literature and taking into account

the role of calcium gated potassium channels, intracellular calcium dynamics,

and cholinergic coupling between cells. The model is based on a variant of the

Morris-Lecar model, with a fast potassium current, calcium dynamics, slow after1320

hyperpolarization current and cholinergic interactions. There are 3 times scales

and the fast dynamics is characterized by a two dimensional model of Morris-

Lecar type with additional parameters controlling the sAHP conductance (GS)

and the cholinergic conductance (GA). Most parameters have been tuned from

the experimental literature (see [61] for detail).1325

A thorough bifurcation analysis of the fast dynamics, in the plane {GS , GA}

reveals the existence of 4 regions, A,B,C,D. The most important in our anal-
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ysis is the tiniest, region D. Indeed, as we show: (1) Dynamics returns to

that region in a recurrent way; (2) in this region, the cell is bistable (type 1

excitability) and a small amount of noise allows it to switch from rest state to1330

fast oscillations. This transition triggers waves generation and propagation. In

region D the transition probability is quite sensitive to the actual value of GS

and GA resulting, at the cell level, to a wide variability in the time of transi-

tion, and, at the network level, in a wide variability in waves duration and size.

This mechanism is purely dynamical and biophysically grounded. Especially,1335

the power R4 in the sAHP conductance, playing a central role here, is due to

the mechanism of calcium-gating in slow potassium channels.

All in all, what makes retinal waves dynamics of our model so rich is the

closeness of bifurcations arising in the tight, recurrent zone D. In this spirit, we

would like to briefly comment on the work of Ford and Feller [36] where they1340

insisted on the ”considerable variability in the current underlying the slow AHP

and in depolarization of individual SACs in subsequent waves [...] Variability

in the proportion of nonrefractory SACs is necessary to produce waves of finite

size. With a high rate of spontaneous depolarization, as in rabbit retina and pre-

vious models, this variability is introduced by spontaneous depolarizations and1345

subsequent hyperpolarizations between waves”. This remark was motivated by

experimental observations. They modelled it using Hennig et al model where,

in addition, the characteristic times τR, τS are random distribution, introducing

this way a source of variability in the sAHP. As we have shown in this paper,

there is no need to introduce this extra variability. Dynamics makes the job.1350

On the basis of numerical simulations and theoretical arguments we were

able to exhibit 3 regimes of wave propagation as gA, the maximal Ach conduc-

tance, increases. When gA is smaller than a value gA0
, analytically computed in

one dimension, no wave propagation is possible. Then as gA increases one enters1355

in regime I where one observes small waves whose propagation is ruled by noise

fluctuations, corresponding to cells in region D. This results in an anomalous

transport. In this regime, the probability ρ that a cell is bursting at time t
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increases sharply as well as waves characteristics (size, duration) and network

activity (n). The separation between regime I and II holds at the unique point1360

where ∂ρ
∂gA

is maximum, that is the point where the probability ρ that a cell

bursts at a given time has the maximum sensitivity to variations of gA. The

transition corresponds to a characteristic scale of wave nucleation equal to the

SACs spacing. As gA further increases, in regime II, waves are essentially prop-

agating deterministically, with a decreasing influence of noise, corresponding to1365

cells in-between region D and C. Transport is ballistic there. What mainly

limits the wave size is the interaction with the sAHP landscape left by previous

retinal waves. This is therefore a regime of competition between waves. The

probability ρ that a cell is bursting at time t as well as waves characteristics

are increasing essentially linearly with gA, with a steep slope. In the transition1370

between regime II and regime III one switches from a regime of competition to

a regime of cooperation (non linear feedback) prolonging burst durations and

sAHP. At the transition, one typically have several cooperating waves with a

global activity spreading through the whole lattice. Hence, the transition be-

tween regime II and III resembles a percolation transition, as formerly pointed1375

out by several authors [50, 69]. However, in contrast to classical percolation,

non linear coupling cells enhances cooperative effects. In regime III, waves size

and duration saturate and ρ increases linearly, with a small slope, in the range

of gA values we investigated. For larger gA we expect ρ to saturate and to

converge to the fraction of time a cell can be excited, dictated by sAHP param-1380

eters. We didn’t explore this regime though as we were interested in ranges of

gA values compatible with retinal development. In this perspective, actually, gA

is decreasing, presumably leading from regime III to regime I, which, according

to our estimation of table 1 could coincide with the switch from cholinergic-SAC

(stage II) with glutamatergic-AII (stage III) retinal waves.1385

In this perspective, transition between regimes such as the percolation-like

transition from regime III to regime II is a brief instant in the evolution and one

does not see why it should play an important role. Nevertheless, the question
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of critical behaviour in retinal waves is important. Since the seminal work of1390

Beggs and Plen [9] - reporting that neocortical activity in rat slices occur in

the form of neural avalanches with power law distributions close to a critical

branching process - there have been numerous papers suggesting that the brain

as a dynamical system fluctuates around a critical point. Scale-free neural

avalanches have been found to occur in a wide range of neural tissues and1395

species [89]. From a theoretical point of view, it has been suggested [49, 89]

that such a scale-free organisation could favor information storage and transfer,

improvement of the computational capabilities [10], information transmission

[9, 10, 91], sensitivity to stimuli and enlargement of dynamic range [66, 90, 38,

39].1400

It has been proposed by Hennig et al [50] that such a critical regime could

also be helpful for the visual system developmental phase triggered by stage

II retinal waves. In such a regime the retina would maximize randomness and

variability in the resulting activity patterns. However, they do not propose

a mechanism explaining how this regime can be robust to parameters vari-1405

ations during development, especially cholinergic coupling. As we discussed

in the paper, such a structural stability could correspond to a Griffith phase

(also observed in V1 [39]) instead of a classical critical regime. This interesting

possibility would however deserve extensive simulations in 2D, with a realistic

connectivity, and a thorough analysis data to cleanly identify a critical signa-1410

ture. There is a wide literature dealing with the precise characterization of a

critical state, where scaling exponents obey relations fixed by renormalization

group theory [72, 51, 57, 87]. In the field of neuroscience this has been widely

discussed by authors such as Touboul and Destexhe [99, 100] and many authors

have looked for solid evidences of criticality [41, 80, 39]. In particular, it is1415

believed that the so-called crackling noise relationship (from Sethna’s terminol-

ogy [87]) can be used to discriminate between true critical systems and ”fake”

ones. Recently, Kanders et al [59] have shown that developing neural cultures

in specific conditions satisfy the crackling noise relationship. The same type of

investigations could be done with our model.1420

62



We would like now to address a few further open questions related to this

work.

6.1. Spontaneous Bursting

It is possible to move regions C,D downward or upward by a slight change1425

in the leak potential VL. Experimentally, is it possible to modify VL by chang-

ing the outside potassium concentration. Note, however, that the change in a

reversal potential is logarithmic in the concentration. Nevertheless, in our case,

a change of VL from −72 mV, the value used in the paper, to VL = −70 mV

has the effect to move region D to negative values for GA. This means that,1430

in this case, when the cell returns back from its sAHP excursion it eventually

penetrates in region C, instead of region D. Then, it starts to oscillate again

(stable limit cycle in C). Therefore, in this situation, no noise is required to

restart bursting. It occurs spontaneously.

In this scenario, cells burst therefore periodically, with a frequency controlled1435

by τR, τS . An example is shown in Fig. 14. Here, cells have a tendency to

synchronise. However, introducing a bit of randomness in initial conditions

one can obtain, depending on the maximal conductances gS , gA, a regime with

spatio-temporal disorder where waves interacts and leads to random regions

similar to the Noise Induced Bursting regime [62].1440

The cholinergic interactions of SACs in a quenched disordered sAHP land-

scape breaks down the spontaneous bursting periodicity and leads to a spatio-

temporal chaotic dynamics quite similar to the noise induced bursting for waves

dynamics [62]. We didn’t address in detail the spontaneous bursting regime in

this paper though leaving it for further studies.1445

6.2. Understanding the functional role of retinal waves

It would be interesting to explore, at a modelling level, what could be the

functional impact of the different waves regimes we observe in the development

of the retino-thalamico-cortical pathways, elucidating why early neural networks
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Figure 14: Spontaneous bursting (SB) regime. Voltage Rhythmic bursting for one iso-

lated SAC as a function of time. The interburst depends on τS , τR .

would choose to maintain their activity in such regimes. As we have seen in sec-1450

tion 4.1 experimental evidences show that gA decays during development so that,

according to our results, the retina ought to go successively through regimes III

(extended waves), II (wide distribution of waves and strong interaction with

the sAHP landscape), and I (localized waves) although this step in evolution

coincide with the arousal of stage III waves. More particularly, we reported the1455

apparition of sAHP patterns that spatially bound the propagating waves. Those

localized bounding patches are found to persist more than a sAHP timescale,

indicating that in the network scale, they introduce a type of spatial memory

of previous activity. In other words, they create an heterogeneous landscape

where waves could propagate, inducing an effect, first on waves characteristics,1460

and second on the selective synaptic shaping of the network through this spatial

bias 7 For example, late waves (stage III) appear to be spatially bounded and

more localised than stage II waves [73], suggesting that probably late stage II

waves could prepare the landscape for the transition to more spatially confined

activity. Hence, those localized activity patterns, could potentially have a link1465

with how receptive fields are formed before vision becomes functional.

A next step would therefore be to link the retinal waves model presented here

7This spatial heterogeneity might also have an impact on blood vessels organisation with,

thus, a very long term influence.
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to a cortical V1 model such as the one developed in [95] so as to investigate the

role of synaptic shaping under retinal wave stimulation to drive the cortical

response during development.1470

This work has also possible future outcomes with respect to retina therapy as

well. Understanding how retinal waves are initiated and propagate in the retina

could enable one to define protocols to trigger such retinal waves in the in vivo

adult retina. Inducing such waves is expected to reintroduce some plasticity

in the retinal tissue and the projections in the brain. This induced plasticity1475

could have important therapeutic applications to treat patients or stimulate

regeneration of retinal ganglion cell axons following optic nerve crush.
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Parameters Value

Parameter Physical value

Cm 22 pF

gL 2nS

gC 12nS

gK 10nS

gS [2, 12] nS

VL −72mV

VC 50mV

VK −90mV

V1 −20mV

V2 20mV

V3 −25mV

V4 7mV

τN 5ms

τR 8300ms

τS 8300ms

τC 2000ms

δC 10.503 nM pA−1

αS
1

2004 nM
−4

αC 4865 nM

αR 4.25

HX 1800 nM

C(0) 88 nM

η 6 pAms1/2

Table 2: Typical parameters values used in the model.
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Parameter Physical value

µA 1.86 s−1

KA 200V −1

VA 0mV

V0 −40mV

γA 1nM2

βA 5nM s−1

Table 3: Typical parameters values related to the acetylcholine neurotransmitter (Ach).
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