
HAL Id: hal-03710007
https://hal.inria.fr/hal-03710007v2

Submitted on 4 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Confluence of Parallel-Innermost Term Rewriting
Thaïs Baudon, Carsten Fuhs, Laure Gonnord

To cite this version:
Thaïs Baudon, Carsten Fuhs, Laure Gonnord. On Confluence of Parallel-Innermost Term Rewriting.
IWC 2022 - 11th International Workshop on Confluence, Aug 2022, Haifa, Israel. �hal-03710007v2�

https://hal.inria.fr/hal-03710007v2
https://hal.archives-ouvertes.fr

On Confluence of Parallel-Innermost Term Rewriting*1

Thäıs Baudon1, Carsten Fuhs2, and Laure Gonnord3,1
2

1 LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), Lyon, France3

2 Birkbeck, University of London, United Kingdom4

3 LCIS (UGA/Grenoble INP/Ésisar), Valence, France5

Abstract6

We revisit parallel-innermost term rewriting as a model of parallel computation on7

inductive data structures. We propose a simple sufficient criterion for confluence of parallel-8

innermost rewriting based on non-overlappingness. Our experiments on a large benchmark9

set indicate the practical usefulness of our criterion. We close with a challenge to the10

community to develop more powerful dedicated techniques for this problem.11

1 Introduction12

This extended abstract deals with a practical approach to proving confluence of (max-)parallel-13

innermost term rewriting. We consider term rewrite systems (TRSs) as intermediate representa-14

tion for programs operating on inductive data structures such as trees. More specifically, TRSs15

can be seen as an abstraction of pattern matching on algebraic data types (ADTs), which are16

particularly well-suited to the implementation of operations on inductive data structures. This17

class of programs is gaining in importance in high-performance computing (HPC): among other18

examples, the scheduler of the Linux kernel uses red-black trees; and many (also systems-level)19

programming languages like Rust used in HPC feature ADTs. This leads to the need for20

compilation techniques for pattern matching on ADTs that yield a highly efficient output. One21

aspect of this problem pertains to the parallelisation of such programs. A small example for22

such a program is given in Figure 1.23 fn size(&self) -> int {

match self {

&Tree::Node { v, ref left, ref right }

=> left.size() + right.size() + 1,

&Tree::Empty => 0 , } }

Figure 1: Tree size computation in Rust

Here, the recursive calls to left.size24

() and right.size() can be done in par-25

allel. In the following, we shall consider a26

corresponding parallel-innermost rewrite re-27

lation. Evaluation of TRSs (as a simple func-28

tional programming language) with inner-29

most rewrite strategies in massively parallel30

settings such as GPUs is currently a topic of active research [12]. Confluence of parallel-innermost31

rewriting enters the picture in several ways: for TRSs, confluence determines whether the specific32

choice of rules makes a difference; moreover, confluence can be a prerequisite for applicability of33

program analysis techniques (e.g., for finding complexity bounds).34

In Section 2, we recapitulate standard definitions and fix notations. Section 3 recapitulates the35

notion of parallel-innermost rewriting on which we focus in this extended abstract. In Section 4,36

we provide a first criterion for confluence of parallel-innermost rewriting. Section 5 provides37

experimental evidence of the practicality of our criterion on a large standard benchmark set.38

We conclude in Section 6.39

*This work was partially funded by the French National Agency of Research in the CODAS Project (ANR-17-
CE23-0004-01).

2 Preliminaries40

We assume familiarity with term rewriting (see, e.g., [2]) and recall standard definitions.41

Definition 1 (Term Rewrite System, Innermost Rewriting). T (Σ,V) denotes the set of terms42

over a finite signature Σ and the set of variables V. For a term t, the set Pos(t) of its43

positions is given as: (a) if t ∈ V, then Pos(t) = {ε}, and (b) if t = f(t1, . . . , tn), then44

Pos(t) = {ε} ∪
⋃

1≤i≤n{iπ | π ∈ Pos(ti)}. The position ε is the root position of term t. For45

π ∈ Pos(t), t|π is the subterm of t at position π, and we write t[s]π for the term that results46

from t by replacing the subterm t|π at position π by the term s.47

For a term t, V(t) is the set of variables in t. If t has the form f(t1, . . . , tn), root(t) = f is48

the root symbol of t. A term rewrite system (TRS) R is a set of rules {ℓ1 → r1, . . . , ℓn → rn}49

with ℓi, ri ∈ T (Σ,V), ℓi ̸∈ V, and V(ri) ⊆ V(ℓi) for all 1 ≤ i ≤ n. The rewrite relation of R is50

s →R t iff there are a rule ℓ → r ∈ R, a position π ∈ Pos(s), and a substitution σ such that51

s = s[ℓσ]π and t = s[rσ]π. Here, σ is called the matcher and the term ℓσ is called the redex of52

the rewrite step. If ℓσ has no proper subterm that is also a possible redex, ℓσ is an innermost53

redex, and the rewrite step is an innermost rewrite step, denoted by s i→R t.54

ΣR
d = {f | f(ℓ1, . . . , ℓn) → r ∈ R} and ΣR

c = Σ \ ΣR
d are the defined and constructor55

symbols of R. We may also just write Σd and Σc.56

For a relation →, →+ is its transitive closure and →∗ its reflexive-transitive closure. An57

object o is a normal form wrt a relation → iff there is no o′ with o → o′. A relation → is58

confluent iff s →∗ t and s →∗ u implies that there exists an object v with t →∗ v and u →∗ v.59

Example 1 (size). Consider the TRS R with the following rules modelling the code of Figure 1.60

plus(Zero, y) → y size(Nil) → Zero
plus(S(x), y) → S(plus(x, y)) size(Tree(v, l, r)) → S(plus(size(l), size(r)))

Here ΣR
d = {plus, size} and ΣR

c = {Zero,S,Nil,Tree}. We have the following innermost rewrite61

sequence, where the used innermost redexes are underlined:62

size(Tree(Zero,Nil,Tree(Zero,Nil,Nil))) i→R S(plus(size(Nil), size(Tree(Zero,Nil,Nil))))
i→R S(plus(Zero, size(Tree(Zero,Nil,Nil)))) i→R S(plus(Zero,S(plus(size(Nil), size(Nil)))))
i→R S(plus(Zero,S(plus(Zero, size(Nil))))) i→R S(plus(Zero,S(plus(Zero,Zero))))
i→R S(plus(Zero,S(Zero))) i→R S(S(Zero))

This rewrite sequence uses 7 steps to reach a normal form.63

3 Parallel-Innermost Rewriting64

The notion of parallel-innermost rewriting dates back at least to the year 1974 [13]. Informally,65

in a parallel-innermost rewrite step, all innermost redexes are rewritten simultaneously. This66

corresponds to executing all function calls in parallel using a call-by-value strategy on a machine67

with unbounded parallelism [3]. In the literature [11], this strategy is also known as “max-68

parallel-innermost rewriting”.69

Definition 2 (Parallel-Innermost Rewriting [5]). A term s rewrites innermost in parallel to t70

with a TRS R, written s i−→∥ R t, iff s i→+
R t, and either (a) s i→R t with s an innermost redex,71

or (b) s = f(s1, . . . , sn), t = f(t1, . . . , tn), and for all 1 ≤ k ≤ n either sk
i−→∥ R tk or sk = tk is72

a normal form.73

Example 2 (Example 1 continued). The TRS R from Example 1 allows the following parallel-74

innermost rewrite sequence, where innermost redexes are underlined:75

size(Tree(Zero,Nil,Tree(Zero,Nil,Nil))) i−→∥ R S(plus(size(Nil), size(Tree(Zero,Nil,Nil))))
i−→∥ R S(plus(Zero,S(plus(size(Nil), size(Nil))))) i−→∥ R S(plus(Zero,S(plus(Zero,Zero))))
i−→∥ R S(plus(Zero,S(Zero))) i−→∥ R S(S(Zero))

In the second and in the third step, two innermost steps each happen in parallel. An innermost76

rewrite sequence without parallel evaluation necessarily needs two more steps to a normal form77

from this start term, as in Example 1.78

4 Confluence of Parallel-Innermost Rewriting79

Given a TRS R, we wish to prove (or disprove) confluence of this relation i−→∥ R. Apart from80

intrinsic interest in confluence as an important property of a rewrite relation, we are also81

motivated by applications of confluence proofs to finding lower bounds for the length of the82

longest derivation with i−→∥ R from basic terms, i.e., terms f(t1, . . . , tk) where f is a defined83

symbol and all ti are constructor terms. This notion of complexity of a TRS R, which is84

parametric in the size of the start term, is also known as runtime complexity [8].185

To this end, might we even reuse confluence of innermost rewriting or of full rewriting (and86

corresponding tools) as sufficient criteria for confluence of parallel-innermost rewriting?87

Alas, by the following example, in general we have to answer this question in the negative.88

Example 3 (Confluence of i→R does not imply Confluence of i−→∥ R). To see that we cannot89

prove confluence of i−→∥ R just by using a standard off-the-shelf tool for confluence analysis of90

innermost or full rewriting [4], consider the TRS R = {a → f(b, b), a → f(b, c), b → c, c → b}.91

For this TRS, both i→R and →R are confluent. However, i−→∥ R is not confluent: we can rewrite92

both a i−→∥ R f(b, b) and a i−→∥ R f(b, c), yet there is no term v such that f(b, b) i−→∥ ∗
R v and93

f(b, c) i−→∥ ∗
R v. The reason is that the only possible rewrite sequences with i−→∥ R from these terms94

are f(b, b) i−→∥ R f(c, c) i−→∥ R f(b, b) i−→∥ R . . . and f(b, c) i−→∥ R f(c, b) i−→∥ R f(b, c) i−→∥ R . . . ,95

with no terms in common.96

Thus, in general a confluence proof for →R or i→R does not imply confluence for i−→∥ R.97

To devise a sufficient criterion for confluence of i−→∥ R, recall that confluence means: if a term98

s can be rewritten to two different terms t1 and t2 in 0 or more steps, then it is always possible99

to rewrite t1 and t2 in 0 or more steps to one and the same term u. For parallel-innermost100

rewriting, the redexes that get rewritten are fixed: all the innermost redexes simultaneously.101

Thus, s can reach two different terms t1 and t2 only if at least one of these redexes can be102

rewritten in two different ways using i→R.103

The following standard definition of a non-overlapping TRS will be very helpful for a sufficient104

criterion of confluence of i−→∥ R.105

Definition 3 (Non-Overlapping). A TRS R is non-overlapping iff for any two rules ℓ → r, u →106

v ∈ R where variables have been renamed apart between the rules, there is no position π in ℓ107

such that ℓ|π /∈ V and the terms ℓ|π and u unify.108

1The details of our approach to finding complexity bounds are outside of the scope of the present extended
abstract; what matters here is that it provides an application for techniques to prove confluence of parallel-
innermost rewriting. Thus, more powerful techniques for proving confluence of parallel-innermost rewriting
potentially allow for larger applicability of techniques for finding lower bounds for runtime complexity of
parallel-innermost rewriting.

Using non-overlappingness, a sufficient criterion that a given redex has a unique result from109

a rewrite step is given in the following.110

Lemma 1 ([2], Lemma 6.3.9). If a TRS R is non-overlapping, and both s →R t1 and s →R t2111

with the used redex of both rewrite steps at the same position, then t1 = t2.112

With the above reasoning, this lemma directly gives us a sufficient criterion for confluence of113

parallel-innermost rewriting.114

Corollary 1 (Confluence of Parallel-Innermost Rewriting). If a TRS R is non-overlapping,115

then i−→∥ R is confluent.116

Here left-linearity of R (i.e., in all rules ℓ → r ∈ R, every variable occurs at most once in ℓ),117

as in Rosen’s criterion for confluence of full rewriting [10], is not required.118

Example 4 (Example 2 continued). Our TRS R from Example 1 and Example 2 is non-119

overlapping and, by Corollary 1, its relation i−→∥ R is confluent.120

The reasoning behind Corollary 1 can be generalised to arbitrary strategies where the redexes121

that are rewritten are fixed, such as (max-)parallel-outermost rewriting [11].122

We get the following two follow-up questions:123

1. How powerful is Corollary 1 for proving confluence of i−→∥ R in practice?124

2. Can we really not do better than Corollary 1?125

5 Experiments126

To assess the first question, we used the implementation of the non-overlappingness check127

in the automated termination and complexity analysis tool AProVE [6]. To demonstrate128

the effectiveness of our implementation, we have considered the 663 TRSs from category129

Runtime Complexity Innermost Rewriting of the Termination Problem Database (TPDB),130

version 11.2 [15]. The TPDB is a collection of examples used at the annual Termination and131

Complexity Competition [7, 14]. The above category of the TPDB is the benchmark collection132

used specifically to compare tools that infer complexity bounds for runtime complexity of133

innermost rewriting. As both the TPDB and also COPS [9], the benchmark collection used134

in the Confluence Competition [4], currently do not have a specific benchmark collection for135

parallel-innermost rewriting, we used this benchmark collection instead.2136

In our experiments, AProVE determined for 447 out of 663 TRSs (about 67.4%) that they137

are non-overlapping. By Corollary 1, this means that their parallel-innermost rewrite relations138

are confluent. Thus, already with the simple (and efficiently checkable) criterion of Corollary 1139

we cover a large number of TRSs occurring “in the wild”.140

At the same time, this reinforces the second question: Can we not do better than this?141

Corollary 1 already fails for such natural examples as a TRS with the following rules to compute142

the maximum function on natural numbers:143

max(Zero, x) → x
max(x,Zero) → x

max(S(x),S(y)) → S(max(x, y))

2Our experimental data as well as all examples are available online [1].

Here one can arguably see immediately that the overlap between the first and the second rule, at144

root position, is harmless: if both rules are applicable to the same redex, the result of a rewrite145

step with either rule will be the same (max(Zero,Zero) i→R Zero). However, in general, more146

powerful criteria for confluence of parallel-innermost rewriting would be desirable.147

6 Conclusion148

We are not aware of other work that explicitly discusses automatically checkable criteria for149

confluence of parallel-innermost rewriting. As such, this extended abstract tries to make a150

first attempt at filling this gap, by using non-overlappingness as a sufficient criterion. Our151

experiments indicate that non-overlappingness provides a good “baseline” for a sufficient criterion152

for confluence of parallel-innermost rewriting. At the same time, techniques based on checks153

for non-overlappingness are one of the most basic tools in a confluence prover’s toolbox. Thus,154

this paper also poses the challenge to the community to develop stronger techniques for proving155

(and disproving!) confluence of parallel-innermost rewriting.156

References157

[1] https://www.dcs.bbk.ac.uk/~carsten/eval/parallel_confluence/.158

[2] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge Univ. Press, 1998.159

[3] Guy E. Blelloch and John Greiner. Parallelism in sequential functional languages. In Proc. FPCA160

1995, pages 226–237. ACM, 1995.161

[4] Community. Confluence Competition (CoCo). http://project-coco.uibk.ac.at/.162

[5] Mirtha-Lina Fernández, Guillem Godoy, and Albert Rubio. Orderings for innermost termination.163

In Proc. RTA ’05, volume 3467 of LNCS, pages 17–31. Springer, 2005.164

[6] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten165

Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie166

Swiderski, and René Thiemann. Analyzing program termination and complexity automatically167

with AProVE. J. Autom. Reason., 58(1):3–31, 2017.168

[7] Jürgen Giesl, Albert Rubio, Christian Sternagel, Johannes Waldmann, and Akihisa Yamada. The169

termination and complexity competition. In Proc. TACAS ’19, Part III, volume 11429 of LNCS,170

pages 156–166. Springer, 2019.171

[8] Nao Hirokawa and Georg Moser. Automated complexity analysis based on the dependency pair172

method. In Proc. IJCAR ’08, volume 5195 of LNCS, pages 364–379. Springer, 2008.173

[9] Nao Hirokawa, Julian Nagele, and Aart Middeldorp. Cops and CoCoWeb: Infrastructure for174

confluence tools. In Proc. IJCAR ’18, volume 10900 of LNCS, pages 346–353. Springer, 2018. See175

also: https://cops.uibk.ac.at/.176

[10] Barry K. Rosen. Tree-manipulating systems and Church-Rosser theorems. J. ACM, 20(1):160–187,177

1973.178

[11] René Thiemann, Christian Sternagel, Jürgen Giesl, and Peter Schneider-Kamp. Loops under179

strategies ... continued. In Proc. IWS ’10, volume 44 of EPTCS, pages 51–65, 2010.180

[12] Johri van Eerd, Jan Friso Groote, Pieter Hijma, Jan Martens, and Anton Wijs. Term rewriting on181

GPUs. In Proc. FSEN ’21, volume 12818 of LNCS, pages 175–189. Springer, 2021.182

[13] Jean Vuillemin. Correct and optimal implementations of recursion in a simple programming183

language. J. Comput. Syst. Sci., 9(3):332–354, 1974.184

[14] Wiki. The International Termination Competition (TermComp). http://termination-portal.185

org/wiki/Termination_Competition.186

[15] Wiki. Termination Problems DataBase (TPDB). http://termination-portal.org/wiki/TPDB.187

https://www.dcs.bbk.ac.uk/~carsten/eval/parallel_confluence/
http://project-coco.uibk.ac.at/
https://cops.uibk.ac.at/
http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/TPDB

	Introduction
	Preliminaries
	Parallel-Innermost Rewriting
	Confluence of Parallel-Innermost Rewriting
	Experiments
	Conclusion

