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ABSTRACT
Behavioural models are a valuable tool for software verification, test-
ing, monitoring, publishing etc. However, they are rarely provided
by the software developers and have to be extracted either from the
source or from the compiled code. In the context of Java programs, a
number of approaches exist for building behavioural models. Most
of these approaches rely on the analysis of the compiled bytecode.
Instead, we are looking to extract behavioural models—in the form
of Finite State Machines (FSMs)—from the Java source code to
ensure that the obtained FSMs can be easily understood by the soft-
ware developers and, if necessary, updated or integrated into the
original source code, e.g. in the form of annotations. Modern soft-
ware systems are huge, rely on external libraries and interact with
their environment. Hence, extracting useful behavioural models
requires abstraction. In this paper, we present an initial approach
to this problem by focusing on the extraction of FSMs modelling
library APIs. We focus on the analysis of Java code involving the
use of collections. To this end, we encode the operational seman-
tics of collection operations using patterns of Boolean predicates.
These patterns are instantiated based on the analysis of the source
code of API implementation methods to form an encoding of the
possible FSM transitions. A SAT solver is then used to determine
the enabledness conditions (guards) of these transitions.
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1 INTRODUCTION
Behavioral models are a valuable tool for supporting the process
of building the correct software, that could be beneficial during
all phases of the development lifecycle: design and implementa-
tion [8, 24, 28], testing and verification [5, 12], coordination and
monitoring [18, 23], deployment [7] etc.
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One of the particular problem behavioral models could help to
address is maintaining the API correctness. APIs provide a great
way of scoping, encapsulating and presenting library functions [6].
Reusing components with the help of APIs helps to reduce the
cost of software systems development and to increase their qual-
ity [9, 10, 17]. However, API development is not free of problems.
When designed badly, API offers inefficient or even incorrect code
requiring writing additional code to deal with it, which leads di-
rectly to the increased development cost [21]. When documented
badly and without clear explanation of the correct sequence of
method usage, API can demonstrate exceptional behaviours [3].
External APIs, being a black box, can contain error-prone depen-
dencies and make systems prone to breaking changes that have to
be addressed in the client code. A new version of an external inter-
face evolving independently can break backward compatibility and
may cause runtime failures of client systems. According to studies,
breaking changes are being present in the significant amount of all
new releases (70% [26], 75% [15], and 80% [16]). One can argue that
building a dynamic model of libraries to help the developer under-
stand the behaviour of methods operating on collections contradicts
the fundamental principle of information hiding: a developer rely-
ing on knowledge of the API implementation would produce code
even more prone to the breaking changes we want to address. We
believe, however, that if a signature of an API method provides a
developer with the insufficient information, she will need to make
her assumptions in any case whether they are supported by the
extracted model or not. But comparing the two models of two dif-
ferent releases can show a developer if any breaking changes were
introduced.

There exist various approaches based on behavioral models
to deal with such problems possessing different levels of formal-
ity (from graphical representation [11] to employing behavioral
types [2]) and ways of being produced and presented. In general,
these models are expected to be expressive, rigourous, intuitive,
well-structured and possess the adequate level of abstraction (be
sufficiently detailed and precise) [20]. Such models could comple-
ment the code [27], be extracted from it [16, 25], from its bina-
ries [26], from some intermediate representation or from other
models [13, 14], from the execution traces [22] or be created to
synthesize the code from them [20].

We are interested in building behavioral models that have a
tight connection with API implementation source code to provide
feedback to developers on the behavior of the program. In this paper,
we propose an approach to semi-automatic extraction of behavioral
models for APIs written in Java in the form of Finite State Machines
(FSMs), focusing on the code operating on collections.

The paper is structured as follows. In Section 2, we introduce
a simple running example. In Section 3, we present our approach

ar
X

iv
:2

20
5.

15
27

0v
1 

 [
cs

.S
E

] 
 3

0 
M

ay
 2

02
2

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Larisa Safina and Simon Bliudze

class ExampleImpl implements ExampleAPI {
private Set<String> idSet;

public ExampleImpl() {
1: idSet = new HashSet<>();

}

public void add(String id){
1: idSet.add(id); // See Section 3.2 for the line

} // numbers in the left margin

public void removeId(String idMain, String idOpt) {
1: idSet.remove(idMain);

if (idMain != idOpt) {
2: idSet.remove(idOpt);

} else {
3: }

}
}

Figure 1: Running example source code

Figure 2: Behavioural model for the HashSet implementa-
tion

to model extraction. In Section 4, we discuss our assumptions and
future work directions. Section 5 concludes the paper.

2 RUNNING EXAMPLE
Let’s imagine the API created for the users of a pharmaceutical
company. In particular it allows users to create reservations for
the set of medications and to manipulate this collections: add or
remove elements. Each medication can have two identifiers where
the second is the one provided by a third-party vendor. When a
detail to be added or removed both ids are checked (see the code
snippet bellow)

During the last code review it was decided to migrate idSet
collection from the HashSet to the TreeSet to present the order
of the elements. However, this led to the unexpected exception,
when some user tried to remove a medicine having only one id
(remove("LK32EJ2", null)). This exception is not visible at the com-
pilation but can be catched by the static code analysers, and it is
clearly visible if we compare the behavioral models generated for
the two versions of the code (see Figures 2 and 3).

These models show the result of calling the API methods add
and remove. We model the states with the predicates we used to
create this abstraction. The transitions are labeled with the API
method names, some of them have the guards (values in square
brackets) which are the conditions based on the methods variables

Figure 3: Behavioural model for the TreeSet implementa-
tion

evaluated dynamically, that have to be satisfied in order to fire the
transition.

3 MODEL EXTRACTION APPROACH
3.1 Simplifying assumptions
We based our work on Java Collection Framework JDK 17—the most
recent version at the time of writing [1]—and considered its General
Purpose Implementations (GPI). We studied each GPI to capture
its behaviour and to define its operational semantics taking into
account differences in the implementation of methods for various
interfaces. For the sake of brevity, we discuss only Set collections.

We focus on the contribution of collections to the object state.
Thus, the defining property of sets, i.e. the absence of duplicates,
is irrelevant. Other properties that can be taken into account are
(1) whether the collection is ordered and (2) whether it permits null
values. Here, we focus on the latter.

Furthermore, since the operation of enlarging the collection is
called implicitly, we disregard the initial capacity and the load factor
of the collection. Similarly, since element retrieval is not based on
their position in the collection, we do not have to keep track of the
insertion order. In particular, these assumptions allow us to process
HashSet and LinkedHashSet in the same manner. For TreeSet,
we have extra rules for adding and removing null elements.

In addition, we make the following assumptions that simplify the
presentation.We summarise themhere—further details are provided
in Section 3.2. We will discuss the validity of these assumptions in
Section 4. We assume that:

(1) all conditions used in branching statements (if, while etc.)
are Boolean expressions referring exclusively to comparisons
of values and the contains() and isEmpty() operations on
collections

(2) the source code is formatted in such a manner that there is
at most one operator per line, all branching statements have
all their openning and closing braces and the closing braces
are placed on separate lines from any other operators (cf. the
example in Figure 1)

(3) there are only two types—collections and values—and any
value can be stored in any collection

(4) all loops terminate.

We plan to gradually resolve these simplifications up to the limits
modern model checking and other static analysis techniques will
permit.
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3.2 Boolean encoding of method behaviour
Our approach relies on the predicate abstraction idea from [19].
For each method in the API under consideration, we proceed as
follows.

Given a method, we consider a context comprising a set of col-
lection symbols 𝐶 and a set of value symbols 𝑉. The symbols in
𝑉 can be literal constants (e.g. “Hello!”, null), variables, method
parameters etc. For two symbols 𝑣1, 𝑣2 ∈ 𝑉 (idem for 𝑐1, 𝑐2 ∈ 𝐶),
we write 𝑣1 ≡ 𝑣2 if they are the same symbol; 𝑣1 = 𝑣2 denotes the
predicate stating that their values are equal.

The definition of the context is a parameter of the approach,
determining, in particular, the degree of refinement of the resulting
model. Context values are used to form the following predicates:

• eq𝑣1,𝑣2
def
= (𝑣1 = 𝑣2), for 𝑣1, 𝑣2 ∈ 𝑉 (𝑣1 . 𝑣2)

• eq𝑐1,𝑐2
def
= (𝑐1 = 𝑐2), for 𝑐1, 𝑐2 ∈ 𝐶 (𝑐1 . 𝑐2)

• cnt𝑐,𝑣 holds for 𝑣 ∈ 𝑉 and 𝑐 ∈ 𝐶 if 𝑣 is contained in 𝑐
• empty𝑐 holds for 𝑐 ∈ 𝐶 if 𝑐 is empty
• e holds if an exception has been thrown

We postulate the following axioms,

(1) ax1 (𝑐, 𝑣1, 𝑣2)
def
= (eq𝑣1,𝑣2 =⇒ cnt𝑐,𝑣1 = cnt𝑐,𝑣2 )

(2) ax2 (𝑐1, 𝑐2, 𝑣)
def
= (eq𝑐1,𝑐2 =⇒ cnt𝑐1,𝑣 = cnt𝑐2,𝑣)

(3) ax3 (𝑐, 𝑣)
def
= (empty𝑐 =⇒ ¬cnt𝑐,𝑣)

Let 𝑃 be the set of all the predicates above and 𝑃 ′ def
= {𝑝 ′ | 𝑝 ∈ 𝑃}.

Assume that all operators of the method are numbered sequentially
from 1 to 𝑛, with the numbering of branching operators correspond-
ing to their closing braces (cf. Figure 1). For each predicate 𝑝 ∈ 𝑃

and each 𝑖 ∈ [0, 𝑛], we define a Boolean variable 𝑝𝑖 corresponding
to the valuation of 𝑝 after the execution of the operator 𝑖 .

For a formula 𝜑 ∈ B[𝑃, 𝑃 ′], denote 𝜑𝑖, 𝑗 def
= 𝜑

[
𝑃𝑖/𝑃

] [
𝑃 𝑗/𝑃 ′

]
the

formula where each predicate 𝑝 (resp. 𝑝 ′) is substituted by the
variable 𝑝𝑖 (resp. 𝑝 𝑗 ). Similarly, 𝜑𝑖 def

= 𝜑 [𝑃𝑖/𝑃], for 𝜑 ∈ B[𝑃].
For a sequence of operators s and two indices 𝑖, 𝑗 ∈ [0, 𝑛] (𝑖 < 𝑗 ),

we define the encoding function enc𝑖, 𝑗 (s) as shown in Figure 4,
where s↓ denotes the index of the last operator in a sequence s and,
in (4), 𝜑op is the formula encoding the semantics of the operator
op (see Section 3.3 below). A method meth with the body s is then
encoded by the formula

enc (meth) def
= axioms0 ∧ enc0,s↓(s) ,

with the formula axioms defined by (5).

3.3 Predicate semantics of operators
The predicate semantics of an operator op is given by a quadruple
(𝐶op,𝑉op, 𝑃op, 𝑓op), where

• (𝐶op,𝑉op) is a context, comprising the sets 𝐶op and 𝑉op of,
respectively, collection and value variables

• 𝑃op is a subset of predicates as in Section 3.2 indexed by the
variables from 𝐶op and 𝑉op

• 𝑓op ∈ B[𝑃op, 𝑃 ′op] is a Boolean formula on these predicates

Intuitively, 𝑃op is the set of predicates whereof the valuations may
be affected by the operator.

enc𝑖, 𝑗 (op; s) def
= enc𝑖,op↓(op) ∧ encop↓, 𝑗 (s) (1)

enc𝑖, 𝑗 (while (cnd) s) def
= ¬cnd 𝑗 (2)

enc𝑖, 𝑗 (if (cnd) s1 else s2)
def
= enc𝑖,s1↓(s1) ∧ enc𝑖,s2↓(s2)

∧
(
cnd𝑖 =⇒

∧
𝑝∈𝑃

𝑝 𝑗 = 𝑝s1↓
)
∧
(
¬cnd𝑖 =⇒

∧
𝑝∈𝑃

𝑝 𝑗 = 𝑝s2↓
)

(3)

enc𝑖, 𝑗 (op) def
= 𝜑

𝑖, 𝑗
op ∧ axioms 𝑗 (4)

axioms
def
= (5)∧

𝑐∈𝐶
𝑣1,𝑣2∈𝑉
𝑣1.𝑣2

ax1 (𝑐, 𝑣1, 𝑣2) ∧
∧

𝑐1,𝑐2∈𝐶
𝑣∈𝑉
𝑐1.𝑐2

ax2 (𝑐1, 𝑐2, 𝑣) ∧
∧
𝑐∈𝐶
𝑣∈𝑉

ax3 (𝑐, 𝑣)

Figure 4: Definition of the encoding function enc ·, · (·)

For example, consider the method c.add(v) of a HashSet c. Its
predicate semantics is given by the formula

𝑓c.add(v)
def
= cnt ′𝑐,𝑣 ∧ ¬empty′𝑐 .

Here, 𝐶c.add(v) = {𝑐}, 𝑉c.add(v) = {𝑣}, 𝑃c.add(v) = {cnt𝑐,𝑣, empty𝑐 }.
Let us consider, as another example, the method c.clear() of a

collection c. Its predicate semantics is given by the formula

𝑓c.clear()
def
= empty′𝑐 .

Despite 𝑣 not appearing in 𝑓c.clear() , we take the same𝐶c.clear() =
{𝑐}, 𝑉c.clear() = {𝑣} and 𝑃c.clear() = {cnt𝑐,𝑣, empty𝑐 } as above.
Indeed, the value of the cnt𝑐,𝑣 predicate, for all value symbols in the
context, may be modified by this method, even though ax3 means
that this does not have to be specified explicitly in 𝑓c.clear() .

For each operator invocation in the source code, some of the
variables in 𝐶op and 𝑉op will be positionally matched with the
symbols in the context (𝐶,𝑉). E.g., for an invocation idSet.clear(),
𝑐 ∈ 𝐶c.clear() is matched to idSet ∈ 𝐶 but 𝑣 ∈ 𝑉c.clear() is not
matched to any symbol in 𝑉. For the sake of clarity, let us abuse
the notation as follows: we denote 𝐶op \𝐶 (resp. 𝑉op \𝑉) the set of
variables that are not matched positionally.

The formula 𝜑op encoding the operator op (see (4) in Figure 4) is
then defined as follows:

𝜑op
def
=

∧
`:𝐶op\𝐶→𝐶
a :𝑉op\𝑉→𝑉

𝑓op [`, a] ∧
∧

𝑝∈𝑃 free

𝑝 ′ = 𝑝 (6)

with 𝑃 free
def
= 𝑃 \

⋃
`:𝐶op\𝐶→𝐶
a :𝑉op\𝑉→𝑉

𝑃op [`, a] ,

where 𝑓op [`, a] denotes the formula obtained by substituting each
unmatched variable 𝑐 ∈ 𝐶op \𝐶 (resp. 𝑣 ∈ 𝑉op \𝑉) by the symbol
` (𝑐) (resp. a (𝑣)) and similarly for 𝑃op [`, a].

Intuitively, the first conjunct in (6) means that the formula 𝑓op is
instantiated for all possible values of the unmatched variables. The
second conjunct means that all predicates in 𝑃 that do not appear
in the semantics of op maintain their previous values.
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Notice, finally, that a predicate 𝑝 ′, with 𝑝 ∈ 𝑃op, that is not
fully constrained by 𝑓op might take any value, representing the
absence of the corresponding information. For instance, consider
the method c.remove(v) of a HashSet c. Its predicate semantics is
given by the formula

𝑓c.remove(v)
def
= ¬cnt ′𝑐,𝑣 ∧ (empty𝑐 =⇒ empty′𝑐 ) ,

with, again,𝐶c.remove(v) = {𝑐},𝑉c.remove(v) = {𝑣} and 𝑃c.remove(v) =
{cnt𝑐,𝑣, empty𝑐 }. If c is not empty before the call to c.remove(v) it
may or may not become empty after the call, depending on whether
v is the only value contained therein.

3.4 Computing the FSM
Given a context (𝐶,𝑉) with the corresponding set of predicates
𝑃 as defined in Section 3.2, we observe that the symbols can be
partitioned into state and indeterminacy symbols: 𝐶 = 𝐶𝑠𝑡 ⊎𝐶𝑛𝑑
and 𝑉 = 𝑉𝑠𝑡 ⊎ 𝑉𝑛𝑑 , such that 𝐶𝑠𝑡 and 𝑉𝑠𝑡 contain constants and
class fields, whereas 𝐶𝑛𝑑 and 𝑉𝑛𝑑 contain method parameters, un-
evaluated functions etc. This induces several partitions on the set
of predicates: 𝑃 = 𝑃𝑠𝑡 ⊎ 𝑃𝑛𝑑 , such that 𝑃𝑠𝑡 is a subset of predicates
that refer only to symbols in 𝐶𝑠𝑡 and 𝑉𝑠𝑡 .

A state is a partial valuation 𝜎 : 𝑃𝑠𝑡 ⇀ B. A concrete state is a
total valuation 𝜎 : 𝑃𝑠𝑡 → B. We say that one state 𝜎1 refines another
𝜎2, denoted 𝜎1 ≺ 𝜎2 if dom(𝜎2) ⊆ dom(𝜎1) and 𝜎1 (𝑝) = 𝜎2 (𝑝), for
all 𝑝 ∈ dom(𝜎2). We say that a set of states Σ is complete if every
state refines some state of Σ, i.e. for every 𝜎 : 𝑃𝑠𝑡 ⇀ B, there exists
�̂� ∈ Σ, such that 𝜎 ≺ �̂� . Notice that any complete set of states must
comprise the empty valuation 𝜎0, having dom(𝜎0) = ∅. Clearly,
for any given implementation of an API, there can be different
complete sets of states. In particular, the set {𝜎0} is complete. So is
the set of all concrete states

{
𝜎
�� dom(𝜎) = 𝑃𝑠𝑡

}
∪ {𝜎0}.

Given a context (𝐶,𝑉), a set of predicates 𝑃 and a complete set
of states Σ, we build a non-deterministic FSM (Σ, 𝜎0,A,−→), where
𝜎0 is the initial state, A is the set of methods provided by the API
under consideration and −→ ⊆ Σ × A × B[𝑃𝑛𝑑 ] × Σ is the transition
relation, where the third component is the transition guard.

To compute the transition relation −→, we proceed as follows. For
each method meth ∈ A and each pair of states 𝜎1, 𝜎2 ∈ Σ, we define

𝜑0
def
=

∧
𝑝∈dom𝜎1

(
𝑝0 = 𝜎1 (𝑝)

)
∧enc (meth) ∧

∧
𝑝∈dom𝜎2

(
𝑝meth↓ = 𝜎2 (𝑝)

)
(see Section 3.2) and submit it to a SAT solver. If 𝜑0 is satisfiable we
obtain a model𝑚1 : {𝑝𝑖 | 𝑝 ∈ 𝑃, 𝑖 ∈ [0, meth↓]} → B. We define

𝜑1
def
= 𝜑0 ∧ ¬

meth↓∧
𝑖=0

∧
𝑝∈𝑃

(
𝑝𝑖 =𝑚1 (𝑝𝑖 )

)
and submit it to the SAT solver again, repeating until we obtain
some 𝜑𝑛 that is unsatisfiable. The transition is then

𝜎1
meth[𝑔]
−−−−−−−→ 𝜎2 , with 𝑔 =

𝑛∨
𝑖=1

∧
𝑝∈𝑃𝑛𝑑

(
𝑝 =𝑚𝑖 (𝑝0)

)
.

Notice that, if 𝜑0 is unsatisfiable, we have 𝑔 = false.
Applying this approach to the example in Figure 1 we obtain the

FSMs in Figures 2 and 3. We do so using the set of all concrete states,
in which each state is a combination of predicates from 𝑃 (predicates
forming the states could be selected to tune the level of the model’s

abstraction, e.g in our example we rely on the empty𝑐 predicate
even though 𝑃 is not limited by it. The common context for the
HashSet version of the example is ({idSet}, ∅). For methods add
and removeId we take the union with, respectively, (∅, {id}) and
(∅, {idMain, idOpt}). The predicates are the same as in Section 3.2,
with 𝑃𝑠𝑡 = {emptyidSet } (we exclude e, since it appears neither in
the axioms nor in the semantics of the operators involved).

For the TreeSet version, we add null to the common context
and e to 𝑃𝑠𝑡 since they appear in the semantics of the operators, e.g.

𝑓c.add(v)
def
= (eq𝑣,null = eq′

𝑣,null)
∧ ¬eq𝑣,null =⇒ (cnt ′𝑐,𝑣 ∧ ¬empty′𝑐 ∧ (e′ = e))

∧ eq𝑣,null =⇒ (cnt𝑐,𝑣 = cnt ′𝑐,𝑣 ∧ empty𝑐 = empty′𝑐 ∧ e′)

𝑓c.remove(v)
def
= (eq𝑣,null = eq′

𝑣,null)
∧ ¬eq𝑣,null =⇒ (¬cnt ′𝑐,𝑣 ∧ (empty𝑐 =⇒ empty′𝑐 ) ∧ (e′ = e))

∧ eq𝑣,null =⇒ (cnt𝑐,𝑣 = cnt ′𝑐,𝑣 ∧ empty𝑐 = empty′𝑐 ∧ e′)

The full Z3 encodings of the two versions can be found in [4].

4 DISCUSSION & FUTUREWORK
The model extraction approach proposed above is based on ideas
that are well-known in the Formal Methods community. The nov-
elty lies in their application for the extraction of behavioural models
from Java source code. More importantly, our main goal is not to use
these models for verification but rather for assisting software engi-
neers in the development process and, eventually, for model-based
monitoring and coordination. This allows us, in particular, to aim
for a less restrictive behavioural model, namely non-deterministic
FSMs with guards. This change of perspective also makes the semi-
automatic approach more acceptable: indeed, we believe that it is
much easier to get developers to help refining an existing model
than to provide one from scratch.

The semi-automatic nature of our approach arises from several
levels of parametrisation among which the key one is choosing
the appropriate predicates for the specification of the semantics
of the basic operations. To some extent, this remark addresses the
simplifying assumption (1) in Section 3.1, which can be substantially
relaxed by including additional predicates to define the semantics of
the terms used in the conditions. Further relaxation can, of course,
be achieved by moving from SAT to SMT.

Deciding which symbols should be part of the context and which
predicates should be used for the encoding is a non-trivial task,
which we believe cannot be fully formalised.We see two approaches
to address this question: input from domain experts, i.e. develop-
ers, and various kinds of heuristics (potentially including Machine
Learning techniques). Both approaches—or combinations whereof—
provides directions for future work.

Assumptions (2) and (3) are obviously non-constraining. More-
over, in any actual implementation, we would use Abstract Syntax
Trees and Control Flow Graphs to explore the source code and
compute the Boolean encodings. This would naturally eliminate
the need for these two assumptions.
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Figure 5: Intended tool architecture

Thus, the strongest assumption that we have made is the loop
termination assumption (4), which would require deeper static anal-
ysis or assistance from the developers for exhibiting loop variants,
which we consider beyond the near-future scope of this work.

We intend to develop a tool for extracting FSMs from Java source
code based on the approach proposed in this paper. In general, the
tool will proceed along the following steps (see Figure 5): collecting
the information about the sources under analysis and about the
fields identified as key to the object state (1); computing auxiliary
data structures, and state values that can be easily evaluated (2);
then using different techniques to generate the FSM. The last step
differs for the basic types and collections. For instance, for simple
types, such as enumerations, simple interpretative techniques could
suffice (3). For complex types such as collections, we will rely on
the SAT-based approach presented in this paper (4).

Finally, another point worth mentioning is the choice of the
complete set of states. For the sake of simplicity, we have chosen to
use the set of all concrete states. This can clearly be improved both a
posteriori—e.g. reducing the FSM by bisimilarity—and a priori—e.g.
building the state space on the fly to avoid unreachable states.

5 CONCLUSION
We propose an approach to the extraction of behavioural models in
the form of non-deterministic FSMs with guards from Java imple-
mentations of library APIs. The approach is semi-automatic since
it is parametrised by the choice of important symbols, predicates
and states. This makes it highly flexible and allows the integration
of expert knowledge from developers. The presented approach is
fully formalised. Although the underlying ideas are well known in
the Formal Methods community, we believe that their combined
application for the extraction of FSMs with guards is novel and can
be applied to the benefit of the Software Engineering community.
We are planning to develop a tool based on the proposed approach
and use it in our future projects for the purposes of monitoring and
coordination of software components.
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