
HAL Id: hal-03737886
https://hal.inria.fr/hal-03737886

Submitted on 25 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The CoLiS Platform for the Analysis of Maintainer
Scripts in Debian Software Packages

Benedikt Becker, Nicolas Jeannerod, Claude Marché, Yann Régis-Gianas,
Mihaela Sighireanu, Ralf Treinen

To cite this version:
Benedikt Becker, Nicolas Jeannerod, Claude Marché, Yann Régis-Gianas, Mihaela Sighireanu, et al..
The CoLiS Platform for the Analysis of Maintainer Scripts in Debian Software Packages. International
Journal on Software Tools for Technology Transfer, 2022. �hal-03737886�

https://hal.inria.fr/hal-03737886
https://hal.archives-ouvertes.fr

Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

The CoLiS Platform for the Analysis of Maintainer Scripts
in Debian Software Packages

Benedikt Becker · Nicolas Jeannerod ·
Claude Marché · Yann Régis-Gianas ·
Mihaela Sighireanu · Ralf Treinen

Received: date / Accepted: date

Abstract The software packages of the Debian distribution include more than
twenty-seven thousand maintainer scripts in total, almost all of them being written
in the Posix shell language. These scripts are executed with root privileges at in-
stallation, update, and removal of a package, which makes them critical for system
maintenance. While the Debian policy provides guidance for package maintainers
producing the scripts, only few tools exist to check the compliance of a script
to that policy. We present CoLiS, a software platform for discovering violations
of non-trivial properties required by the Debian policy in maintainer scripts. We
describe our methodology which is based on symbolic execution and feature tree
constraints, and we give an overview of the toolchain. We obtain promising results:
our toolchain is effective in analysing a large set of Debian maintainer scripts, and
it has already detected over 150 policy violations that have lead to bug reports,
more than two-third of them now being fixed.

Keywords Quality Assurance · Safety Properties · Debian distribution · Software
Package Installation · Shell Scripts · High-Level View of File Hierarchies ·
Symbolic Execution · Feature Tree Constraints

This work has been partially supported by the ANR project CoLiS, contract number ANR-
15-CE25-0001.

Benedikt Becker
Université Paris-Saclay, CNRS, Inria, LMF, 91190 Gif-sur-Yvette, France

Nicolas Jeannerod
Université Paris Cité, CNRS, IRIF, 75013 Paris, France; moving to Tweag I/O

Claude Marché
Université Paris-Saclay, CNRS, Inria, LMF, 91190 Gif-sur-Yvette, France

Yann Régis-Gianas
Université Paris Cité, CNRS, IRIF, 75013 Paris, France; on leave at Nomadic Labs

Mihaela Sighireanu
Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190 Gif-sur-Yvette, France

Ralf Treinen
Université Paris Cité, CNRS, IRIF, 75013 Paris, France

http://orcid.org/0000-0002-0819-8344
http://orcid.org/0000-0003-1969-1246
http://orcid.org/0000-0003-3035-1269
http://orcid.org/0000-0002-0745-8730
http://orcid.org/0000-0002-1925-089X

2 Benedikt Becker et al.

1 Introduction

The Debian distribution is one of the oldest free software distributions. The latest
released version 11 (code name “bullseye”) provides 59,551 binary packages built
from 31,358 software source packages with an official support for nine different
CPU architectures. It is one of the most used GNU/Linux distributions, and serves
as the basis for some derived distributions like Ubuntu.

A software package of Debian contains an archive of files to be placed on the
target machine when installing the package. The package may come with a number
of so-called maintainer scripts that are executed when installing, upgrading, or
removing the package. The released version “bullseye” of Debian (for the amd64

architecture and including the contrib and non-free collections, as of August
14, 2021) contains 27,324 maintainer scripts in 11,640 different packages, 10,468
of which are completely or partially written by hand. These scripts are used for
tasks like cleaning up, configuration, and repairing mistakes introduced in older
versions of the distribution. Since they may have to perform any action on the
target machine, the scripts are almost exclusively written in some general-purpose
scripting language that allows for invoking any Unix command.

The whole installation process is orchestrated by dpkg, a Debian-specific tool,
which executes the maintainer scripts of each package according to scenarios. Ex-
ecuting the dpkg tool and the scripts requires root privileges, that is, maximal
administrator rights for reading, writing files and directories, and executing com-
mands. For this reason, the failure of one of these scripts may lead to effects ranging
from mildly annoying (like spurious warnings) to catastrophic (e.g., removal of files
belonging to unrelated packages, as already reported [43] in 2007 against a pack-
age maintained by one of the authors of this paper). When an execution error of
a maintainer script is detected, the dpkg tool attempts an error unwind, but the
success of this operation depends again on the correct behaviour of maintainer
scripts. There is no general mechanism to simply undo the unwanted effects of a
failed installation attempt, short of using a file system implementation providing
for snapshots.

The Debian policy [3] aims to normalise, in natural language, important techni-
cal aspects of packages. Concerning the maintainer scripts we are interested in, it
states that the standard shell interpreter is the Posix shell, with the consequence
that 99% of all maintainer scripts are written in this language. The policy also
sets down the control flow of the different stages of the package installation pro-
cess, including attempts for error recovery, defines how dpkg invokes maintainer
scripts, and states some requirements on the execution behaviour of scripts. One
of these requirements is the idempotency of scripts, that is, if an installation op-
eration is done, successfully or signaling a failure (e.g., because the disc is full),
and is repeated afterwards (e.g., after freeing space on the disc), then the system
state must be the same as if it was already successful the first time. Most of these
properties are until today checked on a very basic syntactic level (using tools like
Lintian [31]), by automated testing (like the piuparts suite [35]), or simply left
until someone stumbles upon a bug and reports it to Debian.

The CoLiS platform 3

1.1 Objectives of the Study

The goal of our study is to improve the quality of the installation of software
packages in the Debian distribution using a formal (i.e., based on a mathematical
approach), static (i.e. without actually running scripts on a real system) and auto-
mated approach. We focus on bug finding, as opposed to a complete formal proof
of absence of bugs, for three reasons. Firstly, a real Unix-like operating system is
obviously too complex to be described completely and accurately by some formal
model. Besides, the formal correctness properties may be difficult to apprehend
when they are expressed on an abstract model. Finally, when a bug is detected,
even on a system abstraction, one can try to reproduce it on a real system and,
if confirmed, report it to the authors. This has a real and immediate impact on
the quality of the software and helps to promote the usage of formal methods to a
community that often is rather sceptical towards methods and tools coming from
academic research.

The bugs in Debian maintainer scripts that we attempt to find may come at
different levels: simple syntax errors (which may go unnoticed due to the unsafe
design of the Posix shell language), non-compliance with the requirements of the
Debian policy, usage of unofficial or undocumented features, or failure of a script
in a situation where it is supposed to succeed.

1.2 Challenges of the Study

The challenges are multiple: the Posix shell language is highly dynamic and re-
calcitrant to static analysis, both on a syntactic and semantic level. A Unix file
system implementation contains many features that are difficult to model, like
file ownership, permissions, timestamps, symbolic links, and multiple hard links
to regular files. There are an immense variety of Unix commands that may be
invoked from scripts, all of which have to be modelled in order to be treated by
our approach.

To address properties of scripts required by the Debian policy, we need to
capture the transformation done by the script on a file system hierarchy. For this,
we need some kind of logic that is expressive enough, and still allows for automated
reasoning methods. A particular challenge is checking the idempotency property
for script execution because it requires relational reasoning. For this, we encode the
semantics of a script as a logic formula specifying the relation between the input
and the output of the script, and we check that it is equivalent to its composition
with itself. Finally, all these challenges have to be met at the scale of tens of
thousands of scripts.

1.3 Summary of our Contributions

The contributions of the work for this study are:

1. A translation of Debian maintainer scripts into a language with formal seman-
tics, and a formalisation of properties required for the execution of these scripts
by the Debian policy.

4 Benedikt Becker et al.

1 if [-h /etc/rancid/lg.conf]; then
2 rm /etc/rancid/lg.conf
3 fi
4 if [-e /etc/rancid/apache.conf]; then
5 rm /etc/rancid/apache.conf
6 fi

Fig. 1 The preinst script of the rancid-cgi package. Informally, if the symbolic link /etc
/rancid/lg.conf exists then it is removed; and then, if the file /etc/rancid/apache.conf
exists, no matter its type, it is also removed. Both removal operations use the Posix command
rm which, without options, cannot remove directories. Hence, we can immediately notice that
if /etc/rancid/apache.conf is a directory, this script fails while trying to remove it.

2. A verification toolchain for maintainer scripts based on an existing symbolic
execution engine [7,8] and a symbolic representation [30]. Some components of
this toolchain have been published independently; we improved them to cope
with this study. The toolchain is free software available online [40].

3. A formal specification of the transformations done by an important set of Posix
commands [28] in feature tree constraints [30].

4. A number of bugs found by our method in recent versions of Debian packages.

We start in the next section with an overview of our method illustrated on a con-
crete example. Section 3 explains in greater detail the elements of our toolchain,
the particular challenges, the hypotheses that we could make for the specific De-
bian use case at hand, and the solution we are proposing. Section 4 presents the
results we obtained so far on the Debian packages, and the lessons learnt. We con-
clude in Section 5 by discussing additional outcomes of this study, and the related
and future work.

2 Overview of the Study and Analysis Methodology

2.1 Structure of a Debian Package

Three components of a Debian binary package play an important role in the in-
stallation process: the static content, that is the archive of files to be placed on
the target machine when installing the package; the lists of dependencies and pre-

dependencies, which tell us which packages can be assumed present at different
moments; and the maintainer scripts, that is a possibly empty subset of four scripts
called preinst, postinst, prerm, and postrm. We found (see Section 4.2) that 99%
of the maintainer scripts in Debian are written in the Posix shell language [25].

Our running example is the binary package rancid-cgi [37]. It comes with
only two maintainer scripts: preinst and postinst. Figure 1 presents the preinst

script.

We did a statistical analysis of maintainer scripts in Debian to help us design
our intermediate language, see Section 4.2 for details. We found that, for instance,
most variables in these scripts can be expanded statically and hence are used like
constants; most while loops can be translated into for loops; recursive functions

The CoLiS platform 5

preinst install

OK

postinst configure

OK

FAILED

Successful exit

postrm abort-install

OK

FAILED

Exit with error message

Files are unpacked

FAILED

“Installed” “Failed-Config” “Not Installed” “Half Installed”

Fig. 2 Debian flowchart for installing a package [3, Appendix 9]. The states represent calls
to maintainer scripts with their arguments and actions performed externally to scripts are in
italics; the status returned by dpkg at the end of the process is in bold.

are not used at all; redirections are almost always used to discard the standard
output of commands.

2.2 Workflow of Installation, Upgrade, and Removal of a Package

The maintainer scripts are invoked by the dpkg utility when installing, removing
or upgrading a package. Roughly speaking, for installation, dpkg calls the preinst

before the package static content is unpacked, and calls the postinst afterwards.
For deinstallation, dpkg calls the prerm before the static content is removed and
calls the postrm afterwards. The precise sequence of script invocations and the ac-
tual script parameters are defined by informal flowcharts in the Debian policy [3,
Appendix 9]. Figure 2 shows the flowchart for the package installation. The dpkg

utility may be asked to: install a package that was not previously installed (Fig-
ure 2), install a package that was previously removed but not purged, upgrade a
package, remove a package, purge a package previously removed, remove and purge
a package. These tasks include 39 possible execution paths, 4 of them presented
in Figure 2.

2.3 Requirements on Maintainer Scripts

The Debian policy contains [3, Chapters 6 and 10] several requirements on main-
tainer scripts. This case study targets checking the requirements regarding the
execution of scripts, and considers out of scope some other kinds of requirements,
for example the permissions of script files. The requirements of interest are checked
by different tools of our toolchain presented in Section 3. For example, the dif-
ferent ways to invoke a maintainer script are handled by the analysis of scenarios

6 Benedikt Becker et al.

(Section 3.5) calling the scripts. Different requirements on the usage of the shell
language are checked by the syntactic analysis (Section 3.1.1), like the usage of -e

mode or of authorised shell features that are optional in the Posix standard. Some
of the usage requirements can be detected by a semantic analysis; this is done in
our toolchain by a translation into a formally defined language, called CoLiS (Sec-
tion 3.1.2). Finally, requirements concerning the behaviour of scripts include the
usage of exit codes and the idempotency of scripts. The last property is difficult
to formalise since it refers to possible unforeseen failures (see discussion in Sec-
tion 4.4). Formally checking behavioural properties of scripts requires reasoning
about their semantics, which is done by a symbolic execution in our toolchain
(Section 3.3). We also check some requirements that are simply common sense
and that are not stated in the policy, for example invoking Unix commands with
correct options. This is done by the semantic analysis (Section 3.1.2).

2.4 Principles and Workflow of the Analysis Method

Our goal is to check the above properties of maintainer scripts in a formal and
static way, by analysing each script and the composition of scripts in the execution
paths exhibited by the flowcharts of dpkg. More precisely, we check the conformity
of execution of scripts with respect to an expected scenario. In our setting, a
scenario is either (1) an execution path of dpkg as exemplified in Figure 2, (2) a
single execution of a script, or (3) a double execution of a script with the same
parameters (to check idempotency). Section 3.5 presents scenarios in more details.

The analysis should consider a variety of states for the system on which the
execution takes place. Yet we assume the following hypotheses:

– the scripts are executed in a root-privileged process without concurrency with
other (user or root) processes,

– the static content of the package is successfully unpacked,
– the dependencies defined by the package are present (fact checked by dpkg),

and
– the /bin/sh command implements the standard Posix.1-2017 Shell Command

Language with the additional features described in the Debian policy [3, Chap-
ter 10].

The components of our toolchain for the analysis of a scenario are summarised
in Figure 3 and detailed in Section 3.

2.5 Presentation of Results

The results computed by the scenario player are presented in a set of web pages,
one per scenario, and a summary page for the package [6]. Each scenario may have
several computed exit codes; for an error code, the associated symbolic relation is
translated automatically into a diagnosis message.

For example, consider the simple scenario of a call to the script preinst given
in Figure 1. The resulting web page includes the diagram in Figure 4, which is
obtained by the interpretation of the symbolic relation computed by the scenario
player for the error exit code.

The CoLiS platform 7

Scenario Player

Package

Scenario

Static
Contents

Shell
Scripts

Symbolic
Relations

Symbolic
Engine

Diagnosis

Fig. 3 The CoLiS toolchain for analysis of a scenario on a given package. Given a package and
one scenario, the scenario player extracts the static content and the maintainer scripts, prepares
the initial symbolic state of the scenario, symbolically executes the steps of the scenario to
compute a symbolic relation between the input and the output states of the file system for
each outcome of the scenario, and produces a diagnosis.

(symlink)

etc

rancid

lg.conf apache.conf

⊥

etc

rancid

lg.conf

(dir)

∼{etc}

∼{rancid}

∼{lg.conf}

Fig. 4 Example of diagnosis: error case for preinst call in the package rancid-cgi. This
diagram displays knowledge about the initial file system (on the left side), and about the file
system resulting from an attempt to execute the script (on the right). The respective roots of
the two filesystem are on the top, downward edges represent links in the file system. A dotted
edge describes a similarity relation, e.g., the ∼{rancid} on the second dotted line means that
the trees rooted at /etc coincide except possibly on the child named rancid. ⊥ denotes the
absence of a node. Finally, a leaf can be annotated by a property, e.g., the annotation (dir)
rooted at /etc/rancid/apache.conf expresses that this node is a directory.

The diagram shows that the preinst script leads to an error state when the file
/etc/rancid/apache.conf is a directory, which is expected as we already noticed
that the rm command cannot remove directories. Note that in this case the failed
attempt to execute the script leaves the file system modified since the symbolic
link /etc/rancid/lg.conf has been removed.

Finally, another set of generated web pages [6] provides statistics on the cov-
erage and the errors found for the full set of scenarios of the Debian distribution.

8 Benedikt Becker et al.

3 Design and Implementation of the Tool Chain

The toolchain, as described in Figure 3, hinges on a symbolic execution engine that
computes the overall effect of a script on the file system as a symbolic relation
between the input and the output file system. This section details this toolchain. It
is composed first of a front-end that parses the script and translates it into a script
in an intermediate language called CoLiS, having a formally defined semantics
(see Section 3.1). Second, a back-end symbolically executes the CoLiS scripts,
so as to get, for each outcome of a script, the relation between the input and
the output file systems, encoded by a tree constraint (Section 3.2). The core of
the symbolic execution engine (Section 3.3) is a program written in the WhyML
language, allowing us to certify, thanks to the Why3 verification environment [9],
the adequacy of the symbolic execution with respect to the semantics of CoLiS. A
basic component for such an engine is, for each Unix utility, a formal specification
of its behaviour, again as an input-output relation (Section 3.4).

3.1 The Front-End

3.1.1 The morbig Parser for Shell Scripts

The syntax of the Posix shell language is unconventional in many aspects. For this
reason, the implementation of a parser for Posix shell scripts cannot simply reuse
the standard techniques solely based on code generators (such as yacc). Most of
the shell implementations fall back to manually written character-level parsers,
which are difficult to maintain and to trust.

The morbig parser was designed by some of the authors in 2018 [36]. Its im-
plementation aims at employing code generators as much as possible to keep the
implementation at a high level of abstraction, to simplify its maintenance, and to
ease checking of compliance with the Posix standard.

To validate the parser, we compare its behavior to another Posix compliant
parser, namely dash, using a large corpus of scripts found in the Software Heritage
Archive [1]. The morbig parser and dash agree on 95% of these 7, 436, 215 files. By
studying the remaining 5%, we found bugs in both parsers.

The morbig parser was used in our project to build several tools. For in-
stance, the Debian Policy defines some rules that are easily expressible as pattern-
matching over the concrete syntax trees produced by morbig. As another example,
morbig provides the basis for a statistical analysis tool for the corpus of Debian
maintainer scripts. This analysis aims at identifying the most frequently used, or
the most rarely used constructions of Posix shell. The results of this analysis had
an impact on the design of the CoLiS language presented in the next section as it
shows that the full complexity of the Posix shell language is not used by program-
mers to write critical pieces of code. For instance, while loops are mostly used in
the corpus of maintainer scripts in order to bypass a restriction of the shell that
makes it difficult to iterate over a list of strings that contain the string separator.
Hence, this idiom can be translated to a for loop in the CoLiS language which is
properly typed; see also Section 4.2.

The CoLiS platform 9

3.1.2 The CoLiS language

Our initial design of the CoLiS language was presented in 2017 [27]. This design
was guided by the following requirements.

– A need to avoid some pitfalls of the Posix shell, and to make explicit the
dangerous constructs we cannot eliminate.

– A need to have a clear syntax and semantics. Indeed, by providing a formal

semantics, we are sure that no ambiguity on the semantics remains.
– An automated and fairly straightforward translation from shell must be pos-

sible: since the correctness of the translation from shell to CoLiS cannot be
proven formally, it must be trusted on the basis of manual review of transla-
tions and tests. For this reason, the CoLiS language cannot be fundamentally

different from shell.

For the purpose of application to the full corpus of Debian maintainer scripts,
we had to improve on the initial version of the CoLiS language so as to increase the
ratio of maintainer scripts that can be translated to CoLiS. On the one hand, we
had to add a few more constructs to the language, such as the export special built-
in utility, or the redirection of standard output. On the other hand, we extended
the formal semantics for the new constructs, but we also had to align the previous
semantics to the one of the Posix shell for a few other constructs. These changes
and a complete description of the final design of the CoLiS language appear in a
technical report that we published in 2019 [8]. We provide here a quick overview
of its syntax and semantics.

Syntax of CoLiS. An important originality of the CoLiS toolchain for analyzing
scripts is its design with formal verification in mind: its syntax, its semantics,
and interpreters for it are designed using the Why3 environment [9] for formal
verification. This is achieved by defining the syntax of CoLiS as abstract syntax
trees (AST for short) by an algebraic datatype in Why3, and then defining the
semantics by a set of inductive predicates [8].

The AST are described in detail in the technical report [8]; we present here only
an excerpt of the corresponding concrete syntax, shown in Figure 5. This excerpt
is more than half of the full grammar [8] and corresponds to the constructs we use
in this paper for our running example rancid and for illustrating the concrete and
symbolic interpreters.

As an llustrative example, Figure 6 presents the CoLiS version of the preinst

script of the rancid-cgi package, shown previously in Figure 1.

Operational Semantics. The operational semantics of CoLiS is defined by a set of
formal judgements and inductive rules for them, in a quite standard way for defin-
ing a big-step operational semantics. Yet, for the purpose of expressing properties
of the symbolic execution (described later on in Section 3.3), we introduced a non-
standard parameter to these judgements: a bound on the maximal number of loop
iterations. This bound is either a non-negative integer or +∞. The general form
of an evaluation judgement for an instruction i is

(I, C,S), i ⇓i
s (S′, C′, β)

10 Benedikt Becker et al.

〈program〉 ::= 〈function-definition〉* begin 〈instr〉* end

〈function-definition〉 ::= function 〈identifier〉 begin 〈instr〉* end

〈instr〉 ::= — Program instruction
| 〈identifier〉 := 〈string-expr〉 — Variable assignment
| if 〈instr〉 then 〈instr〉* (else 〈instr〉*)? fi — Conditional
| for 〈identifier〉 in 〈list-expr〉 do 〈instr〉* done — For loop
| while 〈instr〉 do 〈instr〉* done — While loop
| call 〈identifier〉 〈list-expr〉? — Function call
| 〈identifier〉 〈list-expr〉? — Utility call

〈string-expr〉 ::= 〈sfrag〉+ — String expression

〈sfrag〉 ::= — String fragment
| 〈literal〉 — String literal
| 〈identifier〉 — Variable
| embed { 〈instr〉 } — Output from instr

〈list-expr〉 ::= [(〈lfrag〉 (, 〈lfrag〉)*)?] — Non-empty, bracket-delimited,
comma-separated list of fragments

〈lfrag〉 ::= split? 〈string-expr〉 — List fragment

Fig. 5 Excerpt of the concrete syntax of the CoLiS language. A CoLiS program is a sequence
of function definitions followed by a main body. Function bodies and the main body are
sequences of instructions, including compound statements for conditional and “for” and “while”
loops. Atomic instructions include variable assignment, function calls, and invocations of Unix
utilities. The syntax of expressions, which are in fact restricted to expressions manipulating
strings, is quite involved because of the need to make explicit some features that are implicit
in the shell. These include in particular the splitting of strings into lists of strings which is
performed by the shell at separators (typically the space character). In CoLiS the string literals
are explicitly written between single quotes, the lists are given between square brackets and
their elements are separated by commas. String splitting only occurs when explicitly required
by a split expression as shown at the bottom of the figure.

1 if test [’-h’, ’/etc/rancid/lg.conf ’] then
2 rm [’/etc/rancid/lg.conf ’]
3 fi
4 if test [’-e’, ’/etc/rancid/apache.conf ’] then
5 rm [’/etc/rancid/apache.conf ’]
6 fi

Fig. 6 The preinst script of the rancid-cgi package in CoLiS. Notice the calls to the test
and rm utilities. Notice also the syntax for string arguments and for lists of arguments, which
require mandatory usage of delimiters. This exemplifies how the syntax of CoLiS was designed
so as to remove potential ambiguities [8].

where I is an evaluation context (specifying parameters like limits of stack size and
loop iterations, but also whether evaluation currently occurs under a condition),
C and C′ are program contexts (storing in particular the current values of variables,
including the result of the last command), S and S′ are system states (holding in
particular the current state of the file system), and β is a result behavior, that can
be either normal (Normal) or one of the abnormal behaviors (Exit, Return or even

The CoLiS platform 11

eval-if-true
({I with under-condition=True}, C,S), i1 ⇓i

s (S1, C1,Normal)

C1.result = True (I, C1,S1), i2 ⇓i
s (S2, C2, β2)

(I, C,S), if i1 then i2 else i3 ⇓i
s (S2, C2, β2)

eval-if-false
({I with under-condition=True}, C,S), i1 ⇓i

s (S1, C1,Normal)

C1.result = False (I, C1,S1), i3 ⇓i
s (S3, C3, β3)

(I, C,S), if i1 then i2 else i3 ⇓i
s (S3, C3, β3)

eval-if-transmit-condition
({I with under-condition=True}, C,S), i1 ⇓i

s (S1, C1, β1) β1 6= Normal

(I, C,S), if i1 then i2 else i3 ⇓i
s (S1, C1, β1)

eval-call-utility
s, (I, C,S), es ⇓l (S′, Success ss) interp (C.cwd, exported(C.vars), ss) (id ,S′) = (S′′, b)

(I, C,S), id es ⇓i
s (S′′, {C with result=b}, bhvI(b))

Fig. 7 Semantic rules for the evaluation of conditions and calls to utilities.

Failure when some limit is exceeded). An excerpt of the semantic rules is given in
Figure 7, and we refer to [8] for the complete set and related details.

Notice that although this formalizes very precisely the operational semantics
of CoLiS, it does not provide any guarantee that it is conformant with the se-
mantics of the regular Posix shell. We had to check this conformity by testing,
that is comparing the results of sh and our CoLiS concrete interpreters on a set
of scripts hopefully covering sufficiently the constructs of the language. It is worth
noting that thanks to those tests, we identified a non-conformity related to the
interpretation of errors on strict or non-strict modes, that we fixed later on [8].
This fix concerns precisely the rules given in Figure 7, which is related to how an
abnormal behavior is propagated: when inside a condition of an “if” or a loop, the
abnormal behavior must be captured and execution should proceed. This can be
seen in the three first rules for evaluating an if-expression: when evaluating the
condition, we set the Boolean under-condition true in the evaluation context. Then,
in rule eval-call-utility, the resulting behavior of an utility call is bhvI(b) which
denotes the Normal behavior when I.under-condition is true and b is true, and Exit

otherwise.

A concrete interpreter for the CoLiS language is implemented in WhyML. It is
programmed in an imperative style, using mutable variables, and using the native
exception mechanism of WhyML to encode abnormal behaviours. The profile of
the interpretation procedure for instructions is given in Figure 8.

Using the Why3 environment, the code is checked for conformity with respect
to the specifications, by generating 245 verification conditions, and then checking
their validity using a combination of automated theorem provers [27]. Figure 9
show the details.

12 Benedikt Becker et al.

1 let ghost ref s = 0 (* size of call stack *)
2

3 let rec interp_instruction (I:input) (sta:concrete_state)
4 (i:instruction) : unit
5 requires { I.loop-limit = ∞ ∧ I.stack-size = ∞ }

6 ensures { (I, C(old sta),S(old sta)), i ⇓i
old s (S(sta), C(sta),Normal)) }

7 raises { (Exit | Return) as β →
8 (I, C(old sta),S(old sta)), i ⇓i

old s (S(sta), C(sta), β)) }

Fig. 8 Profile for the procedure interpreting CoLiS instructions. It includes a pre-condition
and two post-conditions respectively for normal termination and abnormal termination. The
pre-condition (line 5) imposes that the concrete interpretation is done without any limit on loop
iterations or stack size. The first post-condition (line 6) expresses that on normal termination,
the resulting concrete state is admissible with respect to the inductively defined operational
semantics. The second post-condition (lines 7 and 8) expresses the analogous property in case
an exception is raised. In all, the full contract expresses the conformity of the interpreter with
respect to the formal operational semantics.

Prover VCs Fastest Slowest Average
CVC4 1.6 230 0.10 0.68 0.26
Alt-Ergo 2.2.0 13 0.12 2.45 0.54
Z3 4.6.0 2 0.12 0.25 0.18

Fig. 9 The use of different automatic theorem provers in the verification conditions (VCs) of
the concrete interpreter with processing time in seconds. The provers are tried in order, that
is Alt-Ergo is run only in the 15 VCs that were not discharged by CVC4, and Z3 is run only
on the 2 remaining unproved VCs. Most VCs are solved in a fraction of seconds, the most
complicated one requiring around 2 seconds and half.

3.1.3 Translation from shell to CoLiS

This translation is done automatically, but it is not formally proven. Indeed, a
formal semantics of Posix shell was missing until very recently [24]. For the control
flow constructs, the AST of the shell script is translated into the AST of CoLiS.
For the strings (words in shell), the translation generates either a CoLiS string-
expression or a list of CoLiS expressions depending on the content of the shell
string. This translation makes explicit the string evaluation in shell, in particular
the implicit string splitting. At the present time, the translator rejects 23% of shell
scripts because it does not cover the full constructs of the shell, for example the
usage of globs (restricted sets of regular expressions), of parameters with modifiers
(like inline tests, or value substitutions), and advanced uses of redirections.

The conformity of the CoLiS script with the original shell script is not proven
formally but checked by manual review and some automatic tests. For the latter, we
developed a tool that automatically compares the results of the CoLiS interpreter
on the CoLiS script with the results of the Debian default shell (dash) on the
original shell script. This tool uses a test suite of shell scripts built to cover the
whole set of constructs of the CoLiS language. The test suite allowed us to fix
the translator and the formal semantics of CoLiS and, as an interesting additional
outcome, it revealed a lack of conformity between the Debian default shell and
Posix [5].

The CoLiS platform 13

t3:
·

·

·

reg symlink

·

dir dir

etc usr

rancid

apache.conf lg.conf

sharelibt2: ·

dir ·

dir dir

bin usr

lib share

t1: ·

dir dir

lib share

Fig. 10 Examples of feature trees showing directories (t1), sub-directories (t2), a regular file
and a symbolic link (t3). The dir kind of internal nodes is usually omitted.

For more technical details in the translation scheme we refer to N. Jeannerod’s
PhD thesis [26, Chapter 6].

3.2 Feature Trees and Constraints

We employ first-order logic to describe transformations of UNIX file systems. Fea-
ture trees [38,2,39] turn out to be suitable models for this study since they have
names attached not to the nodes but to the edges going from a node to its chil-
dren, as is the case for UNIX file systems [4]. Since previously existing feature
logics where not able to express local structural differences between trees, as for
instance created by the addition or removal of children, some of the authors [30,
26] proposed an extended feature constraint system that is suitable for expressing
file system transformations. We provide below a concise overview of the model and
the logic used in this study.

3.2.1 Feature Trees

The values of our model are trees with edges labeled by features taken from F ,
which is an infinite set of legal file names. This is an abstraction of real POSIX
systems where each implementation chooses its own limit on the length of the
filenames1. Since the maximal length of a filename is a finite but unknown number,
any error that may happen on some POSIX implementation due to a filename
exceeding that limit will be avoided on an implementation with a larger limit. As
a consequence, we decided to ignore possible errors that may occur due to long
filenames, which is achieved by taking an infinite set of possible filenames.

Nodes in these trees are labeled by the dir kind, and leaves labeled by any kind

(dir, reg or symlink). Examples of feature trees are given in Figure 10.

1 According to the POSIX standard, the maximal number of bytes in a filename is defined
by the constant NAME MAX in the file limits.h, the value of which must not be smaller than 14.

14 Benedikt Becker et al.

x

y

f x
(reg)

x
(dir)

x y∼F

x

⊥

f

x

y

f?

Fig. 11 Basic constraints, from left to right: a feature, a regular file node, a directory node,
a tree similarity, a feature absence, a maybe.

x

⊥

y

v
(dir)

w
(reg)

z

usr

etc

∼{bin,etc}

bin? etc?

Fig. 12 A conjunctive clause.

3.2.2 Constraints

Properties of feature trees, and more generally relations between feature trees, are
expressed by formulas of a feature tree logic with similarity constraints [30]. For
the sake of presentation, we will use in the following a graphical representation
of quantifier-free conjunctive clauses of this logic. The logic used in this study
extends the one presented in the original publication [30] by the addition of kinds

that are attached to nodes of trees.

The core basic constraints are presented in Figure 11. The feature constraint
expresses that y is a subtree of x accessible from the root of x via feature f . The
kind constraints express that the root of a tree has the given kind (dir, reg or
symlink). The similarity constraint expresses that x and y have the same children
with the same names except for the children whose names are in F , a finite set of
features, where they may differ.

For performance reasons, we added two more constraints; these do not increase
the expressive power but help to prevent combinatorial explosion of formulas. The
absence constraint expresses that either x is not a directory or x does not have a
feature f at its root. The maybe constraint expresses that either x is not a directory,
or it does not have a feature f at its root, or it has one that leads to y.

A model of a formula is a valuation that maps variables to feature trees. For
instance, consider the valuation that associates t1 to x, t2 to y and t3 to z, where t1,
t2 and t3 are the trees defined in Figure 10; it satisfies the formula which is depicted
in Figure 12. This formula reads

– if y has a feature bin then it leads to some directory v,
– if y has a feature etc then it leads to some regular file w,
– z has a feature usr leading to x, and x does not have feature etc,
– y and z coincide, except possibly for features bin and etc.

For a more detailed presentation of these extensions see [28,26].

The CoLiS platform 15

3.2.3 Satisfiability of Feature Tree Constraints

We designed a set of transformation rules [30] that turns any Σ1-formula into
an irreducible form that is either false or a satisfiable formula. This allows us to
simplify formulas incrementally and always keep the irreducible form of a formula,
instead of the original formula. This speeds up computations, and allows the sys-
tem to purge useless branches since unsatisfiable formulas are detected as soon
as possible. Our toolchain includes an implementation of this system, using an
efficient representation of irreducible Σ1-formulas as trees themselves. Finally, the
system of rules is also extended to a quantifier elimination procedure (showing in
particular that the whole first-order theory of feature tree logic is decidable), which
has application to verifying properties of specifications, as shown in Section 3.4.5.

3.3 Analysis by Symbolic Execution

With a similar approach as for the concrete interpreter (Section 3.1.2), we de-
signed, and implemented in WhyML, a symbolic interpreter for the CoLiS lan-
guage. Guided by a proof-of-concept symbolic interpreter for a simple IMP lan-
guage [7], the main design choices for the symbolic interpreter for CoLiS are:

– Variables are not interpreted abstractly: when executing an installation script,
the concrete values of variables are known. On the other hand, the state of the
file system is not known precisely, and it is represented symbolically using a
feature tree constraint.

– The symbolic engine is generic with respect to the utilities: their specifications
in terms of symbolic input/output relations are taken as parameters. These
specifications will be presented later on in Section 3.4.

– To control potentially infinite symbolic execution, or even to limit it in practice,
the number of loop iterations and the number of (recursively) nested function
calls [8] is bounded a priori, the bound is given by a global parameter set at
the interpreter call.

The WhyML code for the symbolic interpreter is annotated with post-conditions
to express that it computes an over-approximation [7] of the concrete states that are
reachable without exceeding the given bound on loop iterations. Figure 13 presents
the profile of the main procedure for symbolically interpreting CoLiS instructions.

As for the concrete interpreter, the WhyML code we wrote is shown conforming
to the specification above, by generating verification conditions and proving them
valid using automated provers. Table 14 summarises the prover results on the 780
generated VCs.

An executable code for the symbolic interpreter is automatically extracted,
as OCaml code, using Why3’s extraction mechanism. That code provides an exe-
cutable symbolic interpreter with strong guarantees of soundness with respect to
the concrete formal semantics.

Notice that our symbolic engine neither supports parallel executions, nor file
permissions or file timestamps. This is another source of over-approximation, but
also under-approximation, meaning that our approach can miss bugs whose trig-
gering relies on the former features.

16 Benedikt Becker et al.

let rec sym_interp_instruction (s) (I, C,S) (i : instruction) : set of (S′ × C′)β
requires { s ≤ I.stack-size 6=∞ ∧ I.loop-limit 6=∞ }
variant { I.stack-size− s, size(i) }

ensures { ∀ S′, C′, β. (I, C,S), i ⇓i
s (S′, C′, β)→ (S′, C′)β ∈ result }

Fig. 13 WhyML procedure for symbolic execution of CoLiS instructions. It returns a tuple
of sets of resulting states, one set for each possible behaviour β. The pre-condition states
that (contrarily to the concrete interpreter, see Figure 8) the bounds for the number of loop
iterations and nested function calls are finite. This is a mandatory requirement in order to
prove that the symbolic interpreter terminates on all inputs, that termination property being
stated thanks to the variant clause above, giving a lexicographic measure that decreases at
each recursive call to the sym interp instruction function. The post-condition expresses
the wanted over-approximation property, which is a kind of coverage property: any concrete
execution is covered by the symbolic execution. This property states that when no undesired
symbolic states are reachable by symbolic execution, then no undesired concrete states are
reachable by any concrete execution.

Prover VCs Fastest Slowest Average
CVC4 1.6 702 0.13 1.92 0.48
Alt-Ergo 2.2.0 65 0.13 43.26 2.60
Z3 4.6.0 13 0.07 1.14 0.31

Fig. 14 The use of different automatic theorem provers in the verification conditions of the
symbolic interpreter functions with processing time in seconds. The same strategy as for the
concrete interpreter (see Figure 9) is used, Alt-Ergo being run only on VCs not solved by CVC4,
and then Z3. Most VCs need a fraction of a second to be discharged, with a few exception
including one VC needing more than 40 seconds to be solved by Alt-Ergo.

3.3.1 Visualisation of the Symbolic Semantics of Scripts

The symbolic interpreter provides a symbolic semantics for the given script: given
an initial symbolic state that represents the possible initial shape of the file system,
it returns a triple of sets of symbolic input/output relations, respectively for normal
result, error result (corresponding to non-zero exit code) and result when a loop
limit is reached. Error results are unexpected for Debian maintainer scripts, and
these cases have to be inspected manually. To help this inspection, a visualisation
of symbolic relations was designed, as already described in Figure 4.

3.4 Specifications of Unix Commands

The specification of the Unix commands uses our feature tree logic to express
their effect on the file system. The specification formalises the description given
in natural language in the Posix standard [25, Chapter Utilities] and, for some
commands, in GNU manual pages. We only specified the Unix commands that are
most frequently called by the maintainer scripts.

The full specification is available in a separate technical report [28]. We present
here its main ingredients. A Unix command has the form: “cmd options paths”,
where “cmd” is a command name, “options” is a list of options, and “paths” is
one or more absolute or relative paths (i.e., sequences of file names and symbols
“.” and “..”). Section 3.4.1 describes path resolution.

The CoLiS platform 17

For each combination of command name and options we provide a list of cases.
A success or failure case formula has two free variables r and r′, which repre-
sent respectively the file system before and after the execution of a command, as
explained in Section 3.4.3.

For some combinations of command names and options, the specification is not
provided directly as a set of formulas, but computed by the symbolic execution
(as seen in Section 3.3) of a CoLiS script. This script captures the command
behaviour by multiple but simpler invocations of the same command, or even
different commands (see Section 3.4.4).

3.4.1 Path Resolution

It is important to note that specifications of commands are usually parameterised

by their path argument(s): for each concrete value of such paths, an appropriate
constraint is produced. This fact is essential for using our symbolic engine, because
the variables of a constraint denote subtrees of a file system tree. Paths, however,
are not first-class values of our logic. This is justified by the fact that the symbolic
execution engine can in the vast majority of cases keep track of the values of shell
variables, and hence it can fill in these values when variables are used in command
invocations.

Hence, an important ingredient in command specification is the constraint en-
coding the resolution of a path in the file system. For this, we define a predicate
resolve(r, cwd, p, z) stating that “when variable r holds the file system, and cwd

is the sequence of features leading from the root to the current working direc-
tory, then the path p resolves and leads to the tree denoted by the variable z”.
The constraint defining this predicate is a conjunction of existentially quantified
basic constraints defined by a straightforward recursion on p and distinguishing
the cases of resolving an absolute or a relative path. For example, the constraint
resolve(r, cwd, /etc/rancid, y) is represented by the path starting from the root
of r and ending in y in the left part of Figure 15. Since in this example we are
resolving an absolute path, the current working directory does not matter.

Notice a significant limitation of this constraint-based representation of path
resolution: the possible presence of symbolic links is simply ignored. Supporting
the potential presence of symbolic links is a challenge since there is no way to
express finitely, at least in our feature tree logic, the infinite variety of symbolic
links that may occur. Yet, this limitation was not noticeable in practice in the
experiments reported in the next section.

3.4.2 Path Similarity

When specifying a modification of a file tree at one of its subtrees we need a more
complex variant of the resolve predicate. The predicate similar(r, r′, cwd, p, z, z′)
expresses that p resolves in r and leads to z (taking into account that cwd is the
current working directory), that p resolves in r′ and leads to z′, and that r and
r′ coincide except possibly in the subtrees z and z′. For example, the constraint
similar(r, r′, cwd, /etc/rancid, y, y′) is shown in the right part of Figure 15.

18 Benedikt Becker et al.

r

x

y

etc

rancid

r

x

y

etc

rancid

r′

x′

y′

etc

rancid

∼{etc}

∼{rancid}

Fig. 15 On the left, the graphical representation of the constraint
resolve(r, cwd, /etc/rancid, y) which states the existence of the path /etc/rancid start-
ing at r and ending at y. On the right, the graphical representation of the constraint
similar(r, r′, cwd, /etc/rancid, y, y′), which states that the path /etc/rancid exists in r and
leads to y, and exists in r′ and leads to y′, and that r and r′ coincide everywhere except
possibly in y and y′. Note that in both cases the variable cwd is not used since we resolve an
absolute path.

r

x

y

z
(¬dir)

etc

rancid

lg.conf

r′

x′

y′

⊥

etc

rancid

lg.conf

∼{etc}

∼{rancid}

∼{lg.conf}

Fig. 16 Specification of the success case for command rm /etc/rancid/lg.conf. The reso-
lution of the path /etc/rancid/lg.conf succeeds in the initial file system denoted by r and
depicted on the left part of the diagram, and leads to node that is not a directory. The resulting
file system, denoted by r′ and shown on the right of the diagram, is similar to r except for the
absence of the feature lg.conf at the node reached by /etc/rancid.

3.4.3 Success and Error Cases

Let us consider the command rm /etc/rancid/lg.conf. Its specification in-
cludes one success case, given in Figure 16: the resolution of the path
/etc/rancid/lg.conf succeeded in the initial file system denoted by r, and the
resulting file system, denoted by r′ is similar to r except for the absence of the fea-
ture lg.conf. The specification also includes several error cases given in Figure 17,
where the path cannot be resolved to a regular path, and therefore the initial and
final file systems are the same.

The error case demands special care since the failure of the path resolution
typically causes the failure of the command. To specify these failure cases, we
have to use the negation of the predicate resolve, which generates a number of
clauses which is linear in the length of the resolved path. Figure 17 shows, in
the three left-most constraints, the error cases for the resolution of the path to
/etc/rancid/lg.conf. Because the internal representation of formulas keeps only
conjunctive clauses, this may produce a state explosion of constraints when the
command uses several paths. To obtain a compact internal representation of these
error cases we employ the maybe shorthand as shown on the right of Figure 17.
This compact representation is denoted noresolve(r,cwd,q).

The CoLiS platform 19

r = r′

⊥

etc

r = r′

x

⊥

etc

rancid

r = r′

x

y

⊥

etc

rancid

lg.conf

r = r′

x

y

z
(dir)

etc

rancid

lg.conf

r = r′

x

y

z
(dir)

etc?

rancid?

lg.conf?

Fig. 17 Specification of error cases for command “rm /etc/rancid/lg.conf”: explicit cases
on the left, compact specification on the right

Outcome Explanation Corresponding input-output-formula
Success ∃x, x′, y · resolve(r, cwd, q/f, y) ∧ similar(r, r′, cwd, q, x, x′)

∧¬dir(y) ∧ x ∼{f} x
′ ∧ dir(x′) ∧ x′[f]↑

Failure Is a directory ∃y · resolve(r, cwd, q/f, y) ∧ dir(y) ∧ r .
= r′

Failure No such file noresolve(r, cwd, q/f) ∧ r .
= r′

Fig. 18 Specification of the rm command with a single path argument q/f: First line specifies
the relation between the input file system r and the output one r′ in case of a successful
execution; the second line specifies the failure case caused by q/f being a directory; the third
line specifies the failure case due to a missing file at q/f.

Figure 18 gives the specification of the command rm q/f where q/f is a path
argument that is legal for rm, that is it is neither the empty absolute path, nor
does it end on a single or double dot. Note that the recursion on the path q/f is
delegated to the predicates resolve, noresolve, and similar.

3.4.4 Handling multiple path arguments

We model command invocations with multiple path arguments by a CoLiS script
that iterates over all path arguments. For instance, an invocation like rm pl where
pl is a list of paths is translated to this script :

1 failure := ’false ’
2 for f in pl do
3 if rm f then else failure := ’true ’ fi
4 done
5 if test [failure , ’-eq’, ’true ’] then fail fi

Note that this models the real behaviour of the rm command applied to multiple
path arguments, that is it tries to remove all paths given as arguments, and in
the end signals failure when one of the removals failed. This is in contrast to
just serially invoking rm on each argument, which would fail if and only the last

removal operation fails. Doing the same with the -e flag set (the so-called strict

mode) would abort the sequence at the first failure, and not attempt to remove
the remaining files.

20 Benedikt Becker et al.

3.4.5 Properties of specifications

The specifications of Unix commands satisfy some properties that are checked us-
ing the decision procedure designed for feature tree constraints (see Section 3.2.3).
Firstly, these specifications are expressed as a disjunction of cases ∨iφi, (see Ta-
ble 18), each case φi being the conjunction of a precondition formula Prei(r) on
the initial file system represented by the variable r and a transformation formula
Transi(r, r

′) specifying the transformation performed by the command to obtain
the resulting file system represented by r′. Due to this specific form, we are able
to check that the specification of a command is complete, that is, the disjunc-
tion of preconditions for all cases of a command’s specification is a valid formula.
Moreover, we checked that the specification of each case is coherent, that is the
precondition formula Prei(r) implies the satisfiability of the associated transfor-
mation formula Transi(r, r

′). Coherence and completeness together imply that a
specification is total, that is the relation it represents covers all the input trees.
A total specification ensures that the symbolic execution does not lose traces of
command’s execution.

The above properties are not enough to characterize the precision of specifi-
cations. In particular, they do not guarantee that we will not get false positives,
that is bugs that are not actually reachable. The properties that carry such infor-
mation are the determinism and the functionality of a specification. Intuitively, a
specification of a command is deterministic if there is no pair (i, j) (i 6= j) of cases
such that their preconditions Prei(r) resp. Prej(r) share a model. Determinism is
particularly important between preconditions of cases with different status – suc-
cess or error. Indeed, if it holds, then it ensures that the input trees are classified
correctly. A specification case φi is functional if every input tree is related to at
most one output tree. A command specification is functional if it is deterministic
and all its cases are functional.

All our specifications are written to be complete and coherent. Most of them
are also functional. However, for some of them, the specification logic is not ex-
pressive enough to capture the exact behaviour of the command. For example, the
command cp with recursive option and overlapping source and destination paths
may produce a (potentially partial) interleaving of the two input file systems, that
is a (potentially strict) subset of the union of the two input trees, which our logic
can simply not express. In that case, our specification over-approximates the be-
haviour of the command, allowing one input tree to lead to several output trees,
giving up on the functionality property. We notice that such situations occur very
rarely in the maintainer scripts of Debian, which justifies that we do not extend
the logic to handle them.

3.4.6 Testing the specifications

To ensure that the specifications of Unix commands are correct abstractions of
what they are actually doing, we employ specification-based testing. The overall
process for a command call cmd args is summarised in Figure 19. The symbolic
engine is used to instantiate the specification of the the command cmd with its
actual parameters args. The result is a formula φ(r, r′) which is given to a model
extractor to produce a model M . The model extractor follows the simplification
rules of the decision procedure (see Section 3.2.3) and additional heuristics to

The CoLiS platform 21

cmd’s
spec

cmd args

Symbolic
Engine

φ(r, r′)

Model
Extractor

Model

Input
File System

Output
File System

Path
Enumeration

Model
Checker

$ cmd args

Diagnosis

Fig. 19 Testing behaviour of a given command against its specification: green components
are input and output data, red parts execute commands or tools. The formula φ is generated
by the symbolic engine from the input command specification and the command arguments; φ
is given to a model extractor which produces a finite model. The model is explored to create an
input file system on which the tested command is executed and creates an output file system.
The model-checker tests that the output file system complies with the model extracted from
the specification.

obtain a small model M of a satisfiable constraint φ(r, r′). The model M built by
our model extractor is a forest with two roots labelled by the logic variables r
and r′. An example of such model for the command rm /etc/rancid/apache.conf

is given in Figure 17. The model is then used to create an input file system by
enumerating all paths reachable from the root r. The command cmd args is called
on the input file system to produce an output file system. The paths reachable
from the root r′ in the model M are computed and a simple model-checker verifies
that all these paths belong to the output file system.

There are several challenges for this testing process. The one that required most
attention was in the model extractor which has to deal with negative constraints
(e.g., the absence of a file or the difference between two directories). We proposed a
sound algorithm for extracting models in the presence of such constraints. Another
challenge concerns the choice of input arguments that exhibit interesting test cases.
We enumerate exhaustively arguments that are input paths for our commands by
fixing a finite set of file names including here (’.’) and parent (’..’).

The main outcome of the testing process is the increased confidence in our
specification of the UNIX commands. We did not find specification errors, but we
found errors in the implementation in OCaml of the UNIX commands’ specifica-
tions. These bugs concern the handling of input paths containing special file names
like here (’.’) and parent (’..’), or sequences of slashes (‘/’).

3.5 Scenarios

So far, we have presented how we analyse individual maintainer scripts. In reality,
the Debian policy specifies in natural language in which order and with which
arguments these scripts are invoked during package installation, upgrade, or re-
moval (see, for instance, Figure 2). We have specified these scenarios in a loop-free

22 Benedikt Becker et al.

custom language. These scenarios define what happens after the success or the fail-
ure of a script execution. They also specify when the static content is unpacked.
Furthermore, our toolchain allows us to define the assumptions that can be made
on an initial filesystem before executing a scenario, for instance the File System
Hierarchy Standard [42]. Our toolchain reports on packages that may remain in
an unexpected state after the execution of one of these scenarios.

For instance, the installation scenario of the package rancid-cgi may leave
that package in the state NotInstalled, which is reported by our toolchain using the
diagram in Figure 4.

4 Results and impact

4.1 Coverage of the case study

We executed the analysis on a machine equipped with 16 hyperthreaded Intel Xeon
CPU @ 2.50GHz, and 64GB of RAM. To obtain a reasonable execution time, we
limit the processing of one script to 60 seconds and 8GB of RAM. The time limit
might seem low, but the experience shows that the few scripts (in 30 packages)
that exceed this limit actually require hours of processing because they heavily
use the dpkg-maintscript-helper script. On our corpus of 11,640 packages with
27,324 scripts, the analysis runs in about half an hour.

All of those scripts that are syntactically correct with respect to the Posix

standard (99.9%) are parsed successfully by our parser. The translation of the
parsed scripts into our intermediary language CoLiS succeeds for 77% of them;
the translation fails mainly because of the limitations already mentioned in Sec-
tion 3.1.3, namely the use of globs, parameter modifiers and advanced uses of
redirections.

Our toolchain then attempts to run 104,760 scenarios (11,640 packages with
scripts, 9 scenarios per package). Out of those, 42,738 scenarios (41%) are run com-
pletely and 12,471 (12%) partially. This is because scenarios have several branches
and although a branch might encounter failure, we try to get some information on
execution of other branches. For the same reason, one scenario might encounter
several failures. In total, we encounter 62,023 failures. The origins of failures are
multiple, but the two main ones are (i) trying to execute a scenario that includes
a script that we cannot convert (21% of failures), or (ii) the scripts might use
commands unsupported by our tools, or unsupported features of supported com-
mands (76% of failures).

Among the scenarios that we manage to execute at least partially, 14 reach an
unexpected end state. These are potential bugs. We have examined them manually
to remove false positives due to approximations done by our methodology or the
toolchain. We discuss in Section 4.3 the main classes of true bugs revealed by this
process.

The tools used during the current study are available in our Github reposi-
tory [40].

The CoLiS platform 23

Bugs Closed Detected by Reports Examples
2020 2021

95 56 64 parser [11] not using -e mode
6 4 5 parser & manual [17] unsafe or non-Posix

constructs
34 24 26 corpus mining [10,12] wrong options, mixed

redirections
9 7 7 translation [13] wrong test expressions
5 2 4 symbolic execution [15,19,17] try to remove a directory

with rm
3 3 3 formalisation [14] bug in

dpkg-maintscript-helper

152 96 109

Fig. 20 Classification of bugs found between 2016 and 2019 in Debian sid and stable distri-
butions, with the numbers of resolved bugs in February 2020 and September 2021.

4.2 Corpus mining

We ran our tools on the “bullseye” Debian distribution which was released on
August 14, 2021. It contains 59,551 packages, 11,640 of which contain at least
one maintainer script, which leads to 27,324 scripts. In total, these scripts contain
683,926 source lines of code, 25 lines on average, and up to 1,393 for the largest
script. Among them we find 150 bash scripts, 2 dash scripts, 7 perl scripts, and
one ELF executable – the rest are Posix shell scripts.

In the process of designing our tools, and in order to validate our hypotheses,
we ran statistical analysis on this corpus of scripts. The construction of our tool
for statistical analysis is described in a technical report [29] where we also detail
a few of our findings. To summarise, analysing the corpus revealed that:

– Most variables in scripts were used as constants: only 3,008 scripts contain
variables whose value actually changes.

– There are no recursive functions in the whole corpus.
– There are 2,300 scripts that include a while loop. 93% of the while loops occur

in a pipe reading the output of dpkg -L and are an idiosyncrasy that is proper
to some shell languages. They can be translated to “foreach” loops in a properly
typed language.

– The huge majority of redirections are used to hide the standard output or
merge it into the error output.

This analysis had an important impact on the project by guiding the design choices
of CoLiS, which Unix commands we should specify and in which order, etc. This
also helped us to discover a few bugs, for example scripts invoking Unix commands
with invalid options.

4.3 Bugs found

We ran our toolchain on several snapshots of the Debian sid distribution taken
between 2016 and 2019, and on the latest released version named “bullseye” which
was released August 14, 2021. We reported over this period a total of 152 bugs

24 Benedikt Becker et al.

to the Debian Bug Tracking System [41]. Some of them have immediately been
confirmed by the package maintainer (for instance, [18]), and 109 of them have
already been resolved.

Table 20 summarizes the main categories of bugs we reported. Simple lexical
analysis already detects 95 violations of the Debian Policy, for instance scripts that
do not specify the interpreter to be used, or that do not use the -e mode [11]. The
shell parser (Section 3.1.1) detects 3 scripts that use shell constructs not allowed
by the Posix standard, or in a context where the Posix standard states that the
behaviour is undefined [17]. There are also 3 miscellaneous bugs, like using un-
safe shell constructs. The mining tool (Section 4.2) detects 5 scripts that invoke
Unix commands with wrong options and 29 scripts that mix up redirection of
standard-output and standard-error. The translation from the shell to the CoLiS

language (Section 3.1.3) detects 9 scripts with wrong test expressions [13]. These
may stay unnoticed during superficial testing since the shell confuses, when eval-
uating the condition of an if-then-else, an error exception with the Boolean value
False. Inspection of the symbolic semantics extracted by the symbolic execution
(Section 3.3) finds 5 scripts with semantic errors. Among these is the bug [18] of
the package rancid-cgi already explained in Section 2.5. During the formalisation
of Debian tools (see Section 3.4), we found 3 bugs. These include in particular a
bug [14] in the dpkg-maintscript-helper command which is used 10,306 times in
our corpus of maintainer scripts, and was fixed in the meantime.

4.4 Lessons learnt

One basic problem when trying to analyse maintainer scripts is to understand pre-
cisely the meaning of the policy document. For instance, one of the most intriguing
requirements is that maintainer scripts have to be idempotent (Section 6.2 in [3]).
While it is common knowledge that a mathematical function f is idempotent when
f(f(x)) = f(x) for any x, the meaning is much less clear in the context of Debian
maintainer scripts as the policy goes on to explain: “If the first call failed, or
aborted half way through for some reason, the second call should merely do the
things that were left undone the first time, if any, and exit with a success status if
everything is OK.” We suppose that this refers to causes of error external to the
script itself (power failure, full disk, etc.), and that there might be an interven-
tion by the system administrator between the two invocations. Since we cannot
even explain in natural language what precisely that means, let alone formalise
it, we decided to model at the moment only a rough under-approximation of that
property that only compares executions by their exit code. Even if this is a rough
approximation, it allowed us to detect an idempotency bug in a package [16].

We found that identifying bugs in maintainer scripts always requires human
examination. Automated tools are good at pointing out potential problems in a
large corpus, but deciding whether such a problem actually deserves a bug report,
and of what severity level, requires some experience with the Debian processes.
This is most visible with semantic bugs in scripts, since an error exit code does not
imply that there is a bug. Indeed, if a script detects a situation it cannot handle
then it must signal an error and produce a useful error message. Deciding whether
a detected error case is justified or accidental requires human judgement.

The CoLiS platform 25

Filing bug reports demands some caution, and observance of rules and common
practices in the community. For instance, the Debian Developers Reference [20]
requires approval by the community before so-called mass bug filing. Consequently,
we always sought advice before sending batches of bugs, either on the Debian
developers mailing list, or during Debian conferences.

5 Conclusion

The corpus of Debian maintainer scripts is an interesting case study for analysis
due to its size, the challenging features of the scripting language, and the relational
properties that are required to be analysed. The results are very promising. First,
we reported 152 bugs [41] to the Debian Bug Tracking system, 109 of which have
already been resolved by Debian maintainers. Second, the toolchain performs the
analysis of a package in seconds and of the full distribution in less than one hour,
which makes it fit for integration in the workflow of Debian maintainers or for
quality assurance at the level of the whole distribution. Integration of our toolchain
in the Lintian [31] tool will not be possible since it would add a lot of external
dependencies to that tool, and since the reports generated by our tool still require
human evaluation (see Section 4.4).

This study had several additional outcomes. The toolchain includes tools for
parsing and light static analysis of shell scripts [36], an engine for the symbolic
execution of imperative languages based on first-order logics representation of
program configurations [7], and an efficient decision procedure for feature tree
logic. We also provide a formal specification of Posix commands used in Debian
scripts in terms of a first-order logic [28].

We are not aware of a project dealing with this kind of problem or obtaining
comparable results. To our knowledge, the only existing attempt to analyse a
complete corpus of package maintainer scripts was done in the context of the
Mancoosi project [21]. In this work, the analysis, mainly syntactic, resulted in a set
of building blocks used in maintainer scripts that may be used in a DSL. In a series
of papers [23,34,33], Ntzik et al. consider the formal reasoning on the Posix scripts
manipulating the file system based on (concurrent) separation logic. Not only do
they employ a different logic (a second-order logic), but they also focus on (manual)
proof techniques for correctness and not on automatic techniques for finding bugs.
Moreover, they consider general scripts and properties that are not relational (like
idempotency). There have been few attempts to formalise the shell. Greenberg [24]
recently offers an executable formal semantics of Posix shell that will serve as a
foundation for shell analysis tools. Abash [32] contains a formalisation of parts of
the bash language and an abstract interpretation tool for the analysis of arguments
passed by scripts to Unix commands; this work focused on identifying security
vulnerabilities.

The successful outcome of this case study revealed new challenges that we
aim to address in future work. In order to increase the coverage of our analy-
sis and the acceptance by Debian maintainers, the translation from shell should
cover more features, additional Unix commands should be formally specified, and
the model should capture more features of the file system (e.g., permissions or
symbolic links). The efficiency of the analysis can still be improved by using a
more compact representation of disjunctive constraints in feature tree logics or by

26 Benedikt Becker et al.

exploiting the genericity of the symbolic execution engine to include other logic
based symbolic representations that may be more efficient and precise. A recent
work [22] goes in this direction by using tree transducer techniques. Finally, we
want to use the computed constraints on scenarios to check new properties of
scripts like equivalence of behaviours.

Acknowledgements We would like to thank all the other members of the CoLiS project,
in particular Ilham Dami for her internship about the early design of the CoLiS language,
Abinandan Pal for his internship about the test of specifications, and Paul Gallot et Sylvain
Salvati for their feedback on the usage of the CoLiS platform, towards the integration of tree
transducer techniques in addition to feature constraints.

References

1. Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zacchiroli. Building the
universal archive of source code. Communications of the ACM, 61(10):29–31, 2018.
doi:10.1145/3183558.

2. Hassan Aı̈t-Kaci, Andreas Podelski, and Gert Smolka. A feature-based constraint system
for logic programming with entailment. Theoretical Computer Science, 122(1–2):263–283,
January 1994.

3. Russ Allbery and Sean Whitton. Debian policy manual. https://www.debian.org/doc/
debian-policy/, October 2019. [Online; last accessed 2022-June-14].

4. Maurice J. Bach. The Design of the UNIX Operating System. Prentice-Hall, 1986.
5. Benedikt Becker. dash ignores -e in substitution under test. https://www.mail-archive.

com/dash@vger.kernel.org/msg01683.html, 2018. [Online; last accessed 2022-June-14].
6. Benedikt Becker, Nicolas Jeannerod, Claude Marché, Yann Régis-Gianas, Mihaela Sighire-

anu, and Ralf Treinen. Report generated by colis-batch on Debian bullseye. Zenodo
Repository, October 2021. doi:10.5281/zenodo.5560955.

7. Benedikt Becker and Claude Marché. Ghost Code in Action: Automated Verification of
a Symbolic Interpreter. In Supratik Chakraborty and Jorge A.Navas, editors, Verified
Software: Tools, Techniques and Experiments, Lecture Notes in Computer Science, 2019.
URL: https://hal.inria.fr/hal-02276257.

8. Benedikt Becker, Claude Marché, Nicolas Jeannerod, and Ralf Treinen. Revision 2 of
CoLiS language: formal syntax, semantics, concrete and symbolic interpreters. Technical
report, HAL Archives Ouvertes, October 2019. URL: https://hal.inria.fr/hal-02321743.

9. François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. Let’s
verify this with Why3. International Journal on Software Tools for Technology Transfer
(STTT), 17(6):709–727, 2015. URL: http://hal.inria.fr/hal-00967132/en, doi:10.1007/
s10009-014-0314-5.

10. Debian Bug Tracker. dibbler-server: postinst contains invalid command. Debian
Bug Reports 841934, October 2016. URL: https://bugs.debian.org/cgi-bin/bugreport.
cgi?bug=841934.

11. Debian Bug Tracker. authbind: maintainer script(s) not using strict mode. Debian Bug
Report 866249, June 2017. URL: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=
866249.

12. Debian Bug Tracker. dict-freedict-all: postinst script has a wrong redirection. Debian
Bug Report 908189, September 2018. URL: https://bugs.debian.org/cgi-bin/bugreport.
cgi?bug=908189.

13. Debian Bug Tracker. python3-neutron-fwaas-dashboard: incorrect test in postrm. De-
bian Bug Report 900493, May 2018. URL: https://bugs.debian.org/cgi-bin/bugreport.
cgi?bug=900493.

14. Debian Bug Tracker. dpkg-maintscript-helper: bug in finish dir to symlink. Debian
Bug Report 922799, February 2019. URL: https://bugs.debian.org/cgi-bin/bugreport.cgi?
bug=922799.

15. Debian Bug Tracker. ndiswrapper: when postrm purge fails it may have deleted some
config files. Debian Bug Report 942392, October 2019. URL: https://bugs.debian.org/
cgi-bin/bugreport.cgi?bug=942392.

http://dx.doi.org/10.1145/3183558
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/
https://www.mail-archive.com/dash@vger.kernel.org/msg01683.html
https://www.mail-archive.com/dash@vger.kernel.org/msg01683.html
http://dx.doi.org/10.5281/zenodo.5560955
https://hal.inria.fr/hal-02276257
https://hal.inria.fr/hal-02321743
http://hal.inria.fr/hal-00967132/en
http://dx.doi.org/10.1007/s10009-014-0314-5
http://dx.doi.org/10.1007/s10009-014-0314-5
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=841934
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=841934
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=866249
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=866249
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=908189
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=908189
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=900493
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=900493
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=922799
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=922799
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942392
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942392

The CoLiS platform 27

16. Debian Bug Tracker. oz: non-idempotent postrm script. Debian Bug Report 942395,
October 2019. URL: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942395.

17. Debian Bug Tracker. preinst script not Posix compliant. Debian Bug Report 925006,
March 2019. URL: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=925006.

18. Debian Bug Tracker. rancid-cgi: preinst may fail and not rollback a change. Debian
Bug Report 942388, October 2019. URL: https://bugs.debian.org/cgi-bin/bugreport.cgi?
bug=942388.

19. Debian Bug Tracker. sgml-base: preinst may fail silently. Debian Bug Report 929706,
May 2019. URL: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=929706.

20. Developer’s Reference Team. Debian developers reference. https://www.debian.org/doc/
manuals/developers-reference/, October 2019. [Online; last accessed 2022-June-14].

21. Roberto Di Cosmo, Davide Di Ruscio, Patrizio Pelliccione, Alfonso Pierantonio, and Ste-
fano Zacchiroli. Supporting software evolution in component-based FOSS systems. Science
of Computer Programming, 76(12):1144–1160, 2011. doi:10.1016/j.scico.2010.11.001.

22. Paul Gallot. Safety of transformations of data trees. Phd thesis, Université de Lille, 2021.
URL: https://hal.archives-ouvertes.fr/tel-03517128.

23. Philippa Gardner, Gian Ntzik, and Adam Wright. Local reasoning for the Posix file
system. In European Symposium On Programming, volume 8410 of Lecture Notes in
Computer Science, pages 169–188. Springer, 2014. doi:10.1007/978-3-642-54833-8_10.

24. Michael Greenberg and Austin J. Blatt. Executable formal semantics for the Posix shell.
CoRR, abs/1907.05308, 2019. arXiv:1907.05308.

25. IEEE and The Open Group. The open group base specifications issue 7. http://pubs.
opengroup.org/onlinepubs/9699919799/, 2018. [Online; last accessed 2022-June-14].

26. Nicolas Jeannerod. Verification of Shell Scripts Performing File Hierarchy Transforma-
tions. PhD thesis, Université de Paris, March 2021. URL: https://hal.archives-ouvertes.
fr/tel-03369452.

27. Nicolas Jeannerod, Claude Marché, and Ralf Treinen. A Formally Verified Interpreter for
a Shell-like Programming Language. In 9th Working Conference on Verified Software:
Theories, Tools, and Experiments, volume 10712 of Lecture Notes in Computer Science,
2017. URL: https://hal.archives-ouvertes.fr/hal-01534747.

28. Nicolas Jeannerod, Yann Régis-Gianas, Claude Marché, Mihaela Sighireanu, and Ralf
Treinen. Specification of UNIX utilities. Technical report, HAL Archives Ouvertes, Octo-
ber 2019. URL: https://hal.inria.fr/hal-02321691.

29. Nicolas Jeannerod, Yann Régis-Gianas, and Ralf Treinen. Having fun with 31.521
shell scripts. Technical report, HAL Archives Ouvertes, 2017. URL: https://hal.
archives-ouvertes.fr/hal-01513750.

30. Nicolas Jeannerod and Ralf Treinen. Deciding the first-order theory of an algebra of
feature trees with updates. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani,
editors, 9th International Joint Conference on Automated Reasoning, volume 10900 of
Lecture Notes in Computer Science, pages 439–454, Oxford, UK, July 2018. Springer.
URL: https://hal.archives-ouvertes.fr/hal-01807474.

31. The Lintian expert system. https://lintian.debian.org. [Online; last accessed 2022-June-
14].

32. Karl Mazurak and Steve Zdancewic. ABASH: finding bugs in bash scripts. In Workshop
on Programming Languages and Analysis for Security, pages 105–114, 2007.

33. Gian Ntzik, Pedro da Rocha Pinto, Julian Sutherland, and Philippa Gardner. A con-
current specification of Posix file systems. In European Conference on Object-Oriented
Programming, volume 109 of LIPIcs, pages 4:1–4:28. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.ECOOP.2018.4.

34. Gian Ntzik and Philippa Gardner. Reasoning about the Posix file system: local update
and global pathnames. In Object-Oriented Programming, Systems, Languages and Appli-
cations, pages 201–220. ACM, 2015. doi:10.1145/2814270.2814306.

35. The piuparts tool for quality assurance of Debian packages. https://piuparts.debian.org/.
[Online; last accessed 2022-June-14].

36. Yann Régis-Gianas, Nicolas Jeannerod, and Ralf Treinen. Morbig: A static parser for
POSIX shell. J. Comput. Lang., 57:100944, 2020. URL: https://doi.org/10.1016/j.cola.
2020.100944, doi:10.1016/j.cola.2020.100944.

37. Roland Rosenfeld. Package rancid-cgi: looking glass cgi based on rancid tools, 2019. https:
//packages.debian.org/en/sid/rancid-cgi.

38. Gert Smolka. Feature constraint logics for unification grammars. Journal of Logic Pro-
gramming, 12:51–87, 1992.

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942395
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=925006
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942388
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942388
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=929706
https://www.debian.org/doc/manuals/developers-reference/
https://www.debian.org/doc/manuals/developers-reference/
http://dx.doi.org/10.1016/j.scico.2010.11.001
https://hal.archives-ouvertes.fr/tel-03517128
http://dx.doi.org/10.1007/978-3-642-54833-8_10
http://arxiv.org/abs/1907.05308
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://hal.archives-ouvertes.fr/tel-03369452
https://hal.archives-ouvertes.fr/tel-03369452
https://hal.archives-ouvertes.fr/hal-01534747
https://hal.inria.fr/hal-02321691
https://hal.archives-ouvertes.fr/hal-01513750
https://hal.archives-ouvertes.fr/hal-01513750
https://hal.archives-ouvertes.fr/hal-01807474
https://lintian.debian.org
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.4
http://dx.doi.org/10.1145/2814270.2814306
https://piuparts.debian.org/
https://doi.org/10.1016/j.cola.2020.100944
https://doi.org/10.1016/j.cola.2020.100944
http://dx.doi.org/10.1016/j.cola.2020.100944
https://packages.debian.org/en/sid/rancid-cgi
https://packages.debian.org/en/sid/rancid-cgi

28 Benedikt Becker et al.

39. Gert Smolka and Ralf Treinen. Records for logic programming. Journal of Logic Pro-
gramming, 18(3):229–258, April 1994.

40. The CoLiS project. The CoLiS toolchain. https://github.com/colis-anr.
41. The Debian Project. Bugs tagged colis. https://bugs.debian.org/cgi-bin/pkgreport.cgi?

tag=colis-shparser;users=treinen@debian.org.
42. The Linux Foundation. Filesystem hierarchy standard, version 3.0, March 2015. URL:

https://refspecs.linuxfoundation.org.
43. Aaron M. Ucko. cmigrep: broken emacsen-install script. Debian Bug Report 431131,

June 2007. URL: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=431131.

https://github.com/colis-anr
https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org
https://refspecs.linuxfoundation.org
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=431131

	Introduction
	Overview of the Study and Analysis Methodology
	Design and Implementation of the Tool Chain
	Results and impact
	Conclusion

