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COMPONENT TWIN-WIDTH AS A PARAMETER FOR BINARY-CSP AND ITS

SEMIRING GENERALISATIONS

AMBROISE BARIL, MIGUEL COUCEIRO, AND VICTOR LAGERKVIST

Abstract. We investigate the fine-grained and the parameterized complexity of several generalizations of

binary constraint satisfaction problems (BINARY-CSPs), that subsume variants of graph colouring problems.
Our starting point is the observation that several algorithmic approaches that resulted in complexity upper

bounds for these problems, share a common structure.

We thus explore an algebraic approach relying on semirings that unifies different generalizations of
BINARY-CSPs (such as the counting, the list, and the weighted versions), and that facilitates a general

algorithmic approach to efficiently solving them. The latter is inspired by the (component) twin-width

parameter introduced by Bonnet et al., which we generalize via edge-labelled graphs in order to formulate
it to arbitrary binary constraints. We consider input instances with bounded component twin-width, as

well as constraint templates of bounded component twin-width, and obtain an FPT algorithm as well as an

improved, exponential-time algorithm, for broad classes of binary constraints.
We illustrate the advantages of this framework by instantiating our general algorithmic approach on

several classes of problems (e.g., the H-coloring problem and its variants), and showing that it improves the

best complexity upper bounds in the literature for several well-known problems.

1. Introduction

Constraint satisfaction problems (CSPs) are rooted in artificial intelligence and operations research and
provide a rich framework for encoding many different types of problems (for a wealth of applications, see e.g.
the book by Rossi et al. [31]). A CSP example of paramount importance is the Boolean satisfiability problem,
SAT, which can be viewed as a constraint satisfaction problem over the Boolean domain. Another noteworthy
CSP example is the H-COLORING problem [28] that asks whether there exists an homomorphism from an
(undirected) input graph G to the target graph H. Indeed, this problem can be formalized as a particular
case of a CSP over binary constraints (BINARY-CSP): given a set of variables V and a set of constraints
of the form R(u1, u2) for (u1, u2) ∈ V 2 and binary relations R ⊆ D2, the objective is to map variables in
V to values in the domain D such that every such constraint is satisfied. Such a mapping is then referred
as a solution of the instance. When the relations belong to a fixed language Γ, this problem is usually
denoted by BINARY-CSP(Γ), and the decision problem is stated as the problem of deciding whether a
solution exists. Clearly, the H-COLORING problems subsume the well known q-COLORING problem with
H being the q-clique, which itself can be seen as the satisfaction of constraints expressed through the relation
NEQq = {(a, b) ∈ [q]2 | a 6= b}. Hell & Nešetřil [28] showed that the complexity of H-COLORING problems
for a given graph H is NP-complete whenever H is not bipartite; otherwise, it is in P. This result can be seen
as a particular case of the CSP dichotomy theorem which states that every CSP problem (and, in particular,
BINARY-CSP) is either in P or NP-complete [17, 34].

For certain applications however, the basic decidability setting provides insufficient modelling power and
one may be instead interested in counting the number of solutions (we prefix the problem by # to denote
the corresponding counting problem). Also, counting problems may be subjected to additional constraints
such as lists, where a function l : V 7→ P(D) is given and any solution f has to satisfy ∀u ∈ V, f(u) ∈ l(u),
and costs, where sending u ∈ V to v ∈ D has a cost C(u, v), with the goal of minimizing

∑
u∈V

C(u, f(u)). This

framework makes it possible to encode phase transition systems modelled by partition functions, modeling
problems such as counting q-particle Widom–Rowlinson configurations and counting Beach models, or the
classical Ising model (for many more examples, see e.g. Dyer & Greenhill [24]). The complexity of these
generalized problems has been the subject of intense research, starting with the complexity dichotomy for
the #H-COLORING problems by Dyer & Greenhill [24], later extended to #CSP by Bulatov [17], and
culminating into the dichotomy theorem by Cai & Chen [18] in the presence of weights.
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In contrast to the classical CSP, which admits a rich tractability landscape [17, 34], the associated counting
problems are generally hard except for trivial cases. For example, #H-COLORING is #P-hard if H is not a
disjoint union of looped cliques and loopless complete bipartite graphs, and is in P otherwise [24]. Thus, non-
trivial templates H of actual interest tend to result in NP-hard (#)H-COLORING problems, necessitating
tools and techniques from parameterized and fine-grained complexity.

Here, there is no lack of results for specific templates H. One of the most well-known results is likely
Björklund et al.’s [4] dynamic programming algorithm which solves q-COLORING, as well as the counting,
summation, and optimization versions, in O∗(2n)1 time. Another result for #H-COLORING from Dı́az et
al. [21] is the existence of an improved algorithm assuming that the input graph G has tree-width k and
is given with a nice tree decomposition: for any graph H, #H-COLORING can then be solved on G in
O(|VH |k+1 min(k, n) · n) time using only O(|VH |k+1 log(n)) additional space. The latter examples indicate
that bounding the class of input instances by parameters such as tree-width and the related clique-width,
can be applied more generally and with powerful algorithmic results.

More generally, two noteworthy extensions of H-COLORING can be defined by restricting either the
input or the target graphs with respect to a given parameter k. In the former, the goal is to obtain FPT
algorithms, while one in the latter simply wishes to improve upon exhaustive search (O∗(|D|n)), with a single-
exponential running time O∗(cn) for a fixed c depending only on k representing the most desired outcome.
Hence, restricting the class of input graphs yields a problem of interest in parameterized complexity while
restricting the target graphs yields a problem with closer ties to fast exponential-time algorithms and fine-
grained complexity. For instance, the algorithm by Fomin et al. [26] solves H-COLORING in O∗((t + 3)n)
time if H has tree-width at most t on every graph G with |VG| = n, assuming that the tree-decomposition is
given. Moreover, Wahlström [32] designed an algorithm based on k-expressions and clique-width in order to
solve the #H-COLORING problem in time O∗((2k + 1)n), assuming that the clique-width of the graph H
is k ≥ 1. The running time descends to O∗((k + 2)n) if H admits a linear k-expression, leading to a O∗(6n)
complexity for #Cp-COLORING (where Cp is the p-cycle for p ≥ 5, Cp having a linear 4-expression), and
an O∗(5n) complexity for #H-COLORING, for any cograph H (the cographs with at least one edge being
exactly the graphs of clique-width 2). Recently, Okrasa and Rza̧żewski gave in [30] an algorithm running
in time O∗(|VH |tw(G)) solving H-COLORING (assuming an optimal tree-decomposition of G is given) and
established its optimality, in the sense that H-COLORING can not be solved in time O∗((|VH |−ε)tw(G)) for
all ε > 0 (under the hypothesis that H is a projective core), unless the strong exponential-time hypothesis
(SETH) fails2. They also achieved similar results involving clique-width [27], where they showed the existence
and the optimality of their algorithm running in O∗(s(H)cw(G)) (with s(H) being a new structural parameter
of H), in the sense that the running time O∗((s(H)− ε)cw(G)) can not be reached under the SETH.

In this paper we pursue this line of research and study the fine-grained and parameterized complexities
of (#)H-COLORING problems and, more generally, of #BINARY-CSP(Γ) with a particular focus on the
parameter twin-width, recently introduced and now widely investigated [2, 6, 7, 9, 8, 10, 11, 12, 13, 14, 15, 16].
This parameter, as well as the underlying contraction sequences, give information on whether two vertices are
“similar” (in the sense that they have almost the same neighborhoods) in order to treat them simultaneously
and thus reduce the computation time. A major achievement of twin-width is that deciding whether a graph
G is a model of a closed first-order formula ϕ is FPT when parameterized by the twin-width of G and the
length of ϕ [14]. Also, the k-INDEPENDENT SET problem is FPT when parameterized by k and twin-width
[9]. In [12] Bonnet et al. also gave a proof that the q-COLORING problem was FPT when parameterized
by component twin-width. Specifically, the parameter component twin-width appears to be the most relevant
and natural parameter in the setting of homomorphism problems. In fact, many of the algorithms in [9]
that are FPT when parameterized by twin-width, such as the one solving k-IND-SET, can be seen as an
optimization of a more natural FPT algorithm parameterized by component twin-width.

Despite their impressive success, parameters based on twin-width have not been used to tackle #H-
COLORING problems, except for the very restricted case of q-COLORING briefly discussed in [12]. To
extend the applicability of such parameters to larger classes of graphs and problems, in Section 3 we propose

1The O∗ notation means that we ignore polynomial factors.
2I.e., that SAT can not be solved in time (2− ε)n × (n + m)O(1) on instances with n variables and m clauses.
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a representation of instances and templates of BINARY-CSPs as “edge-labelled graphs”. However, classi-
cal representations via Gaifman graphs are not adapted to algorithms dealing with component twin-width
because the latter does not necessarily increase with higher number of edges.

We thus propose the algebraic notion of pre-morphism into a semiring in Section 4, that enables a unified
formalism for the list, the counting and the cost generalisations of BINARY-CSP. This formalism also
subsumes the semiring based generalisations of CSP (SCSP) by Bistarelly [3], including in particular the
counting version of CSP. Even though Wilson [33] proposed an equivalent generalisation through semirings,
Wilson’s formalism can be seen as a descendant approach, studying subsets of the set of solutions with less
and less specifications over time. In contrast, our method builds the set of solutions from trivial cases and
two basic operations ] and on, that we will perform (through our pre-morphism) in the semiring instead.
This approach is often a more common and prolific way to involve graph parameters; see, e.g., Wahlström
[32] in the context of clique-width.

Finally, in Section 5 we use contraction sequences along with component twin-width to implement dynamic
programming algorithms that efficiently solve these generalisations of BINARY-CSPs. Here, we consider both
the case where we bound the input graphs and the case where we bound the template by component twin-
width, and we solve both of these questions by two novel algorithms: an FPT algorithm applicable for inputs
of bounded component twin-width, and a superpolynomial but significantly improved algorithm applicable
to templates of bounded component twin-width. They strongly generalize and improve the results by, e.g.,
Wahlström [32], and are to the best of our knowledge the most general algorithms of their kind (for binary
constraints). In fact, our two algorithms even solve combinations of generalisations of BINARY-CSP without
impacting the running time. In Table 1 we summarize a few cases where our approach improves the upper
bounds that we can derive from [32], which uses k-expressions and clique-width, and which complements
the q-COLORING problems untreated by the inclusion-exclusion method of Björklund et al. [4]. Regarding
the latter, we also observe that while it runs in O∗(2n) time and is able to solve many combinations of
generalisations of q-COLORING, it does not cover all combinations of generalisations of BINARY-CSP
solved by our algorithms, and is naturally restricted to the very specific case of complete graphs. For our
FPT algorithms, component twin-width and clique-width are functionally equivalent [12] on graphs, which
allows us to derive FPT conditions for generalized H-COLORING problems with respect to clique-width.
This extends the corollary derived from Courcelle et al. [19] that for every graph H, H-COLORING is
FPT when parameterized by clique-width even if we add costs, since we now allow combinations of counting
generalisations. We summarize the FPT results in Table 4. These results raise several questions for future
research, and we discuss some of them in Section 6.

2. Preliminaries

In this section we recall the basic notation and terminology that will be used throughout the paper.

2.1. Basic Notation. A graph H is a tuple (VH , EH) where VH is a finite set referred as the set of vertices
of H and EH is a binary relation over VH , called the set of edges of H3. The graph H is said to be loopless
if EH is irreflexive and non-oriented if EH is symmetric.

Given an arbitrary set A, we denote by P(A) the set of all subsets of A. For S ∈ P(P(A)) (i.e. S ⊆ P(A)),
let ∪S denote the set

⋃
s∈S
s. Note that (∪S ∈ P(A)) (i.e. S ⊆ A). We say that S is a proper partition of A, if

every a ∈ A belong to a unique s ∈ S, and that ∅ /∈ S. For two proper partitions S′ and S of A, we say that
S′ respects S if for all s′ ∈ S′, there exists s ∈ S such that s′ ⊆ s. We occasionally relax the notation and
allow a proper partition of A to be family of pairwise disjointed non-empty subsets of A whose union equals
A. This will be useful in contexts where the order of the partition matters. If B is an arbitrary set, we let
BA be the set of functions from A to B. For f ∈ BA and A′ ⊆ A, the restriction of f to A′ is the function
f |A′ : A′ 7→ B. Also, for B′ ⊆ B and f ∈ BA with f(A) ⊆ B′, the corestriction of f to B′ is the function

f |B′ : A 7→ B′

Throughout, p will only be used to denote an integer ≥ 1, and [p] is the set {1, . . . , p}. We let N, R, R+

denote the natural, real, and positive real numbers, respectively. We let N = N ∪ {+∞}, R := R ∪ {+∞}
and R+ := R+ ∪ {+∞}. If A ⊆ R, we denote its minimum by minA, with the convention that min ∅ =∞.
Similarly, if A ⊆ R+, we denote its maximum by maxA, with the convention that max ∅ = 0. Also, for

3Any graph H will always be denoted H = (VH , EH).
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Generalisation\Graph Clique Cograph Even cycle Odd cycle
H-COLORING O∗(3n) O∗(3n) O∗(5n) O∗(5n)

#H-COLORING O∗(3n) O∗(3n) O∗(5n) O∗(5n)
list-H-COLORING O∗(3n) O∗(3n) O∗(5n) O∗(5n)

#list-H-COLORING O∗(3n) O∗(3n) O∗(5n) O∗(5n)
cost-H-COLORING O∗(3n) O∗(3n) O∗(5n) O∗(5n)

#cost-H-COLORING O∗(3n) O∗(3n) O∗(5n) O∗(5n)
#list-cost-H-COLORING O∗(3n) O∗(3n) O∗(5n) O∗(5n)
weighted-H-COLORING O∗(3n) O∗(3n) O∗(5n) O∗(5n)

#weighted-H-COLORING O∗(3n) O∗(3n) O∗(5n) O∗(5n)
#list-weighted-H-COLORING O∗(3n) O∗(3n) O∗(5n) O∗(5n)

restricted-H-COLORING O∗(3n) O∗(3n) O∗(5n) O∗(5n)
#restricted-H-COLORING O∗(3n) O∗(3n) O∗(5n) O∗(5n)

#list-restricted-H-COLORING O∗(3n) O∗(3n) O∗(5n) O∗(5n)
#list-restricted-cost-H-COLORING O∗(3n) O∗(3n) O∗(5n) O∗(5n)

#list-restricted-weighted-H-COLORING O∗(3n) O∗(3n) O∗(5n) O∗(5n)
Table 1. Upper bounds derived from Theorem 16 and Algorithm 1. The O∗(3n) bounds in
blue can be improved to O∗(2n) by the inclusion-exclusion method [4]. Even-cycle coloring
is in P, (our algorithm solves it in O∗(5n), in green on this table). Also, C2k+1-COLORING
(with C2k+1 the (2k+ 1) odd-cycle) can be done in O∗((αk)n), with (αk)k≥1 decreasing and

tending to 1, and with α1 ≤
√

2 [26] (our algorithm solves it in O∗(5n), in violet in this
table). We improve the results of Wahlström [32] of #cograph-COLORING from O∗(5n) to
O∗(3n), and of #cycle-COLORING from O∗(6n) to O∗(5n) (in red), while also generalising
them. To our knowledge, no fine-grained algorithm have been given in the literature for
every other problem in this table.

n,m ≥ 1, a = (a1, . . . , an) ∈ An, and a′ = (an+1, . . . , an+m) ∈ Am, we denote the concatenation of a
and a′ by a, a′ and (a, a′) that is defined as the (n + m)-tuple (a1, . . . , an, an+1, . . . , an+m) ∈ An+m. For
I = {i1, . . . i|I|} ⊆ [n] with i1 < · · · < i|I|, we denote by aI and (a)I the tuple (ai1 , . . . , ai|I|) ∈ A|I|.

2.2. Constraint Satisfaction Problems. The constraint satisfaction problem asks whether it is possible
to assign values to variables while satisfying all given constraint of the instance. Additionally, it is common
to parameterize the problem by a set of relations Γ and a domain D, and constraints are then only allowed
to use relations from Γ.

CSP(Γ):

Input: A set V of variables and a set C of constraints of the form (Ri, (v
1
i , . . . , v

ar(Ri)
i )) where

Ri ∈ Γ and (v1
i , . . . , v

ar(Ri)
i ) ∈ V ar(Ri) (where ar(Ri) is the arity of the relation Ri).

Output: 1 if there exists a function f : V 7→ D such that for all constraints

(Ri, (v
1
i , . . . , v

ar(Ri)
i )) ∈ C, we have (f(v1

i ), . . . , f(v
ar(Ri)
i )) ∈ Ri, 0 otherwise.

If Γ only contains binary relations, then we write BINARY-CSP(Γ). For example, when Γ = {EH},
BINARY-CSP(Γ) is equivalent to the well-known (digraph) H-COLORING problem, often referred as H-
COLORING when H is symmetric. Regarding the complexity of the latter, Hell and Nešetřil [28] proved
that H-COLORING is in P when H is bipartite, and it is NP-complete, otherwise. This result was later
generalized to the CSP dichotomy theorem, proven independently by Zhuk [34] and Bulatov [17], which
states that every problem of the form CSP(Γ) is either in P or it is NP-complete. In the sequel, we prefer to
state our algorithmic results for the most general problem possible (typically BINARY-CSP(Γ) since they
imply the results of the specific problems (e.g., H-COLORING). Additionally, we consider the following
generalized problems:

• The counting version (#): how many functions f : V 7→ D are solutions of the instances?
• The list version: given a matrix L = {0, 1}V×D and an instance I, is there a solution f : V 7→ D

satisfying ∀(u, d) ∈ V ×D, f(u) = d =⇒ L(u, d) = 1?
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• The cost version [29]: given a matrix C ∈ RV×D
and an instance I, what is the minimum value of∑

u∈V
C(u, f(u)) for a solution f : V 7→ D?

• The weighted version [25]: given a matrix W ∈ RV×D
+ and an instance I, what is the minimum value

of
∑

d∈D
max

u∈f−1({d})
W (u, f(u)) for a solution f : V 7→ D?

• The restrictive version [22]: given a tuple R = ND
and and instance I, does there exist a solution

f : V 7→ D where ∀d ∈ D,R(d) 6= +∞ =⇒ |f−1({d})| = R(d)?

These generalisations can naturally also be combined together. For example, the counting-cost version
is the task of counting solutions of minimal cost. We will see in Section 4 that the semiring formulation of
CSP makes it possible to subsume all of these generalizations into a single formalism.

2.3. Parameterized Complexity. For a computational problem Q we let dom(Q) be the set of all possible
instances of Q. A function µ : dom(Q) 7→ N is called a parameter of Q. We say that Q is fixed-parameter
tractable w.r.t. µ if there exists an algorithm solving Q on every instance x ∈ dom(Q) of size ‖x‖ in
time O(f(µ(x))× ‖x‖O(1)), where f can be any computable function. For additional details, we refer to the
textbook by Downey and Fellows [23]. For example, treewidth of graphs is a well-known parameter frequently
resulting in fixed parameter tractability, including the (#)H-COLORING problem [21]. Unfortunately,
computing treewidth is in general NP-hard, and the classes of graphs of bounded tree-width are rare. Hence,
finding additional examples of (graph width) parameters can in practice be very useful. Another frequently
occurring parameter is clique-width. This parameter can be seen as a generalisation of tree-width, in the
sense that any treewidth-bounded class of graphs is also clique-width bounded, even though the reverse is
not true. The use of clique-width has led to many positive results in graph algorithms, e.g., Bodlaender et
al. [5] designed an algorithm solving Min-DOMINATING-SET in time O∗(3

ω
2 k) on graphs of clique width

≤ k (ω < 2.376). Kobler et al. [29] also solved a cost version of list-q-COLORING in time O(22qkqk3n)
on graphs G with n vertices and clique-width k, and more generally Wahlström proved [32] that (#)H-
COLORING is FPT when parameterized by the clique-width of the input graph. Recently, Bonnet et. al
[14] introduced contraction sequences in order to use dynamic programming on graphs. Contraction sequences
allows one to derive a lot of additional parameters such as twin-width, oriented twin-width, total twin-width
and component twin-width [12]. We do not formally define these parameters here since we in Section 3 define
these in a slightly more general context, but remark that component twin-width and clique-width (and thus
rank-width) have been proven to be functionally equivalent, allowing one to translate FPT results between
these parameters.

2.4. Fine-Grained Complexity. A related approach to tackle (NP-)hard problem is the construction of
exponential time algorithms running in O∗(cn) time for as small c as possible, where n is a complexity
parameter. In this paper, n will always refer to the number of variables (or vertices) of a CSP (or H-
COLORING) instance. This approach, especially in the context of proving matching lower bounds under
the (strong) exponential-time hypothesis ((S)ETH), is often called fine-grained complexity.

Notable, general results for H-COLORING problems include the O∗((2k + 1)n) algorithm by Fomin
et al. [26] for H-COLORING for graphs H of treewidth k, and Wahlström’s [32] algorithm based on k-
expressions and clique-width which solves #H-COLORING problem in time O∗((2k + 1)n) when H has
clique-width k ≥ 1. The running time descends to O∗((k+ 2)n) if H admits a linear k-expression, leading to
a O∗(6n) complexity for #Cq-COLORING (where Cq is the q-cycle for q ≥ 5, Cq having a linear 4-expression),
and a O∗(5n) complexity for #H-COLORING, for any cograph H. As we will see later, these bounds can
in many cases be significantly improved by considering component twin-width instead of clique-width.

3. Edge-Labelled Graphs and R-morphisms

In this section we consider a generalization of graphs, edge-labelled graphs, where the corresponding
morphism notion greatly increases the expressive power and leads to a rich computational problem. The
main idea is that the morphism notion encodes the “rules” of the problems: for example, the “rule” respected
by homomorphisms are that edges are sent to edges, whereas in the subgraph-isomorphism problem, the
“rules” are that edges are sent to edges, non-edges to non-edges, and different vertices are sent to different
vertices. We begin in Section 3.1 by extending the concept of graphs by allowing labels on every pair of
vertices, and explicit the notion of morphism relatively to a binary relation over the sets of labels, in which



6 AMBROISE BARIL, MIGUEL COUCEIRO, AND VICTOR LAGERKVIST

every pair of vertices must be send to a pair of vertices whose label is prescribed by the relation. Then,
in Section 3.2, we prove that the associated morphism problems naturally encode exactly the problems of
the form BINARY-CSP(Γ) via a reduction which does not introduce any fresh variables, and where the sets
of solutions does not change. Last, in Section 3.3 we show how to formulate the component twin-width
parameter in the context of edge-labelled graphs.

3.1. Definitions. We first introduce the concept of “edge-labelled graph”.

Definition 1. An edge-labelled graph G is a structure G = (VG, lG, XG) where VG and XG are finite sets
and lG : (VG)2 7→ XG. The sets VG and XG will be referred to respectively the sets of vertices and labels of
edges of G, and lG will be referred as the label function of edges of G.

For any edge-labelled graph G, the set of vertices of G, the set labels of edges of G, and the label function
of edges of G, will always be denoted VG, XG and lG (as in Definition 1). For S ⊆ VG, G[S] denotes the
edge-labelled graph induced by S on G, i.e., G[S] := (S, lG|S2 , XG).

We now introduce a symbol e that will play a special role as a label for edge-labelled graph (see Section
3.3 for more details). We implicitly assume that this symbol does not occur in any other context. An
edge-labelled graph G is said to be e-free if e /∈ XG. We now have the necessary technical machinery to
properly generalize the concept of a graph homomorphism to edge-labelled graphs.

Definition 2. Let G and H be two e-free edge-labelled graphs, and let R ⊆ XG × XH . A function
f : VG 7→ VH is said to be an R-morphism (f : G→

R
H) if ∀(u, v) ∈ (VG)2, (lG(u, v), lH(f(u), f(v))) ∈ R.

In this definition, the relation R encodes whether a pair of vertices (u, v) of G of label x ∈ XG is allowed
to be sent to a pair of vertices (a, b) of H of a label y ∈ XH : which it is if and only if (x, y) ∈ R. By a slight
abuse of notation, viewing a graph as an edge-labelled graph whose edges are labelled by 1, and every other
pair of vertices is labelled by 0, we notice that a homomorphism is exactly a HOM-morphism if we let HOM
be the binary relation over {0, 1} defined as HOM= {(0, 0), (0, 1), (1, 1)}.

Similarly to H-COLORING, we will mostly be interested in the version of this problem where the target
edge-labelled graph H is fixed. This allows us to model different types of problems simply by changing the
template H. Thus, let H be a e-free edge-labelled graph, X a finite set, and R ⊆ X ×XH . We define the
following computational problem.

H-(R-MORPHISM):
Instance: An e-free edge-labelled graphs G with XG = X.
Question: Does there exist a function f : G→

R
H ?

Note that H-COLORING is the same problem as H-(HOM-MORPHISM), i.e., H-(R-MORPHISM) is at
least as expressive as H-COLORING. We will see Section 3.2 that these problems encode exactly the various
BINARY-CSP(Γ) problems, for any set of binary relations Γ.

3.2. Equivalence Between H-(R-MORPHISM) and BINARY-CSP(Γ). We now show that any
BINARY-CSP(Γ) problem can be reformulated as a H-(R-MORPHISM) problem. For any set Γ of bi-
nary relation over a finite domain, we thus need to build an e-free edge-labelled graph H(Γ), a set X and a
relation RΓ ⊆ X ×XH(Γ), in such a way that BINARY-CSP(Γ) and H(Γ)-(RΓ-MORPHISM) are the same
problems.

Definition 3. For a finite domain D and a set of binary relations Γ over D we let:

• H(Γ) := (D, lΓ,P(Γ)) with lΓ being defined by: ∀(a, b) ∈ D, lΓ(a, b) = {R ∈ Γ | (a, b) ∈ R}, and
• RΓ be defined by, for all (Y,Z) ∈ P(Γ)2, (Y, Z) ∈ RΓ ⇐⇒ Y ⊆ Z.

Next, we show how to build an equivalent instance of H(Γ)-(RΓ-MORPHISM), given an instance of
BINARY-CSP(Γ). Intuitively, for all (u, v) ∈ V 2, the label lG(I)(u, v) represent the constraints that must be
respected for the tuple (u, v), while, for f : V 7→ D, the label lΓ((f(u), f(v))) represent the constraints of Γ
that are actually satisfied by (f(u), f(v)). In the following theorem, for an instance I = (V,C) of BINARY-
CSP(Γ), we let G(I) := (V, lI ,P(Γ)) with lI being defined by: ∀(u, v) ∈ V, lI(u, v) := {R ∈ Γ | R(u, v) ∈ C}.
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BINARY-CSP(Γ) H-(R-MORPHISM)
V (set of variables) VG (vertices of G)

D (domain) VH (vertices of H)
Γ R, X and H

Constraint(s) required for (u, v) ∈ V 2 lG(u, v) ∈ X
Constraint(s) respected by (a, b) ∈ D2 lH(a, b) ∈ XH

f : V 7→ D respects every contraint f : VG 7→ VH is an R-morphism
Graph homomorphism HOM-morphism with HOM := {(0, 0), (0, 1), (1, 1)}

H-COLORING H-(HOM-MORPHISM)
Table 2. Translations between BINARY-CSP and the edge-labelled graph formalism. We
view graphs as edge-labelled graphs where the edges are labelled by 1, and every other pair
of vertices is labelled by 0.

Theorem 4. Let Γ be a set of binary relations over a finite domain D, and let I be an instance of BINARY-
CSP(Γ) over a set of variables V . Then, for every f : V 7→ D, f is a solution to I if and only if f is a
solution to the instance G(I) of H(Γ)-(RΓ-MORPHISM).

Conversely, we show that any H-(R-MORPHISM) problem can be reformulated as a BINARY-CSP via
the following translation.

Definition 5. Let H = (VH , lH , XH) be an e-free edge-labelled graph, X a finite set and R ⊆ X × XH .
For all x ∈ X, define the binary relation over VH : Rx := {(a, b) ∈ (VH)2 | (x, lH(a, b)) ∈ R}, and let
ΓH,R := {Rx, x ∈ X}.

In the following theorem, for two edge-labelled graphs G and H and R ⊆ XG ×XH , we let I(G) be the
instance of BINARY-CSP(ΓH,R) with variables VG and constraints {RlG(u,v)(u, v) | (u, v) ∈ (VG)2)}.

Theorem 6. Let H = (VH , lH , XH) be an e-free edge-labelled graph, X a finite set and R ⊆ X × XH .
Let G be an instance of H-(R-morphism), i.e. an e-free edge-labelled graph with XG = X. Then, for any
f : VG 7→ VH , f is a solution to the instance I of BINARY-CSP(Γ) if and only if f is a solution to the
instance G of H-(R-MORPHISM).

We summarize the translation between the vocabulary of BINARY-CSP and the equivalent concepts of H-
(R-MORPHISM) in Table 3.2. We again remind the reader that this formulation of BINARY-CSP in terms
of edge-labelled graphs makes it easier to employ graph parameters such as the aforementioned component
twin-width parameter [12], which we will explicitly show in the forthcoming section.

3.3. Contractions of Edge-Labelled Graphs and Component Twin-Width. We now generalize the
notion of graph contraction defined by Bonnet et al. [14] to edge-labelled graphs, and define the key notions
of contraction sequences and component twin-width. We first define a suitable notion of vertex merging in
an edge-labelled graph.

Definition 7. Let H = (VH , lH , XH) be an edge-labelled graph, and let S be a proper partition of VH . The
contraction of H relative to S is the edge-labelled graph HS = (VHS , lHS , XHS) with VHS = S, XHS = XH∪{e}
and for all (S1, S2) ∈ S2, if there exists x ∈ XH such that ∀(u, v) ∈ S1×S2, lG(u, v) = x, then lHS(S1, S2) = x,
and lH(S1, S2) = e otherwise.

If we view a graph as an edge-labelled graph whose edges are labelled by 1, and every other pair of vertices
is labelled by 0, this notion coincides with the notion of (iterated) contraction(s) defined by Bonnet et al. [14]
for graphs, up to identifying the set of red edges (defined in [14]) with the set of pairs of S labelled with
e. With a slight abuse of notation, we see a proper partition S1 of a proper partition S2 of a set V as a
proper partition of V , by seeing any set S ∈ P(P(V )) of S1 as ∪S ∈ P(V ). Under this viewpoint, the proper
partition S1 of V respects the proper partition S2 of V , and the contraction relation is then transitive. This
naturally leads to the following definition of a contraction sequence.

Definition 8. Let H be an e-free edge-labelled graph on n ≥ 1 vertices. Then, a contraction sequence of
H is a sequence of edge-labelled graph (Hn, . . . ,H1) such that Hn = H, and for all k ∈ [n − 1], Hk is a
contraction of Hk+1 with |VHk

| = k.
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In particular, H1 is an edge-labelled graph with 1 vertex, and VH1 = {VH}. Again, one may notice that
the notion of contraction sequence of edge-labelled graph coincides with the particular case of binary loopless
non-oriented graphs defined in [14].

Definition 9. Let H be an edge-labelled graph. Define the e-connected components of H as the connected
components of the unoriented graph H(e) = (VH , {(u, v) ∈ (VH)2 | e ∈ {lH(u, v), lH(v, u)}}).

The edges of H(e) encode a loss of information in the contraction, and are intended to play the role
of the red edges of contraction sequences defined in [14]. We can now introduce the notion of component
(twin-)width of a contraction sequence

Definition 10. Let H be an e-free edge-labelled graph on n ≥ 1 vertices. Let (Hn, . . . ,H1) be a contraction
sequence of H. The component-width of this contraction sequence is denoted by ctw((Hn, . . . H1)) and is
the maximal size of the e-connected component of the graphs Hn−1, . . . ,H1. The component twin-width of
H is denoted by ctww(H), and it is the minimal component-width of all its contraction sequences. Any
contraction sequence of H whose component-width equals the component twin-width of H is called an
optimal contraction sequence of H.

Note that the graphs of component twin-width 1 are exactly the cographs, and that cycles of length ≥ 5
have component twin-width 3. In order to extend the notion of component twin-width to BINARY-CSP(Γ)
compatible with the reduction involved in Theorem 4, we define the component twin-width of the template Γ
as the component twin-width of H(Γ), and the instance I as the component twin-width of G(I). Note that
while the primary focus of [14] was simply the twin-width (the minimum over all contraction sequences of
the maximal e-degree of the graphs that appear in the contraction sequence), the latter seems a less useful
parameter for BINARY-CSP(Γ). Intuitively, one could argue that component twin-width is a more “natural”
parameter to consider, but that improved algorithms using twin-width are sometimes feasible. For instance,
Bonnet et al. [9] solves k-IND-SET problem in FPT when parameterized by twin-width, by bounding the
number of red-connected subgraphs by a function depending only on k and d, where d is the twin-width
of the input graph. This trick transforms an algorithm parameterized by component twin-width into an
algorithm parameterized by twin-width. Unfortunately, it does not seem applicable here. Note also that to
generalize algorithm of Bonnet et al. [9] to IND-SET, we have to give up the parameterization by twin-width
and instead consider component twin-width.

4. Semirings and Generalisations of CSP

In this section we define and extend the semiring framework of CSP by Bisterelli [3] and Wilson [33] in
the context of H-(R-MORPHISM) problems. In particular we will see that all the extensions of the basic
CSP problem defined in Section 2 (e.g., counting, finding a solution of minimal cost) can be expressed within
this framework, allowing all extended problems to be expressed within a single algebraic framework.

4.1. Semirings and Pre-Morphisms. In this section, we will define a new algebraic notion in order to
encompass the many generalisations of CSP evoked so far.

Definition 11. A semiring is a structure (A,+,×, 0A, 1A) such that (A,+, 0A) is a commutative monoid,
(A,×, 1A) is a monoid, × is distributive over +, and 0A is absorbing for ×. Moreover, if A is ordered by the
binary relation ≤A over A defined by ∀(a, b) ∈ A2, a ≤A b ⇐⇒ ∃c ∈ A, a+ c = b, then (A,+,×, 0A, 1A) is
said to be a dioid.

Note that rings and dioids are both particular cases of semirings.

Definition 12. Let S1 and S2 be two disjointed sets, and T1 and T2 be two sets. Let f1 ∈ (T1)S1 and
f2 ∈ (T2)S2 . We define the join of f1 and f2 as (f1 on f2) ∈ (T1 ∪ T2)S1]S2 defined by (f1 on f2)|S1 = f1

and (f1 on f2)|S2 = f2. Also, for F1 ∈ P((T1)S1) and F2 ∈ P((T2)S2), we define the join of F1 and F2 by
F1 on F2 = {(f1 on f2), (f1, f2) ∈ F1 ×F2} ∈ P((T1 ∪ T2)S1]S2).

The join operation will be used by our algorithm, guided by the contraction sequences, to iteratively
extend the domain and codomain of the sets of functions considered, with the set of solutions being the final
achievement of the algorithm. Similarly, we need disjointed union in order to extend the sets of functions
considered. The basic idea behind the semiring framework is then to consider a set A representing the sets
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of possible output of a function Ω applied to the set of solutions (of a given CSP instance). In the following
definition, we will also take into account a weight matrix W , the weights being elements of a set B.

Definition 13. Let (A,+,×, 0A, 1A) be a semiring, and B a set. Let Ω be a function that maps, for G
and H any two edge-labelled graphs, any couple (F ,W ) with F an element of P(TS) (with S ⊆ VG and
T ⊆ VH), and W ∈ BVG×VH a weight matrix, to an element of A, denoted by ΩW (F).4 We say that Ω is a
A-pre-morphism with weights in B5 if:

• For all edge-labelled graphs G and H, W ∈ BVG×VH , S ⊆ VG and T ⊆ VH :
∀(F1,F2) ∈ (P(TS))2,F1 ∩ F2 = ∅ =⇒ ΩW (F1 ] F2) = ΩW (F1) + ΩW (F2).

• For all edge-labelled graphs G and H, and W ∈ BVG×VH , for all S1, S2 being two disjointed subsets
of VG and T1, T2 being two disjointed subsets of VH :
∀(F1,F2) ∈ P((T1)S1)× P((T2)S2): ΩW (F1 on F2) = ΩW (F1)× ΩW (F2).

• For all edge-labelled graphs G and H and W ∈ BVG×VH , ΩW (∅) = 0A.

Additionally, if we can remove the assumption that T1 and T2 are disjointed in the second axiom then we
say that the A-pre-morphism Ω is strong. If the functions + and × can be computed in constant time, and
if (G,H,W, S, a) 7→ ΩW ({fS{a}}) (with fS{a} being the constant function of domain S and codomain {a}) are

polynomial time computable, we will say that Ω is a poly-time computable A-pre-morphism with weights in
B. Let us also remark that ∅ is neutral for ], meaning that the third axiom stating that ∀W,ΩW (∅) = 0A can
often be seen as a consequence of the first axiom in many practical cases. The presence of this axiom is only
necessary to avoid pathological cases built especially to contradict this axiom that never occur in practice.
Similarly, denoting f∅∅ the unique function with an empty domain and an empty codomain, it is interesting

to see that, in the cases that we consider, we will have that, for all weight matrix W , ΩW ({f∅∅ }) = 1A as a

consequence that {f∅∅ } is neutral for on and of the second axiom.
In order to generalize the list, the counting, and the various weighted versions of H-(R-MORPHISM),

consider the following problem, where H is an edge-labelled graph R ⊆ X ×XH with X finite.

Ω(H-(R-MORPHISM)):
Input: An instance G of H-(R-MORPHISM), and W ∈ BVG×VH .
Output: The value of ΩW ({f : G→

R
H}).

The CSP formulation (Ω(CSP(Γ))) is defined analogously, i.e., we ask for the output of ΩW applied to
the set of solutions to the input instance. As usual, we write (Ω(BINARY-CSP(Γ))) when Γ is a set of
binary relations. The main advantage of the Ω(H-(R-MORPHISM)) formulation is that it easily permits
our algorithms to compute values of Ω of larger and larger sets of partial solutions of the given H-(R-
MORPHISM) instance, via the two operations ] and on.

Remark 14. The semiring generalisations of BINARY-CSP(Γ), for Γ over a finite D, subsume BINARY-
CSP(Γ), #BINARY-CSP(Γ), #list-BINARY-CSP(Γ) #cost-list-BINARY-CSP(Γ), #weighted-list-BINARY-
CSP(Γ), and #restricted-list-BINARY-CSP(Γ), among others. See Table 3 for a summary of these problems
and Appendix E for the precise definitions of the associated semirings and pre-morphisms. Also, for a graph
H, #restrictive-list(BINARY-CSP({EH})) is the same problem as the counting version of the restrictive-
list-H-COLORING problem defined by Dı́az et. al in [22]. Similarly, we could have implemented a weighted
version of restrictive-list H-COLORING as a generalisation of H-COLORING, by taking a weight matrix
W with coefficient in N× R, instead of simply N× {0, 1}.

We remark that the approach of generalizing the CSPs using semirings has already been studied by
Bistarelli et al. [3], introducing the structure of c-semirings, and the computational problem SCSP. However,
Bistarelli et al. focused on generalisations of CSP involving an optimisation process, requiring a relation a ≤ b
stating that a is “preferable” to b, achieved by defining a ≤ b ⇐⇒ a+b = b and requiring the + operation to
be idempotent. Wilson [33] also defined an equivalent framework that generalizes CSP with semirings. Our
contribution with respect to these alternative frameworks is the introduction of the notion of a pre-morphism
and its clear link to the operations ] and on, which are heavily used in the algorithms in Section 5.

4In fact, the value of ΩW (F) also depends on the graphs G and H considered, but to ease the notation they are omitted.
5If the value of ΩW (F) does not depend on W , the precision the set B is irrelevant, and we say that Ω is a A-pre-morphism

ignoring weights.
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Function Ω A B Ω(H-COLORING) Target for Theorem 15
1 6=∅ 2 Unused H-COLORING YES
list 2 2 list-H-COLORING YES
# N Unused #H-COLORING YES

#list N 2 #list-H-COLORING YES
MinCost,

#ArgMinCost
R× N R #cost-list-H-COLORING [29] YES

MinWeight,
#ArgMinWeight

R× N R #weighted-list-H-COLORING [25] NO

#restricted-list N N× 2 #restricted-list-H-COLORING [22] NO

Table 3. Examples of H-COLORING problems through semirings (with the notation 2 = {0, 1}).

5. Complexity of Ω(H-(R-MORPHISM)) via Component Twin-Width

In this section we analyze the complexity of Ω(H-(R-MORPHISM)), and thus of Ω(BINARY-CSP(Γ)),
with respect to component twin-width. In Subsection 5.1 we consider input graphs with bounded component
twin-width, and in Subsection 5.2 we consider target templates H with bounded component-twin width. In
Subsection 5.3 illustrate our tractability results on examples from the literature.

5.1. Parameterized Complexity and Fixed-Parameter Tractability. We begin by proposing a dy-
namic programming algorithm applicable to BINARY-CSP and its generalizations in the semiring framework.
To simplify the statement of Theorem 15, say that a pre-morphism Ω is corestriction independent if for all
V1 and V2, W ∈ BV1×V2 , and for all subsets S ⊆ V1 and T ⊆ V2, f ∈ TS , and T ′ ⊆ T with f(S) ⊆ T ′,

the corestriction f |T ′ ∈ (T ′)S satisfies ΩW ({f}) = ΩW ({f |T ′}). This rather weak assumption is satisfied by
every strong pre-morphism we considered: essentially, it only requires that the singleton values of a function
f , do not depend on the vertices of the target graph that are not in the image of f .

Theorem 15. Let (A,+,×, 0A, 1A) be a semiring, Ω a poly-time computable strong A-pre-morphism with
weights in a set B, H an e-free edge-labelled graph, X a finite set, and R ⊆ X × XH . Assume that Ω is
corestriction independent. Then, for every instance G on n ≥ 1 vertices, Algorithm 2 with fixed, H, R and Ω
solves Ω(H-(R-MORPHISM)) in O(((2|VH |− 1)ctww(G))× |VG|2) time, provided that an optimal contraction
sequence G of G is given.

Algorithm 2 can be found in Appendix D, and uses dynamic programming along with optimal contraction
sequences to achieve the desired solution(s). We are able to deal with semiring generalisations since, for an
e-connected component C in the contraction sequence, instead of just keeping in memory whether a function
γ : C 7→ P(VH) \ ∅ is a profile (as it is done in [12]), we store the value by Ω of the set of partial solutions
that induce this profile (i.e., the set of R-morphisms f : C 7→ VH such that for all S ∈ C, f(S) = γ(S)). We
see that the algorithm by Bonnet et al. [12] solving the q-COLORING problem in FPT time parameterized
by component twin-width is the particular case where the pre-morphism considered is over the semirings of
Booleans, and maps ∅ to 0 and any other set to 1 (see Lemma 31). Also, we are able to deal with arbitrary
edge-labelled graphs H instead of only the q-clique Kq by replacing the update of sets of profiles by Bonnet
et al. [12] that checks the absence of a black edge, by the more general test of feasibility (see Appendix
B). Thus, Algorithm 2 is much more general than the aforementioned algorithm by Bonnet et al. since it
applies to arbitrary binary constraints rather than the specific template Kq, and is applicable to generalized
problems described by the pre-morphism Ω (counting, with weights, and so on).

It may also be interesting to remark note that the complexity of Algorithm 2 depends neither on the
semiring A, nor on the pre-morphism Ω, i.e., the generalized problems do not impact the running time.

5.2. Upper Bounds on Fine-Grained Complexity. In Section 5.1 we exploited the contraction sequence
of an instance I to obtain an FPT algorithm with respect to the component twin-width of G(I). We now
turn to the dual question of constructing an improved (exponential time) algorithm with respect to the
component twin-width of H(Γ). Note that the computation of an optimal contraction sequence of H(Γ) can
be seen as a form of pre-computation since it is independent of the instance. Also, when working with H
instead of G, our algorithm will have to guess preimages of subsets T of VH instead of images of subsets
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Generalisation Target for Courcelle [20] Target for Theorem 15
H-COLORING YES YES

#H-COLORING YES
list-H-COLORING YES YES

#list-H-COLORING YES
cost-H-COLORING YES YES

#cost-H-COLORING YES
#list-cost-H-COLORING YES
weighted-H-COLORING YES see discussion in Section 6

#weighted-H-COLORING see discussion in Section 6
#list-weighted-H-COLORING see discussion in Section 6

restricted-H-COLORING YES see discussion in Section 6
#restricted-H-COLORING see discussion in Section 6

#list-restricted-H-COLORING see discussion in Section 6
#list-restricted-cost-H-COLORING see discussion in Section 6

#list-restricted-weighted-H-COLORING see discussion in Section 6
Table 4. Tractability results parameterized by the (functionally equivalent) parameters
clique-width/component twin-width.

S of VG. Since preimages of pairwise disjoint subsets are pairwise disjointed, our algorithm also applies to
semiring pre-morphisms that are not strong.

Theorem 16. Let (A,+,×, 0A, 1A) be a semiring, and Ω a A-pre-morphism with weights in a set B, H an
e-free edge-labelled graph, H an optimal contraction sequence of H, and X a finite set, R ⊆ X ×XH . Then,
Algorithm 1 with fixed H, R and Ω solves Ω(H-(R-MORPHISM)) in time O((ctww(H) + 2)|VG| × |VG|2)
every intance G on n ≥ 1 vertices.

Algorithm 1 has similarities with the algorithm given by Wahlström [32] which solves #H-COLORING
in time O∗((2cw(H) + 1)n) on input graphs G on n vertices (with cw(H) the clique-width of H). However,
our algorithm has two significant advantages. First, it is applicable to arbitrary BINARY-CSP problems,
and its generalized problems in the semiring framework (without impacting the running time). Second,
even though clique-width and component twin-width are functionally equivalent, even a minor increase of
the width parameter can significantly change the run time of the algorithm. For example, the problem
of counting the number of homomorphisms into a cycle of length k, #Ck-COLORING, can be solved in
O∗(5n) time by Algorithm 1 but requires O∗(6n) time by the clique-width algorithm. Additional examples
are provided in Section 5.3.

5.3. Consequences. The tractability of many semiring generalisations of H-COLORING and BINARY-
CSP(Γ) easily follow from Theorem 15.

Corollary 17. Let Γ be a set of binary relations over a finite domain. Then, BINARY-CSP(Γ), #BINARY-
CSP(Γ), #list-BINARY-CSP(Γ), #cost-list-BINARY-CSP(Γ) with weights are FPT parameterised by the
component twin-width of the instance.

This strongly generalizes many results in the literature. For example, Kobler and Rotics [29] proved that
costs-list-q-COLORING is FPT when parameterized by clique-width (recall that clique-width and compo-
nent twin-width are functionally equivalent on graphs [12]). Similarly, we strongly generalize Wahlström’s
FPT algorithm for #H-COLORING (with respect to clique-width) since we can handle arbitrary binary
constraints as well as the extended problems. This also supplements to the well known result that, for
every graph H, H-COLORING is FPT when parameterized by clique-width, by solving also counting ver-
sions. This is a corollary derived from Courcelle et al. [19] algorithm that solves an optimization version
of the problem of checking whether a valuation over the vertices of structure is a model of a fixed monadic
second-order logic formula in FPT time (parameterized by clique-width), see Table 4.

We can also use Theorem 16 to derive upper bounds on the complexities of several generalisations of
H-COLORING problems (for some specific values of H) through semirings that improve previously know
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results. These results are summarized in Table 1 and are straightforward consequences of Theorem 15 and
Theorem 16 (but explicitly demonstrated in in Appendix E).

6. Conclusions and Perspectives

We investigated the complexity of binary constraint satisfaction problems under the lens of the component
twin-width parameter. In order to obtain as general results as possible, we considered several frequently
occurring problem extensions, e.g., counting, allowing weights, cost and list constraints, which we formulated
in a unifying semiring framework which greatly simplified the algorithmic results. Importantly, we obtained
two novel algorithms by bounding either the class of input instances, or the constraint template, and presented
several instances where our approach beats both the best known upper bound (e.g., counting homomorphisms
to cycles) as well as improving upon earlier algorithms making use of tree-width and clique-width. These
results raise several questions for future work:

Generalized problems. Even though Theorem 15 and Theorem 16 are very general algorithms applicable
to broad classes of binary constraints it is still tempting to generalize them to even wider classes of problems.
For instance, even though Theorem 15 does not apply to every generalisation of BINARY-CSP presented
in Table 4 (the one involving weighted and restricted), it is still possible to prove that these problems are
FPT parametrized by component twin-width. It is sufficient to modify Algorithm 2 by adding to the tabular
OMEGA m entries corresponding to the m vertices of H, corresponding to the weights/cardinal (when
considering the weighted/restricted generalisations) of preimages reached by every vertex of H, which allows
dynamic programming. We expect that implementing an algebraic structure over the set of weights B would
make possible to reformulate Theorem 15 and Algorithm 2 in order to include these kind of algorithms and
tractability results as well. To go even further, it would be interesting to generalize Theorem 15 and Theorem
16 to constraints of arbitrary arity. One possibility is to express such CSPs by generalising the concept of
edge-labelled graphs to “edge-labelled hypergraphs”, labelling arbitrary large tuples over VG. Are the usual
parameters on hypergraphs, and in particular generalizations of (component) twin-width, applicable to edge-
labelled hypergraphs? Variants of CSP could also be considered. For instance, can we solve the PROMISE-
BINARY-CSP problems (see Barto et al. [1] for details) similarly? A promise constraint satisfaction problem
(PCSPs) requires two finite similar structures A and B with an homomorphism h : A → B, and asks, given
a structure I whether I → A or I��→B, with the promise that these two statements are not both false (we
know that they are not both true from the existence of h). The algebraic approach proposed by Barto et
al. [1] already led to interesting hardness results, such as the NP-hardness of the distinguishment of the
q-colourable graphs from those that are not (2q−1)-colourable. As a complete dichotomy theorem still eludes
us, it would be interesting to check whether techniques from parameterized and fine-grained complexity can
be applied in the promise setting.

Comparison with clique-width and other parameters. Other graph parameters can probably be
efficiently extended to edge-labelled graphs and thus to BINARY-CSP, while preserving the soundness of
the algorithms working on this parameters. We believe that clique-width should be a good candidate since
it is functionally equivalent on graphs [12], with the main structural subtlety being the creation of labelled
edges in k-expressions. Assuming that we have been able to extend clique-width to edge-labelled graphs,
does it stay functionally equivalent to component twin-width on edge-labelled graphs? We also believe
that investigating the parameterized complexity of semirings generalisations of (BINARY-)CSP with other
parameters than component twin-width could lead to similar interesting results. However, we have been
unable to produce any meaningful results with twin-width rather than component twin-width. Can this
difficulty be formalized into a concrete lower bound?

Algebraic developments. The algebraic generalisations of BINARY-CSP through semiring pre-morphism
are inconvenient in certain aspects. For instance, as discussed earlier, it would be interesting to describe con-
venient structures over the sets of weights. Most importantly, we still lack algebraic operations that combine
semiring pre-morphisms together, in order to automatically handle combinations of semiring generalisations
without redefining a new semiring pre-morphism each time. For example, it would be desirable to be able to
build the N-pre-morphism “#list” (which leads to the counting-list generalisation, see Lemma 34) using the
N-pre-morphism “#” (which leads to the counting generalisation, see Lemma 33) and the 2-pre-morphism
“list” (which leads to the list generalisation, see Lemma 32). Moreover, we noticed that every semiring used
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in this paper is even a dioid. Can we take advantage of the additional properties of dioids? More generally,
can we extend BINARY-CSP via other algebraic structures?
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Appendix A. Proofs of Section 3.2

We give here a proof of Theorem 4. It follows naturally from the constructions H(Γ), RΓ and G(I).

Theorem 4. Let Γ be a set of binary relations over a finite domain D, and let I be an instance of BINARY-
CSP(Γ) over a set of variables V . Then, for every f : V 7→ D, f is a solution to I if and only if f is a
solution to the instance G(I) of H(Γ)-(RΓ-MORPHISM).

Proof. f is a solution of the instance I of BINARY-CSP(Γ) ⇐⇒
By definition of BINARY-CSP(Γ)

For all (u, v) ∈ V 2, for all constraint R(u, v) of I, (f(u), f(v)) ∈ R ⇐⇒
By definition of lI(u,v)

For all (u, v) ∈ V 2, for all R ∈ lI(u, v), (f(u), f(v)) ∈ R ⇐⇒
By definition of lΓ(f(u),f(v))

For all (u, v) ∈ V 2, for all R ∈ lI(u, v), R ∈ lΓ(f(u), f(v)) ⇐⇒
By definition of inclusion

For all (u, v) ∈ V 2, lI(u, v) ⊆ lΓ(f(u), f(v)) ⇐⇒
By definition of RΓ

For all (u, v) ∈ V 2, (lI(u, v), lΓ(f(u), f(v))) ∈ RΓ ⇐⇒
By definition of H(Γ)-(RΓ-MORPHISM)

f is a solution of the instance G(I) of H(Γ)-(RΓ-MORPHISM)
�

Similarly, we give a proof to Theorem 6 which essentially follows from the definitions of ΓH,R and I(G).

Theorem 6. Let H = (VH , lH , XH) be an e-free edge-labelled graph, X a finite set and R ⊆ X × XH .
Let G be an instance of H-(R-morphism), i.e. an e-free edge-labelled graph with XG = X. Then, for any
f : VG 7→ VH , f is a solution to the instance I of BINARY-CSP(Γ) if and only if f is a solution to the
instance G of H-(R-MORPHISM).

Proof. f is a solution of the instance I(G) of BINARY-CSP(ΓH,R) ⇐⇒
By definitions of BINARY-CSP(ΓH,R) and I(G)

For all (u, v) ∈ (VG)2, (f(u), f(v)) ∈ RlG(u,v) ⇐⇒
By definition of RlG(u,v)

For all (u, v) ∈ (VG)2, (lG(u, v), lH((f(u), f(v)))) ∈ R ⇐⇒
By definition of H-(R-MORPHISM)

f is a solution of the instance G of H-(R-MORPHISM).
�

Appendix B. Feasibility

Looking at Definition 7, we can interpret the e-edges of H ′ as a loss of information. Since we want to
study the R-morphisms of every subgraph of G to some wisely chosen subgraphs of H, it seems natural to
choose the subgraphs of H of the form H[T1 ] · · · ] Tp], when {T1, . . . , Tp} is a e-connected component of
a graph Hk (k ∈ [m]) of the contraction. This is the main reason why component twin-width affects the
complexity of the algorithm.

Definition 18. Let G and H be two e-free edge-labelled graphs, R ⊆ XG × XH , H ′ a contraction of H,
T = (T1, . . . , Tp) a tuple of p different vertices of H ′, and S = (S1, . . . , Sp) a tuple of p pairwise disjointed
subsets of VG (possibly empty). We say that S is R-feasible with respect to T and we denote S �R T if for
all (i, i′) ∈ [p]2, we have:

lH′(Ti, Ti′) 6= e =⇒ ∀(u, v) ∈ Si × Si′ , (lG(u, v), lH′(Ti, Ti′)) ∈ R.

We also define a symmetrical notion when a contraction of G is considered instead.

Definition 19. Let G and H be two e-free edge-labelled graphs, R ⊆ XG × XH , G′ a contraction of G,
S = (S1, . . . , Sp) a tuple of p different vertices of G′, and T = (T1, . . . , Tp) a tuple of p non-empty subsets of
VH (not necessarily pairwise disjointed). We say that T makes S R-feasible, and we denote T �R S if for all
(i, i′) ∈ [p]2, we have:

lG′(Si, Si′) 6= e =⇒ ∀(a, b) ∈ Ti × Ti′ , (lG(Si, Si′), lH(a, b)) ∈ R.



COMPONENT TWIN-WIDTH AS A PARAMETER FOR BINARY-CSP 15

In the Definition 18, we ask for the elements of S to be pairwise disjointed, whereas in Definition 19, we
require the elements of T to be non-empty. The reason is that when employing Definition 18, the elements
of S will play the role of the preimages of the elements of T, and will therefore be pairwise disjointed (since
the elements of T are non-empty and pairwise disjointed), whereas in Definition 19, the elements of T will
play the role of the images of the elements of S, and will therefore be non-empty (since the elements of S are
non-empty and pairwise disjointed).

Remark 20. Using Definition 7, we notice the truthness of the proposition “S �R T” and “T �R S” does
not depend on the contraction H ′ or G′.

Appendix C. Soundness of Algorithm 1

Create a tabular OMEGA filled with 0A
for S ⊆ VG, a ∈ VH do

if ∀(u, v) ∈ S2, (lG(u, v), lH(a, a)) ∈ R then

OMEGA
[
S {a}

]
← ΩW ({fS{a}}) (with fS{a} :

S 7→ {a}
u 7→ a

)

end

end

for k = m− 1 downto 1 do
(Tp, Tp+1)← contracted pair in the contraction Hk+1 → Hk of H
T0 ← contraction of Tp and Tp+1 in Hk

C = {T0, T1, . . . Tp−1} the e-connected components of Hk containing T0

C1 ] . . . ] Cq = {T1, . . . , Tp−1, Tp, Tp+1} be the partitionning of (C \ {T0}) ∪ {Tp, Tp+1} into
e-connected components in Hk+1

for j = 1 to q do
Define Ij ⊆ [p] such that Cj = {Ti, i ∈ Ij}
Ij =: {Ij [1], . . . , Ij [pj ]} with pj = |Ij |

end

for S0, S1, . . . , Sp−1 ⊆ VG pairwise disjointed do
for Sp ] Sp+1 partitionning S0 do

if (S1, . . . , Sp−1, Sp, Sp+1) �R (T1, . . . , Tp−1, Tp, Tp+1) then

OMEGA


S0 T0

S1 T1

...
...

Sp−1 Tp−1

+ = OMEGA

 SI1[1] TI1[1]

...
...

SI1[p1] TI1[p1]

× · · ·×

OMEGA

 SIq [1] TIq [1]

...
...

SIq [pq ] TIq [pq ]


end

end

end

end

return OMEGA
[
VG VH

]
Algorithm 1: Solving Ω(H-(R-MORPHISM)) ie. Ω(BINARY-CSP(Γ)) (fine-grained version)

Definition 21. Let G and H two e-free edge-labelled graphs on n and m vertices respectively. Let R ⊆
XG ×XH . Let T = (T1, . . . , Tp) be a tuple of p pairwise disjointed subsets of VH (in particular, T1, . . . , Tp
can be different vertices of a contraction H ′ of H) and T = T1 ] · · · ] Tp. Let S = (S1, . . . , Sp) be a tuple of
p pairwise disjointed subsets of VG, and S = ∪S = S1 ] · · · ] Sp. We denote by RS

T the set

RS
T := {f : G[S]→

R
H[T ] | f(S1) ⊆ T1, . . . , f(Sp) ⊆ Tp}
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Lemma 22. Let G and H two e-free edge-labelled graphs, on n and m vertices respectively. Let H ′ be
a contraction of H, R ⊆ XG × XH , C1, . . . , Cq be q different e-connected components of H ′ (q ≥ 1),
{T1, . . . , Tp} = C1 ] · · · ] Cq and let T = (T1, . . . , Tp), S = (S1, . . . , Sp) be a tuple of p pairwise disjointed
subsets of VG. Let for all j ∈ q, Ij ⊆ [p] be such that Cj = {Ti, i ∈ Ij}. Then

RS
T =

{
∅ if S��RT
RSI1

TI1
on · · · on RSIq

TIq
if S �R T

Proof. First, assume that S��RT: Assume by contradiction that there exists f ∈ RS
T, i.e. f is an R-morphism

from the edge-labeled graph G[S1 ] · · · ] Sp] to the edge-labeled graph H and ∀i ∈ [p], f(Si) ⊆ Ti. Since S
is not R-feasible with respect to T, there exists a pair (i, i′) ∈ [p]2 such that:

• lH′(Ti, Ti′) 6= e,
• there exists u ∈ Si and v ∈ Si′ with (lG(u, v), lH′(Ti, Ti′)) /∈ R.

By Definition 7, ∀(a, b) ∈ Ti × Ti′ , lH(a, b) = lH′(Ti, Ti′). Notice that, by definition of f ∈ RS
T,

(f( u︸︷︷︸
∈Si

), f( v︸︷︷︸
∈Si′

)) ∈ Ti × Ti′ . Thus, lH(f(u), f(v)) = lH′(Ti, Ti′). Since f is an R-momorphism, we have

(lG(u, v), lH(f(u), f(v))︸ ︷︷ ︸
=lH′ (Ti,Ti′ )

) ∈ R, which contradicts the definition of (u, v). We have a contradiction, which

proves that RS
T = ∅.

Second, assume that S �R T:
Take f ∈ RS

T and j ∈ [q]. Since restrictions of R-morphisms are R-morphisms, f |∪SIj is an R-morphism.

Moreover, since f ∈ RS
T, for all j ∈ Ij , f(Sj) ⊆ Tj . We deduce that f |∪SIj ∈ R

SIj
TIj

. This proves that

RS
T ⊆ R

SI1
TI1

on · · · on RSIq
TIq

.

We now prove the reverse. Let (f1, . . . , fq) ∈ RSI1
TI1
× · · · ×RSIq

TIq
, and let f = f1 on · · · on fq. We will prove

that f ∈ RS
T. Clearly, by definition of the R

SIj
TIj

for j ∈ [q], we have, for all i ∈ [p], f(Si) ⊆ Ti (knowing that

(I1, . . . , Iq) is a partition of [p]). There only remains to prove that f is an R-morphism. Let S = S1]· · ·]Sp

and take (u, v) ∈ S2. We will prove that (lG(u, v), lH(f(u), f(v))) ∈ R. Let (i, i′) ∈ [p]2 be such that u ∈ Si

and v ∈ Si′ .

(1) If there exists j ∈ [q] such that (i, i′) ∈ (Ij)
2 (ie. if Ti and Ti′ belong to the same e-connected

component Cj), then, (u, v) ∈ (SIj )2. It follows by definition of f that (f(u), f(v)) = (fj(u), fj(v)),
and then (lG(u, v), lH(f(u), f(v))) ∈ R because fj is an R-morphism.

(2) Else, by definitions of Ij and Cj for j ∈ [q], Ti and Ti′ are not e-connected in H ′. We deduce that,
in particular, lH′(Ti, Ti′) 6= e. Using Definition 7: ∀(a, b) ∈ Ti × Ti′ , lH(a, b) = lH′(Ti, Ti′). Then,
(f(u), f(v)) = (fi(u), fi′(v)) ∈ Ti × Ti′ , thus lH(f(u), f(v)) = lH′(Ti, Ti′). Using S �R T, we have
(lG(u, v), lH′(Ti, Ti′)︸ ︷︷ ︸

=lH(f(u),f(v))

) ∈ R.

We have proven that (lG(u, v), lH(f(u), f(v))) ∈ R. Hence, f is indeed an R-morphism, which concludes
the proof.

�

Lemma 23. Let G and H be two e-free edge-labelled graphs, and let R ⊆ XG × XH , T0, T1, . . . , Tp−1 be
p pairwise disjointed subsets of VH , and let T = (T1, . . . , Tp−1), S0, S1, . . . , Sp−1 be p pairwise disjointed
subsets of VG, and let S = (S1, . . . , Sp−1), Tp ] Tp+1 = T0 be a partition of T0.Then

RS,S0

T,T0
= ]

Sp ] Sp+1 = S0

(S, Sp, Sp+1) �R (T, Tp, Tp+1)

RS,Sp,Sp+1

T,Tp,Tp+1

Proof. Partitioning the set RS,S0

T,T0
in equivalence classes with respect to the equivalence relation ∼ defined

by:
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∀(f, f ′) ∈ (RS,S0

T,T0
)2, f ∼ f ′ ⇐⇒ (f−1(Tp), f−1(Tp+1))︸ ︷︷ ︸

partition of S0

= (f ′−1(Tp), f ′−1(Tp+1))︸ ︷︷ ︸
partition of S0

we obtain:

RS,S0

T,T0
= ]

Sp]Sp+1=S0

RS,Sp,Sp+1

T,Tp,Tp+1

and then, the conclusion follows from Lemma 22.
�

Theorem 24. Let Ω a semiring pre-morphism and W a weight matrix for Ω, G and H be two e-free edge-
labelled graphs, (Hm, . . . ,H1) a contraction sequence of H (with m := |VH |), and k ∈ [m− 1], C1, . . . , Cq be
q (q ≥ 1) different e-connected components of Hk+1 (q ≥ 1). Let {T1, . . . , Tp−1, Tp, Tp+1} = C1]· · ·]Cq and
T = (T1, . . . , Tp−1), S0, S1, . . . , Sp−1 be p pairwise disjointed subsets of VG. Let S = (S1, . . . , Sp−1). Denote,
for all j ∈ q, Ij ⊆ [p+ 1] such that Cj = {Ti, i ∈ Ij}. Assume that Hk is obtained from Hk+1 by contracting
the two different vertices Tp and Tp+1 to the vertex T0 = Tp ] Tp+1. Then, we have:

ΩW (RS,S0

T,T0
) =

∑
Sp ] Sp+1 = S0

(S, Sp, Sp+1) �R (T, Tp, Tp+1)

(

q∏
j=1

ΩW (R
(S,Sp,Sp+1)Ij
(T,Tp,Tp+1)Ij

))

(the notations
∑

and
∏

reffer to the sum and product of the semiring).

Proof. Using Lemma 23:

ΩW (RS,S0

T,T0
) = ΩW ( ]

Sp ] Sp+1 = S0

(S, Sp, Sp+1) �R (T, Tp, Tp+1)

RS,Sp,Sp+1

T,Tp,Tp+1
)

using the first axiom of pre-morphisms:

ΩW (RS,S0

T,T0
) =

∑
Sp ] Sp+1 = S0

(S, Sp, Sp+1) �R (T, Tp, Tp+1)

ΩW (RS,Sp,Sp+1

T,Tp,Tp+1
)

and we can apply iteratively the second axiom of pre-morphisms with F := RS,Sp,Sp+1

T,Tp,Tp+1
and ∀j ∈ [q],Fj :=

R
(S,Sp,Sp+1)Ij
(T,Tp,Tp+1)Ij

, thanks to Lemma 22 (since (S, Sp, Sp+1) �R (T, Tp, Tp+1)) in order to write:

ΩW (RS,S0

T,T0
) =

∑
Sp ] Sp+1 = S0

(S, Sp, Sp+1) �R (T, Tp, Tp+1)

(
q∏

j=1

ΩW (R
(S,Sp,Sp+1)Ij
(T,Tp,Tp+1)Ij

))

Which was what we wanted to prove.
�

Lemma 25. Let (A,+,×, 0A, 1A) be a semiring, B a set, Ω a A-pre-morphism with weights in B, W ∈
BVG×VH , G and H be two e-free edge labelled graphs, and (Hm, . . . ,H1) be a contraction sequence of H.

For all k ∈ [m], for all e-connected component {T1, . . . , Tp} of Hk, and for all S1, . . . , Sp pairwise disjointed
subsets of VG, after the iteration of index k (and before the iteration of index k−1) of the loop “for k = m−1

downto 1” of Algorithm 1, OMEGA

S1 T1

...
...

Sp Tp

 contains ΩW (RS1,...,Sp

T1,...,Tp
).

Proof. We proceed by induction over k = m down to 1.
Initialisation: For k = m, it comes the loop: “for S ⊆ VG”, noticing that the e-connected components

of Hm are exactly its singletons of vertices, ie, the {a} for a ∈ VH , and noticing that, for all S ⊆ VG,
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RS
{a} = {fS{a}} if ∀(u, v) ∈ S2, (lG(u, v), lH(a, a)) ∈ R, and RS

{a} = ∅ otherwise, recalling that ΩW (∅) = 0A
(third axiom of pre-morphisms).

Hereditary: Assume the lemma is true for k + 1. Assume that the vertices merged in the contraction
Hk+1 → Hk are called Tp and Tp+1 and that the merged vertex is called T0. Notice that the only e-connected
component of Hk that is not also a e connected component of Hk+1 is the one that contains T0. Call it C =
{T0, T1, . . . , Tp−1}. Let C1] . . .]Cq := {T1, . . . , Tp−1, Tp, Tp+1} be the partitioning of (C \{T0})∪{Tp, Tp+1}
into e-connected component in Hk+1. For every j ∈ [q], recalling that Cj = {TIj [1], . . . , TIj [pj ]} (by definition

of Ij , and denoting pj := |Ij |), we have by the induction hypothesis: OMEGA

 SIj [1] TIj [1]

...
...

SIj [pj ] TIj [pj ]

 contains

ΩW (R
SIj
TIj

), where, we recall, R
SIj
TIj

is a notation for R
SIj [1],...,SIj [pj ]

TIj [1],...,TIj [pj ]
. Then, we see that, at the end of the loop

of index k (and thus at the beginning of the loop of index k− 1), “for all S0, . . . , Sp−1 subsets of VG pairwise

disjointed”: OMEGA


S0 T0

S1 T1

...
...

Sp−1 Tp−1

 contains
∑

Sp ] Sp+1 = S0

(S, Sp, Sp+1) �R (T, Tp, Tp+1)

(
q∏

j=1

ΩW (R
(S,Sp,Sp+1)Ij
(T,Tp,Tp+1)Ij

)) which,

by Theorem 24, equals ΩW (RS,S0

T,T0
). OMEGA


S0 T0

S1 T1

...
...

Sp−1 Tp−1

 contains ΩW (RS,S0

T,T0
) at the end of the loop of

index k. Recall that RS,S0

T,T0
is a notation for RS1,...,Sp−1,S0

T1,...,Tp−1,T0
= RS0,S1,...,Sp−1

T0,T1,...,Tp−1
. This concludes the proof.

�

Theorem 16. Let (A,+,×, 0A, 1A) be a semiring, and Ω a A-pre-morphism with weights in a set B, H an
e-free edge-labelled graph, H an optimal contraction sequence of H, and X a finite set, R ⊆ X ×XH . Then,
Algorithm 1 with fixed H, R and Ω solves Ω(H-(R-MORPHISM)) in time O((ctww(H) + 2)|VG| × |VG|2)
every intance G on n ≥ 1 vertices.

Proof. The soundness of Algorithm 1 is a consequence of Lemma 25, noticing that the set of solutions of the
instance G of H-(R-MORPHISM) is exactly RVG

VH
, and that {VH} is a connected component of H1.

For the complexity, note that there are (p + 2)|VG| ways to choose S0, S1, . . . , Sp−1 and Sp, Sp+1 such
that S0, S1, . . . , Sp−1 are pairwise disjointed subsets of VG and (Sp, Sp+1) partitions S0, and that the max-
imum p that will occur in the execution of Algorithm 1 is exactly ctw(H) = ctww(H). Also, checking if
(S1, . . . , Sp−1, Sp, Sp+1) �R (T1, . . . , Tp−1, Tp, Tp+1) can be performed in O(|VG|2) time.

�

Appendix D. Soundness of Algorithm 2

Definition 26. Let G and H two e-free edge-labelled graphs on n and m vertices respectively. Let R ⊆
XG ×XH . Let S = (S1, . . . , Sp) be a tuple of p pairwise disjointed subsets of VG (in particular, S1, . . . , Sp

can be different vertices of a contraction G′ of G) and S = S1 ] · · · ] Sp. Let T = (T1, . . . , Tp) be a tuple of
p non-empty subsets of VG and T = T1 ] · · · ] Tp.

We then define the set RS
T by

RS
T = {f : G[S]→

R
H[T ] | f(S1) = T1, . . . , f(Sp) = Tp}.

Lemma 27. Let G and H two e-free edge-labelled graphs, on n and m vertices respectively, G′ be a contrac-
tion of G, R ⊆ XG ×XH , C1, . . . , Cq be q different e-connected components of G′ (q ≥ 1), {S1, . . . , Sp} =
C1 ] · · · ] Cq let S = (S1, . . . , Sp), T = (T1, . . . , Tp) be a tuple of p non-empty subsets of VH . Let for all
j ∈ q, Ij ⊆ [p] be such that Cj = {Si, i ∈ Ij}. Then

RS
T =

{
∅ if T��RS
RSI1

TI1
on · · · on RSIq

TIq
if T �R S
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Create a tabular OMEGA filled with 0A
for s ∈ VG, t ∈ VH do

if (lG(s, s), lH(t, t)) ∈ R then

OMEGA
[
{s} {t}

]
← ΩW ({f{s}{t} }) (with f

{s}
{a} :

{s} 7→ {a}
s 7→ a

)

end

end

for k = n− 1 downto 1 do
(Sp, Sp+1)← contracted pair in the contraction Gk+1 → Gk of G S0 ← contraction of Sp and
Sp+1 in Gk C = {S0, S1, . . . Sp−1} the e-connected component of Gk containing S0

C1 ] . . . ] Cq = {S1, . . . , Sp−1, Sp, Sp+1} be the partitionning of (C \ {S0}) ∪ {Sp, Sp+1} into
e-connected component in Gk+1

for j = 1 to q do
Define Ij ⊆ [p] such that Cj = {Si, i ∈ Ij}
Ij =: {Ij [1], . . . , Ij [pj ]} with pj = |Ij |

end

for T0, T1, . . . , Tp−1 ⊆ VH with ∅ /∈ {T0, T1, . . . , Tp−1} do
for Tp ∪ Tp+1 = T0 with ∅ /∈ {Tp, Tp+1} do

if (T1, . . . , Tp−1, Tp, Tp+1) �R (S1, . . . , Sp−1, Sp, Sp+1) then

OMEGA


S0 T0

S1 T1

...
...

Sp−1 Tp−1

+ = OMEGA

 SI1[1] TI1[1]

...
...

SI1[p1] TI1[p1]

× · · ·×

OMEGA

 SIq [1] TIq [1]

...
...

SIq [pq ] TIq [pq ]


end

end

end

return
∑

T⊆VH

OMEGA
[
VG T

]
end
Algorithm 2: Solving Ω(H-(R-MORPHISM)) ie. Ω(BINARY-CSP(Γ)) (parameterized version)

Proof. First, assume that T��RS:

Assume by contradiction that there exists f ∈ RS
T, ie. f is an R-morphism from the edge-labeled graph

G[S1 ] · · · ] Sp] to the edge-labeled graph H and ∀i ∈ [p], f(Si) = Ti. Since T does not make S R-feasible,
there exists a pair (i, i′) ∈ [p]2 such that:

• lG′(Si, Si′) 6= e,
• there exists a ∈ Ti and b ∈ Ti′ with (lG′(Si, Si′), lH(a, b)) /∈ R.

By Definition 7, ∀(u, v) ∈ Si × Si′ , lG(u, v) = lG′(Si, Si′). Notice that, by definition of f ∈ RS
T, since

f(Si) = Ti and f(Si′) = Ti′ , there exists (u, v) ∈ Si × Si′ such that (f(u), f(v)) = (a, b). Since f is an R-
morphism, we have (lG(u, v), lH(f(u), f(v))) = (lG′(Si, Si′), lH(a, b)) ∈ R, which contradicts the definition

of (a, b). We have a contradiction, which proves that RS
T = ∅.

Second, assume that T �R S:

Take f ∈ RS
T and j ∈ [q]. Since restrictions of R-morphisms are R-morphisms, f |∪SIj is an R-morphism.

Moreover, since f ∈ RS
T, for all j ∈ Ij , f(Sj) = Tj . We deduce that f |∪SIj ∈ R

SIj
TIj

, which proves that

RS
T ⊆ R

SI1
TI1

on · · · on RSIq
TIq

.
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We now prove the reverse. Let (f1, . . . , fq) ∈ RSI1
TI1
× · · · ×RSIq

TIq
, and let f = f1 on · · · on fq. We will prove

that f ∈ RS
T. Clearly, by definition of the R

SIj
TIj

for j ∈ [q], we have, for all i ∈ [p], f(Si) = Ti (knowing that

(I1, . . . , Iq) is a partition of [p]). There only remains to prove that f is an R-morphism.
Let S = S1 ] · · · ] Sp, and (u, v) ∈ S2. We will prove that (lG(u, v), lH(f(u), f(v))) ∈ R. Let (i, i′) ∈ [p]2

be such that u ∈ Si and v ∈ Si′ .

(1) If there exists j ∈ [q] such that (i, i′) ∈ (Ij)
2 (i.e. if Si and Si′ belong to the same e-connected

component Cj), then, (u, v) ∈ (SIj )2. It follows by definition of f that (f(u), f(v)) = (fj(u), fj(v)),
and then (lG(u, v), lH(f(u), f(v))) ∈ R since fj is an R-morphism.

(2) Else, by definitions of Ij and Cj for j ∈ [q], Si and Si′ are not e-connected in H ′. We deduce
that, in particular, lG′(Si, Si′) 6= e. Using Definition 7: ∀(u, v) ∈ Si × Si′ , lG(u, v) = lG′(Si, Si′).
Then, (f(u), f(v)) = (fi(u), fi′(v)) ∈ Ti × Ti′ , thus using the hypothesis of T �R S, we have
(lG(u, v), lH(f(u), f(v))) = (lG′(Si, Si′), lH(f(u), f(v))) ∈ R.

We have proven that (lG(u, v), lH(f(u), f(v))) ∈ R. Hence, f is indeed an R-morphism, which concludes
the proof.

�

Lemma 28. Let G and H be two e-free edge-labelled graphs, R ⊆ XG×XH , T0, T1, . . . , Tp−1 be p non-empty
subsets of VH , T = (T1, . . . , Tp−1), S0, S1, . . . , Sp−1 be p pairwise disjointed subsets of VG, S = (S1, . . . , Sp−1),
and Sp ] Sp+1 = S0 be a partition of S0. Then

RS,S0

T,T0
= ]

Tp ∪ Tp+1 = T0

(T, Tp, Tp+1) �R (S, Sp, Sp+1)

RS,Sp,Sp+1

T,Tp,Tp+1

Proof. Partitioning the set RS,S0

T,T0
in equivalence classes with respect to the equivalence relation ∼ defined

by:

∀(f, f ′) ∈ (RS,S0

T,T0
)2, f ∼ f ′ ⇐⇒ (f(Sp), f(Sp+1)) = (f ′(Sp), f ′(Sp+1))

we obtain:

RS,S0

T,T0
= ]

Tp∪Tp+1=T0

RS,Sp,Sp+1

T,Tp,Tp+1

and then, the conclusion follows from Lemma 27.
�

Theorem 29. Let Ω be a semiring pre-morphism and W a weight matrix. Let G and H be two e-free
edge-labelled graphs, (Gn, . . . , G1) a contraction sequence of G (with n := |VG|), k ∈ [n − 1], C1, . . . , Cq

be q (q ≥ 1) different e-connected components of Gk+1 (q ≥ 1), {S1, . . . , Sp−1, Sp, Sp+1} = C1 ] · · · ] Cq,
S = (S1, . . . , Sp−1), and T0, T1, . . . , Tp−1 be p non-empty subsets of VH , and let T = (T1, . . . , Tp−1). Denote
for all j ∈ q, Ij ⊆ [p+ 1] such that Cj = {Si, i ∈ Ij}. Assume that Gk is obtained from Gk+1 by merging the
two different vertices Sp and Sp+1 to the vertex S0 = Sp ] Sp+1. Then, we have:

ΩW (RS,S0

T,T0
) =

∑
Tp ∪ Tp+1 = T0

(T, Tp, Tp+1) �R (S, Sp, Sp+1)

q∏
j=1

(ΩW (R
(S,Sp,Sp+1)Ij
(T,Tp,Tp+1)Ij

)

(where
∑

and
∏

refers to the sum and product of the semiring).

Proof. Using Lemma 28:

ΩW (RS,S0

T,T0
) = ΩW ( ]

Tp ∪ Tp+1 = T0

(T, Tp, Tp+1) �R (S, Sp, Sp+1)

RS,Sp,Sp+1

T,Tp,Tp+1
)

using the first axiom of pre-morphisms:
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ΩW (RS,S0

T,T0
) =

∑
Tp ∪ Tp+1 = T0

(T, Tp, Tp+1) �R (S, Sp, Sp+1)

ΩW (RS,Sp,Sp+1

T,Tp,Tp+1
)

and we can iteratively apply the second axiom of pre-morphisms with F := RS,Sp,Sp+1

T,Tp,Tp+1
and ∀j ∈ [q],Fj :=

R
(S,Sp,Sp+1)Ij
(T,Tp,Tp+1)Ij

, thanks to Lemma 22 (since (T, Tp, Tp+1) �R (S, Sp, Sp+1)) in order to write:

ΩW (RS,S0

T,T0
) =

∑
Tp ∪ Tp+1 = T0

(T, Tp, Tp+1) �R (S, Sp, Sp+1)

q∏
j=1

ΩW (R
(S,Sp,Sp+1)Ij
(T,Tp,Tp+1)Ij

),

which was what we wanted to prove.
�

Lemma 30. Let (A,+,×, 0A, 1A) be a semiring, B a set, and Ω a A-pre-morphism with weights in B (with
A and B sets), W ∈ BVG×VH , G and H be two e-free edge labelled graphs, (Gn, . . . , G1) be a contraction
sequence of H.

Then, for all k ∈ [m], for all e-connected component {S1, . . . , Sp} of Gk, and for all T1, . . . , Tp non-empty
subsets of VH , after the iteration of index k (and before the iteration of index k−1) of the loop “for k = m−1

downto 1” of Algorithm 2, OMEGA

S1 T1

...
...

Sp Tp

 contains ΩW (RS1,...,Sp

T1,...,Tp
).

Proof. We proceed by induction over k = m downto 1.
Initialisation: For k = m, it comes the loop: “for T ⊆ VG”, noticing that the e-connected components

of Gn are exactly its singletons of vertices, ie, the {s} for s ∈ VG, and noticing that, for all T ⊆ VH ,

R
{s}
T = {f{s}{a}} if T is a singleton containing T =: {a} such that ∀(u, v) ∈ S2, (lG(s, s), lH(a, a)) ∈ R, and

R{s}T = ∅ otherwise, recalling that ΩW (∅) = 0A (third axiom of pre-morphisms).
Hereditary: Assume the lemma is true for k + 1. Assume that the vertices merged in the contraction

Gk+1 → Gk are called Sp and Sp+1 and that the merged vertex is called S0. Notice that the only e-connected
component of Gk that is not also a e-connected component of Gk+1 is the one that contains S0. Call it
C = {S0, S1, . . . , Sp−1}. Let C1 ] . . . ] Cq = {S1, . . . , Sp−1, Sp, Sp+1} be the partitionning of (C \ {S0}) ∪
{Sp, Sp+1} into e-connected component in Gk+1. For every j ∈ [q], recalling that Cj = {SIj [1], . . . , SIj [pj ]}

(by definition of Ij , and denoting pj := |Ij |), we have by induction hypothesis: OMEGA

 SIj [1] TIj [1]

...
...

SIj [pj ] TIj [pj ]


contains ΩW (R

SIj
TIj

), where, we recall, R
SIj
TIj

is a notation for R
SIj [1],...,SIj [pj ]

TIj [1],...,TIj [pj ]
. Then, we see that, at the end

of the loop of index k (and thus at the beginning of the loop of index k − 1): “for all T0, . . . , Tp−1 subsets

of VH”: OMEGA


S0 T0

S1 T1

...
...

Sp−1 Tp−1

 contains
∑

Tp ∪ Tp+1 = T0

(T, Tp, Tp+1) �R (S, Sp, Sp+1)

(
q∏

j=1

ΩW (R
(S,Sp,Sp+1)Ij
(T,Tp,Tp+1)Ij

)) which, by

Theorem 29, equals ΩW (RS,S0

T,T0
). OMEGA


S0 T0

S1 T1

...
...

Sp−1 Tp−1

 contains ΩW (RS,S0

T,T0
) at the end of the loop of index

k. Recall that RS,S0

T,T0
is a notation for RS1,...,Sp−1,S0

T1,...,Tp−1,T0
= RS0,S1,...,Sp−1

T0,T1,...,Tp−1
. This concludes the proof.

�
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Theorem 15. Let (A,+,×, 0A, 1A) be a semiring, Ω a poly-time computable strong A-pre-morphism with
weights in a set B, H an e-free edge-labelled graph, X a finite set, and R ⊆ X × XH . Assume that Ω is
corestriction independent. Then, for every instance G on n ≥ 1 vertices, Algorithm 2 with fixed, H, R and Ω
solves Ω(H-(R-MORPHISM)) in O(((2|VH |− 1)ctww(G))× |VG|2) time, provided that an optimal contraction
sequence G of G is given.

Proof. The complexity comes from the fact that there are (2|VH |−1)p+1 ways to choose (T0, T1 . . . , Tp−1) and
(Tp, Tp+1) such that (T0, T1 . . . , Tp−1) are non-empty subsets of VH and (Tp, Tp+1) are non-empty subsets
of VH with Tp ∪ Tp+1 = T0. Note that, using the axiom relative to ] and + and the hypothesis that Ω is

corestriction independent, it follows that for all F ∈ TS with ∀f ∈ F , f(S) ⊆ T ′, denoting F|T ′ = {f |T ′ , f ∈
F}, we have ΩW (F) = ΩW (F|T ′).

The soundness of Algorithm 2 follows from the observation that, partitioning the set of solution SOL of
the instance G of H-(R-MORPHISM):

SOL = ]
T⊆VH

{f ∈ RVG

VH
| f(VG) = T}

which leads to

ΩW (SOL) =
∑

T⊆VH

ΩW ({f ∈ RVG

VH
| f(VG) = T})

Using the above remark:

ΩW (SOL) =
∑

T⊆VH

ΩW ({f ∈ RVG

VH
| f(VG) = T}|T )

from where we deduce:

ΩW (SOL) =
∑

T⊆VH

ΩW (RVG

T )

To obtain the soundness of Algorithm 2, it only remains to notice that, since VG is a connected component

of G1, we deduce from Lemma 30 that OMEGA
[
VG T

]
contains exactly ΩW (RVG

T ) for all T ⊆ VH .
�

Appendix E. Examples of Pre-Morphisms and Associated Problems

In this section we introduce additional examples of pre-morphisms and explicitly show how to formulate
various BINARY-CSP(Γ) problems in the Ω(H-(R-MORPHISM)) framework. One of the smallest example
of a non-trivial pre-morphism is the following Boolean pre-morphism:

Lemma 31. Let 2 = {0, 1} be the set of the two Booleans and ∨ and ∧ denote disjunction and conjunction
over 2. Let 1 6=∅ be the function that maps ∅ to 0 and every other set F to 1 (the weight matrix W is
inessential). Then, (2,∨,∧, 0, 1) is a semiring (even a dioid), and the function 16=∅ is a strong poly-time
computable 2-pre-morphism ignoring weights.

Note that computing the value by the function 1 6=∅ of the set of solutions of a BINARY-CSP (or a
MORPHISM) instance is equivalent to solving its decision version. Therefore, the 16=∅(BINARY-CSP(Γ)) and
16=∅(H-(R-MORPHISM)) problems are exactly the BINARY-CSP(Γ) and H-(R-MORPHISM) problems.
We can do better and implement the list version:

Lemma 32. Let list be the function that associates to every F ∈ P(TS) (for all sets S and T ) and W ∈ 2S×T :
0 if {f ∈ F | ∀u ∈ S,W (u, f(u)) = 1} is empty, and 1 otherwise. Then list is a poly-time computable strong
2-pre-morphism with weights in 2.

It is easy to see that the list(BINARY-CSP(Γ)) and list(H-(R-MORPHISM)) problems are exactly the
list-BINARY-CSP(Γ) and list-H-(R-MORPHISM) problems. We can also define a pre-morphism around
the function computing the cardinal of the set involved:
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Lemma 33. Let # be the function that associate to every set F the cardinal |F| of F (the weight matrix
W is inessential). Then (N,+,×, 0N, 1N) is a semiring (it is even a dioid), and # is a poly-time computable
N-pre-morphism ignoring weights.

It follows that #(BINARY-CSP(Γ)) and #(H-(R-MORPHISM)) are alternative formulations of the
#BINARY-CSP(Γ) and #H-(R-MORPHISM) counting problems.

To go even further, we can even add a list to the counting version.

Lemma 34. Let #list be the function that associates to every F ∈ P(TS) and W ∈ 2S×T (for all sets S
and T and W ∈ 2S×T ) the cardinal of the set of the functions f of F satisfying ∀u ∈ S,W (u, f(u)) = 1:
#listW (F) = |{f ∈ F | ∀u ∈ S,W (u, f(u)) = 1}|. Then #list is a poly-time computable strong N-pre-
morphism with weights in 2.

The next semiring and pre-morphism are more subtle, since they actually takes into account the weight
matrix with weights in R, and additionaly make use of a Cartesian product. Define

⊕ :

(R× N)2 7→ R× N

(m1, c1), (m2, c2) 7→ (min(m1,m2),

 c1 if m1 < m2

c2 if m2 < m1

c1 + c2 if m1 = m2

)

and

⊗ :
(R× N)2 7→ R× N

(m1, c1), (m2, c2) 7→ (m1 +m2, c1 × c2)

We immediately obtain the following lemma.

Lemma 35. ((R× N),⊕,⊗, (+∞, 0N), (0R, 1N)) is a semiring (it is even a dioid).

Definition 36. We define the following functions.

• Let MinCost be the function that maps, for G and H two edge-labelled graphs, S ⊆ VG, T ⊆ VH ,

any (F ,W ) to minW∑(F), for F ∈ P(TS) and W ∈ RVG×VH
denoting, for all f ∈ TS , W∑(f) =∑

u∈S
W (u, f(u)), and W∑(F) = {W∑(f) | f ∈ F}: MinCost outputs values in R).

• Let ArgMinCost be the function that maps, for G and H two edge-labelled graphs, S ⊆ VG, T ⊆

VH , any (F ,W ) to the set

{
∅ if minW∑(F) = +∞
{f ∈ F |W∑(f) = minW∑(F)} otherwise

}
with F ∈ P(TS) and

W ∈ RVG×VH

• Last, let #ArgMinCost be the composition of # and ArgMinCost (i.e., the function that outputs
the cardinal of the set described above): #ArgMinCost outputs values in N.

Lemma 37. (MinCost,#ArgMinCost) is a poly-time computable strong (R×N)-pre-morphism with weights
in R.

Notice that computing the value by the function (MinCost,#ArgMinCost) of the set of solutions of
a BINARY-CSP or a MORPHISM instance means computing the minimal weight

∑
u∈VG

w(u, f(u)) of the

solutions f satisfying ∀(u, v) ∈ VG × VH , w(u, v) = +∞ =⇒ f(u) 6= v, and determining the number
of such solutions of minimal weights, which answers a problem that subsumes together the counting, the
list, and a weighted version of BINARY-CSP(Γ) and H-(R-MORPHISM). We also remark that instead of
considering the weights in R, considering any totally ordered set B with an increasing, binary, associative
and commutative operation b : B2 7→ B (instead of +) would have been possible. We present a variant
of this pre-morphism, with the goal of modeling another weighted version of BINARY-CSP(Γ) and H-(R-
MORPHISM).

Definition 38. Let MinWeight be the function that maps, for G and H two edge-labelled graphs, S ⊆ VG,

T ⊆ VH , any (F ,W ) to minWmax(F), for F ∈ P(TS) and W = (w(u, v))u∈VG,v∈VH
∈ RVG×VH

denoting,
for all f ∈ TS , Wmax(f) =

∑
v∈T

max
u∈f−1(v)

W (u, v), and Wmax(F) = {Wmax(f) | f ∈ F}: MinWeight outputs

values in R).
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Let ArgMinWeight be the function that maps, for G and H two edge-labelled graphs, S ⊆ VG, T ⊆ VH , any

(F ,W ) to the set

{
∅ if minWmax(F) = +∞
{f ∈ F |Wmax(f) = minWmax(F)} otherwise

}
with F ∈ P(TS) and W ∈ RVG×VH

.

and let #ArgMinWeight be the composition of # and ArgMinWeight (ie the function that outputs the
cardinal of the set described above): #ArgMinWeight outputs values in N.

Similarly, computing the value by MinWeight of the set of solutions of an instance of BINARY-CSP(Γ) or
H-(R-MORPHISM), solves another weighted version of the problems, which is the one defined by Escoffier
et al. [25] (restricted to the less general case of q-COLORING) while computing both the minimal weight of
a solution and the number of solutions with such a minimal weight.

Lemma 39. ((R+ × N),⊕,⊗, (+∞, 0N), (0R+
, 1N)) is a semiring, and (MinWeight,#ArgMinWeight) is a

poly-time computable (R+ × N)-pre-morphism (restricting and corestricting ⊕ and ⊗ to (R+ × N)2 and
(R+ × N)). It is not a strong pre-morphism.

Finally, we describe a last dioid, that adds a constraint on the preimages of the vertices of the target
graph.

Definition 40. Let #restrictive − list be the function that maps, for G and H two edge-labelled graphs,
S ⊆ VG, T ⊆ VH , any (F ,W ) to |{f ∈ F | ∀v ∈ T,w(v) 6= +∞ =⇒ |f−1({v})| = W1(v),∀(u, v) ∈
S × T, f(u) = v =⇒ W2(u, v) = 1}|, for F ∈ P(TS) and W = (W1(v),W2(u, v))u∈VG,v∈VH

∈ (N× 2)VG×VH

with W1 = (W1(v))u∈VG,v∈VH
∈ NVG×VH

a matrix of constant columns and W2 ∈ 2VG×VH .

Lemma 41. The #restrictive− list is a poly-time computable N-pre-morphism with weights in N× 2.

Computing the value by #restrictive− list of the set of solutions of an instance of BINARY-CSP(Γ) or
H-(R-MORPHISM), solves a stronger version of the list generalisation, which is the one defined by Diaz et.
al [22] (restricted to the less general case of q-COLORING), while also counting the number of solutions.
Notice that, by taking weights in N × R (instead of simply N × 2), we could have, similarly as previously,
encoded a weighted version.
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