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Abstract. The benefit of locality is one of the major premises of LIME, one of
the most prominent methods to explain black-box machine learning models. This
emphasis relies on the postulate that the more locally we look at the vicinity of an
instance, the simpler the black-box model becomes, and the more accurately we
can mimic it with a linear surrogate. As logical as this seems, our findings suggest
that, with the current design of LIME, the surrogate model may degenerate when
the explanation is too local, namely, when the bandwidth parameter σ tends to
zero. Based on this observation, the contribution of this paper is twofold. Firstly,
we study the impact of both the bandwidth and the training vicinity on the fidelity
and semantics of LIME explanations. Secondly, and based on our findings, we
propose S-LIME, an extension of LIME that reconciles fidelity and locality.

Keywords: Explainable AI · Interpretability

1 Introduction

The pervasiveness of complex automatic decision-making nowadays has raised multiple
concerns about the implications of AI for the values of fairness, trust, transparency, and
privacy [2, 4, 13]. These concerns have propelled a plethora of work in explainable AI, a
domain concerned with the design of models that can provide high-level comprehensive
explanations for their answers. These models can be either explainable-by-design, or
rely on external modules that compute explanations a posteriori. This need for post-
hoc explainability is particularly compelling for sophisticated machine learning models,
e.g., neural networks, whose logic is perceived as a black box by lay users.

One of the most prominent modules to compute post-hoc explanations for black-
box supervised ML models is LIME [15]. This approach builds upon the notion of local
feature attribution via a linear surrogate. Feature attribution means that the explanation
quantifies the contribution of a set of features to the black box’s answer. This allows
users to build a ranking of the features that play the biggest role in the model’s logic. We
say the explanation is local because it only holds for a target instance and its vicinity.
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By focusing on a region of the feature space, LIME reduces the complexity of the black
box and can approximate it using a surrogate sparse linear function whose coefficients
constitute the feature attribution scores of the explanation. To learn this surrogate, LIME
constructs a training set by generating artificial instances – called neighbors – around
the target instance, and labeling them using the black box. The neighbors may not lie in
the original feature space, but rather on a surrogate space that is meaningful to humans,
e.g., image segments instead of pixels for images. The neighbors are weighted using an
exponential kernel that depends on the distance to the target and a bandwidth parameter
σ ∈ R+. The weighting process controls the level of locality of the explanation: the
smaller σ is, the more local the explanation becomes as closer neighbors are weighted
higher than farther ones. More locality also implies focusing on a smaller region where
the black box is presumably easier to approximate.

As logical as this sounds, our experiments suggest that small values of σ can yield
unfaithful or even trivially empty explanations. This counter-intuitive result has thus
motivated this work, which brings two contributions: (a) A study of the impact of the
bandwidth and the training vicinity on the fidelity and semantics of LIME, namely the
meaning of the feature attribution scores5; and (b) S-LIME, an extension of LIME that
can solve the locality-fidelity paradox.

This paper is structured as follows. In Section 2 we introduce some background
concepts and notations. We elaborate on our contributions in Sections 3 and 4. Section 5
presents an experimental evaluation of S-LIME. In Section 6 we survey the state of the
art. Section 7 concludes the paper.

2 Preliminaries

Black Boxes and Linear Surrogates. We assume our black box is a classification func-
tion f : Rd → R (d ∈ Z+) that predicts the probability that a target instance x ∈ Rd

belongs to a given class. We denote by x[i] the i-th feature of x. Conversely, the ex-
planation g : Rd̂ → R (d̂ ∈ Z+) is a linear surrogate function that approximates f in
the locality of x, i.e., g(x̂) = α̂0 +

∑
1≤i≤d̂ α̂ix̂[i]. Note that g may be defined on a

surrogate space different from f ’s. This implies the existence of a conversion function
ηx : Rd̂ → Rd from the surrogate to the original space.

LIME. In [15], the authors propose a model-agnostic method to compute local explana-
tions for ML models in the form of sparse linear surrogates. LIME learns an explanation
g for a black box f and an instance x by solving the following minimization problem:

g = argmin
g∈G: ‖α̂‖06k

Lx(f, g) (1)

In other words, the surrogate g is chosen such that it minimizes the error Lx w.r.t. the
answers of f on a neighborhood X around a target instance x. To keep the explanation
meaningful to humans, LIME restricts itself to surrogate functions g with less than k
non-zero parameters, where k is a user-configurable hyper-parameter set by default to
6. LIME does not assume access to the training data of the black box6, therefore the

5 By semantics of LIME, we mean the information carried by the feature attribution scores.
6 The exception to this rule is its implementation for tabular data.
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neighbors z ∈ X take the form z = ηx(ẑ) where ẑ ∈ X̂ ⊆ {0, 1}d̂ is a synthetic in-
stance that lies on a binary space. This space is interpretated as the presence or absence
of features of the target x, so that x = ηx(x̂) with x̂ = 1d̂. The neighbors in X̂ are ob-
tained by toggling off bits in x’s binary representation x̂. When a bit is set to zero in the
surrogate space, the conversion function ηx must map the resulting vector to the orig-
inal space. For images, this can be achieved by replacing the toggled-off super-pixels
with a baseline monochrome segment or with a patch from another image [16]. LIME
weighs the neighbors in X̂ according to a kernel function πσx (based on a distance D
and a bandwidth hyper-parameter σ ∈ R+) on the surrogate space, that is,

Lx(f, g) =
∑
ẑ∈X̂

πσx (ẑ)(f(ηx(ẑ))− g(ẑ))2, with πσx (ẑ) = exp
(
−D(x̂,ẑ)2/σ2

)
.

The hyper-parameter σ controls the locality of the explanation so that smaller values
give more weight to the instances that lie close to x̂, i.e., those instances with fewer
toggled-off bits. LIME does not make any assumptions about the inner-workings of f ,
however the distance D and the conversion functions ηx depend on f ’s original space,
which at the same time depends on the instances’ data type.

Quality Metrics. The quality of the local surrogate g is evaluated in terms of its fidelity,
which can be measured via the surrogate’s adherence to the black box f in the vicinity
of x. Adherence is usually measured via the coefficient of determination R2 [5, 17,
20]. The R2 score measures the similarity between the predictions of both functions,
compared to the variance of the black-box prediction. This coefficient lies in (−∞, 1],
where R2 = 1 means g fits f perfectly and R2 = 0 (respectively R2 < 0) implies that
g is as accurate as (resp. less accurate than) the best constant model.
When a gold standard set Ff (x) of important features is available, we can also calculate
fidelity as the agreement between the explanation and the gold standard. This can be
quantified via metrics such as recall [15], precision, or coverage [8]. Assuming the
surrogate and the original feature spaces are identical, if the explanation g for the target
instance x reports features Fg(x) as the most important, the recall and precision of g
are respectively |Ff (x)∩Fg(x)||Ff (x)| and |Ff (x)∩Fg(x)||Fg(x)| . Coverage can be used for data types
where segments, i.e., conglomerates of contiguous features, are more meaningful to
humans than individual features. Examples are time series and images. For those cases,
the coverage is the proportion of the gold standard regions that overlap with the regions
reported by the surrogate. Further specialized metrics have been proposed to measure
the fidelity of pixel attribution explanations for image classifiers [9].

3 Locality vs. Fidelity

In this section we study the impact of two important elements of LIME on the fidelity
and semantics of explanations, namely the bandwidth σ and the neighborhood X̂ .
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(a) σ = 0.1 (b) σ = 0.75 (c) σ = 100

Fig. 1: LIME explanations for three different bandwidths on the same instance of the
wine dataset (k = 4).

(a) R2 vs. σ (b) σ = 0.1 (c) σ = 100

Fig. 2: Left: Impact of the bandwidth σ on the R2 score of LIME for two instances of
the wine dataset. Right: Distribution of the neighborhood weights for instance 2.

3.1 The Paradox of Small Bandwidth

We illustrate the impact of σ on the output of the tabular variant of LIME7, which
we use to explain a random forest classifier trained on the UCI wine dataset8. Tabular
LIME sets σ = 0.75 with no further explanation. Changing σ can, however, drastically
change the resulting explanation as depicted in Figure 1. In particular, LIME computes
null attribution coefficients when σ = 0.1. Changing σ from 0.75 to 100 rearranges the
attribution ranking of the features.

To investigate the cause of this instability, we measure the adherence of the surro-
gate in X̂ as σ varies for all the test instances of the dataset. We plot the results for two
instances in Figure 2a, where instance 2 is the example explained in Figure 1.

We recall that the R2 score is calculated as 1−vr(g)/v(f), where vr(g) is the residual
sum of squares of the surrogate g and vr(f) is the total sum of squares of f ’s answers.
This means that the surrogate accounts for no more than 60% of the variability of the
black box in X̂ . The dashed regions of the curves indicate that the surrogate model has
degenerated into a set of zero weights. This points out a counter-intuitive phenomenon:
higher locality – achieved by making σ small – yields poor explanations. We also ob-
serve that the R2 may not increase monotonically with σ. Based on these observations,
we devise two research questions that drive our contribution: (i) Why do seem locality
and fidelity in opposition?, and (ii) what makes a good LIME explanation?

7 The discretization is off, hence the classifier and the explanation operate in the same space.
8 https://archive.ics.uci.edu/ml/datasets/wine
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(a) Logistic Regression (b) σ = 0.5 (c) σ = 1.0

Fig. 3: Left: A logistic regression classifier and a neighborhood (denoted by + marks)
generated on a 2D discrete surrogate space. Center and right: Two LIME explanations.
The gradient of each of these functions at the target example (denoted by the * mark)
is orthogonal to the border between white area and black area. The explanation in the
middle captures the black box’s gradient more faithfully.

3.2 Why do Seem Locality and Fidelity in Opposition?

We investigate the cause of this paradox by means of Figures 2b and 2c that depict the
distribution of weights for the neighbors of instance 2 for σ = 0.1 and σ = 100. In the
first case, the LIME surrogate is a degenerated model that predicts a constant as hinted
by Figure 2a and its corresponding explanation in Figure 1a. Figure 2b tells us that the
bulk of the weights is concentrated on the target instance. Such a phenomenon leads to a
trivial training set. Even though locality is defined in terms of the entire set of instances
in X̂ , almost all of them are dispensable because they do not have any influence when
learning the surrogate. The situation is less skewed for σ = 100 (Figure 2c), which
yields the non-trivial explanation in Figure 1c.

From this analysis we conclude that the selection of σ and the construction of X̂
must go in hand. We thus propose a strategy to jointly select them in Section 4.

3.3 What Makes a Good LIME Explanation?

The human aspects of interpretability are beyond the scope of this paper; instead this
study is concerned with the quality and meaningfulness of explanations from a mathe-
matical point of view. As suggested by [6], LIME computes a scaled version of the gra-
dient ∇f for linear black boxes f . The scaling arises because the surrogate is learned
on a finite number of neighbors in a discrete space, and the scaling factor depends on x,
σ, ηx, and X̂ . We argue that in the absence of a reference instance (as in [12, 18, 19]),
explanations based on instantaneous gradients are meaningful and desirable because
their semantics are well-defined: the surrogate gradient ∇̂f(x) is the contribution of
each surrogate feature to f ’s change rate at point x. That said, LIME does not always
estimate ∇̂f accurately as suggested by Figure 3. The figures show that the weights
associated to the neighbors may yield an estimation that differs largely from the black
box’s actual gradient in Figure 3a.
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Algorithm 1 S-LIME applied to black-box function f at target instance x
Require: Conversion function ηx, distribution νσ on the surrogate space
Require: Number k of features in the explanation, number n of local examples
1: X̂ ←

{
ẑ(i) : i = 1, . . . , n

}
, where ẑ(i) ∼ νσ for i = 1, . . . , n

2: return argming∈G: ‖α̂‖06k
∑
ẑ∈X̂ (f(ηx(ẑ)), g(ẑ))

2

4 S-LIME

To tackle the locality-fidelity paradox explained in Section 3.1, we introduce an exten-
sion of LIME, called S-LIME (Smoothed LIME), that we detailed in the following.

4.1 Generic Algorithm

LIME may compute degenerated explanations due to two main factors: (i) the discrete-
ness of the surrogate space, and (ii) the fact that instance generation and weighting are
decoupled. Indeed, LIME first generates a discrete neighborhood X̂ (independently of
σ), and then weighs the instances in X̂ using πσx . In the extreme cases when σ tends to
zero, the weighting is concentrated on x̂.

To prevent this skewed concentration of weights, we control the locality of the ex-
planation in a single step (see Algorithm 1). Hence, we define the neighbors in the
continuous space [0, 1]d̂ and populate X̂ with examples ẑ whose distance D to x̂ is of
the same magnitude as σ. Concretely, the neighborhood X̂ = {ẑ(1), . . . , ẑ(n)} consists
of n equally-weighted instances drawn independently from a distribution νσ . Such a
design decision enables g to approximate ∇̂f when σ tends to zero, without hinder-
ing interpretability: g still combines the contributions of the surrogate features linearly,
and we can still confer an interpretable meaning to the neighbors as later explained in
Section 4.4. Moreover, this allows controlling locality via the bandwidth of the neigh-
borhood distribution, and not anymore through an a-posteriori weighting.

Note that S-LIME also requires the definition of new conversion functions ηx as X̂
is now a subset of the continuous space [0, 1]d̂ instead of the discrete space {0, 1}d̂. In
Section 4.4 we provide examples of proper distributions νσ and functions ηx for images,
time series, and tabular data.

4.2 S-LIME Subsumes LIME

Lemma 1. Let f be a function and x a target instance. There is a distribution νσ over
[0, 1]d̂ such that LIME and S-LIME are minimizing the same expected loss function.

Proof. LIME outputs a function g that minimizes the lossLx(f, g) which is the residual
sum of squares of the examples drawn from a distribution ν. The expectation of this loss
function w.r.t. to a random neighborhood is Eẑ∼ν

[
πσx (ẑ) (f(ηx(ẑ))− g(ẑ))

2
]
. Re-

mark that ν is a distribution on the finite space {0, 1}d̂, then ν =
∑
ẑ∈{0,1}d̂ wν(ẑ)δ(ẑ),

where δ(ẑ) is the Dirac distribution at point ẑ, and wν(ẑ) is a positive real number.
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Similarly, S-LIME returns the linear surrogate g that minimizes a loss with expecta-
tion Eẑ∼νσ

[
(f(ηx(ẑ))− g(ẑ))2

]
. Let Z be

∑
ẑ∈{0,1}d̂ π

σ
x (ẑ)wν(ẑ). If we consider

S-LIME with generating distribution νσ = 1/Z
∑
ẑ∈{0,1}d̂ π

σ
x (ẑ)wν(ẑ)δ(ẑ), then

Eẑ∼νσ

[
(f(ηx(ẑ))− g(ẑ))2

]
=

∑
ẑ∈{0,1}d̂

πσx (ẑ)wν(ẑ)

Z
(f(ηx(ẑ))− g(ẑ))2

=
1

Z
Eẑ∼ν

[
πσx (ẑ) (f(ηx(ẑ))− g(ẑ))

2
]
,

which concludes the proof.

Remark 1. It follows from Lemma 1 that S-LIME may be used as a placeholder for
LIME. Still, the proposed distribution νσ is practical only when d is small, or when
νσ corresponds to a well-known distribution. Otherwise, storing the 2d̂ coefficients
πσx (ẑ)wν(ẑ) is unpractical. Anyway, we demonstrate in Section 5 that S-LIME with
a continuous distribution is more faithful than LIME.

4.3 S-LIME and the Gradient of the Black-Box Function

Let us assume the surrogate function f ◦ ηx to be differentiable at x̂. Let us also denote
by α̂ the weights of the linear model returned by S-LIME when we drop the sparseness
constraint. Then for any family of continuous distributions νσ on [0, 1]d̂, such that their
mass concentrates on x̂ when σ tends to zero, α̂ tends to the gradient ∇̂f(x) of f ◦ηx at
point x̂. An example of such family of distributions is the set {N

(
x̂, σ2III

)
, σ ∈ R+} of

Gaussian distributions centered at x̂ with variance σ2III , where III is the identity matrix.
This property has two main implications. First, while LIME degenerates as σ ap-

proaches zero, S-LIME remains well-defined for any value of σ. Secondly, we know
what S-LIME is targeting when we look locally at x̂: ∇̂f(x).

Remark 2. There are settings for which surrogate gradients are meaningless: piece-wise
constant functions such as random forests. In such a scenario, S-LIME outputs a zero
gradient as soon as the bandwidth of the generating distribution is small enough. While
the weights returned by S-LIME are mathematically consistent for such kinds of mod-
els, they are useless as they carry on information that is too local. If that is the case,
users may pick a higher value for σ, or resort to a rule-based surrogate [16].

4.4 S-LIME Implementations

Let us now discuss examples of concrete distributions νσ and functions ηx. The gener-
ating distribution νσ is the same for image and time series datasets: the uniform distri-
bution on [1− σ, 1]d̂, with σ ∈ (0, 1]. As needed, this distribution concentrates around
the surrogate target x̂ = 1d̂ when σ tends to zero.

In regards to the conversion function ηx, we recall that for both images [15] and
time series [8], LIME splits the original instance into d̂ contiguous regions, namely
super-pixels for images or fragments of fixed size for time series. Those regions define
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the features of the surrogate space. Given a neighbor ẑ ∈ X̂ and a surrogate feature j,
we can project ẑ back to the original space by interpolating the original features of the
target x with a baseline x0, i.e., ηx(ẑ)[i] = (1 − ẑ[j])x0 + ẑ[j]x[i] for all the original
features i, i.e., pixels or time measures, covered by segment j. We set x0 = 0 in our
experiments, i.e., the interpolation is done w.r.t. a black image and a null time series.

Finally, for tabular data we consider one surrogate feature per original feature.
Therefore, the generating distribution νσ is the centered multivariate Gaussian distri-
bution with covariance σ2III , and the function ηx(ẑ) = x+ ẑ.

Remark 3. The design of a proper distribution νσ and a proper function ηx requires the
black-box model to handle examples living in a continuous space. As a consequence,
S-LIME cannot be defined for text data.

5 Experiments

We now show-case the impact of the bandwidth σ on the fidelity of LIME and S-LIME
explanations. We first detail our experimental setup and then elaborate on our findings.

5.1 Experimental Settings

Datasets and Black Boxes. We conduct our experiments on a variety of datasets, com-
prising Cifar10 [10] and MNIST [11] for image data, the FordA and StarlightCurves
time series datasets from the UEA & UCR Time Series Classification Repository, and
the Compas and Diabetes datasets from the UCI Machine Learning Repository for tab-
ular data. We also consider a selection of black-box models, which may be smooth or
piece-wise constant, simple or complex, interpretable or not.

Protocol and Metrics. For each combination of dataset, model, and explanation mod-
ule, we compute the average value of the experimental metrics for different values of σ
on the test instances of the dataset. The experimental metrics were introduced in Sec-
tion 2: the R2 score for all models, and the precision/recall or the coverage for the
interpretable models, i.e., those for which a ground truth is available. All these metrics
take values either in (−∞, 1] or in [0, 1], and higher values denote higher fidelity.

5.2 Impact of σ

To study the impact of σ on the fidelity of the LIME and S-LIME explanations, we plot
the surrogate’s adherence on the StarlightCurves dataset for several black-box mod-
els all using 100 random shapelets as input features. The models include Learning
Shapelets (LS) [7], RESNET [21], Fast Shapelets (FS) [14], and a sparse logistic re-
gression (LR, with L1-regularization to enforce at most 10 features). The results are
depicted in Figure 4. We set k = 6 for the number of features in explanations [15].

We observe that very local S-LIME neighborhoods lead to higher adherence and
coverage, except for FS. This translates into more faithful explanations as σ approaches
zero, where LIME cannot deliver proper explanations. In contrast, LIME achieves higher
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(d) S-LIME on FS
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(h) LIME on FS

Fig. 4: R2 and coverage vs. σ on the StarlightCurves dataset. Each subplot corresponds
to a couple (explainer, dataset). The plotted results are averaged on the instances of the
test dataset. Recall that for S-LIME σ is defined in (0, 1].
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(a) S-LIME on RESNET
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(b) S-LIME on LR

Fig. 5: R2 and coverage vs. σ on the StarlightCurves dataset. Each subplot corresponds
to a couple (explainer, dataset). Each curve corresponds to one target instance.

adherence and coverage for FS, because this model is a decision tree. Hence, the deci-
sion function is piece-wise constant and its gradient is zero almost every-where. When
σ is small enough, S-LIME recovers this gradient and returns an explanation with null
coefficients, which has little practical value. That said, a wider locality can still yield a
more informative explanation.

We also remark that, for complex models, the best value for σ may depend on the
target instance. This is corroborated by Figure 5 that shows the disaggregated results
for 3 instances on RESNET, a deep neural network. We can observe that the adherence
is maximal when σ is equal 10−4, 3 × 10−3, and 2 × 10−2 respectively. On the other
hand, the same values of σ are optimal for all examples on a simpler LR model.

Finally, we highlight that the coverage peaks when the adherence is maximal both at
the instance (Figure 5b) and dataset level (Figures 4(cdgh)). This shows the pertinence
of the R2 score as metric to select the right level of locality.

5.3 Fidelity Analysis

Tables 1 and 2 show the average scores obtained by S-LIME and LIME when σ is se-
lected to maximize the aggregated adherence (R2 score) in the test instances of the ex-
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Table 1: Best average recall and precision, or coverage (std. in parentheses) on different
datasets and interpretable black-box classifiers.
Data type Dataset Model S-LIME LIME

Rec. or Cov. Precision Rec. or Cov. Precision

Timeseries FordA LR on shapelets 0.87 (0.15) - (-) 0.73 (0.17) - (-)
Fast Shapelets 0.51 (0.30) - (-) 0.49 (0.27) - (-)

Starlight- LR on shapelets 0.81 (0.17) - (-) 0.75 (0.17) - (-)
Curves Fast Shapelets 0.68 (0.19) - (-) 0.45 (0.15) - (-)

Tabular data Diabetes Logistic Reg. 1.00 (0.00) 1.00 (0.00) 0.88 (0.12) 0.88 (0.12)
Dec. Tree 0.95 (0.13) 0.81 (0.20) 0.94 (0.14) 0.80 (0.20)

Compas Logistic Reg. 1.00 (0.00) 1.00 (0.00) 0.52 (0.21) 0.52 (0.21)
Dec. Tree 0.66 (0.33) 0.25 (0.00) 0.65 (0.33) 0.33 (0.00)

Table 2: Best averageR2 (std. in parentheses) on different datasets and black-box classi-
fiers. MLP stands for a neural network with one hidden layer composed of 100 neurons
and logistic sigmoid activation function. Column Int. indicates interpretable black-box
models (X). FS, DT and RF are put aside as they are piecewise constant models.

Data type Model Int. k S-LIME LIME k S-LIME LIME
Images MNIST Cifar10

Alexnet 10 0.80 (0.28) 0.58 (0.20) 10 0.84 (0.10) 0.55 (0.25)
VGG16 10 0.56 (0.43) 0.57 (0.21) 10 0.69 (0.13) 0.50 (0.27)

Timeseries FordA StarlightCurves

Learning Shapelets 6 0.84 (0.08) 0.57 (0.15) 6 0.92 (0.07) 0.70 (0.07)
RESNET 6 0.73 (0.20) 0.10 (1.05) 6 0.87 (0.15) 0.44 (0.15)
LR on Shapelets X 6 1.00 (0.01) 0.56 (0.13) 6 0.99 (0.02) 0.58 (0.12)

Fast Shapelets X 6 0.15 (0.18) 0.19 (0.14) 6 0.25 (0.13) 0.19 (0.16)

Tabular data Diabetes Compas

Logistic Regression X 4 1.00 (0.00) 0.99 (0.01) 11 1.00 (0.00) 0.42 (0.23)
MLP 4 0.97 (0.03) 0.72 (0.13) 6 0.79 (0.01) 0.31 (0.16)

Decision Tree X 3 0.46 (0.09) 0.46 (0.10) 3 0.34 (0.00) 0.36 (0.00)
Random Forest 4 0.62 (0.03) 0.58 (0.12) 6 0.30 (0.01) 0.30 (0.02)

perimental datasets. Table 1 shows recall, precision, and coverage for the interpretable
models, whereas Table 2 provides the R2 score for all models.

Firstly, we remark that S-LIME’s explanations are strictly more faithful than LIME’s
except for piecewise constant models (FS, DT, and RF). That said, this does not prevent
S-LIME from achieving higher adherence for such models on some datasets when we
look at a larger vicinity.

Secondly, the R2 score is a good proxy to predict the best neighborhood in terms of
recall, precision, or coverage. This is a strong result from an application point of view.
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Practitioners are mostly interested by the features that are actually used by the black-
box model. For cases where those actual features are unknown, the R2 score enables
the computation of faithful linear explanations that can identify the important features.

6 Related Work

Feature-attribution explanations. Methods such as DeepLIFT [18], Integrated Gradi-
ents (IG) [19], SHAP [12], or LIME [15] compute importance local attribution scores
for the features of a black-box ML model. Among those, SHAP and LIME are model-
agnostic and compute linear surrogates learned from artificial neighbors. Despite these
similarities, the semantics of their explanations are different as confirmed by existing
studies [1]. While LIME approximates – often coarsely – the instantaneous gradient of
the black box w.r.t. the input features [6], SHAP computes – or rather approximates –
the Shapley values [12], which quantify the feature contributions to the difference be-
tween the model’s answer on a baseline instance and the target. The baseline depends
on the use case, e.g., a single-color image (represented by the vector 0d̂ in the surrogate
space). This makes SHAP and LIME complementary methods rather than competitors.

LIME Extensions. An important body of literature has studied the impact of the differ-
ent components and parameters of LIME on the quality of the explanations. This has
led to multiple extensions of the original LIME algorithm. As opposed to this work,
some extensions [17, 22, 20] tackle the instability of LIME, i.e., the fact that two execu-
tions of the algorithm with the same input may not deliver the same explanation. This
instability originates from the randomness in the different steps of the approach, e.g.,
sampling in the surrogate space, non-deterministic conversion functions, etc. On those
grounds, the techniques to tackle instability are diverse. ALIME [17], for example, re-
sorts to a denoising auto-encoder to create a surrogate space that characterizes the data
manifold more accurately. DLIME [22], in contrast, applies hierarchical agglomerative
clustering on the training instances to identify the closest neighbors of the target and use
them to learn the surrogate. In another line of thought, the authors of OptiLIME [20]
study the relationship between the bandwidth σ, the adherence, and the instability of
LIME. Similar to our work, the authors highlight the importance of choosing the right
σ in a per-instance basis. Moreover, they show an inverse relationship between σ and
explanation instability. This observation constitutes the basis of a method to select the
bandwidth σ that yields the best trade-off between adherence and instability. We high-
light that all these approaches have been proposed only for tabular data, and that none
of them takes into account recall, precision, or coverage fidelity.

Other extensions of LIME have focused entirely on improving fidelity. ILIME [5]
proposes the use of influence functions in order to up-weight the neighbors that play a
higher role in the linear fit of the surrogate. QLIME-A [3] proposes to extend the local
surrogate to report quadratic relationships for cases where a linear surrogate is still inac-
curate. While quadratic functions do exhibit higher fit capabilities, their interpretability
in general settings is debatable.
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7 Conclusion

In this paper we have introduced S-LIME, an extension of LIME that reconciles local-
ity and fidelity for linear explanations. We argue that LIME can produce degenerated
explanations as locality – controlled through the bandwidth σ – increases. We solve
this paradox by means of a new neighbor generation process on a continuous surrogate
space. Our experiments on image, time series, and tabular data suggest that this strat-
egy can provide even more faithful linear explanations with gradient-compliant seman-
tics that are not affected by high locality. As a future work, we envision to investigate
the fidelity of S-LIME explanations with other generating distributions and conversion
functions, as well as to study the impact on the stability of the explanations.
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8. Guillemé, M., Masson, V., Rozé, L., Termier, A.: Agnostic Local Explanation for Time Series
Classification. In: ICTAI (2019)

9. Jia, Y., Frank, E., Pfahringer, B., Bifet, A., Lim, N.: Studying and Exploiting the Relationship
Between Model Accuracy and Explanation Quality. In: ECML/PKDD (2021)

10. Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images. Tech. rep., Cana-
dian Institute for Advanced Research (2009)

11. LeCun, Y., Cortes, C.: MNIST Handwritten Digit Database.
http://yann.lecun.com/exdb/mnist/ (2010)



S-LIME: Reconciling Locality and Fidelity in Linear Explanations 13

12. Lundberg, S.M., Lee, S.: A Unified Approach to Interpreting Model Predictions. In: NeurIPS
(2017)

13. Merrer, E.L., Trédan, G.: The Bouncer Problem: Challenges to Remote Explainability. CoRR
abs/1910.01432 (2019), http://arxiv.org/abs/1910.01432

14. Rakthanmanon, T., Keogh, E.: Fast Shapelets: A Scalable Algorithm for Discovering Time
Series Shapelets. In: SDM (2013)

15. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: Explaining the Predictions
of Any Classifier. In: KDD (2016)

16. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: High-
Precision Model-Agnostic Explanations. In: AAAI (2018),
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16982

17. Shankaranarayana, S.M., Runje, D.: ALIME: Autoencoder Based Approach for Local Inter-
pretability. CoRR abs/1909.02437 (2019), http://arxiv.org/abs/1909.02437

18. Shrikumar, A., Greenside, P., Kundaje, A.: Learning Important Fea-
tures Through Propagating Activation Differences. In: ICML (2017),
http://proceedings.mlr.press/v70/shrikumar17a.html

19. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic Attribution for Deep Networks. CoRR
abs/1703.01365 (2017)

20. Visani, G., Bagli, E., Chesani, F.: OptiLIME: Optimized LIME Explanations for
Diagnostic Computer Algorithms. In: AIMLAI@CIKM (2020), http://ceur-ws.org/Vol-
2699/paper03.pdf

21. Wang, Z., Yan, W., Oates, T.: Time Series Classification from Scratch with Deep Neural Net-
works: A Strong Baseline. CoRR abs/1611.06455 (2016), http://arxiv.org/abs/1611.06455

22. Zafar, M.R., Khan, N.M.: DLIME: A Deterministic Local Interpretable Model-Agnostic
Explanations Approach for Computer-Aided Diagnosis Systems. CoRR abs/1906.10263
(2019), http://arxiv.org/abs/1906.10263


