
HAL Id: hal-02492780
https://hal.inria.fr/hal-02492780v6

Submitted on 4 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Jumping Evaluation of Nested Regular Path Queries
Joachim Niehren, Sylvain Salvati, Rustam Azimov

To cite this version:
Joachim Niehren, Sylvain Salvati, Rustam Azimov. Jumping Evaluation of Nested Regular Path
Queries. 38th International Conference on Logic Programming (ICLP’2022), Jul 2022, Haifa, Israel.
�hal-02492780v6�

https://hal.inria.fr/hal-02492780v6
https://hal.archives-ouvertes.fr

To appear in EPTCS.

Jumping Evaluation of Nested Regular Path Queries

Joachim Niehren, Sylvain Salvati
Inria Lille, Université de Lille, France

Rustam Azimov
Saint Petersburg State University, Russia

Nested regular path queries are used for querying graph databases and RDF triple stores. We pro-
pose a new algorithm for evaluating nested regular path queries on a graph from a set of start nodes
in combined linear time. We show that this complexity upper bound can be reduced by making it de-
pendent on the size of the query’s top-down needed subgraph, a notion that we introduce. For many
queries in practice, the top-down needed subgraph is way smaller than the whole graph. Our algo-
rithm is based on a novel compilation schema from nested regular path queries to monadic datalog
queries. Its complexity upper bound follows from known properties of top-down datalog evaluation.
As an application, we show that our algorithm permits to reformulate in simple terms a variant of a
very efficient automata-based algorithm proposed by Maneth and Nguyen that evaluates navigational
path queries in datatrees based on indexes and jumping. Moreover, it overcomes some limitations
of Maneth and Nguyen’s: it is not bound to trees and applies to graphs; it is not limited to forward
navigational XPath but can treat any nested regular path query and it can be implemented efficiently
without any dedicated techniques, by using any efficient top-down datalog evaluator. We confirm the
efficiency of our algorithm experimentally based on an implementation with LogicBlox.

Keywords Graph databases, path queries, propositional dynamic logic, XPath, Datalog

1 Introduction

Regular path queries [8] are regular expressions for navigating in edge labeled graphs. They belong
to the core of various query languages for graph databases and RDF triple stores. Nested regular path
queries (NRPQs) [6] extend on regular expressions by adding filters with logical operators, that may
again contain regular path queries. NRPQs were first invented as the programs of propositional dynamic
logic (PDL) [4]. NRPQs are also part of nSPARQL for querying knowledge stores in the Semantic
Web [9]. The restriction of NRPQs to data trees constitutes the navigational core of regular XPATH. The
NRPQ edgea

∗/¬[edgeb
∗/edgec]?, for instance, selects all nodes of an edge-labeled graph, which can be

reached from a given set of start nodes over a sequence of a-labeled edges, under the condition expressed
by the filter ¬[edgeb

∗/edgec]: there must not exist any outgoing sequence of edges satisfying the regular
expression edgeb

∗/edgec.
The set of nodes that can be reached by an NRPQ P on a graph G with a set of start nodes S can be

computed in combined linear time, i.e. in linear time in the product of the inputs O(|P||G|). This com-
plexity upper bound is folklore in the context of database theory, XPATH, and nSPARQL, and was known
already for PDL, but was first shown for the richer alternation-free modal µ-calculus [3]. However, it
is also satisfied by many inefficient algorithms: only the relevant fraction of the graph database should
be visited for answering a database query. Any efficient query answer algorithm must avoid complete
traversals of large graphs whenever possible.

Which part of a graph is relevant for a answering a query may depend on the query answering
algorithm though. Therefore, we formalize a notion of needed subgraph coined as top-down needed
subgraph, as the subgraph that is traversed with a top-down evaluation of the query. We then search

2 Jumping Evaluation of Nested Regular Path Queries

Figure 1: The graph G0, the start set S0 = {0}, and the top-
down needed subgraph for P0 = edgea/[edgeb/edgec]? in red.

q0(x) :− q1(x),q2(x).
q1(x) :− start(y),edgea(y,x).
q2(x) :− edgeb(x,y),q3(y).
q3(y) :− edgec(y,z).

Figure 2: The Datalog program M0
for the nested regular path query P0
from Fig. 1.

for a query answering algorithm with combined linear complexity with respect to the top-down needed
subgraph, instead of the whole graph which we consider as too expensive.

For regular path queries (without filters) a canonical notion of the top-down needed subgraph seems
quite intuitive, since a regular expression can be interpreted in a top-down manner as a navigation plan
for traversing a graph. The top-down needed subgraph contains all the nodes and edges that are traversed
when executing this navigation plan on the graph, while starting with the given set of start nodes. This
notion of top-down needed nodes can then be lifted from to NRPQs, so that any filter of a NRPQ is tested
only for those nodes where it is required when executing the query in a top-down manner.

For evaluating regular path queries (without filters) with the above complexity requirement, it is
sufficient to execute it top-down navigation plan on the graph. We note that the presence of the Kleene
star makes memoization mandatory, otherwise the algorithm may loop infinitely. What becomes more
tedious is to find an evaluation algorithm for NRPQs that satisfies our complexity requirement. The
existing proposals in [9, 2, 5] achieve combined linear time complexity by pre-evaluating the filters
all over the graph in a bottom-up manner and then running an evaluation algorithm for regular path
queries. However, the bottom-up pre-computation of the filters over all the graph may visit nodes that
are not needed for the top-down evaluation of NRPQs, so these algorithms do not satisfy the envisaged
complexity bound.

As an example, we consider in Fig. 1 the graph G0 with edge labels {a,b,c}, the NRPQ P0 =
edgea/[edgeb/edgec]?, and the set of start nodes S0 = {0}. The query P0 started at S0 selects all those
nodes of G0 that are connected to the start node 0 by an a-edge, and have a path over a b-edge followed by
a c-edge. The top-down algorithm with pre-evaluation of filters for P0 will first compute the answer set
of the filter [edgeb/edgec] on G0 starting with S0, which is {1,4,5}. It will then compute the set of nodes
that are reached from the start node 0 over an a-edge which is {1,4,6}. The answer set is the intersection
which is {1,4}. This algorithm, however, will inspect some nodes and edges for the pre-evaluation of
the filters that are not top-down needed, namely the node 5 and the b-edge from 5 to 2. So the difficulty
is to avoid the bottom-up pre-evaluation of filters.

We will show that NRPQs can be evaluated with the expected complexity by enhancing the naive top-
down evaluator for NRPQs with memoization – instead of precomputing the filters. We obtain the right
kind of memoization by compiling the path query into a monadic datalog program, and then evaluating
this datalog program in a top-down manner with memoization. We note that a monadic datalog program
may still use extensional predicates of higher arities, like the predicates edgea, edgeb, and edgec in our
example. While the existence of compilers from NRPQs to monadic datalog is less surprising – even
though none was published earlier to the best of our knowledge – the main difficulty is to find a datalog
program that captures the top-down neededness with respect to the NRPQ. In the case of P0 we obtain
the datalog program in Fig. 2. We suppose that the table of the monadic extensional predicate start
contains the set of start nodes in S0. We note that paths in filters such as [edgeb/edgec] are compiled

J. Niehren, S. Salvati, R. Azimov 3

quite differently to paths outside filters. The reason is that paths outside filter have to return the end node
that is reached, while paths inside filters have to jump back from the end node to the start node. The
binary relation between end nodes and start nodes, however, cannot be stored in any predicate of the
datalog program, since this would require a binary intensional predicate that are ruled out by monadic
datalog. What we exploit instead is that a monadic datalog program can perform multiple tests on the
same node, as with the rule q0(x) :− q1(x),q2(x). In our example, q1(x) will bind x to some node reached
over the path edgea from the set of start nodes S0, while q2(x) will test the filter [edgeb/edgec] there.

Our first contribution is an algorithm that answers NRPQs in the time O(|tdnG,S(P)||P|) where
|tdnG,S(P)| is the size of the top-down needed subgraph of G for query P. For this, we present a
novel linear time compilation scheme mapping path queries to datalog queries. We restrict ourselves
to negation-free NRPQs in order to avoid the usage of stratified negation for the sake of simplicity. We
prove that if the compiler transforms a query P and a start set S into a datalog query M, then the top-down
needed subgraph tdnG,S(P) is the part of the graph’s database that is visited by top-down evaluation of the
datalog query M on the database. Furthermore, the datalog queries produced are monadic and restricted
in such a way, that their top-down evaluation can be done in combined linear time depending on the size
of the top-down visited subdatabase. It follows that the answer set of an NRPQ P on a graph G with start
set S can indeed be computed in time O(|tdnG,S(P)||P|).

Our algorithm can be extended to a jumping algorithm for answering NRPQs on graphs with in-
dexes. The indexes are binary relations defined by other NRPQs that allow the algorithm to jump in the
graph. For instance, when given an index for the NRPQ I = edge∗/a? on the input graph, the evaluation
algorithm can always jump to all a-labeled nodes accessible from the current node, without visiting the
intermediates. We consider that the indexes are given with the input, since they are usually pre-computed
elsewhere. Therefore, the indexes can simply be integrated into the graph as new edges that are labeled
by the index’s name, which is I in our example. Furthermore, the NRPQ is then rewritten by substituting
all occurrences of I as a subquery in the NRPQ by edgeI , so that we can apply the previous machinery.
An efficient implementation of our algorithm can be based on any efficient top-down datalog evaluator,
since it is sufficient to evaluate the monadic datalog program produced by our compiler.

Our graph jumping algorithm permits to reformulate without specialized techniques a very efficient
automata-based algorithm proposed by [7] that evaluates NRPQs on datatrees with indexes based on
jumping. More precisely, their algorithm covers forward navigational XPATH queries on XML docu-
ments. It is based on alternating tree automata with selection states (which can be seen as binary datalog
programs while ours are monadic). Our generic approach overcomes the limitations of their algorithm: it
is not bound to trees but applies to graphs; it is not limited to forward navigational XPath but can treat any
NRPQs also with backward steps. it can be implemented efficiently without any dedicated techniques,
by using any efficient datalog evaluator supporting top-down evaluation such as LogicBlox [1].
Outline. In Section 2, we recall the definition of NRPQs. In Section 3, we formally define top-down
needed subgraphs. In Section 4, we recall preliminaries on datalog queries, while discussing the com-
plexity of top-down evaluation in Section 5. In Section 6, we give our compiler from NRPQs to datalog
queries with its complexity theorem. Proofs can be found in the appendix. Section 7 presents the jumping
evaluation algorithm for NRPQs on graphs with indexes, and Section 8 preliminary experimental results.

2 Nested Regular Path Queries

Regular path queries on labeled graphs [6] can be extended to NRPQs by adding filters with logical
operators [8]. CoreXPath [5] is a sublanguage of NRPQs with limited recursion where the interpretation

4 Jumping Evaluation of Nested Regular Path Queries

filters F ∈FΣ ::= [P] | node | nodea | F ∧F ′ | F ∨F ′ | ¬F
paths P ∈PΣ ::= F? | edgea | edge−1

a | P/P′ | P∪P′ | P+ | goto(F)

Figure 3: The syntax of NRPQs with labels a ∈ Σ.

J[P]KG = {v | ∃v′. (v,v′) ∈ JPKG}
JnodeKG =V
JnodeaKG =Va

J¬FKG =V \ JFKG

JF ∧F ′KG = JFKG∩ JF ′KG

JF ∨F ′KG = JFKG∪ JF ′KG

JF?KG = {(v,v) | v ∈ JFKG}
JedgeaKG = Ea

Jedge−1
a KG = E−1

a
JP/P′KG = JPKG ◦ JP′KG

JP+KG = JPK+G
JP∪P′KG = JPKG∪ JP′KG

Jgoto(F)KG = {(v,v′) | v′ ∈ JFKG}

Figure 4: Semantics of NRPQs on a Σ-labeled digraph G = (V,(Va)a∈Σ,(Ea)a∈Σ).

is restricted to an unranked tree. NRPQs were known even much earlier as the propositional dynamic
logic (PDL) of [4].

We start from a finite set of labels Σ. A (finite) Σ-labeled digraph is a tuple G = (V,(Va)a∈Σ, (Ea)a∈Σ)
where V is a finite set of nodes, Va ⊆V a finite subset of a-labeled nodes, and Ea ⊆V ×V a finite set of
a-labeled edges where a ∈ Σ. Note that nodes may have multiple labels or none, while each edge has a
unique label. Between two nodes there may be multiple edges with different labels though. An example
for a labeled graph G0 with labels in Σ = {a,b,c} was given graphically in Fig. 1. The set of nodes of
the graph is V = {0, . . . ,7}. Here, the nodes are not labeled, so Va =Vb =Vc = /0. Each of the edge has a
unique label. There are 8 a-labeled edges in Ea, 3 b-labeled edges in Eb and one c-labeled edge in Ec.

The syntax of NRPQs with labels in Σ is presented in Fig. 3. It consists of a set of filters FΣ that
select a set of graph nodes, and a set of paths PΣ that select a set of pairs of graph nodes. The filter node
selects all the nodes, while the filter nodea selects all a-labeled nodes. The set of nodes that are both
a-labeled and b-labeled but not c-labeled is queried by filter nodea∧nodeb∧¬nodec. Path edgea selects
all a-labeled edges and path edge =df ∪a∈Σedgea the set of all edges. The path node? selects the identify
on nodes {(v,v) | v∈V}. Path composition P/P′, path union P∪P′ are supported as well as repeated path
composition P+. The Kleene star on paths can be defined by P∗ =df P+∪node?. Backwards edges can
be queried by edge−1

a , so that general backwards path P−1 can be defined, where (P1/P2)
−1 = P−1

2 /P−1
1

and F?−1 = F?. Finally, the path goto(F) permits to jump to any node of the graph satisfying filter F .
In particular, if there is a label root ∈ Σ that distinguishes a set of roots, than path goto(noderoot)/P first
jumps to some root node before executing path P.

A little more complex example for an NRPQ with signature Σ = {a,b,c} is the path query P2 =
nodea?/(edge+/[edgeb/edgec]?)

∗. The evaluation of P2 on a given graph from a start node tests whether
the start node is a-labeled, and if so, it navigates from there repeatedly, over a sequence of edges to some
node for which there exists an outgoing path over edges with labels b and then c. The set of all nodes
reached this way is selected.

The semantics of paths P on labeled digraphs G is the binary relation JPKG ⊆V ×V defined in Fig. 4
in mutual recursivion with the semantics of filters JFKG ⊆ V . Despite its binary semantics, we will use
paths for defining sets of nodes by fixing a start set S for the navigation. So let G be a labeled graph and
S a subset of the nodes of G. For any P ∈PΣ, the set JPKG(S) = {v | ∃v′ ∈ S. (v′,v) ∈ JPKG} contains all
nodes that can be reached when starting at some node of the start set S and navigating over the path P.
Similarly, the set JFKG(S) = JFKG∩S contains all nodes from S that satisfy the filter F .

J. Niehren, S. Salvati, R. Azimov 5

tdnG,S(node) = {node(v) | v ∈ S}
tdnG,S(nodea) = {node(v) | v ∈ S}
∪ {nodea(v) | v ∈Va∩S}

tdnG,S(F?) = tdnG,S(F)
tdnG,S(edgea) = {node(v) | v ∈ S}
∪ {edgea(v,v

′),node(v′) | v ∈ S,(v,v′) ∈ Ea}
tdnG,S(edge−1

a) = {node(v) | v ∈ S}
∪ {edgea(v

′,v),node(v) | v′ ∈ S,(v,v′) ∈ Ea}

tdnG,S([P]) = tdnG,S(P)
tdnG,S(F ∧F ′) = tdnG,S(F)∪ tdnG,JFKG(S)(F

′)

tdnG,S(F ∨F ′) = tdnG,S(F)∪ tdnG,S(F ′)
tdnG,S(P/P′) = tdnG,S(P)∪ tdnG,JPKG(S)(P

′)

tdnG,S(P+) = tdnG,JP+KG(S)(P)
tdnG,S(P∪P′) = tdnG,S(P)∪ tdnG,S(P′)
tdnG,S(goto(F)) = tdnG(F) (see Fig. 6)

Figure 5: Facts of top-down needed subgraphs for negation-free paths and filters.

tdnG(node) = {node(v) | v ∈V}
tdnG(nodea) = {nodea(v) | v ∈Va}
tdnG(F?) = tdnG(F)
tdnG(edgea) = {edgea(v,v

′) | (v,v′) ∈ Ea}
tdnG(edge−1

a) = {edgea(v
′,v) | (v,v′) ∈ Ea}

tdnG([P]) = tdnG(P)
tdnG(F ∧F ′) = tdnG(F)∪ tdnG,JFKG(F

′)

tdnG(F ∨F ′) = tdnG(F)∪ tdnG(F ′)
tdnG(P/P′) = tdnG(P)∪ tdnG,JPKG(V)(P′)
tdnG(P+) = tdnG,JP+KG(V)(P)
tdnG(P∪P′) = tdnG(P)∪ tdnG(P′)
tdnG(goto(F)) = tdnG(F)

Figure 6: Top-down needed subgraphs without start sets as neeeded for goto expressions.

3 Top-Down Needed Subgraphs

We are interested in the top-down evaluation of path queries, starting with a set of start nodes, and
navigating along the path to other sets of nodes. The top-down needed subgraph of a path query will be
the subgraph visited by such a traversal.

For the formal definition, we consider labeled graphs as extensional databases, i.e., as the sets of
relational facts constructed from a relational signature and a set of constants. More concretely, we map
any Σ-labeled graph G = (V,(Va)a∈Σ,(Ea)a∈Σ) to the following set of database facts:

db(G) = {node(v) | v ∈V}∪{nodea(v) | v ∈Va, a ∈ Σ}
∪ {edgea(v,v

′) | (v,v′) ∈ Ea, a ∈ Σ}.

The facts are build from the monadic predicates node and nodea and the binary predicates edgea
for all a ∈ Σ, and the graph nodes v ∈ V as constants. Conversely, consider a set of facts D with the
following properties: 1. if nodea(v) ∈ D then node(v) ∈ D and 2. if edgea(v,v

′) ∈ D then node(v) ∈ D
and node(v′) ∈ D. For any such set D there exists a unique graph G such that db(G) = D. We can
therefore identify any graph G with the sets of facts D = db(G).

For any Σ-labeled digraph G and set of start nodes S we define in Fig. 5 the set of facts of top-down
needed subgraph tdnG,S(P) and tdnG,S(F) for negation-free paths P and filters F in mutual recursion. In
the case of goto expressions, Fig. 6 defines tdnG,S(goto(F)) = tdnG(F) for restarting the computation
with all nodes satisfying F . The natural algorithm for computing the answer set of filter nodea at start
set S will filter for all nodes v ∈ S such that v ∈ Va. Therefore all nodes in S need to be visited, as
well as the a-label of all nodes in Va ∩ S. The extensional database of the top-down needed subgraph
tdnG,S(a) therefore contains the facts in {node(v) | v ∈ S} and {nodea(v) | v ∈ Va ∩ S}. The definition

6 Jumping Evaluation of Nested Regular Path Queries

of tdnG,S(F ∧F ′) is sequential from the left to the right. When the filter query F is failing for a node v
then there is no need to check the filter query F ′ so as to know that the filter query F ∧F ′ is not verified
by v. In contrast, the definition of tdnG,S(F ∨F ′) is done a parallel manner, so that both subfilters need
to be evaluated from the start nodes. The sequential alternative would lead to smaller top-down needed
subgraphs, which might seem advantageous:

tdnseq
G,S(F ∨F ′,S) = tdnG,S(F)∪ tdnG,J¬FKG(S)(F

′).

However, obtaining an evaluator with this sequential behavior by compilation to datalog would require
us to use stratified negation, that we prefer to avoid for the sake of presentation. For the same reason, we
restrict the definition of top-down needed subgraphs to negation-free path queries.

The definition of tdnG,S(P+) is made of every attempt to construct a path of P starting from the nodes
of S or the nodes that can be reached from S with a path of P+. In the case of goto expressions, we have
defined tdnG,S(goto(F)) = tdnG(F) for restarting the computation with all nodes satisfying F . We could
set tdnG(F) to tdnG,V (F), but this would not be optimal since all nodes of V would be top-down needed
even for most simple filter F = nodea. A better definition where only the nodes of Va are top-down
needed is given in Fig. 6.

Example 1. Consider the query P0 = edgea[edgeb/edgec] on the graph G0 with signatue Σ0 = {a,b,c}
in Fig. 1 with the start set S0 = {0}. The set of top-down needed facts tdnG0,S0(P0) is then {edgea(0,1),
edgea(0,4), edgea(0,6), edgeb(1,2), edgeb(4,2), edgec(2,3)}. The top-down needed subgraph which is
annotated in red in Fig. 1 is thus graph(tdnG0,{0}(P0)) = ({0, . . . ,6}, (V`)`∈Σ0}, (E`)`∈Σ0) where Va =
Vb =Vc = /0, Ea = {(0,1), (0,4), (0,6)}, Eb = {(1,2), (4,2)}, and Ec = {(2,3)}.

4 Datalog Queries

We recall preliminaries on the syntax and semantics of datalog programs without negation and how to
use them to define datalog queries on extensional databases.

The syntax of datalog is parametrized by a finite set of predicates p,q,r ∈P and a disjoint finite
set of constants a,b,c ∈ C . The set of predicates is partitionned into a subset of extensional predicates
Pextand a disjoint subset of intensional predicates Pint, so P = Pext ∪Pint. Constants will serve as
database elements and extensional predicates for naming database relations. An (extensional) database
is a subsets of ground literals of the form p(a1, . . . ,an) where p∈Pext has arity n≥ 0 and a1, . . . ,an ∈C .

We fix a set of variables V = {x,y,z, . . .} distinct from the constants and predicates. A term u,s, t ∈
TC = V]C is either a variable or a constant. The set of (positive) literals L is a subset of terms of
the form q(u1, . . . ,un) where q ∈P has arity n and u1, . . . ,un ∈ TC . A vector of terms is denoted by
~t ∈ T ∗

C . The set of all literals with extensional predicates is denoted by Lext and those with intensional
predicates by Lint. A goal is a vector of literals ~̀ ∈L ∗ that is to be understood as a conjunction. The
set of free variables fv(~t), fv(~̀) ⊆ V are defined as usual. Similarly for the sets of occuring constants
cst(~t),cst(~̀) ⊆ C . A clause is a pair of the form q(~t) :− ~̀. where q(~t) ∈Lint and ~̀ ∈L ∗. We call q(~t)
the head and ~̀ the body of the clause. The clause q(~t) :− ~̀. is safe if fv(~t) ⊆ fv(~̀). We only work with
safe clauses throughout this paper.

A (safe) datalog program is a finite subset M of safe clauses. A (safe) datalog query has the form
?−~̀. M, where ~̀ ∈L ∗ is a datalog goal and M a safe datalog program M. We now turn our attention
to the semantics of datalog queries. Given a datalog query ?−~̀. M and an extensional database D, we
need to define the set of substitutions that answer the query. A substitution is a finite partial function σ

J. Niehren, S. Salvati, R. Azimov 7

JεKM,D = {[]}

J`KM,D =

{
{Πfv(`)(σ ./ σ ′) | σ = unif (`,`′), `′ :− ~̀. in ren(M), σ ′ ∈ Jσ(~̀)KM,D} if ` ∈Lint

{Πfv(`)(σ) | σ = unif (`,`′), `′ ∈ D} if ` ∈Lext

J`1 . . . `nKM,D = {σ ′ ./ σ | σ ∈ J`1KM,D, σ ′ ∈ Jσ(`2 . . . `n)KM,D} where n≥ 2

Figure 7: Least fixed-point semantics of a datalog query ?−~̀. M on a database D for `,`1, . . . `n ∈L .

from V to TC . We write [] for the empty substitution. Any substitution can be lifted to a total function
on all variables by defining σ(x) = x for all x 6∈ dom(σ). We lift substitutions further to total functions
σ : T ∗

C →T ∗
C such that for all n≥ 0, t1, . . . , tn ∈TC and a ∈ C :

σ(t1 . . . tn) = σ(t1) . . .σ(tn) and σ(a) = a

Similarly, substitutions are lifted to functions σ : L ∗→L ∗ such that for all~t ∈T ∗
C and `1, . . ., `n ∈L :

σ(q(~t)) = q(σ(~t)), and σ(`1 . . . `n) = σ(`1) . . .σ(`n)

The renaming closure of a program is the set of all clauses that can be obtained from the clauses of
the program by renaming variables bijectively:

ren(M) = {σ(`) :− σ(~̀) | ` :− ~̀. in M,σ is one-to-one substitution, ran(σ)⊆ V }

We define joins and projections on substitutions as for the relational algebra: for any two substitutions σ

and σ ′ and any finite subset of variables V ⊆ V :

σ ./ σ ′ =

{
σ ∪σ ′ if σ ∪σ ′ is functional
undefined otherwise

ΠV (σ) = σ|V

For any two literals `,`′ we define unif (`,`′) as the most general unifier σ such that σ(`) = σ(`′) if
it exists, and leave it undefined otherwise.

We define the semantics J~̀KM,D of a datalog query ?−~̀. M on an extensional database D as the least
fixpoint that satisfies the equations in Fig. 7. Notice that whenever we use the operation σ ./ σ ′ then we
have dom(σ)∩dom(σ ′) = /0, so that σ ./ σ ′ = σ ∪σ ′ is a well-defined substitution. Each query answer
σ ∈ J~̀KM,D has domain fv(~̀) and always maps to constants since we work with safe datalog programs,
so σ : fv(~̀)→ C . The semantics that we have given mimics the top-down datalog evaluation, which
starts with the goal in the query and generates subgoals by unfolding the clauses of the datalog program,
while instantiating the variables, until it reaches some ground facts from the extensional database. In
general, this process may enter into infinite loops if not controlled by memoization. The whole top-down
evaluation can always be represented as a join tree as we illustrate by example in Fig. 8. In the case of
infinite loops, the join tree is infinite.

5 Complexity of Top-Down Evaluation of Datalog Queries

Known results on the complexity of top-down datalog evaluation give us the formal tools to prove for
particular datalog queries, that the complexity of the top-down evaluation is in combined linear time but
with respect to the top-down visited sub-database, rather than with respect to the full database.

8 Jumping Evaluation of Nested Regular Path Queries

Figure 8: Top-down evaluation of Jq0(x)KM0,db(G0)∪{start(0)} = {[x/1], [x/4]} where M0 is the datalog
program from Fig. 2 for P0 = edgea[edgeb/edgec], and G0 the graph from Fig. 1.

tdvM,D(ε) = /0

tdvM,D(`) =

{
{node(a) | a ∈ cst(`)}∪

⋃
{`′ | unif (`,`′) defined, `′ in D} if ` ∈Lext

{node(a) | a ∈ cst(`)}∪
⋃
{tdvM,D(σ(~̀)) | σ = unif (`,`′), `′ :− ~̀. in ren(M)} if ` ∈Lint

tdvM,D(`1 . . . `n) = tdvM,D(`1)∪
⋃
{tdvM,D(σ(`2 . . . `n)) | σ ∈ J`1KM,D}

Figure 9: The top-down visited sub-database tdvM,D(~̀) where `,`1,. . . ,`n ∈L and n≥ 2.

For any datalog query ?−~̀. M and extensional database D we next define the part of D that is visited
by the top-down evaluation of the datalog query. For this we assume that the set of extensional predicates
of D contains a monadic predicate node∈Pext such that nodeD =C . We define the top-down visited sub-
database tdvM,D(~̀) as the extensional database over Pext – following the semantics of datalog queries –
as the least fixed point of equations in Fig. 9.
Definition 1. We call a datalog goal ~̀ simply combined linear (SCL) if any proper prefix of ~̀ is SCL
and fv(~̀) is either guarded by a single extensional literal of ~̀ or contains no more than one variable. We
call a datalog query ?−~̀. M SCL if the datalog goal ~̀ is SCL and for each of the clauses ` :− ~̀. in the
datalog program M, the datalog goal ~̀̀ is SCL.

For example, let p, q ∈Pint be monadic and r ∈Pext be binary. The goal p(x),r(x,y), q(y) is
then SCL, since its prefix p(x) contains no more than one variable, and both of its variables x and y are
guarded by the extensional literal r(x,y). The goal p(x),r(x,x),q(y) on the contrary is not SCL, as it
contains two variables of which y is not guarded by any extensional literal. The goal p(x),q(x) is SCL
since it contains no more than a single free variable.

J. Niehren, S. Salvati, R. Azimov 9

Given an extensional database D, any SCL goal ~̀ has a number of ground instances that is linear
in the size of D. Even better the number of ground instances inspected by top-down evaluation of the
datalog query ?−~̀. M is linear in the size of the top-down visited database tdvM,D(~̀). In the case where
fv(~̀) contains at most one variable, this variable must be instantiated by some node of the top-down
visited sub-database. Otherwise, the set of free variables fv(~̀) is guarded by a single extensional literal
of ~̀, say p(~t) ∈Lext. In this case, any ground instance of ~̀ visited by the top-down evaluation of M is
determined by unif (p(~t), p(~v)) for some fact p(~v) ∈ tdvM,D(~̀).
Theorem 2. The answer set J~̀KM,D of a safe SCL query ?−~̀. M on an extensional database D can be
computed in time O(|M||tdvM,D(~̀)|).

For proof we can show for any safe SCL datalog queries, that its top-down evaluation with memoiza-
tion can be done in combined linear time with respect to the size of the top-down visited sub-database.
For this, we can rely on the top-down evaluator in Figure 1 of [11]. The needed arguments on safe SCL
datalog programs were given above. We also note that the magic set transformation on datalog programs
without negation can be used to reduce top-down evaluation with memoization to semi-naive bottom-up
evaluation. As stated by Theorem 3 of Ullman [12], the bottom-up evaluator obtained is at least as time
efficient as the top-down evaluator. The magic set transformation, however, may need exponential space.
Tekle and Liu [11] show that this problem can be solved by perfoming it on demand. They also proposed
an on demand magic set transformation for stratified datalog programs [10].

6 Compiler to SCL Datalog Queries

We now contribute the compiler from negation-free path queries P and start set S to SCL datalog queries
?−~̀. M, such that for any graph G with nodes subsuming S, the extensional database of the top-down
needed subgraph tdnG,S(P) is equal to the top-down visited sub-database tdvM,db(G)(~̀). The top-down
evaluation of the datalog query ?−~̀. M on the graph’s database db(G) thus yields the expected upper
complexity bound for the evaluation of path queries by Theorem 2.

For any set of start nodes S and monadic predicate i ∈Pint, we define a datalog program Starti(S) =
{i(v) :− . | v ∈ S}. The compilation scheme for path queries follows the structure of paths and filters
by mutual recursion. It is given by the datalog programs Acci, f (P) in Fig. 10, Filtc(F) in Fig. 11 and
Exc,r(P) in Fig. 12. Path queries outside filters need to compute all accessible nodes by Acci, f (P), while
path queries within filters need to check the existence of accessible nodes by Exc,r(P). The compiler in-
troduces fresh monadic predicates for all subexpressions: initial predicates i, i′, i′′ ∈Pint, final predicates
f , f ′, f ′′ ∈Pint final, checks. c,c′,c′′ ∈Pint, and continuations r,r′,r′′ ∈Pint.

Given a graph G and with a start set S ⊆ V of graph nodes, the answer set of the datalog query
?− f (x). Acci, f (P)∪ Starti(S) on the extensional database db(G) is {[x/v] | v ∈ JPKG(S)}, assigning the
free variable x to some node v reachable from S over P in G. The initial predicate i captures the set of start
nodes, and the final predicate f the answer set of the path query P started from there. The fresh monadic
predicates make the datalog programs for the subexpressions able to communicate. For instance, we
have Acci, f (P′/P′′) = Acci, f ′(P′)∪Acc f ′, f (P′′). Here the final predicate f ′ ∈Pint represents the answer
set of path P′ started at node set i, but also the start set for the path P′′. This is since the start nodes of P′′

in the query P′/P′′ are the nodes that are reached with the query P′. For the recursive path queries P+ we
have Acci, f (P+) = Acci, f (P)∪{i(x) :− f (x).}. Here the rule i(x) :− f (x). represents the fact that once a
node is reached by the query P+ it becomes a possible start node for the same query.

We next consider the datalog programs Filtc(F) defined in Fig. 11. For any graph G the answer set
of the datalog query ?−c(x). Filtc(F) on the extensional database db(G) is {[x/v] | v ∈ JFKG}, so that

10 Jumping Evaluation of Nested Regular Path Queries

Acci, f (edgea) = { f (x) :− i(y),edgea(y,x).}
Acci, f (edge−1

a) = { f (x) :− i(y),edgea(x,y).}
Acci, f (P′/P′′) = Acci, f ′(P′)∪Acc f ′, f (P′′)
Acci, f (P+) = Acci, f (P)∪{i(x) :− f (x).}

Acci, f (P′∪P′′) = Acci, f (P′)∪Acci, f (P′′)
Acci, f (goto(F ′)) = Filt f ′(F ′) ∪

{ f (x) :− j(), f ′(x). j() :− i(x).}
Acci, f (F ′?) = Filt f ′(F ′)∪{ f (x) :− i(x), f ′(x).}

Figure 10: The datalog program Acci, f (P) for path P and monadic predicates i, f ∈Pint.

Filtc(a) = {c(x) :− nodea(x).}
Filtc(node) = {c(x) :− node(x).}
Filtc(F ′∨F ′′) = Filtc

′
(F ′)∪Filtc

′′
(F ′′) ∪

{c(x) :− c′(x). c(x) :− c′′(x).}

Filtc(F ′∧F ′′) = Filtc
′
(F ′)∪Filtc

′′
(F ′′) ∪

{c(x) :− c′(x),c′′(x).}
Filtc([P]) = Exc,r(P)∪{r(x) :− node(x).}

Figure 11: The datalog program Filtc(F) for filter F and monadic predicate c ∈Pint.

Exc,r(edgea) = {c(x) :− edgea(x,y),r(y).}
Exc,r(edge−1

a) = {c(x) :− edgea(y,x),r(y).}
Exc,r(P′/P′′) = Exc, f (P′)∪Ex f ,r(P′′)
Exc,r(P+) = Exc,r(P)∪{r(x) :− c(x).}

Exc,r(P′∪P′′) = Exc,r(P′)∪Exc,r(P′′)
Exc,r(goto(F ′)) = Filtc

′
(F ′) ∪

{c(x) :− j(). j() :− c′(y),r(y).}
Exc,r(F ′?) = Filtc

′
(F ′)∪{c(x) :− c′(x),r(x).}

Figure 12: The datalog program Exc,r(P) for path P with monadic predicates c,r ∈Pint.

the free variables x may be bound to any node seleced by the filter. Hence, for any start set S, the answer
set of ?−i(x),c(x). Filtc(F)∪ Starti(S) is {[x/v] | v ∈ JFKG(S)}. The filter for all nodes is compiled to
Filtc(node) = {c(x) :− node(x)}. Thereby, the check c is called for all nodes of the graph. Note that
node is an extensional predicate, so this clause is safe. A conjunction of filters Filtc(F ′∧F ′′) is compiled
by adding the clause c(x) :− c′(x),c′′(x) to the datalog programs Filtc

′
(F ′) and Filtc

′′
(F ′′). The added

clause checks sequentially, whether a node x is filtered by F ′ and if so whether it is also filtered by F ′′. A
disjunction of filters Filtc(F ′∨F ′′) is compiled by adding the two clause c(x) :− c′(x). and c(x) :− c′′(x).
to the datalog programs Filtc

′
(F ′) and Filtc

′′
(F ′′). The two added clauses check in parallel whether a

node x is filtered by F ′ or whether x is filtered by F ′′.
In Fig. 12 we define the datalog programs Exc,r(P) for evaluating paths P existentially as needed

when paths are used in filters, that is Filtc([P]) = Exc,r(P)∪{r(x) :− node(x).}. The check predicate
c denotes the set of source nodes, from which some target node can be reached over P, while r is the
continuation to which the target node must belong. Given a graph G and a start set S, the answer set of
the datalog query ?−c(x). Exc,r(P)∪{r(x) :− node(x).} on the extensional database db(G) is {[c/v] |
(v,v′) ∈ JPKG}. The continuation predicate r is required to allow us to compile path concatenations in
filters, i.e., in Exc,r(P′/P′′) = Exc, f (P′)∪Ex f ,r(P′′). Note that the interplay of the predicate c and r is
similar to the one between i and f in Acci, f (P).

Lemma 3. For any path P, filter F, graph G, start set S, and monadic predicates i, f ,c,r ∈Pint, the
programs Starti(S), Acci, f (P), Filtc(F), Exc,r(P) are safe and SLC.

The function reachM,r(~̀) defined in Fig. 13 returns the set of all nodes v, such that r(v) is queried in
the proccess of the top-down evaluation of the datalog query ?−~̀. M. Now, we provide the Propositions
4 and 5 for dividing the correctness proof into two parts. First — about subpaths and subfilters of some
filter. Concommittantly with Theorem 2 they will imply the main efficiency Theorem 6.

J. Niehren, S. Salvati, R. Azimov 11

reachM,r(ε) = /0
reachM,r(r(v),~̀1) = {v}∪ reachM,r(σ(~̀2,~̀1)) | σ = unif (r(v), `′), `′ :− ~̀2. in ren(M)}
reachM,r(`,~̀1) = reachM,r(σ(~̀2,~̀1)) | σ = unif (`,`′), `′ :− ~̀2. in ren(M)} if ` 6= r(v)

Figure 13: The reachM,r function for the datalog query ?−~̀. M.

Proposition 4. For any filter query F ∈FΣ, path query P ∈PΣ, label a ∈ Σ, labeled graph G, subset
S⊆V of nodes of G, distinct monadic predicates i,c,r ∈Pint and x ∈ V .

1. if M = Filtc(F) ∪ Starti(S) and
~̀= i(x),c(x) then:

• J~̀KM,db(G) = {[x/v] | v ∈
JFKG(S)}

• tdvM,db(G)(~̀) = tdnG,S(F)

2. if M = Exc,r(P)∪ Starti(S)∪{r(x) :− node(x).} and ~̀ =
i(x),c(x) then:

• J~̀KM,db(G) = {[x/v] | v ∈ S, JPKG({v}) 6= /0}
• tdvM,db(G)(~̀) = tdnG,S(P)

• reachedM(~̀) = JPKG(S)
Proposition 5. For any path query P∈PΣ, labeled graph G, subset S of nodes of G, distinct intensional
predicates i, f ∈Pint and x ∈ V , if M = Acci, f (P)∪Starti(S) then:

• J f (x)KM,db(G) = {[x/v] | v ∈ JPKG(S)} • tdvM,db(G)(f (x)) = tdnG,S(P)

Theorem 6. For any graph G with subset of nodes S and any path query P ∈PΣ the answer set JPKG(S)
can be computed in time O(|P||tdnG,S(P)|).

7 Jumping in Graphs

Preprocessing is mandatory for sharing efforts when evaluating multiple queries on the same large graph.
Most typically, one can pre-compute indexes that give efficient access to some particular relations of the
graph. Here we consider indexes, which are binary relations defined by NRPQs themselves.

For instance, we might want to jump from a node of the graph to the next a-labeled node in some
fixed total order. In this case, one would like to have a jumping algorithm that visits only the top-down
needed subgraph, but taken with respect to the graph, that is enriched with extra edges labeled by the
names of the indexes.

Let us next consider a little more complex example. For this we suppose that we have an index for
the NRPQ acca = edge∗/a?. We can then extend the signature Σ with a new label acca, the graph G
with acca-labeled edges for all pairs in JaccaKG, and rewrite the target path query by substituting all its
subqueries acca by edgeacca

. This has the advantage that fewer nodes are top-down needed after the
rewriting on the enriched graph. For instance, a top-down evaluator for the path query acca without
jumping needed to inspect all nodes of the graph accessible from S, since all of them needed to be tested
for whether they satisfied the filter query a. After the rewriting to edgeacca

, a top-down algorithm can
jump directly from the start nodes in S to the accessible a-labeled nodes by using the index, so only
accessible a-labeled nodes will be visited.

The general jumping algorithm starts with a set of indexes for NRPQs say for P1, . . . ,Pn. For answer-
ing a query P on a graph G with these indexes the jumping algorithm enriches the signature Σ by new
labels P1, . . . ,Pn, the original graph G with new labeled edges EPj = JPjKG where 1 ≤ j ≤ n, and then
substitutes in the target query P all occurrences of the subqueries Pj by edgePj

. The order of the substi-
tution can be chosen arbitrarily, depending on the intended jumping strategy. In this way, the top-down
needed subgraph of the enriched graph for the rewritten query is intuitively exactly the subgraph of the
original graph that a top-down evaluation algorithm with jumping needs to visit.

12 Jumping Evaluation of Nested Regular Path Queries

This jumping algorithm can be used to reformulate in simple terms a variant of the efficient automata-
based algorithm from [7] that evaluates navigational path queries. More precisely, their algorithm covers
navigational forward XPATH queries on XML documents. It is based on alternating tree automata with
selection states, which can be seen a binary datalog programs, while ours are monadic. XML documents
are seen as labeled graphs, with two edge labels firstchild and nextsibling. Their algorithm can be based
on the indexes for jumping to the a-labeled children, that is edge/a?, and for jumping to the top-most
a-labeled descendants, i.e., topa = (edge/¬a?)∗/edge/a?. An XPATH query such as descendant::a
can the be rewritten as the NRPQ (topa)

+. The evaluation of the query (topa)
+ can then take advantage

of the index edgetopa
. The main difference between both approaches is that ours doesn’t try to produce

the answer set in document order, while theirs does so. Therefore, binary indexes are sufficient for our
purpose, while they need to use a ternary index (for relating following a-labeled nodes x of y below
z.). Moreover, our algorithm traverses the same part of the XML document as theirs and will thus be
as efficient while being much simpler in terms of presentation. Our general graph approach overcomes
the main limitations of Maneth and Nguyen’s: it is not bound to trees and is not limited to forward
navigational XPath but can treat any NRPQs also with backward steps.

8 Preliminary Experiments

We implemented in OCaml our compiler from NRPQs to Datalog and also a compiler from navigational
XPath queries to NRPQs on the graphs of XML documents. The edges of these gstring, and the edges
by f irst, next, name, and attribute names.

We selected in in Fig. 14 two typical benchmark XPATH queries from [7] that can be applied to the
scalable XML-documents from the XPathMark benchmark: query Q01 composes two child axis, and
query Q05 two descendant axis //listitem//keyword. The translations for these XPath queries to the
NRPQs NRP.Q01 and NRP.Q05 can also be found there.

Query NRP.Q01 is easier for top-down evaluation, since it does not contain vertically recursive axis,
so that its top-down needed subgraph remains small on the benchmark documents. Q05 is more difficult
since using descendant axis, so that the top-down needed subgraph NRP.Q05 is the whole graph if not
using indexes. So we also computed the indexes topkeyword and toplistitem for the descendant axis of Q05
and added them as extra edges to the graphs. Furthermore, the optimized query NRP.Q05.index obtained
from NRP.Q05 by using the index edges is given in Fig. 14 too.

The gold standard for the evaluation of XPath queries is obtained by using the Saxon XSLT evaluator.
In order to measure the time we run the same XPath query 100 times in the same XSLT program with
Saxon 10.5, substract the time needed to load and index the XML document and divide by 100. It turns
out, that Saxon has the best performance in all our tests, confirming our conjecture that it performs
jumping evaluation with indexing for descendant axis.

We then implemented and tested our jumping algorithm based on existing top-down Datalog evalua-
tors. We started with OCaml’s Datalog 0.6, but had to notice that the top-down evaluator did not always
produce the correct results. We then experimented with the Prolog engines XSB 4.0 and SWI 8.4.1.1.
On a small XML-document of 27KB, both engines perform decently, even though not as quick as Saxon.
On Q01, they are one order of magnitude slower. The same holds for Q05 but only when using indexing.

We then considered a much bigger XML-document of 100MB. With this size we had to give up with
SWI. XSB in contrast could read the graph of the XML document, but needed more than 30 minutes.
Once the graph was read, it could answer the query pdl.Q05 without indexing in 35 seconds. With
indexing the time for answering pdl.Q05.index went down to 5 seconds. Saxon, in contrast, can load the

J. Niehren, S. Salvati, R. Azimov 13

Q01 /site/regions
NRP. nodedocument?/edge f irst/(edgenext)

∗/
Q01 nodeelement?/[edgename/nodesite?]?/

edge f irst/(edgenext)
∗/

nodeelement?/[edgename/noderegions?]?
Figure 14: Two benchmark XPATH queries from
[7], their translation to NRPQs, and the indexed
NRPQ queries.

Q05 //listitem//keyword
NRP. nodedocument?/(edge f irst/(edgenext)

∗)+/
Q05 nodeelement?/[edgename/nodelistitem?]?/

(edge f irst/(edgenext)
∗)+/

nodeelement?/[edgename/nodekeywords?]?
NRP. nodedocument?/(edgetoplistitem

)+/

Q05. (edgetopkeyword
)+

index

27KB Q01 Q05 Q05.index
Saxon 0.000206 indexing 0.000315
XSB 0.001 0.006 0.001
SWI 0.004 0.189 0.004
LogicBlox 0.0045 0.0054 0.0045

Figure 15: Time in seconds for querying the 27KB
XML-document with indexes.

100MB Q01 Q05 Q05.index
Saxon indexing 0.0016
XSB 35.857 5.029
SWI - - -
LogicBlox 0.0124 - 0.0974

Figure 16: Time in seconds for querying the 100MB
XML-document with indexes.

graph in 15 seconds and answer query Q05 in 1.6 milliseconds. So for answering the query Q05, Saxon
showed 4 orders of magnitude more efficient than XSB.

We finally investigated the LogicBlox system [1], a more recent deductive database system which
implements the language LogiQL extending on Datalog. With version 4.38 of LogicBlox we could read
the graph of 100 MB in 19 seconds (rather then in more than 30 minutes as with XSB). LogicQL is a
typed language implying some minor syntactic differences to standard datalog. Finally, LogicBlox has a
transaction level, that permits to interact with graphs dynamically, so that it can be queried many times
without being reloaded. The earlier versions of LogicBlox supported bottom-up evaluation only. But
since recently, top-down evaluation can be chosen by adding On-Demand annotations for all extensional
predicates. When doing so, we could answer the query NRP.Q05.index in 97.4 milliseconds on the
100MB document. This is 2 orders of magnitudes better than with XSB! Nevertheless it is still by a factor
of 75 slower than with Saxon. Figure 4 of [7] reports 65 milliseconds for Q05 with optimal jumping,
but on a slightly larger 116MB document. So the question is how the efficiency of our implementation
could be increased further: with better indexes, early completion during Datalog evaluation, or by using
special features of XPATH queries?

9 Conclusion and Future Work

The definition of the top-down needed subgraph allows us to prove that our algorithm for answering
negation-free NRPQs visits only the interesting part of the graph. We believe that the restriction to
negation-freeness can be relieved by compiling to stratified datalog. The new notion of top-down needed
subgraphs may also allow the design of algorithms that transform NRPQs into equivalent ones that have
a smaller top-down needed subgraph, for instance by inverting the path, or starting with some filter. In
particular, the goto instructions permit the algorithm to jump directly to nodes with rare properties in
the graph first and then compute the queries more efficiently. Another line of improvement would be to
stop the evaluation of a filter when it has been proven correct. This effect may only be obtained if we

14 Jumping Evaluation of Nested Regular Path Queries

use a datalog top-down evaluator that follows the early completion strategy, i.e. stops whenever a ground
predicate (such as filter queries in our case) is proven true.

References

[1] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic, Todd L. Veld-
huizen & Geoffrey Washburn (2015): Design and Implementation of the LogicBlox System. In: Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data, ACM, pp. 1371–1382,
doi:10.1145/2723372.2742796. Available at https://doi.org/10.1145/2723372.2742796.

[2] Marcelo Arenas & Jorge Pérez (2011): Querying Semantic Web Data with SPARQL. In: Proceedings of
the Thirtieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’11,
Association for Computing Machinery, New York, NY, USA, p. 305–316, doi:10.1145/1989284.1989312.
Available at https://doi.org/10.1145/1989284.1989312.

[3] Rance Cleaveland & Bernhard Steffen (1993): A Linear-Time Model-Checking Algorithm for the Alternation-
Free Modal Mu-Calculus. Form. Methods Syst. Des. 2(2), p. 121–147, doi:10.1007/BF01383878. Available
at https://doi.org/10.1007/BF01383878.

[4] Michael J. Fischer & Richard E. Ladner (1979): Propositional Dynamic Logic of Regular Programs. J.
Comput. Syst. Sci. 18(2), pp. 194–211, doi:10.1016/0022-0000(79)90046-1. Available at https://doi.
org/10.1016/0022-0000(79)90046-1.

[5] Georg Gottlob, Christoph Koch & Reinhard Pichler (2003): The Complexity of XPath Query Evaluation.
In: Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS ’03, Association for Computing Machinery, New York, NY, USA, p. 179–190,
doi:10.1145/773153.773171. Available at https://doi.org/10.1145/773153.773171.

[6] Leonid Libkin, Wim Martens & Domagoj Vrgovc (2013): Querying Graph Databases with XPath. In:
Proceedings of the 16th International Conference on Database Theory, ICDT ’13, Association for Computing
Machinery, New York, NY, USA, p. 129–140, doi:10.1145/2448496.2448513. Available at https://doi.
org/10.1145/2448496.2448513.

[7] Sebastian Maneth & Kim Nguyen (2010): XPath Whole Query Optimization. Proc. VLDB Endow. 3(1–2),
p. 882–893, doi:10.14778/1920841.1920954. Available at https://doi.org/10.14778/1920841.

1920954.

[8] Wim Martens & Tina Trautner (2018): Evaluation and Enumeration Problems for Regular Path Queries. In
Benny Kimelfeld & Yael Amsterdamer, editors: 21st International Conference on Database Theory (ICDT
2018), LIPIcs 98, Dagstuhl, Germany, pp. 19:1–19:21, doi:10.4230/LIPIcs.ICDT.2018.19. Available at
http://drops.dagstuhl.de/opus/volltexte/2018/8594.

[9] Jorge Pérez, Marcelo Arenas & Claudio Gutiérrez (2010): nSPARQL: A navigational language for RDF. J.
Web Semant. 8(4), pp. 255–270, doi:10.1016/j.websem.2010.01.002. Available at https://doi.org/10.
1016/j.websem.2010.01.002.

[10] K. Tuncay Tekle & Yanhong A. Liu (2019): Extended Magic for Negation: Efficient Demand-Driven Eval-
uation of Stratified Datalog with Precise Complexity Guarantees. Electronic Proceedings in Theoretical
Computer Science 306, pp. 241–254, doi:10.4204/eptcs.306.28. Available at https://doi.org/10.4204%
2Feptcs.306.28.

[11] K. Tuncay Tekle & Yanhong A. Liu (2010): Precise complexity analysis for efficient Datalog queries. In:
PPDP’10 - Proceedings of the 2010 Symposium on Principles and Practice of Declarative Programming, pp.
35–44, doi:10.1145/1836089.1836094.

[12] J. D. Ullman (1989): Bottom-up Beats Top-down for Datalog. In: Proceedings of the Eighth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, PODS ’89, Association for Computing
Machinery, New York, NY, USA, p. 140–149, doi:10.1145/73721.73736. Available at https://doi.org/
10.1145/73721.73736.

http://dx.doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/2723372.2742796
http://dx.doi.org/10.1145/1989284.1989312
https://doi.org/10.1145/1989284.1989312
http://dx.doi.org/10.1007/BF01383878
https://doi.org/10.1007/BF01383878
http://dx.doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
http://dx.doi.org/10.1145/773153.773171
https://doi.org/10.1145/773153.773171
http://dx.doi.org/10.1145/2448496.2448513
https://doi.org/10.1145/2448496.2448513
https://doi.org/10.1145/2448496.2448513
http://dx.doi.org/10.14778/1920841.1920954
https://doi.org/10.14778/1920841.1920954
https://doi.org/10.14778/1920841.1920954
http://dx.doi.org/10.4230/LIPIcs.ICDT.2018.19
http://drops.dagstuhl.de/opus/volltexte/2018/8594
http://dx.doi.org/10.1016/j.websem.2010.01.002
https://doi.org/10.1016/j.websem.2010.01.002
https://doi.org/10.1016/j.websem.2010.01.002
http://dx.doi.org/10.4204/eptcs.306.28
https://doi.org/10.4204%2Feptcs.306.28
https://doi.org/10.4204%2Feptcs.306.28
http://dx.doi.org/10.1145/1836089.1836094
http://dx.doi.org/10.1145/73721.73736
https://doi.org/10.1145/73721.73736
https://doi.org/10.1145/73721.73736

	Introduction
	Nested Regular Path Queries
	Top-Down Needed Subgraphs
	Datalog Queries
	Complexity of Top-Down Evaluation of Datalog Queries
	Compiler to SCL Datalog Queries
	Jumping in Graphs
	Preliminary Experiments
	Conclusion and Future Work

