
HAL Id: hal-03746879
https://hal.inria.fr/hal-03746879v2

Submitted on 8 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A GPU approach to distance geometry in 1D: an
implementation in C/CUDA
Simon Hengeveld, Antonio Mucherino

To cite this version:
Simon Hengeveld, Antonio Mucherino. A GPU approach to distance geometry in 1D: an implemen-
tation in C/CUDA. 17th Conference on Computer Science and Intelligence Systems, Sep 2022, Sofia,
Bulgaria. �hal-03746879v2�

https://hal.inria.fr/hal-03746879v2
https://hal.archives-ouvertes.fr

A GPU approach to distance geometry in 1D:

an implementation in C/CUDA

Simon B. Hengeveld∗ A. Mucherino,∗

∗IRISA, University of Rennes 1, Rennes, France.

simon.hengeveld@irisa.fr, antonio.mucherino@irisa.fr

Abstract—We present a GPU implementation in C and CUDA
of a matrix-by-vector procedure that is particularly tailored to
a special class of distance geometry problems in dimension 1,

which we name “paradoxical DGP instances”. This matrix-by-
vector reformulation was proposed in previous studies on an
optical processor specialized for this kind of computations. Our
computational experiments show that a consistent speed-up is
observed when comparing our GPU implementation against a
standard algorithm for distance geometry, called the Branch-
and-Prune algorithm. These results confirm that a suitable
implementation of the matrix-by-vector procedure in the context
of optic computing is very promising. We also remark, however,
that the total number of detected solutions grows with the
instance size in our implementations, which appears to be an
important limitation to the effective implementation of the optical
processor.

THIS IS AN EXTENDED VERSION

This is an extended version of the conference paper pub-

lished on IEEE proceedings, where we added some code

snippets. This was requested by the three colleagues that have

reviewed the paper, but unfortunately we could not include

any additional material in the original publication for lack of

space.

I. INTRODUCTION

The Distance Geometry Problem (DGP) asks whether a

simple weighted undirected graph G = (V,E, d) can be

realized in the Euclidean space R
K , with K > 0, so that

the distance constraints

∀{u, v} ∈ E, ||xu − xv|| = du,v,

are satisfied [5]. When this is the case, we say that the mapping

x : v ∈ V → xv ∈ R
K is a valid realization of the graph G.

Depending on the DGP application at hand, the vertices v ∈ V
can represent different kinds of objects, for which possible

positions in R
K are searched. The edge set E encodes the

information about the distance between vertex pairs, and the

numerical value of these distances is given by the associated

weight. Notice that ||·|| is the Euclidean norm. We suppose that

the available distance values are exact, i.e. extremely precise.

In this work, we focus our attention of DGPs in dimension 1.

In 1979, Saxe proved that the DGP is NP-complete when K
is set to 1 [10]. The main DGP application in this dimension

is the clock synchronization problem: given a set of clocks

(represented by the vertices v ∈ V), and a subset of offset

measurements between pairs of clocks (encoded by the edges

{u, v} ∈ E and the associated weight du,v), the problem

asks whether it is possible to know the precise time indicated

by all clocks [11]. This problem is fundamental for the

synchronization of events in distributed systems [1], [12], as

for example in wireless sensor networks [14].

The Branch-and-Prune (BP) algorithm was proposed in [4]

for a subclass of DGP instances that admit the discretization

of their search space. In the 1-dimensional case, this algorithm

can be employed under the much weaker assumption that the

graph G is connected [9]. In this case, in fact, a vertex order

on V , which ensures that every vertex v has at least one

predecessor u (exception made for the first vertex in the order),

can be easily constructed [8]. This vertex order is indicated

by the subscripts associated to the vertices in the discussion

below.

We are interested in a particular subclass of DGPs in di-

mension 1: the class of paradoxical DGP instances [2]. These

instances are represented by graphs G that are cycle graphs, for

which a vertex order on its vertex set can be trivially identified.

The paradoxical character of these instances is given by the

two following observations. On the one hand, the construction

of solutions to these instances appears to be relatively easy,

because most vertices vk ∈ V only depend on one predecessor

in the vertex order, so that, for each xk−1, the two new

positions xk−1 − dk−1,k and xk−1 + dk−1,k can be easily

computed for vk. Notice that this procedure allows us to build

up a binary tree collecting, on each of its layers, the possible

positions for each vertex vk. On the other hand, however, the

absence of any other distance information (apart the distance

to the predecessor dk−1,k) up to the layer n, where n = |V |,
makes this class of instances actually very hard. In fact, it is

only at layer n that the distance between the first vertex v1
and the last vertex vn can be exploited to select the only two

valid realizations out of a set of 2n−1 potential solutions [6].

In this work, we consider the matrix-by-vector reformula-

tion of paradoxical DGPs in dimension 1 (recently proposed

in [2] for solving paradoxical DGP instances on a new

optical processor) and we implement it on a GPU device.

The presented computational experiments show a consistent

speed-up when our GPU implementation is compared against

the BP algorithm, as well as when the comparison is per-

formed against the sequential implementation of the matrix-

by-vector procedure itself. These results confirm therefore that

the matrix-by-vector reformulation is promising in the context

of optic computing. Our experiments also point out, however,

a possible limit in the actual implementation of the optical

processor.

The rest of this paper is organized as follows. In Section II,

we will describe the matrix-by-vector reformulation of our

paradoxical DGP instances in dimension 1. In Section III,

we will present our GPU implementation for the matrix-by-

vector multiplication, which will benefit of some simplifi-

cations implied by the particular problem we aim to solve.

We will present and discuss our computational experiments

in Section IV (this section also includes some code snippets

in this extended version of the paper), and finally draw our

conclusions in Section V.

II. A MATRIX-BY-VECTOR REFORMULATION

When the BP algorithm mentioned in the Introduction

is employed for the solution of paradoxical DGP instances

in dimension 1 [9], a binary tree containing all possible

vertex positions can be recursively constructed, and the valid

realizations can be selected at the very end when positions

are computed for the last vertex vn ∈ V . Our paradoxical in-

stances have the particularity of solely executing the branching

phase of the algorithm until a leaf node of the tree is reached;

it is only at this point that the pruning mechanism is invoked,

where the only distance not used for branching, the distance

related to the edge {1, n}, is verified. If the distance is satisfied

by the current position for vn, then the path from the tree root

to the current node is a valid realization; it can be discarded

otherwise.

As remarked in [2], it is possible to replace, for our

paradoxical instances, the pruning phase occurring only at

layer n with an additional branching phase, which is performed

over the fictive vertex vn+1 that is introduced in the original

graph. The fictive vertex is connected to its predecessor vn by

an edge having the same weight as the original edge {1, n}.

The edge from v1 to vn is thereafter removed, breaking in this

way the original cycle structure. The main reason for making

this manipulation on G is that now the distance information

is equally distributed over the vertices of the graph, and the

solver of paradoxical instances can perform exactly the same

operation when stepping from one vertex to its successor. In

order to identify the valid realizations, it is finally necessary

to verify that x1 = xn+1.

The introduction of the fictive vertex allows us to reformu-

late the paradoxical DGP in dimension 1 as a matrix-by-vector

multiplication [2]. We introduce the matrix

Mij =

{

−1 if (i − 1)/2j−1 mod 2 = 0,
1 otherwise,

and the vector yj = dj,j+1, which contains the distance

information related to our paradoxical instance. Thus, the

vector r = My contains all possible positions xn+1 for all

possible solutions. Notice that the index i varies from 1 to 2n,

whereas the index j varies from 1 to n. The feasible solutions

Fig. 1. The pattern given by the signs of the elements of the matrix M . In
dark blue, the elements that have positive sign; in light gray the ones having
negative sign.

g l o b a l void gpusumrows (i n t n , long two n , f l o a t ∗d , long ∗ s o l)
{

i n t j ;
i n t id , n t h r e a d s ;
long i l s t a r t , i l e n d ;
long i l , chunk ;
f l o a t sum ;

/ / g e t t i n g t h e number o f i n v o l v e d t h r e a d s
n t h r e a d s = blockDim . x ∗ gr idDim . x ;

/ / g e t t i n g t h e un ique i d f o r t h i s t h r e a d (1−dim g r i d)
i d = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;

/ / comput ing t h e p o r t i o n o f o p t i c m a t r i x rows t o t r e a t
chunk = (two n / n t h r e a d s) + 1L ;
i l s t a r t = i d ∗ chunk ;
i l e n d = i l s t a r t + chunk ;

/ / i t e r a t i n g over t h e a s s i g n e d long i n t e g e r s
s o l [i d] = 0L ;
i l = i l s t a r t ;
wh i l e (i l < i l e n d)
{

/ / f i r s t e l e m e n t
sum = (−1 + ((i l & 1L) << 1))∗ d [0] ;

/ / s econd e l e m e n t
sum = sum + (−1 + (i l & 2L)) ∗ d [1] ;

/ / o t h e r e l e m e n t s
f o r (j = 2 ; j < n ; j ++) sum = sum + (−1 + ((i l >> (j − 1)) & 2L)) ∗ d [j] ;

/ / v e r i f y i n g f e a s i b i l i t y
i f (sum < 0 . 0 f) sum = −sum ;
i f (sum < gpu eps) s o l [i d] = i l ;

/ / p r e p a r i n g f o r t h e n e x t row
i l ++;

} ;
} ;

Fig. 2. The kernel in CUDA.

to our paradoxical instances are the ones for which ri = 0
(because x1 is here implicitly set to 0).

We notice that performing the matrix-by-vector multiplica-

tion gives an answer to the original decision problem (does it

exist a realization such that. . .) but it does not directly provide

the realizations, i.e. the sequences of positions on the real

line for the vertices of G. In order to construct one selected

valid realization, as for example the realization encoded by

the ith row of the matrix M , the value of each position xi
k

for the vertex vk ∈ V (we added a superscript to x to specify

the matrix row) can be obtained by performing the following

partial sum:

xi
k =

k
∑

j=1

Mijyj.

The next section describes an ad-hoc GPU implementation

of this matrix-by-vector multiplication.

III. A GPU IMPLEMENTATION

Our GPU implementation does not perform generic matrix-

by-vector multiplications. For this general problem, the reader

can refer to some recent (see for example [7], [13]) and very

recent (see [3]) publications on the topic. Differently from

the cited papers, our implementation takes advantage of the

structure of our matrix M to optimize the computations.

First of all, since the elements of our matrix M are either

−1 or 1, we can trivially “move” all distance values from the

vector y to the matrix, by paying only attention to the sign to

consider for each distance value when placed in a particular

row of the matrix. We define therefore this new matrix:

M ′

ij =

{

−dj,j+1 if (i− 1)/2j−1 mod 2 = 0,
dj,j+1 otherwise,

from which the vector r can be simply computed by summing

/ / f r a g m e n t o f t h e main

cudaMemcpy (gpu d , d , n∗ s i z e o f (f l o a t) , cudaMemcpyHostToDevice) ; / / c o p y i n g d i s t a n c e v a l u e s on GPU
t 0 = c l o c k () ; / / r e s e t t i n g t h e w a l l c l o c k
gpusumrows<<<nblocks , t h r e a d s p e r b l o c k >>>(n , nrows , gpu d , g p u s o l) ; / / l a u n c h i n g k e r n e l
c u d a T h r e a d S y n c h r o n i z e () ; / / s y n c h r o n i z i n g t h r e a d s b e l o n g i n g t o d i f f e r e n t b l o c k s
t 1 = c l o c k () ; / / measur ing t h e t i m e
s e c = (double) (t 1 − t 0) / CLOCKS PER SEC ;
cudaMemcpy (so l , gpu so l , n t h r e a d s ∗ s i z e o f (long) , cudaMemcpyDeviceToHost) ;

/ / . . .

Fig. 3. A fragment of the main.

up all row elements:

ri =

n
∑

j=1

M ′

ij .

As a consequence, our GPU implementation will only perform

sums, and not products of real numbers.

Another important point in our implementation is the pro-

cedure to construct the matrix M ′, and in particular for the

choice of the sign for each matrix element. The rule given in

the definition (involving the modulus operator) is simple to

understand and to apply, but it can be computationally very

expensive to perform for every element of the matrix. For our

implementation, we found another, and more efficient, method

to identify the sign of every matrix element.

Fig. 1 shows the sign distribution over the matrices M
and M ′: all positive elements correspond to the dark pixels,

while all negative elements correspond to the light gray pixels.

More than one pattern can be identified in these matrices, but

one in particular turns out to be very useful for our GPU

implementation. If in fact we interpret every gray pixel as a 0

(instead of a −1), whereas the dark pixels still represent 1’s,

then we can see every matrix row (notice that the matrix is

transposed in Fig. 1) as the binary representation of integer

numbers spanning from 0 to 2n− 1. Moreover, if we consider

the big-endian convention for the bit ordering (which is,

the less significant bit is on the left side, differently from

our standard convention with decimal numbers), then the

integer number at row i is simply the predecessor (in integer

arithmetic) of the one at row i+ 1, and it is the successor of

the one at row i−1. If the bits of an integer ℓ encode therefore

the signs at row i, the bits of the integer ℓ+1 simply encode

the signs at row i+ 1.

In our GPU implementation, every thread is in charge of

computing the sums for a subset of matrix rows. This subset

forms a block of contiguous matrix rows, so that, once each

thread has found out its starting value for ℓ, it simply needs

to increase it by one unit per time for treating all subsequent

rows. Naturally, all row blocks are supposed to have the same

size in order to better exploit the power of the GPU device.

After the computation of every row sum, the thread verifies

whether this sum is close enough to 0. In the case it is true,

the thread keeps this information aside (in binary format) and

BP algorithm CPU matrix-by-vector GPU matrix-by-vector
|V | #sols time #sols time #sols time

20 3 0.012189 3 0.022815 3 0.000437
21 4 0.021719 4 0.048202 4 0.000849
22 8 0.036419 8 0.099945 8 0.001699
23 16 0.067282 16 0.208566 16 0.003494
24 44 0.133229 44 0.435459 44 0.007211
25 82 0.260027 82 0.905198 82 0.014951
26 130 0.498371 130 1.886785 130 0.030999
27 271 0.989594 271 3.905493 271 0.064336
28 515 2.025879 515 8.110146 513 0.133360
29 1074 4.186474 1074 16.831842 1074 0.263456
30 2134 8.036184 2134 34.801628 2046 0.509210
31 3638 15.836381 3638 71.677937 3358 1.006642
32 7613 34.954935 7613 147.561225 6547 2.032326

TABLE I
THE COMPUTATIONAL EXPERIMENTS COMPARING THE STANDARD BP

ALGORITHM AGAINST THE SEQUENTIAL AND THE PARALLEL

IMPLEMENTATIONS OF OUR MATRIX-BY-VECTOR PROCEDURE.
COMPUTATIONAL TIMES ARE GIVEN IN SECONDS. ALL USED INSTANCES

WERE RANDOMLY GENERATED AND THEY BELONG TO THE CLASS OF

PARADOXICAL INSTANCES. SIMILAR RESULTS CAN BE OBTAINED WITH

LARGER INSTANCES.

it sends it back to the CPU at the end of the computations.

Notice that this information is binary (a valid realization was

found or not), because the symmetry properties [6] of our

paradoxical instances indicate that the only chance to have

two valid realizations treated by the same thread is when all

matrix rows are assigned to one unique thread.

IV. COMPUTATIONAL EXPERIMENTS

This section presents some computational experiments

where we compare the standard BP algorithm (see Introduc-

tion) against our matrix-by-vector procedure, executed both

in sequential and in parallel. In this extended version of our

contribution, we initially present the two main parts of our

C/CUDA implementation.

Fig. 2 shows the kernel in CUDA to be executed by all

threads on the GPU device. It basically performs the following

steps. First of all, it computes the unique identifier of the

running thread, which is thereafter used for determining the

chunk of matrix rows the thread is supposed to work on. Then,

the main part of the kernel consists in a while loop (over all

matrix rows assigned to this thread) where the sums of all

row elements are computed. Notice the use of the bits in the

integer il to choose the sign for every available distance. The

feasibility check is performed at the end of every iteration

of the while loop, and in case of a positive answer, the

information is stored in the element of the array sol devoted

to this thread. A fragment of the main function is shown in

Fig. 3, with the CUDA call to the kernel.

The experiments presented below were performed on a

workstation equipped with an Intel(R) Xeon(R) CPU E5-

2609 v3 @1.90GHz, Nvidia GPU GeForce GTX TITAN X

graphics card, and running Ubuntu Linux operating system.

We compiled our programs with the version 5.4.0 of GCC,

and with the version 9.0.176 of CUDA. In all experiments, our

execution on GPU was launched with a thread grid comprising

64 blocks, having 512 threads each.

Table I presents some computational experiments where

the BP algorithm is compared against the sequential and the

parallel implementations of our matrix-by-vector procedure.

We considered instances of size ranging from 20 to 32 which

were randomly generated so that to satisfy the properties of

paradoxical instances. The cardinality |V | of the vertex sets is

reported on the first column of the table. We omit to report the

cardinality of the edge set E because it always corresponds

to |V | in our instances. The BP algorithm was run only on

CPU; the matrix-by-vector procedure was run on both CPU

(the sequential version) and GPU (the parallel version).

While it is expected (see Introduction and Section III)

that every instance only admits two valid realizations, the

second column of Table I shows that the number of solutions

(#sols) found by the BP algorithm is larger, and it tends to

increase with the instance size. Our interpretation for this

phenomenon is that, the more the search space increases in

size (exponentially with n), the more are the chances to find a

realization that is close enough to feasibility. The verification

of the final distance d1,n is performed with tolerance ε = 10−4

in all experiments, which allows us to take into consideration

the possible round-off error propagation. However, the use

of this tolerance seems to enlarge too much the subset of

realizations for which this final distance appears to be satisfied.

We remark, however, that a generic tuning on the value of ε
that would work for all instances is naturally not possible.

The third column of our table gives the time in seconds

necessary for the BP algorithm to fully explore the search

space of the given instances (see Fig. 3). Recall that the search

space has size 2n−1.

The forth and fifth columns of Table I show the results

obtained with the implementation of our matrix-by-vector

procedure in sequential. While the number of found solu-

tions does not change w.r.t those found by BP, we remark

an increase on the computational time. This was expected,

because the matrix-by-vector formulation does not exploit the

fact that the computations necessary for a given solution can

be partially reused for neighboring solutions (i.e. belonging to

near matrix rows). This is the reason why the BP algorithm

works differently. However, the independence of the matrix

rows is an essential feature for our GPU implementation.

Finally, the last two columns of the table show the results

obtained with our GPU implementation. We point out that we

used the float primitive type for the distances and the positions

(we did the same in the previous two C implementations, in

order to obtain results as uniform as possible). We used long

types to store the values of the integer ℓ (see Section III).

Naturally, this choice limits the instance size n to 64, but has

no impact on the experiments we have performed for this work

(the decimal representation of 264 is already a quite “large”

integer, composed by 20 digits).

The computational time is significantly reduced, when com-

pared to the sequential version of the matrix-by-vector proce-

dure, as well as when the comparison is performed against the

original BP algorithm. We notice, however, that the number

of found solutions differs with the other implementations for

the instances of larger size. This error is due to the way

the GPU threads communicate their results to the CPU: this

information is in fact binary (solution found / not found)

because at most one solution per thread was initially expected

to be identified. Apparently, during the computations, more

than one solution was instead (wrongly) detected by the same

thread, thus leading to a smaller final solution sum.

The reader may wonder why we have decided not to fix this

“issue” in our CUDA implementation. Since our work is mo-

tivated by the optical processor mentioned in the Introduction,

which is supposed to perform the calculations (although in an

analog fashion) in a similar way, it seems important to us to

point out this drawback of the implementation. This is actually

a quite important limitation for the physical implementation of

optical processor.

V. CONCLUSIONS

We have presented a GPU implementation of a matrix-by-

vector procedure that is particularly tailored for the solution

of paradoxical DGP instances in dimension 1. The idea to

reformulate this problem as a matrix-by-vector multiplication

comes from previous studies on an optical processor, which is

specialized for this class of problems.

Our computational experiments show that our GPU imple-

mentation is already able to take advantage of the matrix-by-

vector reformulation. On our randomly generated paradoxical

instances, the pattern shown by our table of experiments is

very regular: the GPU implementation is about 16 times faster

than the standard BP algorithm. Naturally, much better speed-

ups have been achieved on GPUs; in our case, however, the

reformulation transforms the problem in a harder one (even if

the complexity class remains the same). Nevertheless, the GPU

implementation is still able “to do better” than the standard

sequential algorithm.

In view of an implementation of the optical processor in

[2], we remark that it is likely to suffer of the same effect

on the increased number of detected solutions that we have

observed in our computational experiments. This opens new

challenging for the conception and development of this kind

of alternative computing devices.

Acknowledgments

We are grateful to Caroline Collange for the fruitful discus-

sions and for the authorization to use one of the machines of

her research group to perform our computational experiments.

We are also thankful to the three reviewers that provided

very helpful comments on this paper. We hope that this

extended version of the paper deposited on the HAL’s open

archives is able to better address all their comments.

This work is partially supported by the international project

MULTIBIOSTRUCT funded by the ANR French funding

agency (ANR-19-CE45-0019).

REFERENCES

[1] N.M. Freris, S.R. Graham, P.R. Kumar, Fundamental Limits on Synchro-

nizing Clocks Over Networks, IEEE Transactions on Automatic Control
56(6), 1352–1364, 2010.

[2] S.B. Hengeveld, N. Rubiano da Silva, D.S. Gonçalves, P.H. Souto
Ribeiro, A. Mucherino, An Optical Processor for Matrix-by-Vector

Multiplication: an Application to the Distance Geometry Problem in

1D, Journal of Optics 24(1), 015701, 2022.
[3] K. Isupov, Multiple-Precision Sparse MatrixVector Multiplication on

GPUs, Journal of Computational Science 61, 101609, 2022.
[4] L. Liberti, C. Lavor, N. Maculan, A Branch-and-Prune Algorithm for

the Molecular Distance Geometry Problem, International Transactions
in Operational Research 15, 1–17, 2008.

[5] L. Liberti, C. Lavor, N. Maculan, A. Mucherino, Euclidean Distance

Geometry and Applications, SIAM Review 56(1), 3–69, 2014.
[6] L. Liberti, B. Masson, J. Lee, C. Lavor, A. Mucherino, On the Number

of Realizations of Certain Henneberg Graphs arising in Protein Con-

formation, Discrete Applied Mathematics 165, 213–232, 2014.

[7] A. Monakov, A. Lokhmotov, A. Avetisyan, Automatically Tuning Sparse

Matrix-Vector Multiplication for GPU Architectures, In: “High Perfor-
mance Embedded Architectures and Compilers”, Y.N. Patt, P. Foglia,
E. Duesterwald, P. Faraboschi, X. Martorell (Eds.), Lecture Notes in
Computer Science 5952, Springer, 111–125, 2010.

[8] A. Mucherino, Optimal Discretization Orders for Distance Geometry: a
Theoretical Standpoint, Lecture Notes in Computer Science 9374, Pro-
ceedings of the 10th International Conference on Large-Scale Scientific
Computations (LSSC15), Sozopol, Bulgaria, 234–242, 2015.

[9] A. Mucherino, On the Exact Solution of the Distance Geometry with In-

terval Distances in Dimension 1. In: “Recent Advances in Computational
Optimization”, S. Fidanova (Ed.), Studies in Computational Intelligence
717, 123–134, 2018.

[10] J. Saxe, Embeddability of Weighted Graphs in k-Space is Strongly NP-

hard, Proceedings of 17th Allerton Conference in Communications,
Control and Computing, 480–489, 1979.

[11] A. Singer, Angular Synchronization by Eigenvectors and Semidefinite

Programming, Applied and Computational Harmonic Analysis 30(1),
20–36, 2011.

[12] P. Verissimo, M. Raynal, Time in Distributed System Models and
Algorithms. In: “Advances in Distributed Systems, Advanced Dis-
tributed Computing: From Algorithms to Systems”, S.K. Shrivastava,
S. Krakowiak (Eds.), Springer, 1–32, 1999.

[13] V. Volkov, J.W. Demmel, Benchmarking GPUs to Tune Dense Linear

Algebra, IEEE Conference Proceedings, ACM/IEEE conference on
Supercomputing (SC08), 11 pages, 2008.

[14] Y-C. Wu, Q. Chaudhari, E. Serpedin, Clock Synchronization of Wireless
Sensor Networks, IEEE Signal Processing Magazine 28(1), 124–138,
2011.

	Introduction
	A matrix-by-vector reformulation
	A GPU implementation
	Computational experiments
	Conclusions
	References

