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Abstract

The thoracic diaphragm is the muscle that drives the respiratory cycle of a human being.
Using a system of partial differential equations (PDEs) that models linear elasticity we
compute displacements and stresses in a two-dimensional cross section of the diaphragm
in its contracted state. The boundary data consists of a mix of displacement and traction
conditions. If these are imposed as they are, and the conditions are not compatible, this
leads to reduced smoothness of the solution. Therefore, the boundary data is first smoothed
using the least-squares radial basis function generated finite difference (RBF-FD) framework.
Then the boundary conditions are reformulated as a Robin boundary condition with smooth
coefficients. The same framework is also used to approximate the boundary curve of the
diaphragm cross section based on data obtained from a slice of a computed tomography
(CT) scan. To solve the PDE we employ the unfitted least-squares RBF-FD method. This
makes it easier to handle the geometry of the diaphragm, which is thin and non-convex.
We show numerically that our solution converges with high-order towards a finite element
solution evaluated on a fine grid. Through this simplified numerical model we also gain
an insight into the challenges associated with the diaphragm geometry and the boundary
conditions before approaching a more complex three-dimensional model.

Keywords: unfitted, RBF-FD, least-squares, elasticity, diaphragm, mixed boundary
condition

1. Introduction1

During the 2020 covid-19 pandemic we have all been made aware that intensive care2

units (ICU) have limited capacity with respect to the number of patients that can be cared3

for at the same time. The WHO report on covid-19 in China [1] indicates that covid-194

patients with severe symptoms need 3–6 weeks in ICU. Patients with severe respiratory5

symptoms are put under mechanical ventilation to save their lives. At the same time, the6
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mechanical ventilation has adverse effects, such as ventilator induced diaphragmatic dys-7

function (VIDD) [2], which prolongs the ICU time. Hence, improving mechanical ventilation8

can have a significant impact on ICU patient turnover.9

This work is part of the INVIVE project1, where we aim to create a mechanically venti-10

lated virtual patient [3] on whom we can perform tests with different ventilation strategies11

and counter measures against VIDD [4]. With the virtual patient, we can also vary the12

gender, physiology, age and potential injuries that affect the response. Using simulations13

allows to create a controlled computer-based environment in a way that is not possible in a14

clinical setting.15

The diaphragm is the main respiratory muscle, and the present focus of our study. The16

diaphragm is located between the thoracic and abdominal cavities. It has two domes, and17

is attached to the lower ribs, the spine, and the sternum. During mechanical ventilation,18

the normal action of the diaphragm, where inhalation follows the contraction of the muscle,19

is reversed, i.e., the muscles become passive and the air is pumped into the lungs by the20

ventilator. As air is entering the lungs with a positive pressure, the muscle fibres are instead21

extended. This sudden and extreme mechanical perturbation is the trigger of a chain of22

biological events causing the progression of VIDD.23

Numerical simulation of the biomechanical action of the diaphragm during respiration24

or ventilation is a challenging problem. The shape of the diaphragm is non-trivial and there25

are gradual transitions between muscle and tendon with very different material response.26

Imperfect data can be extracted from medical images, and can then be converted into a27

geometry representation [5]. The specific challenges of constructing a smooth geometry28

representation are addressed in a forthcoming paper [6].29

In this paper, we model the diaphragm using a linear elastic PDE. This is a simplification30

and we plan to develop a more realistic tissue model as a part of our future work.31

The boundary conditions for the elastic PDE system are given by a combination of trac-32

tion boundary conditions, which contains first derivatives of the displacement, and (time-33

dependent) Dirichlet boundary conditions for the displacement, where the diaphragm is34

attached. These are mixed boundary conditions, in general not fully compatible, leading to35

reduced regularity of the solution even when we expect a smooth solution from a physiolog-36

ical perspecitve. Therefore, we smooth the boundary data as well as the transition between37

the traction boundary data and Dirichlet boundary data before using it in the PDE solver.38

We use the unfitted radial basis function generated finite difference method in the least-39

squares setting (unfitted RBF-FD-LS) [7] to solve the diaphragm problem. A benefit of using40

the unfitted RBF-FD-LS method is that the PDE problem is solved on an extended domain41

(see Figure 3). This simplifies node generation as the node placement is then independent of42

the geometry. Another benefit of the unfitted setting is a smaller approximation error near43

the boundaries [7], where the stencils are typically highly skewed when using conventional44

RBF-FD methods such as the fitted RBF-FD-LS method [8] and the collocation RBF-FD45

method [9].46

As model geometry we use a two-dimensional cross section of the diaphragm. To inves-47

tigate the properties of the problem we use a combination of data from medical images and48

knowledge about the physiology of the diaphragm expressed in terms of boundary condi-49

tions. In particular, we construct two benchmark problems: (i) a pure Dirichlet case, (ii) a50

case with mixed boundary conditions (Dirichlet + traction), rephrased as a Robin condition51

1https://www.it.uu.se/research/scientific_computing/project/rbf/biomech
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with smooth coefficients. With the experiments performed for these benchmarks, we aim to52

answer the following questions:53

• Can we solve the benchmarks problems with unfitted RBF-FD-LS? Are there specific54

numerical challenges to be noted?55

• Can we achieve high-order convergence to the solution of the elastic PDE when the56

imposed boundary data and the geometry is smooth?57

• How is the performance and accuracy of the RBF-FD-LS solver affected by the type58

of boundary conditions that are imposed?59

• How does the RBF-FD-LS solver compare with a basic FEM solver? Do the solvers60

give similar solutions?61

Other authors have also modeled the diaphragm numerically. The most advanced di-62

aphragm simulations in the literature can be found in a series of publications by Ladjal63

et al. [10, 11, 12, 13, 14]. The application focus is to track the motion of lung tumours64

during respiration for radiotherapy purposes. The finite element models that are employed65

are highly elaborate, taking into account features such as patient-specific lung compliance66

in order to define the constitutive law. The simulation times reported are far from real-time67

capability. In these studies, the diaphragm is not the main target and it is not well-resolved68

in the thickness direction due to the high aspect ratio. Other relevant, but less detailed,69

diaphragm simulations can be found in [15], where the diaphragm is discretized using shell70

elements to compare healthy and pathological situations, and in [16], where the whole region71

under the lungs, including the diaphragm, forms one region in the simulation.72

The outline of the paper is as follows: Section 2 describes the expected behavior of the73

diaphragm during respiration and the relation of the two-dimensional geometry to the real74

three-dimensional diaphragm geometry. Then the linear elasticity model problem is defined75

in Section 3. An RBF-FD algorithm for computing differentiation and evaluation matrices76

is described in Section 4. In Section 5 these matrices are then used in the least-squares un-77

fitted RBF-FD setting to discretize the linear elasticity equations. Section 6 discusses how78

the boundary of the two-dimensional diaphragm cross-section, and the boundary conditions,79

are smoothed. In Section 7 and Section 8 we compute the solution to the linear elastic-80

ity equations for the two benchmark problems, and evaluate the convergence numerically.81

Finally, Section 9 contains the conclusions.82

2. The expected behavior of the thoracic diaphragm83

The diaphragm is a musculotendinous structure, approximately double-dome shaped,84

separating the thoracic and abdominal cavities. It is the main muscle of the physiological85

respiration, performing 70–80% of the work of breathing, although it also has non-ventilatory86

functions, e.g., coughing, hiccups, sneezing, vomiting, and postural functions. It is composed87

of three main parts, see Figure 1a. There are two muscular parts, one median and horizontal88

in upright position, separating the thoracic and the abdominal organs, and another lateral89

muscle part, which ends with the costal insertions (attachment to the lower ribs), and there90

is one central tendon, where the extremities of all the muscle fibers converge. When the91

diaphragm contracts during inspiration (inhalation) with a piston-like motion, the muscle92

zone thickens (inspiratory thickening), and the domes move caudally (downward) expanding93

the thorax. Therefore, the air enters the lungs under a pressure gradient, see Figure 1b.94
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Figure 1: Anatomy and physiology of the diaphragm (red and green parts) from expiration to inspiration

The two-dimensional geometry used for our simulations was extracted from a real patient95

medical image. We used a 3D CT scan image (resolution: 0.927 × 0.927 × 0.3 mm3) that96

was acquired for medical reasons, see our previous work [5]. The diaphragm was manually97

segmented in 3D following visual cues as explained in [17]. The labeled voxels were exported98

to a triangle mesh with the Marching Cube algorithm and the mesh was simplified with a99

decimation algorithm [18].100

The frontal plane slice we selected is in the middle of the body, corresponding roughly101

to the anatomic illustration of Figure 1. The raw data consists of a list of 2D vertices102

where a topology can easily be extracted. The raw geometry data contains noise from103

several sources. There is some CT scan device incertitude (noise, calibration etc) [19], the104

data is the result from a discretized process, and the labeling data comes from a manual105

segmentation that is prone to human error. Concerning this last point, the diaphragm is not106

entirely visible, sometimes part of its voxels also include other organs. The accuracy is linked107

to the imagination and the anatomical knowledge of the medical expert that performed the108

segmentation.109

The expected displacement of the diaphragm between the relaxed and contracted states110

in the two-dimensional slice is is roughly illustrated in Figure 2. For the numerical sim-111

ulations in Sections 7 and 8, we construct boundary conditions to replicate this motion112

qualitatively.113

3. Equations of linear elasticity114

The simplified model that we use is valid for studying small deformations of an isotropic
and homogenuous diaphragm with a linear elasticity constitutive law. The deformation of
a diaphragm Ω is described by applying a displacement field u = (u1, u2)T , to an object
location y = (y1, y2)T ∈ Ω such that:

y∗ = y + u,

where y∗ = (y∗1 , y
∗
2)T ∈ Ω∗ is then a deformed object. A field derived from the displacements

is the stress tensor:

σ =

(
σ11 σ12

σ21 σ22

)
,
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Figure 2: The expected displacement in different parts of the slice of the diaphragm. The red areas cor-
respond to the real physiological behavior and the green areas are transition zones. In regions 3 and 7,
there is both a thickening of the muscle and a downward motion, while in region 5, the downward motion
dominates.

which measures the internal forces in Ω as a consequence of deformation. It is related to
the displacement field by:

σ = λTr(ε) + 2µε, ε =
1

2

(
(∇u)

T
+∇u

)
, (1)

where ε ∈ R2×2 is the strain tensor and Tr(ε) = (ε11 + ε22) I is its trace. The scalars λ and
µ are the Lamé parameters, which are related to the Young modulus E and the Poisson
ratio ν of the material through:

λ =
Eν

(1 + ν) (1− 2ν)
, µ =

E

2 (1 + ν)
. (2)

For our computations we use E = 105 Pa and ν = 0.3. A special stress measure that is also
of interest to us is the Von Mises stress:√

σ2
11 − σ11σ22 + σ2

22 + 3σ2
12, (3)

which provides a scalar measure of the total stress.115

The equations of linear elasticity are derived from the force equilibrium (Newton’s second
law) imposed on Ω. We have:

−∇ · σ = f on Ω, (4)

where f = (f1(y), f2(y))
T

is a field of internal forces in the horizontal and the vertical
direction. The Dirichlet and traction boundary conditions are prescribed on two disjoint
parts of the boundary, which together form the whole boundary ∂Ω = ∂Ω0 ∪ ∂Ω1:

u = g on ∂Ω0,

σ · n = h on ∂Ω1.
(5)
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The first boundary condition with the right hand side g = (g1(y), g2(y))
T

is the displacement

condition. The second boundary condition with the right hand side h = (h1(y), h2(y))
T

is
the traction condition. An equivalent form of (5) is the Robin boundary condition:

uκ0(y) + (σ · n) κ1(y) = g κ0(y) + hκ1(y) on ∂Ω = ∂Ω0 ∪ ∂Ω1, (6)

where κ0 and κ1 correspond to two spatially dependent coefficients, in this case discontin-116

uous: κ0(y) = 1 when y ∈ ∂Ω0 and zero otherwise, and κ1(y) = 1 when y ∈ ∂Ω1 and zero117

otherwise.118

In Section 7 we first compute solutions using a Dirichlet condition for the whole boundary.119

(κ0(y) = 1, κ1(y) = 0, y ∈ ∂Ω). Then, in Section 8, we compute solutions using smoothed120

Dirichlet and traction conditions (smooth Robin coefficients), which approximates the im-121

position of these two conditions on two disjoint parts of the diaphragm. However, since122

physiology suggests a smooth solution, we see this as modeling rather than as an error.123

For all of the computations in this paper we use the displacement formulation of (4),
obtained by using the relation between stress and displacement given in (1). The force
equilibrium (4) then expands to:

−∇ · σ = −µ∇2u− (λ+ µ)∇(∇ · u) = f,

and the traction boundary condition from (5) to:

σ · n =
[
λ (∇ · u) I + µ

(
(∇u)

T
+∇u

)]
· n = h.

The displacement formulation of the linear elasticity equations with the boundary condition
from (6) is then written as:

−µ∇2u− (λ+ µ)∇(∇ · u) = f on Ω,

u κ0 +
([
λ (∇ · u) I + µ

(
(∇u)

T
+∇u

)]
· n
)
κ1 = g κ0 + hκ1 on ∂Ω.

(7)

For simplicity we rewrite the system above as:

Du(y) = F (y),

where:

Du(y) =

{
D2u(y), y ∈ Ω
κ0(y)D0u(y) + κ1(y)D1u(y) · n(y), y ∈ ∂Ω

F (y) =

{
f(y), y ∈ Ω
κ0(y)g(y) + κ1(y)h(y), y ∈ ∂Ω

(8)

Here D2, D1, D0 are the expanded operators that in (8) correspond to Ω, ∂Ω1 and ∂Ω0

respectively. If we let ∇ij = ∂2

∂yi∂yj
and ∇i = ∂

∂yi
, then the operator D2 is:

D2 = −
(

(λ+ 2µ)∇11 + µ∇22 (λ+ µ)∇12

(λ+ µ)∇12 µ∇11 + (λ+ 2µ)∇22

)
, (9)

and the boundary operators D1 and D0 are:

D1 =

(
µn2∇2 + (λ+ 2µ)n1∇1 λn1∇2 + µn2∇1

µn1∇2 + λn2∇1 (λ+ 2µ)n2∇2 + µn1∇1

)
, D0 =

(
I 0
0 I

)
. (10)
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4. Approximation of functions using the RBF-FD method124

Here we describe the approximation framework which is used when representing the125

unknown displacement and the stress (which are the outputs of the simulation), and the126

known data vectors (the input data to the simulation) as continuous functions. The following127

discussion is general in the sense that the data vector can be known or unknown. Concrete128

examples of using the framework developed in this section are given in later sections.129

Given a data vector ũ(X) = [ũ(x1), ũ(x2), ..., ũ(xN )]T where xi ∈ Rd we construct a
semi-discrete evaluation operator E = E(y,X), which, for any point y ∈ Ω ⊂ Rd, returns
the value of the interpolant of the data ũ(X) at that point, such that:

ũ(Y ) = E(y,X)ũ(X). (11)

Now we use (11) for each y ∈ Y to obtain a system of equations and form the matrix
E(Y,X) of size M × N , M ≥ N . Note that in our notation this is equivalent to setting
y = Y . The RBF-FD procedure constructs the matrix E(Y,X) using a sequence of local,
stencil-based interpolation problems which are exact for a cubic or quintic polyharmonic
spline basis (PHS) and a (multivariate) monomial basis of degree p. The matrix E(Y,X)
is sparse, that is, it contains n � N non-zero elements per row, where n is the stencil size
defined by:

n = 2

(
p+ d

d

)
. (12)

Details about using PHS plus the monomial basis in RBF-FD approximations can be found
in [20, 21, 22, 23]. In the same way, we construct a semi-discrete oprator for differentiation
DL = DL(y,X) which locally evaluates any derivative L of ũ(Y ):

Lũ(Y ) = DL(y,X)ũ(X). (13)

Both matrices, E(Y,X) and DL(Y,X), can be formed using the MATLAB code avail-130

able in [24]. For completeness, we below provide the steps to compute the matrix elements131

(weights) and to assemble DL(Y,X) and E(Y,X) for the point sets Y and X in any dimen-132

sion d.133

1. Let x
(k)
1 = xi ∈ X (one stencil center) and find n closest neighbors

{
x

(k)
j

}n

j=1
(stencil134

points) around it using the Euclidean distance.135

2. Scale and shift the stencil points to a unit domain [−1, 1]d. Save the scaling as s(k).136

3. Form a square interpolation matrix A(k), where A
(k)
ij = r3 = ||x(k)

i − x
(k)
j ||32 and137

x
(k)
i , x

(k)
j , i, j = 1, .., n belong to the stencil.138

4. Form a rectangular polynomial matrix P (k), where P
(k)
il = pl(x

(k)
i ), i = 1, .., n, l =139

1, ..,m is a sampled d-dimensional monomial basis with m basis functions. When n is140

chosen as in (12) then m = n
2 and the size of the matrix P (k) is n× n

2 .141

5. Using A(k) and P (k), form the augmented local interpolation matrix:

Ã(k) =

(
A(k) P (k)

(P (k))T 0

)
(14)

6. Repeat steps 1–5 for every x ∈ X in order to form all Ã(k).142

The local evaluation and differentiation weights can then be computed in the following way:143
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1. Take one evaluation point yl ∈ Y and find the first closest point from the X point set.144

We denote it by x
(k)
1 .145

2. Scale yl to a unit domain [−1, 1]d using the previously computed scaling s(k).146

3. Form a vector b1 = L||yl − x(k)
j ||32, where {x(k)

j }nj=1 is the local neighborhood of the147

center point x
(k)
1 , where L = 1 for constructing evaluation weights, or a derivative148

operator for constructing differentiation weights.149

4. Form a vector b2 = Lpj(yl), j = 1, .., n2 .150

5. Concatenate the two vectors into b(yl) = [b1, b2].151

6. Use the augmented interpolation matrix that belongs to x
(k)
1 and compute the local152

weights by using the relation wL(yl) = (Ã(k))−1bL(yl).153

7. Store wL(yl) in the l-th row of the matrix WL(Y ).154

8. Repeat steps 1–6 for every yl ∈ Y in order to form all local weights.155

When using these steps to compute the weights, it is possible to avoid storing the matrix Ã(k)
156

by combining the two parts such that the evaluation/differentiation weights are computed157

for all yl which select x
(k)
1 as its closest stencil center, immediately after step 5 of the first158

list. Once the matrix of local weights WL(Y ) of size M × n is computed, these weights159

are assembled into a global rectangular matrix, E(Y,X) for evaluation and DL(Y,X) for160

differentiation, both of size M ×N . This can be done by using a matrix Γ ∈ ZN×n, which161

is a list of indices of the local neighborhoods of points around every stencil point x
(k)
1 ∈ X.162

Additionally, a matrix κ ∈ ZM×1 is needed, which is a list of indices of the stencil centers163

that are closest to each evaluation point yl. Γ and κ are found using the k-nearest neighbor164

method with k equal to n and 1, respectively. Using the MATLAB programming language,165

the two lists and the sparse matrix can be efficiently computed by invoking the following166

three commands:167

Gamma = knnsearch(X,X,’k’,n)168

kappa = knnsearch(X,Y,’k’,1)169

D_L = sparse(repmat(1:M, 1, n), Gamma(kappa,:), W_L, M, N, N*n)170

where the first two arguments to the function sparse() have the same shape as WL(Y )171

and contain the row and column indices for inserting the locally computed weights into the172

global matrix.173

5. Discretization of the linear elastic model using the uniftted RBF-FD method174

In this section we employ the unfitted RBF-FD method [7] to discretize the linear elas-175

ticity equations (8), (9) and (10) over the diaphragm. The method relies on constructing176

rectangular differentiation matrices DL(Y,X) as described in Section 4. The matrices then177

replace the differential operators in the PDE, together with the corresponding discrete right178

hand sides F (Y ).179

To form the differentiation matrices, we first decide the degree p of the monomial basis180

that we are appending to the PHS approximation, and compute the stencil size n using181

(12). Then we construct an interpolation point set X that extends over the diaphragm (see182

Figure 3), and an evaluation point set Y (see Figure 4) that conforms to the geometry of183

the diaphragm. Those two point sets are obtained in four simple steps:184

• The initial point set X1 is a tilted Cartesian node layout with spacing h in a box that185

encloses the diaphragm. (the grey and blue points in Figure 3).186
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Figure 3: The initial point set X1 (tilted Cartesian points) is distributed over a box that encloses the
boundary of the diaphragm (black curve). Points that are more than half a stencil size away from the
geometry (grey) are removed. The remaining points (blue) form the point set X.

• Then the point set Y1 is generated by placing q points with average spacing hy in each187

Voronoi region inside the diaphragm, defined by the points in X1. (the red points in188

Figure 4).189

• In addition, the point set Yb with the same average spacing hy is generated by placing190

points along the boundary of the diaphragm, see Figure 4.191

• The final evaluation point set is given by Y = Y1 ∪ Yb, see Figure 4.192

• The final node set X (the blue points in Figure 3 and Figure 4) is formed by reducing193

X1 by removing points that fall more than half stencil size outside the diaphragm. In194

Matlab this can be done by:195

X = X_1(unique(knnsearch(X_1,Y,’k’,ceil(0.5*n)), :);196

The last step ensures that the columns of E(Y,X) and DL(Y,X) are non-zero [7]. Note197

that the evaluation point set does not need to be constructed by placing precisely q points198

in every Voronoi region. It is possible to use any global point set, which is quasi-uniform199

by nature (e.g. Halton points), and as such on average samples every Voronoi region with200

approximately q points.201

Next, we use the method described in Section 4 to discretize the continuous operator202

D2 in (9) using the interior evaluation points Y1, and to discretize the continuous operators203

D1 and D0 in (10) using the boundary evaluation points Yb. We let Dij
k ( · , X) denote the204

differentiation matrix that approximates element i, j, of the operator Dk, k = 0, 1, 2. If we205

9



Figure 4: The black curve represents a part of the boundary of the diaphragm. Node points in X (blue
markers) and the corresponding Voronoi regions (grey lines) are shown together with interior evaluation
points, Y1, and boundary evaluation points, Yb, (red markers). The same template of interior evaluation
points is used in each Voronoi region inside the diaphragm geometry.

let i, j = 1, 2, while i 6= j, then we can express the differentiation matrices as:206

Dii
2 (Y1, X) = (λ+ 2µ)D∇ii(Y1, X) + µD∇jj (Y1, X),

Dij
2 (Y1, X) = (λ+ µ)D∇ij (Y1, X),

Dii
0 (Yb, X) = E(Yb, X),

Dij
0 (Yb, X) = 0,

Dii
1 (Yb, X) = (λ+ 2µ)niD

∇i(Yb, X) + µnjD
∇j (Yb, X),

Dij
1 (Yb, X) = λniD

∇j (Yb, X) + µnjD
∇i(Yb, X).

We express the discrete Robin coefficients as Ki(Yb) = diag(κi(Yb)), i = 0, 1, and introduce
a scaling βi for equations connected with the operator Di. Finally, we form the rectangular
system of size 2M × 2N that discretizes the Navier-Cauchy system with Robin boundary
conditions (8): β2 D

11
2 β2 D

12
2

β2 D
21
2 β2 D

22
2

β0 K0 D
11
0 + β1 K1 D

11
1 β1 K1 D

12
1

β1 K1 D
21
1 β0 K0 D

22
0 + β1 K1 D

12
1

(ũ1(X)
ũ2(X)

)
=

 β2 f1(Y1)
β2 f2(Y1)

β0 K0 g1(Yb) + β1 K1 h1(Yb)
β0 K0 g2(Yb) + β1 K1 h2(Yb)

 .

(15)

In the numerical experiments, we use the following scale factors:

β2 =
1

µ
hy, β1 =

10

µ

1

h
h

1
2
y , β0 =

1

h
h

1
2
y , (16)

where h and hy are the average internodal distances in the X and Y point sets, respectively.
These are computed as:

h =
1

N

N∑
j=1

min
i 6=j
‖xi − xj‖2, hy =

1

M

M∑
j=1

min
i 6=j
‖yi − yj‖2. (17)
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The choice of scale factors is based on the papers [7, 8], where the scale factors hy for207

the interior and h
1/2
y for the boundary are used, such that the norms of the discrete least208

squares problem approximate the continuous L2-norm. The additional 1/h scaling increases209

the weight of the boundary conditions and improves convergence. The Lamé parameter µ210

is large and affects the scaling between different equations. Therefore, we also include the211

factor 10/µ in β1.212

We solve the least-squares problem (15), for the nodal values ũ1(X) and ũ2(X), using
backslash in MATLAB. After that the solution is evaluated at the Y point set, using the
evaluation matrix E:

ũ1(Y ) = E(Y,X) ũ1(X), ũ2(Y ) = E(Y,X) ũ2(X). (18)

The strains and the stresses (1), (3) are computed by applying appropriate differentiation213

matrices to the solution coefficients ũ1(X) and ũ2(X).214

6. Smoothing of geometry and boundary data215

If we view the two-dimensional diaphragm from the continuous perspective, the geometry
can be described as a closed curve. We choose to parametrize this curve by t ∈ [0, 2π],
where the starting point t = 0 is the same as the final point t = 2π. To benefit from the
potential high-order convergence of the unfitted RBF-FD method, we need to approximate
the boundary curve and the boundary data as functions of t with enough smoothness that
the convergence of the PDE problem is not adversely affected. To avoid reduced accuracy
due to boundary errors near the artificial end points of the interval, we extend the domain
periodically to t ∈ [−2π, 4π] for the approximation. We discretize the extended domain

using the uniformly spaced node points T = {tj}
Ng

j=1. Given M̃g data points, we replicate

these periodically to get the extended data set (T d, G) = {(tdi , gi)}
Mg

i=1, where Mg = 3M̃g >
Ng. We use a one-dimensional RBF-FD approximation, based on a quintic PHS basis
augmented with polynomials of degree pg = 6, to form an overdetermined linear system for
the nodal values g(T )

Eg(T d, T )g(T ) = G. (19)

To enforce continuity at t = 0, we add the following equality constraints

dsg(0)

dts
− dsg(2π)

dts
= 0, s = 0, . . . , pg − 1, (20)

and solve the constrained least squares problem(
2ET

g Eg BT
g

Bg 0

)(
g(T )
λ

)
=

(
2ET

g G
0

)
, (21)

where Bg contains the pg constraints (20) and λ contains the corresponding Lagrange mul-216

tipliers.217

To find the smooth boundary curve from the initial vertex data x̃di , i = 1, . . . , M̃g, we first218

scale the data such that xdi = (pi, qi) = sΩx̃
d
i , i = 1, . . . , M̃g, where sΩ = 156.92−1mm−1.219

The scaling was chosen such that all data points fall within [−1, 1]2. Then we compute an220

approximate arclength parametrization using the Euclidean distance between the scaled221

vertices, such that tdi = 2π
∑i−1

j=1 ‖xdj+1 − xdj‖/
∑M̃g

j=1 ‖xdj+1 − xdj‖, where xd
M̃g+1

= xd1.222
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Then we replicate the data over the extended domain. Finally, system (21) is solved for223

each coordinate function p(t) and q(t). The resulting boundary curve is shown in Fig-224

ure 5 and the individual coordinate functions are shown in Figure 6. Since the curve225

parametrization here is in the clockwise direction, the outward normals are computed as226

n(t) = (−q′(t), p′(t))/‖(−q′(t), p′(t))‖.

t=0

t=1.8

t=2.1
t=2.3

t=2.6
t=5

t=5.3
t=5.5

t=5.8

t=6.57

Figure 5: The smoothed boundary geometry curve (solid line) is shown in both subfigures. The curve was
computed using Ng = 133 node points, Mg = 177 · 3 = 531 data points, and stencil size n = 28. The

markers show the M̃g = 177 vertex data points (top) and uniform evaluation points (bottom). The normals
computed from the approximation, as well as the values of the parameter t along the curve, are also shown
in the bottom subfigure.

227
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0.5

1

p
(t

)

0 1 2 3 4 5 6
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-0.4

-0.2

0

0.2

0.4

q
(t

)

Figure 6: The two smoothed coordinate functions approximating the geometry. The function p(t) (left)
corresponds to the horizontal coordinate and q(t) (right) corresponds to the vertical coordinate. The markers
show the initial data locations.

For the boundary data functions g and h in (7), we manufacture data to mimic the228

expected physiological behaviour shown in Figure 2. A few data points are placed in the229

regions where we have some information (regions 1, 3, 5, 7, and 9 in Figure 2), and then the230

rest of the data is generated through linear interpolation. This results in gradual transitions231

in the regions where we lack information. The data points and the resulting curves are232

shown in Figures 7 and 15.233
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7. Benchmark I: Deformation of the diaphragm using the smoothed Dirichlet234

boundary conditions235

In this section we solve the discretized linear elasticity equations (15). We are interested236

in whether the problem with smoothed Dirichlet boundary condition leads to a high-order237

convergence. A point of interest is also whether the resulting deformation is physiologically238

sensible, and whether the Von Mises stress is distributed as expected.239

The boundary condition that we use is purely Dirichlet, which means that we set the240

Robin coefficients in (8) to κ0(y) = 1 and κ1(y) = 0. Then the only boundary data functions241

present in the system (15) are g1(y) and g2(y), which correspond to the imposition of242

displacements in the horizontal and vertical direction, respectively.243

7.1. The imposition of boundary displacements244

The displacements have been synthesized to reproduce the physiological behavior de-245

scribed in Section 2. Particularly, the translation of the horizontal part of the diaphragm246

(region 5) has been defined as a constant vertical displacement in the downward direction247

and the thickening of the appositional zone (regions 3 and 5) is also prescribed as a constant.248

As described in Section 6, we place a few data points based on this information, and then249

the rest of the data is generated by linear interpolation. From a physiological perspective250

all displacements should be smooth. We generate a smooth function by solving the con-251

strained least squares problem (21). The results are shown in Figure 7. Imposing smooth252

boundary data makes it possible to obtain high-order convergence and provides a solution253

that is physically relevant. In Figure 8 we display the boundary of the diaphragm before

Displacement ũ1 Displacement ũ2

0 2 4 6
t

-0.02

0

0.02

0 2 4 6
t

-0.15

-0.1

-0.05

0

0.05

Figure 7: Benchmark I: The displacement in the horizontal direction (left) and the vertical direction (right)
as a function of the boundary parametrization t (see Figure 5, right image, for an illustration of t in relation
to the boundary). The markers show the initially placed data points, which are then linearly interpolated
into M̃g = 80 data points. For the approximation, Ng = 120 node points and stencil size n = 28 were used.
The dashed lines show the location of the end points of the diaphragm (regions 2 and 8 in Figure 2).

254

and after application of the displacements from Figure 7.255

7.2. Solution of Benchmark I256

The solution is given in Figure 9, where we display the spatial distribution of the dis-257

placements and the Von Mises stress. Looking at the ũ1 distribution in the figure, we can258

observe thickening of the diaphragm in regions 2, 3, 7 and 8 according to the labels from259

Figure 2. Next, the distribution of ũ2 indicates that translation is largest in regions 4, 5 and260

6. The Von Mises stress is largest at the interfaces between regions 2, 3 and regions 7, 8.261

This makes sense, since the change in the thickness is largest in these regions. We conclude262

that the behavior roughly follows the physiological cues described in Section 2.263
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Figure 8: Benchmark I: The diaphragm in its non-deformed state (dashed line) and after displacement of
the boundary (solid line).

Displacement ũ1

Displacement ũ2

Von Mises stress

Figure 9: Benchmark I: The computed displacements and the corresponding von Mises stress over the
diaphragm. This solution was obtained using the unfitted RBF-FD discretization with internodal distance
h = 0.004, oversampling parameter q = 5, and an appended polynomial basis of degree p = 5. Due to the
scaling applied to the geometry (see Section 6), the displayed results for displacement and stress should be
multiplied with s−1

Ω = 0.15692 m to recover the results corresponding to the unscaled problem.
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7.3. Convergence under node refinement264

While the solution is roughly what we expect from a physiological perspective, we are yet
to understand whether the simulation gives a correct answer from a numerical perspective.
We investigate the convergence of the numerical solution under node refinement using several
different polynomial degrees in the stencil-based approximation. Since we do not know
what the true solution is, we measure convergence of the numerical solution ũ(Y ) towards
a numerical reference solution ũ∗(Y∗), where the node set is highly refined. We choose two
numerical references: (i) computed using the unfitted RBF-FD-LS method with internodal
distance h = 0.002, leading to N = 43 841 and polynomial degree p = 5, (ii) computed using
the Galerkin finite element method with linear elements and 236 414 degrees of freedom
(corresponding to h = 0.00085), using the GetDP solver [25]. Every numerical solution ũ
that we obtain is interpolated, consistent with the approximation order, to the point set of
the reference solution Y∗, where we then compute the approximation error:

‖e‖`2 =
‖ũ(Y∗)− ũ∗(Y∗)‖2
‖ũ∗(Y∗)‖2

. (22)

Table 1 shows the relation between the internodal distance h, computed according to (17),
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100 200 300

10
-6

10
-4

10
-2

-1.4

-1.9

-3.4

-4.0

p=2

p=3

p=4

p=5

100 200 300

10
-6

10
-4

10
-2

-1.3

-2.1

-3.0

-3.7

p=2

p=3

p=4

p=5

100 200 300

10
-6

10
-4

10
-2

-1.1

-1.7

-3.2

-3.4
p=2

p=3

p=4

p=5

Figure 10: Benchmark I: Convergence of the displacements ũ1 and ũ2 and the Von Mises stress for different
polynomial degrees p, against a highly resolved numerical solution computed using the unfitted RBF-FD-LS
method, with h = 0.002 and p = 5.

265

and the number of degrees of freedom N for the considered problem sizes.

Table 1: Benchmark I and II: The relation between the inverse internodal distance 1/h and (i) the internodal
distance h and (ii) the number of interpolation points N used for discretizing the PDE problem (8).

1/h 25 50 100 125 166.67 200 250 500
h 0.04 0.02 0.01 0.008 0.006 0.005 0.004 0.002
N 337 853 2500 3617 5904 8126 12129 43841

266

The results when the unfitted RBF-FD method is used as a reference are displayed in267

Figure 10. We observe that the error is small for all polynomial degrees. The convergence268
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rate increases as p is increased. For all p the convergence rates of the displacements are269

close to p− 1. The convergence rate of the Von Mises stress is larger than p− 2 for every p.270

Stress is computed using the first derivatives of the displacements, which (in theory) lowers271

the convergence rate with one order.272

The results when the finite element method is used as a reference are given in Figure 11.273

The convergence plots for the displacement are very similar to the results in Figure 10.274

The convergence rate of the stress for p = 5 is lower compared with the self-reference test275

provided in Figure 10. Furthermore, when p = 5, the convergence seems to be stalling276

at the last point of observation. Our speculative reasoning is that the derivatives in the277

finite element space do not approximate the stresses well enough there. This implies that278

the FEM mesh is too coarse to match the accuracy of the unfitted RBF-FD method for279

derivative approximation, when the polynomial degree is as high as p = 5, for the range of280

h used here.
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Figure 11: Benchmark I: Convergence of the displacements ũ1 and ũ2 and the Von Mises stress for different
polynomial degrees p, against a highly resolved numerical solution computed using FEM (the GetDP solver
[25]) with linear elements and 236 414 degrees of freedom (corresponding to h = 0.00085).

281

The spatial distribution of the error when using the self-reference solution and the finite282

element reference solution is shown in Figure 12 and Figure 13, respectively. The numerical283

solution was computed using h = 0.004, q = 5, p = 5. For all solution fields and both284

references we can observe that the error is larger in the regions with larger Von Mises stress.285

In addition, the error also tends to be larger in the regions where the boundary curve is286

concave. This implies that our problem could benefit from adaptive node refinement, which287

we are planning to use in our future work.288

8. Benchmark II: Deformation of the diaphragm using the smoothed Robin289

boundary conditions290

This benchmark includes a more difficult problem compared with Benchmark I from Sec-291

tion 7. As discussed in Section 2, we can measure the displacements over certain parts of the292

boundary, i.e., where the diaphragm is fixed near the spine, or where it moves together with293
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Displacement ũ1 Displacement ũ2

Von Mises stress

Figure 12: Benchmark I: Error distribution in logarithmic scale for h = 0.006 and p = 5 when a fine unfitted
RBF-FD-LS solution (h = 0.002, p = 5) is taken as reference for computing the error.

Displacement ũ1 Displacement ũ2

Von Mises stress

Figure 13: Benchmark I: Error distribution in logarithmic scale for h = 0.006 and p = 5 when a fine unfitted
RBF-FD-LS solution (h = 0.002, p = 5) is taken as reference for computing the error.

the sternum and some ribs. In the regions where the displacements are not known, we may294

instead have information about the thoracic or abdominal pressure. A pressure condition295

is a special case of a traction boundary condition. A straightforward way to handle these296

boundary conditions would be to impose the Dirichlet condition (the known displacements)297

and the traction condition (the known traction values) in disjoint regions. This implies a298

discontinuous imposition of boundary conditions, for which: (i) we can not obtain high-299

order convergence according to our preliminary tests, (ii) the resulting deformation might300

be discontinuous or have large local derivatives, which would not reflect the physicological301

behavior of the diaphragm. For this reason we introduce a smooth blending of the Dirichlet302
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and the traction boundary conditions in Robin form (6).303

This setting implies that we solve the system of equations (15), where the supports of304

the Robin coefficients κ0(y) and κ1(y) are chosen to overlap slightly in the regions where305

the type of boundary data changes. In Figure 14 we display the Robin coefficients which we306

use in Benchmark II. The displayed coefficients are a function of the boundary parameter307

t. The coefficients were computed using a sum of the sigmoid functions 1
1+eε(t−di)

, where308

ε = ±20, t is the boundary parameter and di, i = 1, 2, .. are the transition points (marked309

by dashed lines in Figure 14). The sign of ε depends on whether the coefficient is increasing310

(positive sign) or decreasing (negative sign).311

0 2 4 6

t

0

0.5

1

Figure 14: The Robin boundary coefficients displayed over the diaphragm show the impositions of the
traction and the Dirichlet parts of the boundary condition. The orange line corresponds to the traction
coefficient κ1, and the blue line corresponds to the Dirichlet coefficient κ0. The dashed lines show the
location of the end points of the diaphragm (regions 2 and 8 in Figure 2). The parameter t corresponding
to the boundary of the diaphragm is illustrated in Figure 5.

The smoothed boundary displacement values g1, g2 and the boundary traction values312

h1, h2 are given in Figure 15. Through the functions g1 and g2 we impose thickening in the313

regions 2, 3, 7 and 8 based on the distribution in Figure 2. Additionally, we also impose314

a gentle translation in the negative vertical direction in the regions 7 and 8. Through the315

functions h1 and h2 we impose the translation of zone 5 in the negative vertical direction.316

8.1. Solution of Benchmark II317

The solution is given in Figure 16, where we can see the spatial distribution of displace-318

ments and the Von Mises stress. To obtain this figure we used h = 0.006, p = 5, and319

q = 5. We observe that there is a slight thickening in regions 2, 3, 7 and 8, according to the320

labels from Figure 2, which corresponds to the imposed thickening up to some extent. In321

regions 4 and 6, we observe a slight bend towards the interior, and in region 5, a translation322

in the negative vertical direction. This behavior does not entirely mimic the physiological323

contraction of the diaphragm, however, constructing a more accurate model is planned as324

future work. This solution serves as a test to understand whether the unfitted RBF-FD325

method can handle the problem with the smoothed Robin boundary condition, as well as326

to explore how this type of boundary condition affects the behaviour of the solution.327

8.2. Convergence under node refinement328

We validate the numerical solution by studying convergence under node refinement. Our329

choice of reference solution for this study is a fine solution computed using the unfitted RBF-330

FD method with an internodal distance h = 0.002 and a polynomial degree p = 5 used for331

constructing the local approximations. The relative error against the reference solution is332

computed using (22). The relation between the considered h and the number of points N333

in X is given in Table 1.334
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Figure 15: Benchmark II: The smoothed boundary data over the diaphragm. For this benchmark we have
both Dirichlet data (left column) and traction data (right column), each with a horizontal component (first
row) and a vertical component (second row). The markers show the initially placed data points, which are
then linearly interpolated into M̃g = 80 data points. For the approximation, Ng = 120 node points and
stencil size n = 28 were used. The dashed lines show the location of the end points of the diaphragm (regions
2 and 8 in Figure 2). The parameter t corresponding to the boundary of the diaphragm is illustrated in
Figure 5 (right image).

The errors for different choices of the polynomial degree p are displayed in Figure 17.335

We do not observe convergence for any p when h is too large. The reason for this is that336

the problem is not resolved yet. When h is sufficiently small, and when p = 4 or p = 5,337

the solution converges at least with order p − 1, which is desired. When p = 2, we do not338

see convergence, since we would need an even higher resolution for this (small) polynomial339

degree. When p = 3 we observe an approximately first order convergence for a sufficiently340

small h. This order is expected to increase to p− 1 = 2 if h is refined further. Low-order or341

no convergence when p is small advocates using a higher order method.342

The spatial distribution of the error computed using h = 0.006 and p = 5 is given in343

Figure 18. Here the error is largest close to region 5 from Figure 2, where we have enforced344

the traction boundary condition, which includes derivatives. In our experience the error is345

normally larger in the regions where derivative boundary conditions are imposed compared346

with the regions where a Dirichlet condition is imposed, and we also observed this in [7, 8].347

348

9. Conclusions349

The unfitted RBF-FD method in the least-squares setting [7] provided a robust frame-350

work for solving the linear elasticity system of PDEs over the simplified diaphragm geometry.351

We could also use the unfitted RBF-FD method to smooth the geometry curve and the352

boundary data. Ensuring that all components of the model were smooth allowed us to353
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Displacement ũ1

Displacement ũ2

Von Mises stress

Figure 16: Benchmark II: The computed displacements and the corresponding von Mises stress over the
diaphragm. This solution was obtained using the unfitted RBF-FD discretization with internodal distance
0.006, an oversampling parameter q = 5 and an appended polynomial basis of degree p = 5. Due to the
scaling applied to the geometry (see Section 6), the displayed results for displacement and stress should be
multiplied with s−1

Ω = 0.15692 m to recover the results corresponding to the unscaled problem.

achieve high-order convergence, which reduces the number of unknowns needed for a given354

approximation error. In the experiments (not unexpectedly), Benchmark II, with Robin355

boundary conditions, proved more challenging to solve than Benchmark I with Dirichlet356

conditions. We needed higher resolution to achieve the same error level, and we did not357

see any convergence for the larger values of h. In the error plots, we could also see that358

the error is largest in the area where only the traction condition is active. In the present359

work, we manufactured the data for the boundary conditions, but the aim is to eventually360

use measured pressure values and the solid body rotation of the ribs as boundary input361

data. This is most similar to the more challenging Benchmark II. There are a large number362

of transition zones, where the type of boundary condition changes, while we still expect a363

smooth behaviour of the solution. We were able to achieve a smooth solution and high-364

order convergence by using the proposed smoothing approach, and we will use that for365

the real application. Further investigations are needed regarding how to choose smoothing366

parameters such as the size of the transition zone.367
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Figure 17: Benchmark II: Convergence of the displacements ũ1 and ũ2 and the Von Mises stress for different
polynomial degrees p, towards a dense numerical reference computed using the unfitted RBF-FD-LS method
with h = 0.002, p = 5.

Displacement ũ1 Displacement ũ2

Von Mises stress

Figure 18: Benchmark II: Error distribution in logarithmic scale for h = 0.006 and p = 5 when a fine unfitted
RBF-FD-LS solution (h = 0.002, p = 5) is taken as reference for computing the error.

To validate the unfitted RBF-FD solver, we measured convergence both against a self368

reference and against a highly resolved linear FEM solution. The results show that the two369

methods agree to high accuracy.370

Future work includes employing an unfitted RBF-FD-LS method to solve a more complex371

elastic problem, where we are going to use the 3D geometry and forcing data, both extracted372

from the CT (computed tomography) images of the diaphragm.373
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in Biomechanics and Biomedical Engineering, 2019, pp. S84–S86.427

[15] M. P. Pato, N. J. Santos, P. Areias, E. B. Pires, M. de Carvalho, S. Pinto, D. S. Lopes,428

Finite element studies of the mechanical behaviour of the diaphragm in normal and429

pathological cases, Comput Methods Biomech Biomed Engin 14 (6) (2011) 505–513.430

[16] B. Fuerst, T. Mansi, F. Carnis, M. Sälzle, J. Zhang, J. Declerck, T. Boettger, J. Bay-431

outh, N. Navab, A. Kamen, Patient-specific biomechanical model for the prediction of432

lung motion from 4-D CT images, IEEE transactions on medical imaging 34 (2) (2014)433

599–607.434

[17] P.-F. Villard, P. Boshier, F. Bello, D. Gould, Virtual Reality Simulation of Liver Biopsy435

with a Respiratory Component, in: H. Takahashi (Ed.), Liver Biopsy, InTech, 2011.436

URL https://hal.inria.fr/inria-00621263437
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