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Geo-Storylines: Integrating Maps into Storyline Visualizations

Golina Hulstein, Vanessa Peña-Araya, and Anastasia Bezerianos

(B) Map Glyphs(A) Coordinated Views (C) Time Glyphs

Fig. 1: Three Geo-Storyline designs showing the geo-temporal evolution of the relationships between people. The two selected
people in blue moved together from north to south. (A) Coordinated Views include a map on the left and a unique Storyline timeline
on the right. While scrolling, links appear between the relationship nearest to the map and the associated locations. (B) In Map
Glyphs each relationship is represented by a map with the associated locations drawn in orange. (C) Time Glyphs are composed by
a map on the left and a scrollable list of Storyline glyphs on the right. Each Storyline glyph contains all the relationships associated
with one location. Gray lines between a location on the map and a storyline glyph indicate the correspondence between the two.

Abstract— Storyline visualizations are a powerful way to compactly visualize how the relationships between people evolve over time.
Real-world relationships often also involve space, for example the cities that two political rivals visited together or alone over the years.
By default, Storyline visualizations only show implicitly geospatial co-occurrence between people (drawn as lines), by bringing their
lines together. Even the few designs that do explicitly show geographic locations only do so in abstract ways (e.g., annotations) and do
not communicate geospatial information, such as the direction or extent of their political campains. We introduce Geo-Storylines, a
collection of visualisation designs that integrate geospatial context into Storyline visualizations, using different strategies for compositing
time and space. Our contribution is twofold. First, we present the results of a sketching workshop with 11 participants, that we used
to derive a design space for integrating maps into Storylines. Second, by analyzing the strengths and weaknesses of the potential
designs of the design space in terms of legibility and ability to scale to multiple relationships, we extract the three most promising:
Time Glyphs, Coordinated Views, and Map Glyphs. We compare these three techniques first in a controlled study with 18 participants,
under five different geospatial tasks and two maps of different complexity. We additionally collected informal feedback about their
usefulness from domain experts in data journalism. Our results indicate that, as expected, detailed performance depends on the task.
Nevertheless, Coordinated Views remain a highly effective and preferred technique across the board.

Index Terms—Storyline visualization, geo-temporal data, maps, hypergraphs

1 INTRODUCTION

In 2009 the XKCD comic introduced narrative charts, a visualization
to summarize movie plots [35]. In these charts, each character in the
movie is represented by a line along an implicit horizontal timeline.
Characters’ lines curve towards each other when they meet, stay close
as long as they are together, and move apart again when they split up.

This co-occurrence between movie characters can be more broadly
defined as a relationship among entities of any type that occurs on a
specific point in time. Their succinct layout makes narrative charts,
later known as Storylines, a powerful tool applicable to a variety of
domains. For example, they have been used to visualize how developers
interact on a code repository [36], to illustrate spatio-temporal patterns
of fixations in eye tracking [9], and to visualize the evolution of commu-
nities in dynamic social networks [44]. More recently, HyperStorylines
has generalized Storylines to represent complex relationships between
any type of entity in a hypergraph [41].
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Relationships among people in real world contexts commonly in-
clude geographical locations (e.g., countries or cities) or other contex-
tual places (e.g., a cafe or a theater). Let us consider the example of
our journalist experts analysing the election campaign of two political
rivals in France, Juliet and Antoine, shown in Fig. 1. We can define
each political debate between them as a relationship, linking the two
candidates, a city and a date. A more complex relationship can consider
other events organised by their parties occurring simultaneously in
different cities. Here, a single relationship can link the names of the
organizers, several locations and a date. Journalists may investigate
the structure and impact of these campaigns, trying to understand the
cities the politicians visited together, if the supporting events happened
between contiguous cities or were more wide-spread, and whether the
campaign events were organized simultaneously or moved sequentially
from city to city following a geographical pattern. Answering these
questions requires a visualization of geospatial, temporal, and relation-
ship data. For example, in Fig. 1 we observe that the relationships that
link Juliet and Antoine start in the north of the country in 2001 and
move slowly to the south over the years.

Some Storyline variations use abstract strategies, such as line posi-
tion or annotations, to visualize where relationships occur (e.g., [7, 31,
50]). However, they lack geospatial detail and therefore cannot answer
all of the questions mentioned above. In addition, they do not con-
sider complex spatial links where more than one location is linked to a
single relationship. We address this gap by introducing and studying
geo-storylines, visualizations that integrate the full geospatial context
of relationships into storyline visualizations.
Our work makes the following two contributions:



1. The Geo-Storylines design space, derived from sketching workshops
and a literature review of tangentially related visualizations.
2. The evaluation of the three most promising designs from the design
space. First, in a controlled user-study that focuses on five spatio-
temporal tasks: identify locations, identify dates, distance, direction
and adjacency. And second, through expert feedback. The three designs
differ in their focus on space vs. time: Map Glyphs split spatial
information over multiple maps within the storyline; Coordinated
Views link the temporal information in the storyline with a separate
map on user interactions; and Time Glyphs split time by representing
it in a separate storyline for each geospatial location.

Our results found Coordinated Views more efficient and preferred
overall. However, both Map Glyphs and Time Glyphs had higher
accuracy than Coordinated Views when identifying locations. Our code,
supp.material and link to a live demo are available at https://gitlab.
inria.fr/ilda/geo-storylines, and experimental analysis and
scripts can be found at https://osf.io/5wnyg.

2 RELATED WORK

In this section we first summarize literature on the visualization of
relationships over space and time in generally. We then cover existing
work on Storyline visualization, and relevant design spaces.

2.1 Visualizing Relationships over Space and Time
There is an extensive amount of research on spatio-temporal visualiza-
tions. For instance, there are general approaches to represent change
over space and time, like small multiples [20, 30, 56], animation [32]
or 3D views [27, 52]. Other approaches focus on specific types of
data, like flow of movement [45, 56], trajectories [8, 53, 57] and other
spatio-temporal patterns [34]. Nevertheless, this work does not include
information about the evolving spatio-temporal relationships among
entities, such as when the entities come together or diverge in their
trajectories. When we do not consider time, there is also considerable
work expressing the relationships of only two entities, expressed as
nodes, in the form for geospatial networks. This work is summarized
in the survey by Schöttler et al. [47].

There is little work that considers multiple entities (e.g., people),
whose relationships evolve in space and time. Examples of such data
can include genealogies, academic co-authorship networks, or political
rivalries, and can be modeled as dynamic hypergraphs. Hypergraphs
are the generalization of graphs, where links can include any num-
ber of nodes instead of only two [11], and nodes can be of any type
(e.g., people, locations). The visualization of dynamic hypergraphs, that
represent the evolution of relationships over time, is an active research
field [22]. The three more recent visualizations are PAOHViz [55],
Hyper-Matrix [21] and HyperStorylines [41]. The first two adopt a
matrix approach and represent entities as rows and relationships in
columns. HyperStorylines, on the other hand, generalizes Storyline
visualizations to show relationships between multiple types of entities.
HyperStorylines and PAOHViz both encode location entities, but these
are treated as any other named entity without explicit geographical
context to allow for geospatial analysis (e.g., the distance or spread
between the locations where two relationships occur).

In summary, there are no existing visualizations that describe the
geospatial context of entities’ relationship dynamics. Furthermore,
most of geospatial network visualizations do not focus on links of more
than two elements. In this paper we set out to create visualizations that
can combine entities’ dynamic relationships with the geospatial context
they occur in. We chose to do this by integrating geospatial information
into Storylines as their layout prioritizes grouping of related entities and
allows for a more compact and easy-to-analyze visualization than PAO-
HVis [41]. It is this relative simplicity of Storylines that makes them a
promising candidate for integrating additional geospatial information.

2.2 Storyline visualizations
Inspired by the XKCD’s Narrative Charts, Ogawa and Ma introduced
Storyline visualizations, including a layout algorithm, that was used to
display interactions between software developers [36]. Later research
has mostly focused on their automatic generation [7, 24, 31, 33, 48, 49]

and on applying them to different domains. For example, Storylines
have been used to visualize dynamic social networks [44, 59], collabo-
ration in groups [33, 36], genealogical data [28], temperature changes
over time [58], and even to analyze eye tracking data [9]. A more recent
line of research considers how additional information can be integrated
into Storyline visualizations including mixing automatic and human
input [50, 51], non-linear narratives [37, 38] and multiple relationships
at once by branching their lines [17].

Only a handful of papers consider space in Storylines. The original
Narrative Charts [35] use labeled background contours to encode space,
which was later extended with layered contours that can show location
hierarchy in a form similar to a river plot [31, 48, 49]. Other visual-
izations use arc segments drawn between entities [43], or the y-axis
position of entities to encode space [7]. Finally, some hand-drawn
Storyline examples use line rendering properties to show transitions
between worlds [50, 51].

The aforementioned representations of space show the geospatial
context to a limited extent. Layered background contours in the form
of river plots provide information about the hierarchical relationships
between locations, but do not show information related to distance
or direction. Designs that reduce 2D space to the y-axis can show
distance but distort the horizontal space making horizontal direction
or adjacency hard to determine. One exception is the work of Yagi et
al. [58] that shows temperature variation in Japan. Their visualization
combines a map of Japan with a Storyline representation of temperature,
and relates the two through color. While this design does describe the
full geospatial context, its reliance on color strongly limits the number
of locations it can encode.

2.3 Existing Design Spaces relevant to Storylines
Some existing design spaces are relevant to Storylines, although they
do not necessarily consider geographical context. For example, Tang
et al. [51] created a design space for their narrative elements. Their
design space is structured into five dimensions describing ways to
encode actors, relationships, and plots as well as variations of timeline
structure and decorative elements. However, their design space does
not cover geospatial representations in Storylines.

Brehmer et al. created a design space for storytelling with timelines
[13] which is structured into three dimensions: how a timeline is
represented (linear, radial, a grid, etc.), the scale used in the timeline,
and its layout. It does not, however, address Storylines specifically.

Bach et al.’s recent review of geospatial network visualizations pro-
vides a comprehensive overview of how networks can be combined
with geospatial visualizations [46]. Their design space describes the
representations of space and networks, but also considers how the two
are combined. Although this design space does cover geospatial rep-
resentations, it is missing the time dimension. On the other hand, the
more general framework defined by Bach et al. [8] gives a descriptive
model for temporal data. However, it does not consider explicit rela-
tionships among entities, nor geo-spatial data. Finally, the framework
by Windhager et al. [57] visualizes biographical data over space and
time using multiple 3D views. It describes people’s trajectories, but
does not explicitly represent relationships between them.

While none of these design spaces describe how geospatial con-
text can be integrated into Storylines, they provide inspiration for the
dimensions proposed in our own design space and are discussed there.

3 GENERATIVE WORKSHOPS

The challenge of analysing the spatio-temporal properties of evolving
relationships is important in several domains, including data journalism.
The example provided in the introduction comes from a long collabora-
tion with data journalists [41] (see Sect. 7), where we identified the need
to add topological / geographical information in Storylines. We thus
set out to explore the different forms that Geo-Storyline visualizations
could take. As existing approaches include limited spatial information
in Storylines, we decided to generate a breadth of alternative visualiza-
tions to better understand their properties and limitations. Following an
approach similar to Tang et al. [51], we conducted design workshops
where participants generated hand-drawn visualizations, which we then
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used to create a design space. We describe our workshop considerations,
procedure and the analysis of the created designs.

3.1 Spatial relationship patterns and tasks
We asked participants to generate designs that combine three dimen-
sions: people, and how their relationships evolve over space, and over
time. As we are interested in adding geo-spatial context, we identi-
fied early on five patterns that describe how people’s locations relate
to one another: for example when two politicians visit cities which
direction do they follow, or what distance do their respective campaigns
cover. These patterns are: distance, direction, extent, adjacency, and
hierarchy (discussed next). In the workshop, we used these patterns
to inspire participants to include different aspects of space in their
sketches (Sect. 3.3). We then used them as a basis for the tasks in
our comparison study (Sect. 5). We next explain why we chose these
patterns and how we turned them into questions and tasks.

To obtain the geospatial patterns of how locations relate to each
other, we looked at the taxonomy of movement by Dodge et al. [18],
that organizes the possible parameters that define a movement pattern.
We focused on their primary derivative parameters that define basic
movement. Additionally, we do not include parameters in the temporal
dimension (duration) as we focus on the spatial context of relationships.
This led us to the spatial patterns: distance, direction, and spatial extent.
When used as prompts, participants in the workshop would be asked
to design a visualization that could answer questions such as what
distance did these two people travel together?, which direction did they
take?, and how much of the country did they cover?

We consider two additional spatial relationships that stem from the
structure of maps: adjacency and hierarchy. Similarly to work on visu-
alizing spatial propagation [39], we consider two locations as adjacent
when the trajectory between them is contiguous and is not separated by
other locations (no hops). Geo-spatial hierarchy describes the common
spatial organization of map locations into levels such as cities, coun-
tries, and continents. Prompt questions for these relationships would be
were there any jumps in the trajectory followed by these two people?
or how did people move between countries and continents?

3.2 Participants and data
We conducted three 2h workshops with 11 participants from our insti-
tution (7 women, 4 men, 1 did not specify). Workshops were divided
in two 1h sessions and were conducted online. In an effort to gen-
erate usable and varied designs, all participants were practitioners or
researchers in HCI and visualization.

Participants could choose to prepare their own dataset or use one
of two prefabricated datasets: (i) the movements of a subset of Lord
of the Rings (LotR) characters, and (ii) a music tour of Imagine Drag-
ons between 09-2017 and 08-2018 with its opening acts. For both
datasets we provided a map. Five participants chose to use the LotR
dataset and two chose the Imagine Dragons one. The remaining four
participants chose to collect a personal dataset about their trips with
family or friends, and were instructed to collect data about when and
where the relationships between people occurred. To keep the datasets
manageable in size for creating hand-drawn sketches, we limited them
to 3-5 people and approximately 15 relationships.

3.3 Procedure
The workshop was structured into two sessions of one hour each. In
the first session, we introduced the theme and showed participants a set
of basic visualizations of time, space, and relationships as inspiration
(slides provided in supp.material). We note that storylines were only
one among several inspiration visualizations. Participants were then
given 25 minutes to sketch a first, unguided, visualization of their data.
They were asked to upload their sketches to a Miro board1 and then
present them to the group. At the end they were asked what remaining
questions they had about their data.

Before the second session, we prepared two sets of 2-3 questions for
each participant to choose from. Allowing participants to choose from

1www.miro.com

a set of constraints has been used in previous visualization workshops
to foster creativity in a reasonable time span [26]. The first set came
from the questions participants reported having about their data at
the end of session 1. The second set asked participants to focus on
answering a question related to one of the identified geospatial patterns
(see Sect. 3.1), guiding participants to explore different aspects of
space in their sketches such as distance, direction, spatial extent, and
hierarchy. The second session started with a short intro, after which
participants completed two rounds of sketching of 20 minutes each. In
each round they chose one of the questions we prepared. We also gave
participants a set of inspiration cards (supp. material) to remind them
of different ways to visualize space, time and people.

As our goal was to generate a wide variation of visualizations, all
three authors participated in the sketching during the workshops. We
used the Imagine Dragons dataset as well as our own custom datasets.

3.4 Analysis of Generated Sketches
The workshop produced 67 sketches (supp.material), among which 39
were created by participants and the rest by the authors. However, not
all sketches visualize multiple people and their relationships over space
and time. For example, 5 participant sketches visualized the movements
of only one person, failing to describe relationships. And notably, 11
sketches (7 from participants) are missing the time dimension. Based
on our observations, this happened when participants made the strategic
decision to start their visualization with only two aspects of the data
(e.g., people and space). In some cases, they were able to integrate the
third aspect (e.g., time) later on, but sometimes they failed to do so
indicating that combining all three aspects is challenging. Indeed, at
the end of the workshop several participants expressed how difficult it
was to combine all three dimensions.

It is interesting to note that while participants were provided with
several geo-temporal inspiration visualisations (not only storylines) they
often naturally converged to sketches that have storyline visualization
characteristics (21 out of 39 generated by participants). Examples of
sketches can be seen on the left and right side of Fig. 2.

We performed a bottom-up card sorting of the workshop sketches
in several iterations, grouping them by visual encoding, and by what
aspects of the data they highlight. We examined the resulting clusters in
terms on whether they can represent the relationships of multiple people
and their spatial evolution. We eliminated clusters that rely on abstract
representations of space, as they are either unable to show spatial rela-
tionships between locations, or only show a single spatial relationship
(such as distance or hierarchy only). This resulted in five clusters whose
characteristics we analysed to create a design space (Sect. 4), made up
of 41 sketches (25 from participants). Details of our iterative analysis,
resulting clusters and all sketches are in supp.material.

We note that the workshop sketches did not always include Story-
lines: for example some included other timeline representations, like
Fig. 2H that associates a separate custom timeline representation to
each location. We thus created representative designs for each cluster
that illustrate the sketch concepts, but are adapted for storylines. For
example in Fig. 2H we replaced the custom timeline with a Storyline.
These representative designs are seen at the center of Fig. 2. As the
Small Multiples cluster presents two promising design variations, one
with a map per relationship, and one with a map per time-step, we
included two representative designs, seen in Fig. 2A,E respectively.

4 THE DESIGN SPACE

Here we introduce the Geo-Storylines design space, that considers
how to best incorporate geographical context into storylines. We first
describe its three dimensions that explain how space and time can be
combined, how the design space categorizes the designs extracted from
the workshop, and how it was used to generate two additional designs.
The design space, along with representative designs and inspiration
sketches, can be seen in Fig. 2.

4.1 Design Dimensions
We observed that the six representative designs extracted from the
sketching workshop (Fig. 2) may split either the space or time rep-
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Fig. 2: Design space. The central part of the image provides an overview of the design space, with the six representative designs selected from the
analysis of our sketching workshop (A-E,H). The two representative designs indicated with a gray border (F,G) were added later to fill gaps
in the design space. Surrounding the design space are sketches from each of the clusters identified in the workshop, that inspired the different
representative designs. The cluster names are indicated above the sketches, and the number of sketches in them below in gray.

resentations in the layout, depending on their emphasis (keeping the
dimension of emphasis unified). This difference between split and
unified layout representations of time and space defines the first two
dimensions of our design space. However, there are cases where these
two dimensions were insufficient to differentiate all the potential de-
signs. For example, Fig. 2A and Fig. 2C both maintain time unified
and space split, yet they clearly differ in how they combine these two
dimensions. This difference motivated the third dimension: the overall
composition of the visualization, which can be merged or separated.

We note that the design space resulting from these dimensions had
two cells with no representative design, so we generated two additional
designs to fill the gaps, seen in Fig. 2G and Fig. 2F. We next discuss
the characteristics, advantages and disadvantages of these dimensions.

Time Layout. The layout of time can be either unified (a single
timeline) or split (one timeline per location). Our time layout dimen-
sion resembles the one proposed in the design space for timelines by
Brehmer et al. [13]. They distinguish between unified, faceted and
segmented layout. The latter two, where time is split by a categorical
value (faceted) or temporal divisions (segmented), correspond to our
split time layout. When considering the Space-Time Cubed framework
for temporal data by Bach et al. [8], we can classify Storylines as a
space flattening operation and our design space as chained operations.
However, this framework does not address space explicitly, and thus
does not acknowledge the way space is embedded (e.g., in Fig. 2A).

For unified time, Fig. 2 shows three designs that use a single linear
timeline, with a map positioned either: inside it (Fig. 2A), on top
(Fig. 2C), or next to it (Fig. 2D). In the case of (Fig. 2D), links between
the map and the timeline appear interactively by scrolling horizontally.
In a fourth design (Fig. 2B) time is encoded on trajectories: people are
differentiated through line symbols (dashes, dots, etc.) and time by a
common time-color gradient (higher saturation indicates recency).

For split time, Fig. 2 shows how we can split time: by periods (small
map multiples in Fig. 2E and G), by locations with one timeline per
location (Fig. 2H), or by people and individual trajectories (Fig. 2F).

Space Layout. Similar to time, the layout of space can be either
unified (one map) or split (small multiples). The spatial layout dimen-
sion resembles Peña-Araya et al.’s categorization of spatio-temporal
visualizations [40]. In their categorization, visualizations are classified
based on whether they juxtapose time (e.g., animation) or locations
(e.g., small multiples). While their categorization strongly overlaps
with the space layout dimension in our design space, it does not cover

all cases in the Geo-Storylines design space. Notably, one of our Geo-
Storylines designs juxtaposes space based on relationships rather than
based on time (Fig. 2A).

For split space we have designs that use one map per relationship
(Fig. 2A) or per periods of time (Fig. 2C, E and G). For unified space,
we see one map with merged or split timelines inside it (Fig. 2B,F), or
next to the map (Fig. 2D,H).

Composition. The third and final dimension describes how the
representations of time and space are combined into one visualization.
Time and space representations can be either placed side by side -
keeping them separated - or they can be merged. The composition
dimension also exists in Schöttler et al.’s survey of geospatial net-
works [46]. They define four categories of compositions ranging from
loosely to strongly integrated: juxtaposed, superimposed, nested, and
integrated. Superimposing, nesting and integrating all describe differ-
ent ways to merge the representations of time and space, and are all
three present in the Geo-Storyline designs. In one design, small maps
are nested into the storylines for each relationship (Fig. 2A). In other
designs, time is integrated into trajectories (Fig. 2B,F). Finally, one de-
sign superimposes timelines over maps (Fig. 2E). As we have only one
or two examples using superimposed, nested, or integrated composition
each, we combine these categories into merged compositions.

4.2 Design Assessment
We assessed the capabilities of each visualization in an effort to identify
the most promising designs. Our goal was to identify designs that
represent all individual relationships without overlapping and without
requiring arbitrary aggregations, i.e. designs that show all available
relationship information. In particular, avoiding aggregation ensures
that different relationships occurring at the same time and place are
distinguishable.

The designs Fig. 2B and F are incapable of differentiating multi-
ple relationships occurring at the same time and location(s). These
designs, as well as Fig. 2E also suffer from occlusion. All three place
relationships as glyphs over a map, so the available space to position
a set of relationships is constrained by the boundaries of the location
they are associated with. Small locations or those with large number of
relationships will inevitable suffer from occlusion.

Design Fig. 2C aggregates several relationships over time, shown
together on one of the mini-maps on top of the timeline. This aggre-
gation makes it difficult to differentiate relationships happening in the
same location at different times. Extending the design to one map per



relationship would eliminate the problem. However, it would require
users to split their attention between navigating the storyline and identi-
fying the corresponding mini-map on top. This makes it a less legible
version of (A) where the mini-maps follow the people’s lines.

Design Fig. 2G also requires aggregation of time. And as it combines
multiple time glyphs with map glyphs, it subdivides time and space to
such an extent that it becomes a less illegible variation of Fig. 2H.

Three promising designs remain: the small multiple maps per rela-
tionships that we will call from now on Map Glyphs (Fig. 2A); the
design where each location has its own storyline, called from now on
Time Glyphs (Fig. 2H), and the Coordinated Views (Fig. 2D).

5 USER STUDY

In this section we describe our evaluation of the three selected Geo-
Storylines designs. The study aims to evaluate two aspects of the
designs: 1) How effectively they visualize the geospatial relationships
described in Sect. 3.1; and 2) how their performance scales with the
number of locations they visualize. Figure 1 shows an example of the
implementation of the three selected designs. This dataset is inspired
by a real example from data journalism. It contains ten relationships
between seven people, at six different points in time, meeting at four
locations on a map. In each visualization, two people are selected.

5.1 Implementation of the designs
For our study, we implemented the three Geo-Storylines designs as
an online interactive system. We took care to make interactions and
the visual representation of relationships and entities (time, location,
people) as similar as possible across the three visualizations.

Visual Properties: Designs vary in how to represent the links be-
tween time and geography. However, all timelines follow a basic
Storyline visualization where each line represents a person that evolves
over time in the horizontal axis. Lines, representing people, come to-
gether inside relationship boxes each time there is an event that involves
all these people. Relationship boxes are rounded rectangles, with a
hinge (dot) at the point where peoples’ lines go through them. In the
case of Map Glyphs, the relationship box is replaced by a mini-map.
All locations of the map are colored with gray at the beginning. We
limited the use of color as much as possible to push the basic visual
encoding of each design. Each visualization fits in 2564×1310 pixels.

Interactions: Our design space does not consider interactions (except
scrolling for Coordinated Views). When rendering real world datasets
(see Sect. 5.5) it became clear that realistic timelines, where the names
of the entities are big enough to be readable, extend beyond the available
screen real-estate. So basic scrolling was added to all visualizations.

In addition, we observed in a pilot that visually tracing the path
of specific entities while scrolling was tedious, as entity lines often
cross and curve. We thus added basic selection functionality, that also
exists in many other Storylines systems (e.g., [5, 36, 41]) The three
designs allow users to select one or more people, locations or dates.
Selected entities are highlighted in blue, and so are the borders of the
relationship boxes they are involved in. When more than one entity is
selected, it is the relationship boxes that include all these entities that
get highlighted in blue (intersection). Once a selection is activated, the
remaining entities are faded out: if they are connected with some (but
not all) of the selected entities they become gray, and if they are not
connected to any selection they fade out to a light gray. This distinction
allows users to differentiate between related, but unselected entities
(gray) that may provide contextual information, and ones they do not
relate to user’s selection at all (light gray). We did not add advanced
interaction, such as filtering or zooming, as we wanted to study the
core design trade-offs of the techniques, distilled in our hypothesis in
Sect. 5.3 (e.g., Time Glyphs require vertical space for all timelines,
Map Glyphs result in small resolution mini-maps).
We next note differences across the designs (also seen in Fig. 1).

Coordinated Views (Fig. 1A): Coordinated Views contain a map on
the left, and on the right a single Storyline visualization. To see which
locations are associated with a relationship, users scroll until the rela-
tionship’s box is close to the left border of the timeline (dashed vertical
line). Map locations that are associated with the upcoming relationship

in the scrolled storyline, are visually linked with the relationship box
and colored orange (to differentiate them from blue selections).

Map Glyphs (Fig. 1B): In this case, the base Storyline visualization
stays the same except that each relationship box is replaced by an
embedded mini map. All locations that are part of the relationship are
colored with orange. Users can select any location inside the mini maps
and the selection will be reflected in all the mini maps of the timeline.

Time Glyphs (Fig. 1C): A map is positioned at the left. On the right,
there is a scrollable vertical list of multiple Storylines glyphs, one per
location. Storyline glyphs are linked to their associated location in the
map with a gray link. Users can scroll vertically to see the different
storylines. Each time a location is selected on the map, an animation
puts the corresponding storyline in the center of the view.

5.2 Tasks

Similarly to HyperStorylines [41], we considered the Andrienko & An-
drienko task taxonomy for spatial and temporal data [6]. Our goal was
to include tasks from both reading levels of this taxonomy: elementary
(about individual elements of the dataset) and synoptic (that require
looking at the entire dataset or a subset of it). We started with the spatial
relationships used in the workshop (distance, direction, adjacency, cov-
erage, hierarchy - Sect. 3.1), which can be categorized as synoptic. To
include elementary tasks, we added two baseline tasks, inspired by the
basic tasks used to evaluate PAOHViz [55] and HyperStorylines [41]:
“find all relationships between person A and person B”. In our case, this
requires users to find either all the locations or all the dates involved in
the relationships between a set of people.

Finally, after an initial pilot we realized that the strategies to perform
the tasks coverage and hierarchy were very similar to the baseline task
of identifying all locations involved in a set of relationships. Therefore,
we only kept the simpler task of identifying locations (next described
as Baseline Locations) to reduce the duration of the study. We thus
tested the following tasks:

- [T1] Baseline Locations: “In how many different locations did
person A and B meet?” (numeric answer). This task is an elementary
look-up as it requires participants to find a set of individual targets
(locations) given a set of references (people).

- [T2] Baseline Time : “On how many different dates did person
A and B met in location L?” (numeric answer). Similar to the previous
one, this is also a elementary look-up task.

- [T3] Distance : “In which location did person A and B meet
that is closest to location L?” (answer is a location’s name). This is a
elementary comparison task as it requires participants to compare the
distance of a set of individual locations in relation to an specified one.

- [T4] Direction: “Which direction did person A and B follow
when they met?” The answer to this task can be: north-south, south-
north, west-east, east-west, or no pattern. This is a synoptic relation-
seeking task that requires participants to see the overall trajectory two
people followed.

- [T5] Adjacency: “Did person A and B move only between adja-
cent locations?” Binary answer between “Yes, they move only between
adjacent locations” and “No, there one or more jumps in their path”.
This is a synoptic relation-seeking task, as it requires participants to
observe the overall pattern and check for neighboring locations linked
to the two central people across time steps.

We explain why we focus on relationships between two people in
the dataset creation method (Sect. 5.5).

5.3 Hypotheses

We describe next our formulated hypotheses for our user study and the
reasoning behind them:
[H1] Movement patterns - CoordV > MapG > TimeG
Previous research shows that animations are better suited to identi-
fying sudden changes in movements [14, 23, 39], followed by small-
multiples. Therefore, for the tasks that track movement (Direction
and Adjacency) Coordinated Views should perform best, as it is es-
sentially a user-controlled animation. Map Glyphs will follow as they
behave similarly to small multiples. Finally, as Time Glyphs split



time by location we expect participants will have trouble following the
movement of people across several split timelines.
[H2] Identifying locations - CoordV & TimeG > MapG
Designs with a single unified representation of space are better suited
for tasks that require identifying all the locations linked to a group
of people. We thus expect Coordinated Views and Time Glyphs to
perform better in Distance and Baseline Locations. For Map
Glyphs, the selection interaction may mitigate some of the challenges
when searching all the locations across multiple mini-maps, but the
small size of the map glyphs themselves may also impact performance.
[H3] Identifying dates - TimeG > CoordV & MapG
As Time Glyphs group together all the relationships of one location,
we expect it will perform better than the other two when identifying the
dates when two people were linked with a location (Baseline Time).
[H4] Map Scalability - CoordV > MapG > TimeG
We expect that all of the designs will suffer as we increase the number
of locations shown in the maps. But Time Glyphs’ performance will
likely deteriorate the most, as more locations means participants will
have to visually aggregate information across more separate timelines.
We also expect that Map Glyphs will suffer more than Coordinated
Views due to the small size of the mini-maps. Increasing the number of
locations on such small maps risks making them illegible.

5.4 Experiment Design and Procedure
We used a within-participant study design, where participants are ex-
posed to all three visualizations. For each technique, they performed
10 training trials (2 repetitions per task), and 5 measured tasks × 4
repetitions = 20 main trials. In total, the experiment consists of 18
participants × 3 visualizations × 20 main trials = 1080 main trials.

We counterbalanced technique and dataset presentation order using
a Latin square. Additionally, we rotated the maps used in the trials by
0, 90 and 180 degrees across trials, to avoid participants learning the
location patterns on the maps. Finally, the task presentation order, was
randomly assigned for each participant.

The study was divided into three 30 min sessions, one per visualiza-
tion. At the start of the first session, participants signed a consent form
and completed a demographics questionnaire. The rest of the sessions
have the same structure: (i) explanation, (ii) training and (iii) main trials.
In the explanation phase, an experimenter described the visualization,
and guided participants in exploring the available interactions. The
training phase consists of ten trials, two per task. Participants are asked
to think aloud while completing the trials in order for the experimenter
to provide clarifications when needed. If participants failed to com-
plete a training trial, or ignored tools available to them (e.g., selection
interactions) the experimenter would provide help. Participants only
continued with the main trials if they completed all the training ones.

In the main trials, participants carried out four repetitions for each
of the five tasks, using different datasets than those in training. In this
phase, participants solved the tasks without instruction and did not
follow a think aloud protocol. They were asked to perform the tasks as
accurately and quickly as possible. After each trial, participants were
asked to rate how easy it was to solve the task and how confident they
were about their answer. At the end of each session, participants were
asked to explain their strategies. And at the end of all three sessions,
they were asked to rank the three visualizations as a whole.

5.5 Datasets
To avoid learning effects between visualizations and tasks, we created
a separate dataset for each trial: 10 for training (the same for all visu-
alizations); and 60 for the main trials (20 main trials × 3 variations,
assigned to visualizations using a Latin Square). To ensure realistic tem-
poral relationship patterns, our datasets are extracted from real world
data provided by the news agency OuestFrance [4]. When entities of
different types (people, locations) appear together in an article, this
co-occurrence represents a relationship [41].

To make the study tractable our trials focused on data for two central
people, adding another eight secondary people that were connected to
them as distractors (i.e. a total of 10 people per dataset). This matches
the use-case from data journalism described in the introduction, where

we can assume one has filtered their dataset to focus and follow two
rival politicians. This total number of people allowed us to compare
the basic properties of the designs, without considering the impact of
searching or filtering functionality. Similar to previous studies [12,39],
we consider 35 time steps with one or more relationships per date. On
average, an extracted dataset has 36 relationships (SD = 1), 10 of these
are between the two central people (i.e., 28% of the dataset on average).

We manually generated two spatial patterns for each of the five tasks.
Each of these patterns were later projected into two maps of different
size (one with 23 locations and the other with 59). This prevented
participants from learning the answer for each task, and allowed us to
test the geographic scalability of the designs. We replaced the original
locations that dealt with regions in France with locations in maps
unlikely to be known by participants, as did Beecham et al. [10].

Details of the dataset construction are available in supp. material.
They include the scripts to generate the datasets, the maps, the spatial
patterns and solutions, as well as steps taken to ensure trials were
visually different but of equivalent difficulty across visualizations.

5.6 Participants & Apparatus
We recruited 18 participants, from 24 to 45 years old (mean = 28,
SD = 4.8). None of them had participated in our design workshops.
Five identified themselves as women and 13 as men. Seven of them
had a background in HCI, six in visualisation, and five in other areas
that included geology, data science or quantum computing. We aimed
for a mix of participant backgrounds in order to elicit different types
of feedback: participants with an HCI background can identify gen-
eral usability issues, participants with a Vis background can provide
a general critique of visual analytics systems, and participants with
broader backgrounds represented a more general user population. 17
participants had normal, or corrected-to-normal vision. One reported
color vision deficiency with the red component of colors, however, our
color selection was such that they could conduct the study normally.
Participants did not receive any monetary compensation.

We conducted the experiment on a Macbook Pro with a 27” Apple
Thunderbolt Display (2560x1440 pixels). The system and visualiza-
tions were implemented in the Django framework [3] and Javascript
respectively. The visualizations additionally use D3.js [2], and a pub-
licly available Storyline layout algorithm [1].

5.7 Measures
We collect four primary measures per trial:
- Completion time: time in milliseconds from the moment a partici-
pant is presented with a task to when they select an answer.
- Error rate: percentage of incorrect answers per task.
- Self-reported confidence: a 5-point Likert scale (Highly not
confident, Not confident, Neutral, Confident, and Highly confident).
- Self-reported easiness to do the task: as a 5-point Likert
scale (Very hard, Hard, Neutral, Easy, Very easy).

Additionally, we collected participants’ strategies per task, their
overall feedback and preference of the three designs.

6 RESULTS OF COMPARATIVE STUDY

We report and interpret our results of Completion Time and Error Rate
using interval estimation [16, 19]. Sample means of 95% confidence in-
tervals (CIs) are constructed using BCa bootstrapping (10,000 bootstrap
iterations). No p-values are reported, but they can be obtained from
CI results [29]. When interpreting results, a CI that does not overlap
with 0 provides evidence of a difference, corresponding to statistically
significant results in traditional p-value tests. Nonetheless, CIs allow
for more subtle interpretations: the farther from 0 and the tighter the CI
is, the stronger the evidence. For self-reported confidence and easiness
to complete the tasks, we only report means. All analyses were planned
before collecting the data, and the study was preregistered [15] with the
Open Science Framework2. We removed one trial from our analysis
due to a technical problem. Analysis scripts, collected data (quantitative
and qualitative), and detailed CIs can be found in supp.material.

2https://osf.io/5wnyg

https://osf.io/5wnyg
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Fig. 3: Completion Time (sec), Error Rate (in %) and mean self-reported easiness per visualization per task. In each row (task) for the first two
measures, mean values per visualization are seen on the left and means of pairwise differences on the right. Error bars represent 95% Bootstrap
confidence intervals. Gray rectangles indicate the direction of our hypotheses. Evidence of differences is marked with a * (the further away from
0 and the tighter the CI, the stronger the evidence). Inconclusive evidence (barely touching 0) is not reported in text, but marked with as it may
represent trends. The 3rd column shows the percentage of trials that participants reported being Very easy ( ) to complete, to very hard ( ).

6.1 Overall performance for tasks collectively

For all tasks collectively, mean times are lower for Coordinated Views
(23.2s), than for Time Glyphs (33.55s) and Map Glyphs (35.55s).
There is evidence of Coordinated Views being faster than both Map
Glyphs (by 12.35s on avg. CI[8.77:17.75]) and Time Glyphs (by 10.34s
on avg. CI[7.92:12.66]). Although mean Error Rate is also lower for
Coordinated Views (1.39%), followed by Map Glyphs (1.67%) and
Time Glyphs (3.33%), there is no evidence of difference between the
techniques. Self-reported confidence is high for the three techniques in
more than 90% of the trials. Self-reported easiness to complete the task
is high for 90% of the trials when using Coordinated Views, and 76%
of the trials for Time Glyphs and Map Glyphs. The overall ranking was
consistent with performance results: 15/18 participants ranked Coordi-
nated Views as being best overall, followed by 5/18 raking Map Glyphs
(participants were allowed to rank more than one technique as best).
No participant ranked Time Glyphs as best. The results dis-aggregated
by task (next) give more insights of these differences. From now on we
do not report self-reported confidence as it is high for more than 80%
of all trials, for all tasks and visualizations (see supp.material).

6.2 Results per working hypothesis

We analyze results for each task individually and group them by our
initial hypotheses, displayed in gray next to them. Fig. 3 shows an
overview of our results per task and technique. We do no report incon-
clusive evidence in the text (CIs that barely cross 0), but we highlight
them in our image as it could indicate interesting trends for future study.

[H1] Movement patterns - CoordV > MapG > TimeG
For both tasks that analyzed movement, Direction and Adjacency,
there is evidence that Coordinated Views are faster than both Map
Glyphs and Time Glyphs. Additionally, there is evidence that Map
Glyphs are faster than Time Glyphs in the Direction task (consistent
with our hypothesis). There is no evidence of difference for Error Rate
for these two tasks. Self-reported easiness to complete the task using
Time Glyphs was lower than with the other two designs, while easiness
was consistently higher with Coordinated Views.

There is support for H1 as Coordinated Views are faster than the
other two designs without being more prone to errors, and Map Glyphs
are faster than Time Glyphs in one task. Participants mentioned that
Map Glyphs required a lot of scrolling to explore the whole timeline,
explaining why they were slower than Coordinated Views. Additionally,
the gaps between the mini maps on the storyline required participants to
rely on their memory of already visited mini maps in order to follow a
movement pattern (10/18 participants commented on this issue). Time

Glyphs required participants to select and unselect dates in chrono-
logical order to see the evolution of the dynamic pattern across all
storylines. This involved a lot of selection actions and participants
had to rely on their memory, as they would continuously switch focus
between the map and dates (11/18 participants commented about this).

[H2] Identifying locations - CoordV & TimeG > MapG
There is evidence that Coordinated Views are faster than Map Glyphs
and Time Glyphs for tasks that require users to observe geographical
entities (Baseline Locations and Distance). There is also evi-
dence that Map Glyphs are faster than Time Glyphs in the Baseline
Locations task. For Error Rate, Time Glyphs are less prone to errors
than Coordinated Views for the Baseline Locations task, and Map
Glyphs are less prone to errors than Time Glyphs in the Distance task.

We have partial support for H2. Coordinated Views are the fastest,
but Time Glyphs are more accurate in Baseline Locations. What is
surprising is that Map Glyphs were not the worst: they were either faster
or less error prone than Time Glyphs in these tasks, and were even more
accurate than Coordinated Views in Baseline Locations. We were
surprised that participants were 100% accurate only with Map Glyphs.
In our hypothesis we assumed that a single big map (Coordinated Views
and Time Glyphs) would help participants to identify and compare
locations more easily than several small ones (Map Glyphs).

[H3] Identifying dates - TimeG > CoordV & MapG
There is strong evidence that Map Glyphs are slower than both Co-
ordinated Views and Time Glyphs for the task of Baseline Time.
There is also evidence that Time Glyphs are slower than Coordinated
Views. Regarding Error Rate, there is evidence that Coordinated Views
were less prone to errors than Map Glyphs. Self-reported easiness to
complete the task for Map Glyphs was high for a lower number of trials
than the other two (only 57%).

There is no support for H3 as Coordinated Views performed best
in this task. Our hypothesis was based on the fact that Time Glyphs
group all relationships for a location in one timeline. Therefore, the
best strategy was to first select the location of interest and then the
two people. However, only 2 participants used the optimized strategy
consistently during the trials, 5 only used it during some of the trials
and 8 used it only during training. We believe this result is due the fact
that our tasks were designed to mainly focus on the behavior of two
people, and not on particular locations. Thus our participants adopted a
global strategy that was ineffective for this task.

[H4] Map Scalability - CoordV > MapG > TimeG
When looking at how map size affected each technique, we found no
evidence of a differences for Map Glyphs. For Time Glyphs there



seems to be a time/accuracy trade-off: tasks on smaller maps led to
more errors but were faster. Most surprising, in Coordinated Views
performance using small maps was worst both for time and errors. We
thus did not find support for H4, as it seems that smaller maps either
were not easier or were in fact worst. For detailed CIs see supp.material.

7 FEEDBACK FROM DOMAIN EXPERTS

We complemented the results of our user study with feedback from
domain experts that analyse geo-temporal relationships. We conducted
two workshops in the context of a long term collaboration with Ouest
France [4], the most read francophone newspaper in the world (see work
on HyperStorylines [41]). In a first informal workshop (7 investigative
journalism practitioners) that lasted 1h, experts expressed their interest
in combining storylines with maps in order to analyse the movement
and relationships of politicians. They even suggested the generalization
of the concept by linking storylines with other 2D visualizations (for
example a thematic map instead of a geographical one).

We then conducted a structured 1.5h workshop with three investiga-
tive journalism practitioners (more than 10 years of experience each).
We asked our domain experts to explore their own data using the three
final Geo-Storylines designs. The dataset they provided contained a set
of news articles about a famous local politician who, over time, changed
the region they represented in local elections. It contained 32 articles
with 102 people entities over the span of 4 years. The map showed
1272 locations (communes). The dataset is not publicly available due
to a confidentiality agreement.

We provided brief descriptions of each visualization and then let
them explore their dataset. To help guide the exploration, we asked
them (in each vis) if they can describe the overall movement of the
protagonist politician. One participant (P1) interacted with the system
and the other two (P2,3) suggested actions and provided comments.

In Coordinated Views, P1 was able to quickly identify the overall
trajectory of the politician. P1 and P2 explained it was very helpful to
have a mix of a storyline and a map, as it helped them to explore the
dataset starting either with people or locations of interest. Even though
they were able to find the overall movement pattern, they requested
more explicit ways to see the patterns. For example, P1 suggested
adding arrows on the map to show explicit movement, and a ”play”
button to provide automatic scrolling of the timeline. P3 requested
the addition of a mechanism to extract several important stories, e.g.,
extract the relationships between the top 1-2 most connected politicians.

Although Time Glyphs performed worse than Coordinated Views in
our study, experts appreciated its ability to show stories per commune /
location. P1 commented (and the others agreed): “It’s hard to see the
[person’s] story, but we can see clearly the articles for each location
which is very important when analysing local news.” Both P1 and P2
requested to completely filter out (remove) the storylines of uninter-
esting locations. Finally, all experts mentioned how Time Glyphs and
Coordinated Views are complementary, and both are useful depending
on the focus of the exploration (politicians vs. local councils/politics).

Participants found Map Glyphs somewhat overwhelming. Given the
large number of communes (more than 1200 locations), each location
ended up being very small in the map glyphs, thus it was hard to see
which communes were involved in several relationships. Our partici-
pants requested some form of geographic aggregation. P1 commented:

“It would be interesting to choose the zoom level [geographical granu-
larity] of the visualization”. After exploring some more, P1 and P2
mentioned that one article per relationship was too much information,
as each relationship introduced a new map glyph in the visualization.
They suggested to filter or aggregate relationships by time.

Participants were overall very enthusiastic about the exploration po-
tential of the visualizations, and at the end of the session they requested
an open link to the software to continue exploring their data.

8 DISCUSSION, LIMITATIONS & FUTURE WORK

We discuss next the results of our study and feedback from experts on
the three most promising geo-storyline designs. Then we take a step
back to consider the limitations of our study and design space.

8.1 Study Results and Expert Feedback

8.1.1 Identifying entities and overall navigation

Coordinated Views performed well when considering all study tasks
combined, likely because it presents a more compact timeline than
the other two designs. Issues mentioned by our study participants and
journalism experts can start explaining these results.

Map Glyphs do not offer an overview of the data as the storyline
expands to accommodate the map glyphs, so participants had to scroll
a lot to do the tasks. Five study participants commented on this lack
of overview for Map Glyphs (versus only two for Time Glyphs and
none for Coordinated Views). Some mentioned specifically too much
scrolling being an issue: eight for Map Glyphs, versus two for Co-
ordinated Views and one for Time Glyphs. Our domain experts also
commented on the clutter of the Map Glyphs design that makes it hard
to follow the entity relationships. We can think of several ways to im-
prove Map Glyphs in this regard. First, we can allow users to customize
the size of the mini-maps, adjusting the importance the geographical
context has in the view. However, it is possible that users would like
to focus on a particular set of relationships so the importance of the
mini-maps might not be the same across the timeline. Therefore, an
alternative could be to make the relationships (and thus mini-maps) col-
lapsible by default and only open on demand, in a way similar to nested
entities in HyperStorylines [41]. Or, as some domain experts suggested,
to aggregate relationships over time (over a week or a month) thus
reducing the number of required mini-maps.

In our study, finding a particular person with Time Glyphs takes
longer as people’s names are scattered over the different timeline glyphs.
Indeed, six participants had at least one comment about this drawback
(versus two participants for Map Glyphs and only one for Coordinated
Views). We believe it is hard to improve this design without applying
general strategies like adding a list of entities or a search option. Never-
theless, we did note this design was less error-prone than Coordinated
Views when it came to identifying and counting locations themselves.
Contrary to the study results, our domain experts really appreciated
that when using Time Glyphs they could focus on the story of specific
locations (focusing on local news and politics). They explained that
Time Glyphs and Coordinated Views are complementary designs.

We were surprised to see that Map Glyphs, which have small map
representations, reported no errors in the tasks related to identifying
locations in our study (Baseline Locations and Distance), and
weree more accurate than the other two designs (including Coordinated
Views). It is possible that seeing fewer details of the maps allowed
participants to be less distracted by their geographic details. However
map size was an issue for our experts with this design: as their dataset
contained a very large number of locations (more than a thousand) the
mini maps were too cluttered and locations too small to interact with.

8.1.2 Understanding Movement Patterns

Coordinated Views performed well in the two tasks related to movement
patterns (Direction and Adjacency). As the horizontal scrolling
simulates an animation of the geographical pattern, our results are
aligned with our hypotheses and previous work that have shown that
sudden changes are better detected with animation [14, 23, 39]. Our
domain experts confirmed this, requesting automatic scrolling (play an
animation) on demand of the entire timeline. Both study participants
and our experts found navigation with Map Glyphs to be hard and
tedious as the resulting timeline is bigger than the other two designs. In
addition, the mini-maps are dispersed across the timeline, and the gaps
between them makes their sequential comparison (to follow a pattern)
harder. The collapsable or aggregated mini-maps mentioned earlier can
improve this issue by bringing them closer for comparison. However,
we hypothesize that it will remain less efficient than Coordinated Views.

Time Glyphs required participants to shift their focus across regions
of the visualization to follow the entities of interest. The best strategy
was to select the dates in chronological order to highlight the locations
associated to each time step, switching focus between the dates and
the map. This process can be improved by implementing an animation
option in the interface that automatically highlights progressively the



dates and associated locations for the selected people. We hypothesize
this would make Time Glyphs comparable to Coordinated Views for
observing movement patterns, but this remains future work. We note
nonetheless, that experts felt Time Glyphs excelled in cases where the
focus is on local news (small number of locations). It is likely that our
study tasks did not reflect well this real-world need.

8.1.3 Number of locations and map complexity
We expected that the number of locations would impact performance,
in particular for Map Glyphs that use small maps to begin with. Sur-
prisingly we only saw clear evidence of a difference between the two
types of maps in Coordinated Views, where trials using the smaller map
with fewer locations was in fact more prone to errors. While further
experimentation is needed, we feel this may be due to the nature of the
chosen maps: our small map may have been more visually complex, as
it includes locations of very different sizes (including some very small
ones) and water features that participants could have confused with
locations. Further studies are needed where more diverse metrics of
geographical complexity are used to measure this effect, e.g., geomet-
ric irregularity [10, 25]. Feedback from our domain experts provided
more insights on scalability, as they used the visualizations with maps
of more than a 1000 locations. Our experts did not raise any issues
with Coordinated Views. For Time Glyphs they communicated the
need to filter out unused location storylines to reduce clutter. More
importantly, they found location scalability to be an issue for Map
Glyphs, as locations become too small to interact with. They suggested
aggregating geographical locations, allowing semantic zooming to see
content at different granularity (e.g., region vs. country), thus reducing
the number of locations on mini-maps, making them more readable.

8.2 Study: Discussion & Limitations
For our evaluation, we chose three representative designs that could
easily accommodate several people, locations and temporal relation-
ships, without the need to aggregate any of these entities. Even though
our datasets had 35 timesteps (comparable to previous work [12, 39]),
the number of people in our tasks (10) was smaller than that of previous
work focusing on entity relationships (HyperStorylines [41]: around
529 entities, or PAOHVis [55]: 57-371 people). This was a deliberate
decision, as it allowed us to compare the benefits and drawbacks of the
basic designs, without adding search and filtering interactions (which
were necessary in previous work with more entities [41, 55]).

Nevertheless, in real analysis situations our designs would have to
handle larger numbers of people or locations, as our expert feedback
demonstrated. We could envision only transitioning to the geo-spatial
views after the data has been filtered, as it was suggested by our domain
experts (e.g., focusing on the most connected politicians). But more
interesting yet would be to consider aggregation, to provide meaningful
overviews: our experts suggested aggregating relationships over time
to handle the number of relationships, and geographical aggregation
of cities/regions/countries to handle large number of locations. It is
interesting to note that our experts raised these scalabilty issues mainly
for Map Glyphs. Further research is required to determine the best
aggregation methods of entities evolving over time [42], how to allow
viewers to determine the required level of detail on the fly, and how our
design space can accommodate such aggregations.

Our study tasks focus on people whose relationships follow five spe-
cific spatial patterns. We removed the patterns Hierarchy and Coverage
as the strategies adopted in our pilots were similar to our task Baseline
Locations. However, if we consider explicit aggregations to deal with
scale, it is likely that the strategies for some of these tasks may diverge
(e.g., Hierarchy). While our chosen tasks cover a wide range of patterns
from the related work, it is possible that they may have biased against
some of our techniques. For example, Time Glyphs could have been
more efficient for questions that focus on the co-occurrence of loca-
tions. This is supported by feedback from our experts that found Time
Glyphs very useful for focusing on news articles (relationships) from
specific regions. More generally, it remains future work to investigate
whether our results hold for patterns about other types of entities (not
just people), as well as more complex movement patterns (more central

people, more relationships, etc.), especially since these would require
filtering and aggregation options as discussed above.

Finally, 2/3 of the participants of our user study had an HCI or
visualization background. These participants could be considered as
experts in the use of interactive systems, and thus find the tools easier
to use than the general public. So we complemented our results with
feedback from domain experts in data journalism. Further work can
explore the use of these designs in other domains or general public use.

8.3 Design space: Discussion & Limitations
When organizing the workshop we provided participants with inspi-
ration visualizations that were not necessarily storyline or timeline
centered. Nevertheless, a large number of participant sketches naturally
converged to such representations, confirming the ability of storylines
to convey temporal relationships. We did categorize all sketches from
the workshop, but for our design space we kept ones that could accom-
modate multiple people and their relationships (often as timelines), but
also provide geo-spatial context in the form of a map, rather than an
abstract representation of space (like a chart indicating distance).

In our designs, maps are divided in regions. As discussed, this
fixed level of granularity may not always be appropriate, as geo-spatial
navigation could adapt the content depending on zoom level (semantic
zooming). Future work should extend the design space to accommodate
transitions between different levels of geo-spatial granularity. For
example, in Time Glyphs, the storylines for countries can be split into
storylines for cities as a response to zooming-in. Or in Map Glyphs
and Coordinated Views, regions can be semantically merged or split to
the level of cities, regions or countries as the user zooms out or in.

Our design space did not consider interactions and we implemented
basic interaction support (scroll, selection). Nevertheless, the changes
in granularity discussed above require interaction mechanisms, like
semantic zooming, interactively choosing appropriate levels of aggre-
gation per entity, and animated transitions. This, combined with user
requests for filtering and switching views, points to the need for future
design spaces and user studies that consider advanced interaction and
animated transitions. This may require revisiting some of the discarded
designs of the design space that rely on aggregation.

Our aim was to provide geo-spatial context into storylines, which
naturally limits our designs to representations of “space” that are ge-
ographical maps. But our design space can be extended to combine
storylines with other 2D visualizations that represent space or different
dimensions. Consider for example scatterplots or treemaps. As long as
the definition of a region is possible (a treemap cell, a scatterplot selec-
tion or cluster), then our designs can combine these 2D visualizations
with storylines. For example, we can envision customizable timelines
that are created after a manual selection over a scatterplot similarly
to Attribute Signatures [54], resembling our Time Glyphs design but
focusing on the selected area. Or instead of a geographical map, Coor-
dinated Views and Map Glyphs may show a treemap, highlighting the
relevant cells. Nevertheless, if the number of 2D regions is large, or the
regions themselves are small, some designs from our design space will
suffer: for example it will be challenging to create one storyline per
point in a scatterplot (Time Glyphs), or highlight individual scatterplot
points in a small 2D glyph embedded in a large storyline (Map Glyphs).

9 CONCLUSIONS

We presented Geo-Storylines, a set of designs to integrate maps into
Storyline visualizations. We report on a sketching workshop used to
derive a design space for their creation, the arguments to select the three
more promising designs, and the results of a user study and expert feed-
back that compares them. Our study shows that, overall, Coordinated
Views were more efficient and preferred than the other two designs.
Surprisingly, although Map Glyphs reported no errors in the user study,
they were hard to use with a real-world dataset. Finally, even though
Time Glyphs did not outperform other techniques in our user study
when focusing on a particular location, they were highly appreciated
by our expert users. Our work illustrates how Storyline visualizations
can be effectively extended to incorporate 2D information, including
maps, improving their already considerable expressive power.
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