
HAL Id: hal-03753813
https://hal.inria.fr/hal-03753813

Submitted on 18 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The role of storage target allocation in applications’ I/O
performance with BeeGFS

Francieli Boito, Guillaume Pallez, Luan Teylo

To cite this version:
Francieli Boito, Guillaume Pallez, Luan Teylo. The role of storage target allocation in applications’ I/O
performance with BeeGFS. CLUSTER 2022 - IEEE International Conference on Cluster Computing,
Sep 2022, Heidelberg, Germany. �hal-03753813�

https://hal.inria.fr/hal-03753813
https://hal.archives-ouvertes.fr

The role of storage target allocation in applications’
I/O performance with BeeGFS

Francieli Boito, Guillaume Pallez, Luan Teylo*

Univ. Bordeaux, CNRS, Bordeaux INP, Inria, LaBRI, UMR 5800, F-33400 Talence, France
{francieli.zanon-boito, guillaume.pallez, luan.gouveia-lima}@inria.fr

Abstract—Parallel file systems are at the core of HPC I/O
infrastructures. Those systems minimize the I/O time of applica-
tions by separating files into fixed-size chunks and distributing
them across multiple storage targets. Therefore, the I/O perfor-
mance experienced with a PFS is directly linked to the capacity
to retrieve these chunks in parallel. In this work, we conduct an
in-depth evaluation of the impact of the stripe count (the number
of targets used for striping) on the write performance of BeeGFS,
one of the most popular parallel file systems today. We consider
different network configurations and show the fundamental role
played by this parameter, in addition to the number of compute
nodes, processes and storage targets.

Through a rigorous experimental evaluation, we directly con-
tradict conclusions from related work. Notably, we show that
sharing I/O targets does not lead to performance degradation and
that applications should use as many storage targets as possible.
Our recommendations have the potential to significantly improve
the overall write performance of BeeGFS deployments and also
provide valuable information for future work on storage target
allocation and stripe count tuning.

Index Terms—Parallel file system, parallel I/O, BeeGFS, I/O
performance, performance evaluation, stripe count

I. INTRODUCTION

In high-performance computing (HPC) platforms, the su-
percomputers, thousands of compute nodes work together
to solve large problems. As these platforms evolved over
the years, the I/O performance has grown at a slower pace
than processing power, which caused many usually compute-
intensive applications to start spending a large portion of their
execution time on I/O operations. That problem is becoming
even more relevant with the emergence of data-intensive HPC
applications [4], [14], [18], [26].

At the core of a supercomputer’s I/O infrastructure is the
parallel file system (PFS). It is deployed over a set of dedicated
servers shared by all the running jobs. These data servers,
often called Object Storage Servers (OSS), store data in one
or more Object Storage Targets (OST): logical volumes that
represent storage devices. Files are typically separated into
fixed-size portions and distributed across the storage targets in
an operation known as striping. Then, parts of each file can be
obtained from the targets in parallel for increased performance.

BeeGFS is such a parallel file system. According to data
compiled by the OpenSFS group, in the IO500 list from
November 2019 [1], [2], BeeGFS was present in 20% of the
submissions, second only to Lustre with 29%.

* The authors are presented in alphabetical order.

The performance observed when accessing a parallel file
system is known to depend on the correct tuning of its
parameters, including stripe size and count [8], [12], [19], [33].
In this work, we are interested in the impact of the number
of OSTs (the stripe count). That is important because data
is written to (or read from) the different targets in parallel, so
more targets mean more parallelism, but too many targets may
mean too much communication overhead. Differently from
other PFS, such as Lustre, where users can easily configure
the striping per file, in BeeGFS the stripe count is set by the
administrator on a per-folder basis, hence a value must be
chosen that is suitable for most applications. Moreover, since
the PFS is shared, a large stripe count may force applications
to share the storage targets, which could cause congestion. Our
motivation behind studying this parameter is to quantify and
qualify the congestion caused by sharing OSTs, and then to
see how much congestion could be mitigated by some policy
that adapts the stripe count of each application.

Some related work has focused on characterizing BeeGFS’
performance in different contexts. Brzenski et al. [9] studied
the impact of parameters such as the transfer size and the
number of processes, seeking to optimize I/O performance
of geophysical applications. Mills et al. [19] also evaluate
BeeGFS as part of a solution to maximize the performance of
scientific data transfer between different clusters. The authors
compared different parallel file systems and concluded that
BeeGFS showed the best performance in terms of throughput.

Nevertheless, to the best of our knowledge, Chowdhury
et al. [12] were the only to evaluate the impact of the
number of storage targets in this PFS’ performance. From
their results, obtained in an OLCF system called Catalyst,
they concluded that increasing the stripe count has limited
benefits for application performance. In their system, which
has 24 targets in 12 servers, they point to 4 as the “reasonable”
number of storage targets to use per application.

In this paper, we provide a thorough study of the impact
of the stripe count on write performance. We aim (i) to
reproduce some of their results on our local supercomputer;
(ii) to give a more general and systematic methodology for
conducting such evaluations on other systems, including in
the presence of interference; (iii) to provide recommendations
on tuning this value (i.e. to answer what should be the default
stripe count in any BeeGFS system). Our results contradict
some of the recommendations by Chowdhury et al. [12]:
through an extensive analysis, we point some key parameters

that were neglected in their study and that can explain the
difference in observations. Our main contributions are:
• Based on a comprehensive evaluation of BeeGFS in

two versions of a system (using different networks),
we characterize its write performance and especially
the impact of the stripe count. Our findings contradict
recommendations found in the literature and indicate how
many storage targets should be used by default.

• We demonstrate the importance of network speed, often
neglected when discussing I/O performance, and how
it can completely change the observed behaviors. Our
results also highlight variability and its importance when
conducting an I/O performance evaluation.

• We present a methodology that can be applied in other
systems to gather insights about their PFS. For instance,
our conclusions led the system administrators of the
machine we used, PlaFRIM, to change its default BeeGFS
parameters. We estimate that change will transparently
increase I/O performance of applications by up to 40%.

• By studying the impact of stripe count when multiple ap-
plications share the I/O infrastructure, we show that shar-
ing storage targets to not negatively impact performance,
and hence that policies that seek to adapt applications’
stripe count would not improve write performance.

The remainder of this paper is organized as follows. Sec-
tion II gives a brief overview of BeeGFS and its main compo-
nents. Section III presents our evaluation methodology. Results
and discussions are presented in Section IV and Section V
talks about related work. Finally, Section VI concludes the
paper and introduces future directions.

II. BEEGFS
BeeGFS is an open-source parallel file system originally

developed at the Fraunhofer Center for High-Performance
Computing. The system was designed with a strong focus
on performance, scalability, and usability [5], [9]. It can be
deployed at any Linux-based computing system and works
with several local file systems, such as ext4, xfs, or zfs. As
depicted in Figure 1, the components of BeeGFS are divided
into four categories: client (blue, on the top), management
(green, on the left), metadata (yellow, on the bottom-left), and
storage (red, on the bottom-right).

The Management Server (MS) maintains a list of all system
components, including their status, capacity, and localization.
It is responsible for ensuring that the PFS parts can find each
other. As shown in the bottom left of Figure 1, the metadata
management in BeeGFS uses two distinct components. The
first one, called Metadata Server (MDS), is a service respon-
sible for handling the metadata operations over an exclusive
portion of the file system tree. An unlimited number of MDS
can be used, operating on different portions. The second
component is the MetaData storage Target (MDT), which
stores the metadata on a storage device, typically an SSD.
Each MDS can have precisely one MDT.

Similarly, data storage is also composed of two components:
the Object Storage Servers (OSS) and the Object Storage

Network

File System
Client (FSC) ...

Metadata
Server (MDS)

Object Storage
Server (OSS)

Object Storage
Server (OSS)

...

...

Metadata
Target (MDT)

Object
Storage

Target (OST)

... ...

Management
Server (MS)

File System
Client (FSC)

File System
Client (FSC)

File System
Client (FSC)

Metadata
Server (MDS)

Metadata
Target (MDT)

Object
Storage

Target (OST)

Object
Storage

Target (OST)

Fig. 1: Logical components of the BeeGFS software architec-
ture (figure inspired by [12, Figure 1]).

Targets (OST). The OSS is the service responsible for keeping
files’ data, while the OST handles the actual storage to devices
through a local file system. The storage device used by an OST
is typically a RAID-6 array of six to twelve hard disks [?].
As can be seen in Figure 1, differently from the MDS, each
OSS can have more than one OST.

As stated in the previous section, when a new file is created,
it is striped and distributed across the storage targets. In
BeeGFS, striping is defined by two parameters set on a per-
directory basis: the stripe count, which defines the number
of storage targets to use; and the stripe size (the size of each
portion of the file). By default, the OSTs used to store each file
are randomly chosen. However, other heuristics can be used.
For example, the targets can be selected in a deterministic
round-robin fashion. As we will see in Section IV, depending
on the stripe count, the used target selection heuristic can
contribute to the observed I/O bandwidth.

Finally, the File System Client (FCS) is a kernel module that
allows for mounting the remote file system and that exposes
some useful functions. Note that the term “server” in BeeGFS
does not refer to a physical machine but to a Linux process.
That differentiation is important because different servers are
generally executed on the same physical machine (for example,
an OSS and a MDS on the same physical server). Still,
throughout this paper, we use the term “storage server” to
refer to a physical machine running an OSS. In the same way,
the term “computing node” refer to a machine where one or
more processes belonging to an application are running.

III. METHODOLOGY

In this section we describe the experimental methodology
we applied for this study of BeeGFS performance: the platform
(Section III-A), the benchmarking tool and the used parameters
(Section III-B), and the execution protocol (Section III-C).

All scripts used for our tests as well as their results
are available and documented at https://gitlab.inria.fr/hpc io/
beegfs evaluation.

A. Experimental environment

All experiments presented in this work were conducted in
PlaFRIM, a 192-nodes experimental platform located at the
Inria Bordeaux research center. Specifically, we used the Bora
cluster, whose nodes are each powered by two 18-core Intel

https://gitlab.inria.fr/hpc_io/beegfs_evaluation
https://gitlab.inria.fr/hpc_io/beegfs_evaluation

Xeon processors, 192 GiB of RAM memory, and run CentOS
7.6.1810 with Linux kernel v3.10.0-957.el7.x86 64.

In addition to users’ homes (on NFS), a parallel file sys-
tem storage with BeeGFS [5] v.7.2.3 is available for all of
PlaFRIM’s clusters. BeeGFS is deployed over two hosts, used
for both data and metadata. Each host executes one OSS
with four OSTs and one MDS. Each OST uses 12 Toshiba
AL15SEB18EQY HDDs, each with 1.8 TB of capacity and
running at 10,000 RPM, the 12 organized in RAID-6. On
the other hand, each MDS has one MDT with two Samsung
MZILT1T6HAJQ0D3 SSDs of 1.6 TB organized in RAID-
1. The total data storage capacity of the deployed system
available to the clients is 131 TB. In PlaFRIM ’s current
setup, files are written with stripe count of 4 and stripe size of
512 KiB, and the OSTs are selected in a round-robin fashion.
This OST allocation heuristic is not the BeeGFS’ default:
the vendor’s team set it up when delivering the system (after
benchmarking it). The impact of this choice in our results and
what they would be with other heuristics will be discussed in
Section IV.

PlaFRIM’s nodes and storage servers are connected by a
10 GBit/s Ethernet network. Additionally, Bora nodes also
share a 100 GBit/s Omnipath network that includes the PFS.
Since PFS performance is limited by the slowest component in
the I/O path, these networks represent two distinct scenarios of
execution. In Scenario 1, using Ethernet, the network speed is
slower than the storage components, limiting I/O performance.
In Scenario 2, the speed of the Omnipath is greater than that
of the storage components, so the latter are the most important
factor for performance. In both scenarios, the Bora nodes
were connected directly to the BeeGFS hosts through a switch
(models Dell S4148F-ON and Dell H1048-OPF for Ethernet
and Omnipath, respectively).

B. Benchmarking tool

We generated all tests using IOR [7] version 3.4 compiled
with GCC v.4.8.5. IOR is a benchmark tool that measures the
performance of I/O operations considering different parame-
ters such as the file size, the transfer size and the number of
segments. On the survey presented by Boito et al. [8], IOR
was the most used benchmark for research on HPC I/O. It is
also the main benchmark used for the IO500 list [1].

Each experiment consists of multiple IOR executions, i.e.
we do not use the “-i” option that asks IOR to repeat the
experiment multiple times. We chose to do that to avoid warm-
up effects. Moreover, we used the POSIX interface and 1 MiB
transfer size, which is aligned to stripe size and large enough
(compared to the default stripe size) to require more than one
OST to be accessed for each request.

We focus on write performance because that is when the
stripe count is more relevant: once files are written, changing
the stripe count requires data migration between targets. Al-
though extending our conclusions to read performance will be
the subject of future work, based on the results by Chowdhury
et al. [12], we expect the observed behaviors to be the same.

0.25 0.5 1.0 2.0 4.0 8.0 16.0 32.0 64.0
128.0

256.0
512.0

1024.0

File Size (GB)

900

1000

1100

1200

1300

1400

1500

Ba
nd

w
id

th
 (

M
iB

/s
)

(a) Scenario 1: network is slower than storage

0.25 0.5 1.0 2.0 4.0 8.0 16.0 32.0 64.0
128.0

256.0
512.0

1024.0

File Size (GB)

1000

1500

2000

2500

3000

3500

4000

4500

Ba
nd

w
id

th
 (

M
iB

/s
)

(b) Scenario 2: storage is slower than network

Fig. 2: Impact of the data size on I/O bandwidth. A stripe count
of 4 was used in this experiment. The blue dotted line is the
mean of 100 repetitions, and the shadow shows the difference
between the maximum and minimum values. The y-axes do
not start at zero and are different in each plot.

To limit the impact of metadata overhead in our results —
because we are only interested in the number of OSTs —
we used a shared-file strategy (N-1). In each test, application
processes write to contiguous portions within a shared file.
Contiguous access was selected because we wanted to analyze
our system in a peak performance state, in order to isolate the
impact of the studied parameters on performance.

1) Amount of data: To reach the aforementioned peak
performance state, it is important to select a “large-enough”
data size (which corresponds to the file size when using the N-
1 strategy). That is the case because small accesses are more
impacted by latency than by data access bandwidth.

To find that “large-enough” size, we conducted a first
experiment using 32 processes on 4 nodes. Figure 2 presents
the obtained results. The first thing to notice is that small
data sizes have lower overall performance but also higher
variability, which is another reason why it was important to
properly select the data size. We can see that in both scenarios

performance stabilizes starting from a size between 16 and
32 GiB. Based on these results, we used a total size of 32 GiB
for all other experiments.

C. Execution protocol

Since PlaFRIM is a production system, we designed an
execution protocol aiming to minimize the influence of (i) I/O
operations issued by other users during our tests; (ii) transient
events in the machine that would temporarily lower network
and/or I/O performance; (iii) caching on the clients and on
the file system servers; and of (iv) the well-documented high
variability of I/O performance [11], [17], [21], [24], [27].

In order to do that, we try to cover multiple system states
for each of the tested configurations by following these steps:

1) we generated a list of all benchmark runs containing
100 repetitions of each of the different experiments;

2) that list was then divided into blocks of ten executions;
3) the list of blocks was executed (one test run at a time so

we do not influence our own results) in a random order;
4) between blocks, a randomly selected waiting time (be-

tween 1 and 30 minutes) is imposed.

IV. RESULTS

This section presents our analysis of BeeGFS performance.
We evaluate the impact on performance of the number of
compute nodes in Section IV-A and of processes per node in
Section IV-B. This initial study has the goal of determining the
right parameters to be used when evaluating the impact of the
number and placement of storage targets, but it is presented
here mostly because it leads to interesting conclusions and
justifies differences between our conclusions and the ones
by Chowdhury et al. We then discuss the impact of number
and placement of OSTs in Section IV-C, and of concurrent
accesses (by multiple applications) in Section IV-D.

A. Computing nodes

We expect I/O performance to increase (up until some point)
with the number of used compute nodes and/or processes
because (i) a storage device’s peak performance is usually only
reached at a certain parallelism level (number of concurrent
accesses), and (ii) not using enough nodes may limit network
performance [28]. Figure 3 illustrates this second argument.
Assuming all links have the same capacity B, when N
nodes are used to access M servers from the PFS, network
performance is limited by M × B only when N ≥ M ,
otherwise the limitation is N ×B.

Compute
nodes

PFS
servers

1

2

N

…

1

2

M

…

Fig. 3: N compute nodes concurrently access M OSSs

1 2 4 8 16
Number of Compute Nodes

400

600

800

1000

1200

1400

Ba
nd

w
id

th
 (

M
iB

/s
)

(a) Scenario 1: network is slower than storage

1 2 4 8 16 32
Number of Compute Nodes

2000

3000

4000

5000

6000

7000

Ba
nd

w
id

th
 (

M
iB

/s
)

(b) Scenario 2: storage is slower than network

Fig. 4: Evolution of the I/O bandwidth according to the number
of compute nodes in scenarios 1 and 2 using 8 processes per
node. The dotted line connects the mean bandwidth values,
while the blue dots represent individual executions. The figures
are not in the same scale of bandwidth, the y-axes do not start
at zero, and the x-axes are different in the two plots.

For these reasons, we first evaluate how the number of
computing nodes impacts the I/O bandwidth in both scenarios.
For this experiment, we used eight processes per node and
varied the number of nodes. The total file size is always
of 32 GiB, therefore the amount of data written per process
is adapted accordingly. For example, with one node each of
the eight processes write 4 GiB, and with eight nodes the
64 processes write 512 MiB each. For all experiments in these
first part (Sections IV-A and IV-B), the default stripe count of
4 was used.

As can be seen in Figures 4a and 4b, in both scenarios
the bandwidth initially increases when more nodes are used
to perform I/O. In scenario 1, the bandwidth goes from an
average of ∼880 MiB/s with one node, and reaches a plateau
of ∼1460 MiB/s when N = 4. In the second scenario, it goes
from ∼1631.5 MiB/s with one node and reaches a plateau of
∼6100.2 MiB/s with 16 nodes. One thing to notice is that the
bandwidth observed in the second scenario is generally higher
than for the first scenario because of the faster network. The
second scenario shows the speed of the storage infrastructure
of PlaFRIM. For the same reason (no longer being limited by
the network), in the second scenario more nodes are required

to achieve the peak performance.
If we ignore all overhead possibly caused by other elements

in the I/O path, we know that the I/O bandwidth in scenarios
1 and 2 cannot exceed the aggregated bandwidth of the two
links leading to the two storage servers (∼2500 MiB/s and
∼25000 MiB/s for scenarios 1 and 2, respectively). However,
as shown in Figure 4, the I/O bandwidth is always far below
those limits in both cases. In scenario 1, the main reasons for
such low bandwidth are related to the OST allocation. We will
discuss that in Section IV-C, but for now, let us concentrate
on the behavior of the bandwidth regarding the number of
computing nodes.

Lesson learned #1
Our results show that the number of compute nodes can
limit I/O performance regardless of the network speed.
Indeed, in scenario 2, where the storage performance is what
defines performance, more compute nodes were required
than in scenario 1, and the impact of using them was heavier
(270% instead of 64%). Still, the literature shows that many
scientific applications use a single node for I/O [26].

Therefore, the number of compute nodes needs to be con-
sidered in the performance evaluation of other parts of the I/O
path. If not enough nodes are used, the low performance may
hide some interesting behaviors. That is probably the case of
one of the results presented by Chowdhury et al. [12, Figures
5 and 6], where the authors concluded the impact of the stripe
count on the bandwidth was negligible while evaluating with a
single compute node. We believe that the insufficient number
of nodes caused the actual effect of the number of OSTs on
their experimental platform to not appear in their results.

Lesson learned #2
Finding the number of computing nodes that leads to the
maximum I/O performance should be the first step in
evaluating a PFS. Otherwise, the low bandwidth can hide
the effects caused by other parameters, such as the number
of OSTs.

B. Number of processes per node

As we use two storage servers, we expect two computing
nodes to be enough to reach peak performance, at least when
limited by network performance (scenario 1). However, as
shown in Figure 4, four nodes are used to achieve the plateau
in the first scenario, and 16 in scenario 2. In these experiments,
since the same amount of data is always used, the only
difference between different numbers of nodes is that more
requests are generated concurrently to the servers, i.e. there
is more available parallelism. That means that the increased
performance observed when using more than two compute
nodes comes from the higher parallelism at the storage system.

A natural conclusion from that observation would be that,
as long as we use more than two nodes, we could increase the
number of processes per node to decrease the number of nodes,
since that would generate a similar parallelism level. To test

that hypothesis, we included experiments using 16 processes
per node. Results are presented in Figure 5, and show that
the behavior regarding the number of compute nodes does not
change. In fact, the bandwidth remains very similar, with a
slight degradation in scenario 2.

One possible explanation of this is intra-node con-
tention [13], caused by the processes inside each node com-
peting for access to the network interface, memory, BeeGFS
client, etc. More investigation is needed to determine if that
behavior comes from limitations in the BeeGFS client’s ability
to handle parallel accesses. Chowdhury et al. [12, Figures
5 and 6], reported a similar behavior regarding the number of
processes (although they evaluated it with a single compute
node).

Lesson learned #3
The numbers of processes and nodes have independent ef-
fects on performance, meaning that both must be considered
when evaluating I/O performance.

C. Object Storage Targets

Next, we evaluate the impact of the stripe count on perfor-
mance. Based on the results observed in the previous sections,

2 4 6 8 10 12 14 16
Number of Compute Nodes

400

600

800

1000

1200

1400

Ba
nd

w
id

th
 M

iB
/s

8 processes per node
16 processes per node

(a) Scenario 1: network is slower than storage

0 5 10 15 20 25 30
Number of Compute Nodes

2000

3000

4000

5000

6000

7000

Ba
nd

w
id

th
 M

iB
/s

8 processes per node
16 processes per node

(b) Scenario 2: storage is slower than network

Fig. 5: Impact of the number of compute nodes on I/O
bandwidth with different numbers of processes per node. The
dots represent individual executions, while the dotted lines
connect the mean values. The x-axes and y-axes are different
in the two plots, and the y-axes do not start at zero.

1 2 3 4 5 6 7 8
Number of Storage Targets

800

1000

1200

1400

1600

1800

2000

2200

2400

Ba
nd

w
id

th
 (

M
iB

/s
)

(a) Scenario 1: network is slower than storage (8 nodes)

0 1 2 3 4 5 6 7 8 9
Number of Storage Targets

2000

4000

6000

8000

10000

Ba
nd

w
id

th
 (

M
iB

/s
)

(b) Scenario 2: storage is slower than network (32 nodes)

Fig. 6: I/O bandwidth for different numbers of storage targets
(stripe count). The red dots represent the bandwidth values of
the individual 100 executions. The figures are not in the same
scale of bandwidth and the y-axes do not start at zero.

we use 8 compute nodes for scenario 1 experiments, and 32
nodes for scenario 2, in both cases using 8 processes per node.

Figures 6a and 6b present the I/O bandwidth observed with
all possible numbers of targets in PlaFRIM. We can see this
parameter can have a heavy impact, changing performance
from ∼1100 MiB/s to ∼2200 MiB/s in the first scenario,
and from ∼1760 MiB/s to ∼9000 MiB/s in the second one.
However, we can also notice that both cases present very
distinct behaviors.

1) Scenario 1 (performance is limited by network): In the
first scenario, two distinct effects stand out. The first one is that
in most cases, the reported I/O bandwidth presents a bi-modal
behavior. That is the case when 2, 3, 5, and 6 OSTs are used.
The second behavior to notice is that the peak performance
— ∼2200 MiB/s — is reached only when the stripe count is
equal to 2, 6, or 8. Therefore, in scenario 1, the default striping
pattern with 4 OSTs (also recommended by Chowdhury et
al. [12]) keeps the I/O performance of PlaFRIM below 50%
of the peak.

To understand this behavior, we analyze the relationship
between target selection and I/O bandwidth. As discussed
in Section III-A, PlaFRIM’s storage infrastructure has two
servers (OSS), each with four targets (OSTs). Let Si be the

102 103 104101 202 203 204201

Server 01 Server 02

Fig. 7: Example of an OST allocation with four targets and
placement of (1, 3)

(0, 1) (0, 3) (0, 2) (1, 4) (1, 3) (1, 2) (2, 4) (2, 3) (3, 4) (4, 4) (1, 1) (3, 3)
Targets Placement (min, max)

1000

1200

1400

1600

1800

2000

2200

Ba
nd

w
id

th
(M

iB
/s

)

Fig. 8: Box-plots of performance according to OST allocation
in scenario 1 (network is slower than storage). Generated from
the data presented in Figure 6a. The y-axis does not start at
zero.

set of OSTs used in the ith server during an I/O operation.
We represent the OST allocation by the number of targets
selected in each server as (min,max), such that min =
minimum(|S1|, |S2|) and max = maximum(|S1|, |S2|). For
example, Figure 7 illustrates a possible allocation of four
targets: one in the first server and three in the second one,
which we represent as (1, 3).

Using this (min,max) notation, we separated data from
Figure 6a by their OST allocation and generated the box-
plots presented in Figure 8. Interestingly, we can see that
performance increases with the min/max ratio. Moreover,
the actual number of targets does not have any impact, seeing
as (0, 1), (0, 2), and (0, 3) have very similar performance. The
same can be said for (1, 2) and (2, 4), and to (1, 1), (3, 3), and
(4, 4). Essentially, the highest performance is reached when
the number of targets is the same in both servers. In contrast,
the lowest performance happens when just one of the servers
is used.

To illustrate that behavior, we consider the case where two
targets are used. In this case, there are two possible allocations:
(0, 2) and (1, 1). Figure 9 shows what happens in both cases:
since in scenario 1 the performance available from each server
is limited by the network link leading to it, using both servers
in a balanced way (i.e. the same amount of data is written to
both) leads to the best possible performance.

The bi-modal behavior observed for some numbers of tar-
gets come from different allocations that are made by BeeGFS
in different repetitions of the experiment. Although the default
striping with 4 OSTs could have the balanced placement (2, 2),
we do not see it in Figure 8 because it never happened in
100 repetitions of our experiment. The round-robin heuristic
used in PlaFRIM always makes a (1, 3) allocation: (101, 201,
202, 203) or (204, 102, 103, 104). Comparing the performance

16GiB 16GiB

Server 01

Server 02

29.78s

16GiB

16GiB~1100 MiB/s

~1100 MiB/s

14.89s

(1, 1) OST allocation (0, 2) OST allocation

Fig. 9: Performance for Scenario 1 (network is slower than
storage) when writing 32 GiB to two storage targets depending
on the allocation. The x-axis represents time, and the y-axis
represents the bandwidth available from each server (i.e. the
capacity of the network link to that server).

of that allocation to the (3, 3) that always happens with six
targets, the latter increases bandwidth by more than 49%.

Some of the observed behaviors happen because of the use
of the round-robin OST allocation heuristic. For example, as
previously stated, a stripe count of 4 always results in a (1, 3)
allocation. If a random selection of OSTs were to be used
instead, then all other allocations would be possible, including
the balanced (2, 2) that would result in peak performance.
Nonetheless, it is important to notice that does not mean that
the stripe count of 4 would always reach peak performance.
Its performance would actually have a high variability, with
the best case being as likely as the worst case.

Lesson learned #4
When the network speed limits the I/O performance, the
main factor that impacts the I/O bandwidth is not the
number of used targets, but rather the load balance of target
allocation among the storage servers. A selection heuristic
that picks the same number of targets in the storage servers
would be the best choice. Without changing the heuristic,
the maximum number of storage targets (eight in our case)
can be selected as the default stripe count in order to achieve
peak performance every time.

There is another important thing to notice from results in
Figure 6a : the impact of our experimental methodology in our
conclusions. All our experiments were repeated 100 times and
we looked at all the points, not only their mean or median. If
we had executed these tests only once or even a few times,
because some (min,max) allocations are more frequent than
others, or even if we had simply calculated and plotted the
mean bandwidth without looking at the data, we could tell a
different (and inaccurate) story.

Lesson learned #5
It is always good practice to repeat experiments multiple
times, but that is especially true when evaluating I/O be-
cause of the large number of variables that affect results.
Moreover, one should be careful when summarizing data
points by their mean as that can hide interesting and relevant
behaviors.

2) Scenario 2 (performance is limited by the storage sys-
tem): As we can see in Figure 6b the bi-modal behavior
seen in scenario 1 is not present in scenario 2. Instead, the

(0, 1) (0, 2) (1, 1) (1, 2) (0, 3) (1, 3) (1, 4) (2, 3) (2, 4) (3, 3) (3, 4) (4, 4)
Targets Placement (min, max)

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Ba
nd

w
id

th
 (

M
B/

s)

Fig. 10: Box-plots of performance according to OST allocation
in scenario 2 (storage is slower than network). Generated from
data presented in Figure 6b. The y-axis does not start at zero.

1 2 4 8 16 32
Number of Compute Nodes

2000

4000

6000

8000

10000

Ba
nd

w
id

th
 (

M
iB

/s
)

stripe count 1
stripe count 2
stripe count 4
stripe count 8

Fig. 11: Mean values of the I/O bandwidth in scenario 2
according to the number of compute nodes, and considering
multiple stripe counts.

bandwidth increases almost linearly with the number of OSTs
and presents a high variability. When increasing from 1 to
8 storage targets, the mean bandwidth was increased by more
than 350% (from ∼1764 MiB/s to ∼8064 MiB/s), while the
standard deviation increased in more than 460% (from 139.8
to 787.9).

That variability is caused by the performance variation of
the storage devices [10]. Once the performance of the I/O is
limited by the storage devices‘ speed and not by the network,
any performance variation on those devices will reflect in the
I/O bandwidth.

The OST allocation for scenario 2, shown in Figure 10,
confirms that the number of OSTs is the most important
parameter in this case. Figure 10 also shows that well-balanced
placements, such as (1, 1), (3, 3), and (4, 4), have in general a
better performance than unbalanced placements with the same
number of targets. For example, the average bandwidth for
the well-balanced placement (3, 3) is 10.15% higher than the
unbalanced placement (2, 4). Thus, although the impact of the
placement is not so evident as in scenario 1, selecting the same
number of OSTs in each storage server is still the better choice.

In this section, we used 32 compute nodes for scenario 2

while Section IV-A had shown 16 to be enough. That choice
was made because of the results presented in Figure 11, where
we repeated those experiments in scenario 2 but with different
numbers of OSTs (4 had been originally used). This shows that
with more storage targets higher peak performance is available,
but that performance can only be achieved with more compute
nodes.

Lesson learned #6
In contradiction with earlier findings [12], adding more
OSTs in BeeGFS does indeed lead to more performance in
the case where I/O performance is not limited by the net-
work. Moreover, the number of computing nodes required
to reach peak performance depends on the stripe count.
Although at a small impact, when compared with scenario 1,
the well-balanced target allocation is also the better choice
in scenario 2. As in scenario 1, the maximum number of
targets (8 in our case) allows for the best performance that
does not depend on target allocation.

D. Impact of concurrent applications sharing OSTs

The evaluation of the impact of stripe count on performance
for both considered scenarios has concluded that performance
is linked to the number of OSTs (for scenario 2) and their
allocation in the servers (especially for scenario 1 but also
for 2). That being the case, a good strategy could be to
always use the maximum number of available targets, since
that (i) allows applications running on their own to achieve
peak performance; (ii) eliminates the impact of OST allocation
across servers; and (iii) is a simple recommendation that can be
followed without requiring similar analyses to be conducted on
other machines. Nonetheless, that strategy has a disadvantage:
by allowing all applications to use all storage targets, we
maximize how many targets they share. Therefore, in this
section, we investigate the impact of that on performance.
We focus on Scenario 2, where performance is limited by the
storage infrastructure, because we are interested in the impact
of sharing the OSTs.

Figure 12a presents results obtained when running two
concurrent applications, each using eight different compute
nodes (they do not share nodes), and increasing the number
of OSTs each application uses. Equation 1 explains how we
calculated aggregate bandwidth for these experiments, where
A is the set of concurrent applications, starti and endi are
the start and end times of application i ∈ A and voli is the
amount of data written by that application.∑

i voli
max
∀i∈A

(endi)− min
∀i∈A

(starti)
(1)

When the stripe count is 2, applications never, in 100 rep-
etitions, shared the same targets. In that situation, as can be
seen in Figure 12a, the aggregate bandwidth is compatible
with what was previously observed for a single application
using 16 nodes and 4 targets. With 4 and 8 OSTs being used
per application, the aggregate bandwidth continues to be very

similar — and even slightly higher — than what was achieved
by a single application with twice the number of nodes and
targets. In other words, even when all the targets were shared
by the two applications, global performance was not degraded.
The same behavior can be observed in Figures 12b and 12c,
where results obtained with 3 and 4 concurrent applications
are presented.

Another thing to notice from Figure 12 is that performance
achieved by each application is lower than what was observed
for the same application running by itself, and that difference
increases with the stripe count. We conclude that slow-down
in individual performance comes from sharing the available
bandwidth, and not from contention at the shared targets,
because that also happened in the tests where each application
used two targets (slow-down of up to 20%), and in those
tests they never shared OSTs. The fact that the difference is
higher for more applications and higher stripe counts simply
comes from the fact that more applications are sharing the
available bandwidth, and that with a higher stripe count the
single-application baseline is faster.

With two applications using four storage targets each, we
can separate results in two different cases. Because PlaFRIM’s
BeeGFS has only two possible OST allocations for a stripe
count of 4 — both (1, 3) — the two applications either did
not share targets (which happened in approximately two thirds
of our test repetitions), or they shared all four targets (the
remaining one third of results). Figure 13 shows individual
performance observed in both cases. A Welch two-sample
t-test was applied to compare the two groups (after testing
normality with the Kolmogorov-Smirnov test and assuming
different variances) and resulted in a p-value of 0.9031, which
does not allow to reject the hypothesis of the two means
being the same (in other words, we cannot conclude they are
significantly different).

Lesson learned #7
Our results suggest that sharing OSTs among concurrent
applications does not significantly impact I/O performance.
Of course, we expect performance degradation with a
large number of concurrent applications, but that situation
— having many concurrent applications that write large
amounts of data at the same time — is not very common
in a supercomputer [28].

It is important to notice we are not saying I/O performance
in general is never harmed when multiple applications compete
for the PFS, but that this degradation does not come from
sharing OSTs. Indeed, I/O interference has been shown to be
connected to metadata intensity [31], network behaviors [32],
and sharing other parts of the I/O stack [21].

V. RELATED WORK

I/O performance when accessing a parallel file system
depends on the non-trivial interplay of large number of pa-
rameters [27]. For this reason, some papers try to use machine
learning techniques to predict it [23], [29].

Single
app

8 nodes
2 OST

2 apps
8 nodes
 2 OST

Aggregated
 2 apps
 8 nodes
 2 OST

Single
app

 16 nodes
 4 OST

Single
app

 8 nodes
 4 OST

2 apps
 8 nodes
 4 OST

Aggregated
 2 apps
 8 nodes
 4 OST

Single
app

16 nodes
8 OST

Single
app

8 nodes
8 OST

2 apps
8 nodes
 8 OST

Aggregated
 2 apps
8 nodes
 8 OST

0

2000

4000

6000

8000

10000

Ba
nd

w
id

th
 (

M
iB

/s
)

(a) 2 applications

Single
app

8 nodes
2 OST

3 apps
8 nodes
 2 OST

Aggregated
 3 apps
 8 nodes
 2 OST

Single
app

 24 nodes
 6 OST

Single
app

 8 nodes
 8 OST

3 apps
8 nodes
 8 OST

Aggregated
 3 apps
8 nodes
 8 OST

Single
app

 24 nodes
 8 OST

0

2000

4000

6000

8000

10000

Ba
nd

w
id

th
 (

M
iB

/s
)

(b) 3 concurrent applications

Single
app

8 nodes
2 OST

4 apps
8 nodes
 2 OST

Aggregated
 4 apps
 8 nodes
 2 OST

Single
app

 32 nodes
 8 OST

Single
app

 8 nodes
 8 OST

4 apps
8 nodes
 8 OST

Aggregated
 4 apps
8 nodes
 8 OST

0

2000

4000

6000

8000

10000

Ba
nd

w
id

th
 (

M
iB

/s
)

(c) 4 concurrent applications

Fig. 12: Performance of concurrent applications (in red), with different numbers of OSTs per application, compared to single
application executions with similar parameters (in blue). The stacked bars show the individual bandwidth of the applications,
and their aggregate bandwidth was calculated with Equation 1. Individual performance should be compared to the left, and
total/aggregated to the right. Each bar is the average of 100 executions, all results can be seen in the git repository.

Sharing OST Not sharing OST
4200

4400

4600

4800

5000

5200

Ba
nd

w
id

th
 (

M
B/

s)

Fig. 13: Individual application performance when two con-
current applications access 4 OSTs each, separated by cases
where they are all the same or all different.

A considerable amount of work has studied the performance
of the Lustre parallel file system [3]. Shan and Shalf [22]
focused mainly on application-related parameters, such as the
transfer size and the number of processes. Wang et al. [27]
used logs to study the Lustre deployment of Cori, aiming
to identify applications’ I/O bottlenecks. They concluded the
aspects with most impact on performance are: number of
compute nodes, processes, and OSTs; and data size. They
also pointed unbalanced workload on OSTs as one of the root
causes for poor job performance. For the same system, Kim
et al. [15] proposed an algorithm that uses information from
previous application runs, such as number of processes and
of I/O requests, to dynamically adjust Lustre striping for each

job. In their results, performance was improved by 50%.

In [6], Behzad et al. present an auto-tuning framework to
adapt I/O stack parameters including Lustre stripe size and
count. For that, it keeps a database of I/O patterns, extracted
from applications, and non-linear regression models to find
the best parameters. Differently from their work, which is
more application-centered, our objective was to search for the
best general-purpose default stripe count, without relying on
previous knowledge about the applications, I/O profiles that
can be inaccurate, regression models that have some error,
etc.

Like us, Lawrence et al. [16] found that the best stripe count
for a single shared file is to use as many OSTs as possible.
Wan et al. [24] measured write performance when accessing
a single OST by an increasing number of concurrent applica-
tions, and observed there was no significant degradation. They
also pointed that load balance among OSTs is important. For
a result where bandwidth was multi-modal, authors argued
it was due to interference from other jobs. Wang et al. [25]
profiled two large-scale Lustre deployments and observed that
96% of jobs use the default stripe count, which is small in
these systems. In addition to studying a different file system,
although we reach some of the same conclusions, our work
differs from these because we further study the impact of OST
allocation, the role of network performance, and explain high
variability and multimodal behaviors. Moreover, in BeeGFS

the users cannot change stripe configuration as easily, which
makes the correct choice of the default values even more
important.

Xu et al. [30] proposed a tool for monitoring performance of
the Lustre file system, and then used it to evaluate performance
of MPI-IO collective read and write operations. They have
improved read performance by making each aggregator access
less storage targets, as they observed the concurrent accesses
led to more disk seeks. This highlights the importance of the
application characteristics for performance. In other words,
even with well-tuned PFS parameters performance can still be
jeopardized by an inadequate access pattern.

Being more recent, BeeGFS have been evaluated in a few
studies in the related literature. Morganti et al. [20] studied
— with benchmarks and bioinformatics applications — the
performance of BeeGFS deployed on low-power SoCs. They
did not focus on PFS parameters and kept the default values for
their experiments. Mills et al. [19] evaluated the components
involved in long-distance transfers of large datasets between
clusters, including BeeGFS. They experimented with different
numbers of OSSs (concluding that the higher, the better), but
used a single compute node (which may cause behaviors to
be hidden, as we discussed in Section IV-A) and did not study
the impact of other parameters such as the number of storage
targets, of compute nodes, and the network speed.

Brzenski et al. [9] aimed at optimizing I/O performance of
geophysical applications using PnetCDF to access BeeGFS.
Therefore, they evaluated different parameters, including com-
binations of MPI-IO hints. They were focused on a specific
type of application and not on a general case, like we are. Still,
they presented a result with three different stripe counts where
the higher was the better. Nonetheless, differently from us,
they did not consider target allocation, the number of compute
nodes and of processes per node, or network speed.

As previously said, to the best of our knowledge, Chowd-
hury et al. [12] is the closest work to ours, since they evaluated
the impact of the number of storage targets on the BeeGFS
performance. However, as we showed in this paper, we did
not reach the same conclusions. Our rigorous methodology,
and the fact we studied different network speeds and target
allocation, allowed us to identify important behaviors. Mainly,
we showed that the maximum possible stripe count should be
use for peak performance, and then showed that sharing targets
do not significantly degrades application I/O performance.

VI. CONCLUSION

In this work, we investigated the impact of storage target
allocation (number and placement) on write performance with
BeeGFS. Our main goal was to extend the state of the art [12]
(i) by obtaining guidelines that would be generic for any
system, and (ii) by investigating the possible role of a target
allocation policy. To do that, we conducted a comprehensive
performance evaluation using the well-known IOR benchmark
tool and studying the impact of the data size, the number of
compute nodes and of processes per node, the network speed,

the stripe count and the placement of OSTs in OSS. All of
these parameters were shown to play important roles.

Notably, we showed that using the maximum possible stripe
count is the best strategy, as lower counts are affected by the
placement of OSTs among OSSs. Moreover, in the scenario
where performance is limited by the storage components,
performance increases with the number of OSTs. That con-
clusion contradicts previous observations that advised against
that by citing limited performance improvements by adding
OSTs (which were observed in conditions that would hide their
impact) and a need to avoid sharing of targets by concurrent
applications. Nevertheless, we did not observe performance
degradation with up to 4 I/O-intensive concurrent applications.

In this analysis, we used a total data size large enough to
reach the system’s peak performance. The literature says that
lower stripe counts could be better to small file sizes [25].
Still, we believe the default value should benefit large accesses,
which are the most bandwidth-critical ones.

We estimate that the change in the default stripe size of
the system we used transparently increased applications’ I/O
performance by more than 40%. In addition to exploring
parameters often neglected in the literature, such as the net-
work speed, our results also highlight the importance of a
rigorous experimental methodology. The lessons learned from
our study provide important guidelines not only for BeeGFS
configuration, but for PFS performance evaluation in general.

Our conclusions are relevant for small to medium-scale
systems such as PlaFRIM, which are numerous. Future work
directions include testing their validity in larger scale systems,
especially with larger file system deployments, and with other
application access patterns, such as the file-per-process (N-N)
strategy.

AUTHOR CONTRIBUTIONS

Luan Teylo was in charge of software design, experimenta-
tion, data curation and visualization. All authors participated
to the conceptualization of the work, methodology, analysis
of the results and writing of the results. All authors read and
approved the manuscript.

ACKNOWLEDGMENT

The authors would like to thank Julien Lelaurain and Brice Goglin for
the support. All experiments were carried out using the PlaFRIM experi-
mental testbed, supported by Inria, CNRS (LABRI and IMB), Université
de Bordeaux, Bordeaux INP and Conseil Régional d’Aquitaine (see https:
//www.plafrim.fr). This work was supported in part by the French National
Research Agency (ANR) in the frame of DASH (ANR-17-CE25-0004),
by the Project Région Nouvelle Aquitaine 2018-1R50119 “HPC scalable
ecosystem” and by the “Adaptive multitier intelligent data manager for
Exascale (ADMIRE)” project, funded by the European Union’s Horizon 2020
JTI-EuroHPC Research and Innovation Programme (grant 956748).

REFERENCES

[1] Io500. https://io500.org/list/sc19/io500.
[2] Lustre and io-500. https://www.opensfs.org/wp-content/uploads/2020/

04/Lustre IO500 v2.pdf. Accessed: 2022-01-14.
[3] Lustre® filesystem. https://www.lustre.org. Accessed: 2022-01-05.

https://www.plafrim.fr
https://www.plafrim.fr
https://www.opensfs.org/wp-content/uploads/2020/04/Lustre_IO500_v2.pdf
https://www.opensfs.org/wp-content/uploads/2020/04/Lustre_IO500_v2.pdf
https://www.lustre.org

[4] M Asch, T Moore, R Badia, M Beck, P Beckman, T Bidot, F Bodin,
F Cappello, A Choudhary, B de Supinski, E Deelman, J Dongarra,
A Dubey, G Fox, H Fu, S Girona, W Gropp, M Heroux, Y Ishikawa,
K Keahey, D Keyes, W Kramer, J-F Lavignon, Y Lu, S Matsuoka,
B Mohr, D Reed, S Requena, J Saltz, T Schulthess, R Stevens, M Swany,
A Szalay, W Tang, G Varoquaux, J-P Vilotte, R Wisniewski, Z Xu,
and I Zacharov. Big data and extreme-scale computing: Pathways to
convergence-toward a shaping strategy for a future software and data
ecosystem for scientific inquiry. The International Journal of High
Performance Computing Applications, 32(4):435–479, 2018.

[5] BeeGFS. version 7.2.3. https://www.beegfs.io/, 2021.
[6] Babak Behzad, Surendra Byna, and Marc Snir. Optimizing i/o per-

formance of hpc applications with autotuning. ACM Transactions on
Parallel Computing (TOPC), 5(4):1–27, 2019.

[7] IOR Benchmark. version 3.3.0. https://github.com/hpc/ior, 2021.
[8] Francieli Zanon Boito, Eduardo C Inacio, Jean Luca Bez, Philippe OA

Navaux, Mario AR Dantas, and Yves Denneulin. A checkpoint of re-
search on parallel i/o for high-performance computing. ACM Computing
Surveys (CSUR), 51(2):1–35, 2018.

[9] Jared Brzenski, Christopher Paolini, and Jose E. Castillo. Improving
the i/o of large geophysical models using pnetcdf and beegfs. Parallel
Computing, 104-105:102786, 2021.

[10] Zhen Cao, Vasily Tarasov, Hari Prasath Raman, Dean Hildebrand, and
Erez Zadok. On the performance variation in modern storage stacks. In
15th USENIX Conference on File and Storage Technologies (FAST 17),
pages 329–344, 2017.

[11] Hung Ching Chang, Bo Li, Matthew Grove, and Kirk W. Cameron. How
processor speedups can slow down I/O Performance. In Proceedings -
IEEE Computer Society’s Annual International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunications Systems,
MASCOTS, pages 395–404. IEEE, 2015.

[12] Fahim Chowdhury, Yue Zhu, Todd Heer, Saul Paredes, Adam Moody,
Robin Goldstone, Kathryn Mohror, and Weikuan Yu. I/o characterization
and performance evaluation of beegfs for deep learning. In Proceedings
of the 48th International Conference on Parallel Processing, ICPP 2019,
New York, NY, USA, 2019. Association for Computing Machinery.

[13] Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, and
Leigh Orf. Damaris: How to efficiently leverage multicore parallelism
to achieve scalable, jitter-free I/O. In Proceedings - 2012 IEEE
International Conference on Cluster Computing, CLUSTER 2012, pages
155–163, 2012.

[14] Ana Gainaru, Valentin Le Fèvre, and Guillaume Pallez. I/o scheduling
strategy for periodic applications. ACM Transactions on Parallel
Computing, 2019.

[15] Sunggon Kim, Alex Sim, Kesheng Wu, Suren Byna, Teng Wang,
Yongseok Son, and Hyeonsang Eom. Dca-io: A dynamic i/o control
scheme for parallel and distributed file systems. In 2019 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID), pages 351–360. IEEE, 2019.

[16] B Lawrence, C Maynard, A Turner, X Guoc, and D Sloan-
Murphyc. Parallel i/o performance benchmarking and investigation
on multiple hpc architectures. Available at https://prace-ri.eu/wp-
content/uploads/WP236.pdf (accessed 20 April 2022), 2017.

[17] Glenn Lockwood, Wucherl Yoo, Surendra Byna, N.J. Wright, Shane
Snyder, Kevin Harms, Zachary Nault, and Philip Carns. Umami: a recipe
for generating meaningful metrics through holistic i/o performance
analysis. pages 55–60, 11 2017.

[18] Sandeep Madireddy, Prasanna Balaprakash, Philip Carns, Robert
Latham, Robert Ross, Shane Snyder, and Stefan M. Wild. Analysis
and correlation of application i/o performance and system-wide i/o
activity. In 2017 International Conference on Networking, Architecture,
and Storage (NAS), pages 1–10, 2017.

[19] Nicholas Mills, F. Alex Feltus, and Walter B. Ligon III. Maximizing
the performance of scientific data transfer by optimizing the interface
between parallel file systems and advanced research networks. Future
Generation Computer Systems, 79:190–198, 2018.

[20] Lucia Morganti, Elena Corni, Luca Lama, Carmelo Pellegrino, Francieli
Zanon Boito, Ivan Merelli, Daniele D’Agostino, and Daniele Cesini. On
low-power socs as storage bricks for bioinformatics. Concurrency and
Computation: Practice and Experience, 32(10):e5415, 2020.

[21] Loı̈c Pottier, Rafael Ferreira da Silva, Henri Casanova, and Ewa Deel-
man. Modeling the performance of scientific workflow executions on
hpc platforms with burst buffers. In 2020 IEEE International Conference
on Cluster Computing (CLUSTER), pages 92–103, 2020.

[22] Hongzhang Shan and John Shalf. Using ior to analyze the i/o perfor-
mance for hpc platforms. Technical report, Ernest Orlando Lawrence
Berkeley NationalLaboratory, Berkeley, CA (US), 2007.

[23] Abdul Jabbar Saeed Tipu, Pádraig Conbhuı́, and Enda Howley. Applying
neural networks to predict hpc-i/o bandwidth over seismic data on lustre
file system for exseisdat. Cluster Computing, 07 2021.

[24] Lipeng Wan, Matthew Wolf, Feiyi Wang, Jong Youl Choi, George
Ostrouchov, and Scott Klasky. Comprehensive measurement and anal-
ysis of the user-perceived i/o performance in a production leadership-
class storage system. In 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), pages 1022–1031, 2017.

[25] Feiyi Wang, Hyogi Sim, Cameron Harr, and Sarp Oral. Diving into
petascale production file systems through large scale profiling and
analysis. In Proceedings of the 2nd Joint International Workshop on
Parallel Data Storage & Data Intensive Scalable Computing Systems,
PDSW-DISCS ’17, page 37–42, New York, NY, USA, 2017. Association
for Computing Machinery.

[26] Teng Wang, Suren Byna, Glenn K. Lockwood, Shane Snyder, Philip
Carns, Sunggon Kim, and Nicholas J. Wright. A zoom-in analysis of
i/o logs to detect root causes of i/o performance bottlenecks. In 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pages 102–111, 2019.

[27] Teng Wang, Suren Byna, Glenn K. Lockwood, Shane Snyder, Philip
Carns, Sunggon Kim, and Nicholas J. Wright. A zoom-in analysis of
i/o logs to detect root causes of i/o performance bottlenecks. In 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pages 102–111, 2019.

[28] Teng Wang, Suren Byna, Glenn K Lockwood, Shane Snyder, Philip
Carns, Sunggon Kim, and Nicholas J Wright. A zoom-in analysis of
i/o logs to detect root causes of i/o performance bottlenecks. In 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pages 102–111. IEEE, 2019.

[29] Bing Xie, Zilong Tan, Philip Carns, Jeff Chase, Kevin Harms, Jay Lof-
stead, Sarp Oral, Sudharshan S. Vazhkudai, and Feiyi Wang. Applying
machine learning to understand write performance of large-scale parallel
filesystems. In 2019 IEEE/ACM Fourth International Parallel Data
Systems Workshop (PDSW), pages 30–39, 2019.

[30] Cong Xu, Suren Byna, Vishwanath Venkatesan, Robert Sisneros, Omkar
Kulkarni, Mohamad Chaarawi, and Kalyana Chadalavada. Lioprof:
exposing lustre file system behavior for i/o middleware. In 2016 Cray
User Group Meeting, 2016.

[31] Bin Yang, Xu Ji, Xiaosong Ma, Xiyang Wang, Tianyu Zhang, Xiupeng
Zhu, Nosayba El-Sayed, Haidong Lan, Yibo Yang, Jidong Zhai, Weiguo
Liu, and Wei Xue. End-to-end i/o monitoring on a leading supercom-
puter. In Proceedings of the 16th USENIX Conference on Networked
Systems Design and Implementation, NSDI’19, page 379–394, USA,
2019. USENIX Association.

[32] Orcun Yildiz, Matthieu Dorier, Shadi Ibrahim, Rob Ross, and Gabriel
Antoniu. On the root causes of cross-application i/o interference in hpc
storage systems. In 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 750–759, 2016.

[33] Tiezhu Zhao and Jinlong Hu. Performance evaluation of parallel file
system based on lustre and grey theory. In 2010 Ninth International
Conference on Grid and Cloud Computing, pages 118–123. IEEE, 2010.

https://www.beegfs.io/
https://github.com/hpc/ior

	Introduction
	BeeGFS
	Methodology
	Experimental environment
	Benchmarking tool
	Amount of data

	Execution protocol

	Results
	Computing nodes
	Number of processes per node
	Object Storage Targets
	Scenario 1 (performance is limited by network)
	Scenario 2 (performance is limited by the storage system)

	Impact of concurrent applications sharing OSTs

	Related Work
	Conclusion
	References

