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Abstract. Recent work achieved impressive progress towards joint reconstruc-
tion of hands and manipulated objects from monocular color images. Existing
methods focus on two alternative representations in terms of either parametric
meshes or signed distance fields (SDFs). On one side, parametric models can
benefit from prior knowledge at the cost of limited shape deformations and mesh
resolutions. Mesh models, hence, may fail to precisely reconstruct details such
as contact surfaces of hands and objects. SDF-based methods, on the other side,
can represent arbitrary details but are lacking explicit priors. In this work we aim
to improve SDF models using priors provided by parametric representations. In
particular, we propose a joint learning framework that disentangles the pose and
the shape. We obtain hand and object poses from parametric models and use them
to align SDFs in 3D space. We show that such aligned SDFs better focus on re-
constructing shape details and improve reconstruction accuracy both for hands
and objects. We evaluate our method and demonstrate significant improvements
over the state of the art on the challenging ObMan and DexYCB benchmarks.

Keywords: Hand-object reconstruction, Parametric mesh models, Signed dis-
tance fields (SDFs)

1 Introduction

Reconstruction of hands and objects from visual data holds a promise to unlock wide-
spread applications in virtual reality, robotic manipulation and human-computer inter-
action. With the advent of deep learning, we have witnessed a large progress towards 3D
reconstruction of hands [4, 5, 24, 39, 57, 74] and objects [12, 16, 47, 66]. Joint recon-
struction of hands and manipulated objects, as well as detailed modeling of hand-object
interactions, however, remains less explored and poses additional challenges.

Some of the previous works explore 3D cues and perform reconstruction from
multi-view images [7], depth maps [1, 61, 73] or point clouds [9]. Here, we focus on
a more challenging but also more practical setup and reconstruct hands and objects
jointly from monocular RGB images. Existing methods in this setting can be generally
classified as the ones using parametric mesh models [20, 21, 49, 54, 71] and methods
based on implicit representations [11, 26, 36, 45].

Methods from the first category [20, 21, 71] often build on MANO [54], a popu-
lar parametric hand model, see Figure 1(a). Since MANO is derived from 3D scans of
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Fig. 1: Previous work on hand-object reconstruction use either (a) parametric shape
models or (b) implicit 3D representations. Our proposed method (c) extends SDFs with
prior knowledge on hand and object poses obtained via parametric models and can pro-
duce detailed meshes for hands and manipulated objects from monocular RGB images.

real human hands and encodes strong prior shape knowledge, such methods typically
provide anthropomorphically valid hand meshes. However, the resolution of parametric
meshes is limited, making them hard to recover detailed interactions. Also, reconstruct-
ing 3D objects remains a big challenge. Hasson et al. [21] propose to use AtlasNet [16]
to reconstruct 3D objects. However, their method can only reconstruct simple objects,
and the reconstruction accuracy remains limited. To improve reconstruction, several
methods [20, 62, 71] make a restricting assumption that the ground-truth 3D object
model is available at test time and only predict the 6D pose of the object.

Recently, neural implicit representations have shown promising results for object
reconstruction [45]. Following this direction, Karunratanakul et al. [26] propose to rep-
resent hands and objects in a unified signed distance field (SDF) and show the potential
to model hand-object interactions, see Figure 1(b). We here adopt SDF and argue that
such implicit representations may benefit from explicit prior knowledge about the pose
of hands and objects.

For more accurate reconstruction of hands and manipulated objects, we attempt to
combine the advantages of the parametric models and SDFs. Along this direction, pre-
vious works [10, 14, 25, 56] attempt to leverage parametric models to learn SDFs from
3D poses or raw scans. In our work, we address a different and more challenging setup
of reconstructing hands and objects from monocular RGB images. We hence propose a
new pose-normalized SDF framework suited for our task.
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Scene geometry depends both on the shape and the global pose of underlying ob-
jects. While the pose generally affects all object points with low-parametric transforma-
tions (e.g., translation and rotation), it is a common practice to separate the pose and the
shape parameters of the model [13, 54]. We, hence, propose to disentangle the learning
of pose and shape for both hands and objects. As shown in Figure 1(c), for the hand,
we first estimate its MANO parameters and then learn hand SDF in a canonical frame
normalized with respect to the rotation and trsnslation of the hand wrist. Similarly, for
objects, we estimate their translation and learn object SDF in a translation-normalized
canonical frame. By normalizing out the pose, we simplify the task of SDF learning
which can focus on estimating the shape disregarding the global rotation and translation
transformations. In our framework, the MANO network and the object pose network are
responsible for solving the pose, and SDF networks focus on learning the geometry of
the hand and the object under their canonical poses.

To validate the effectiveness of our approach, we conduct extensive experiments
on two challenging benchmarks: ObMan [21] and DexYCB [6]. ObMan is a synthetic
dataset and contains a wide range of objects and grasp types. DexYCB is currently the
largest real dataset for capturing hands and manipulated objects. We experimentally
demonstrate that our approach outperforms state-of-the-art methods by a significant
margin on both benchmarks. Our contributions can be summarized as follows:

• We propose to combine the advantages of parametric mesh models and SDFs and
present a joint learning framework for 3D reconstruction of hands and objects.

• To effectively incorporate prior knowledge into SDFs learning, we propose to dis-
entangle the pose learning from the shape learning for this task. Within our framework,
we employ parametric models to estimate poses for the hand and the object and employ
SDF networks to learn hand and object shapes in pose-normalized coordinate frames.

• We show the advantage of our method by conducting comprehensive ablation
experiments on ObMan. Our method produces more detailed joint reconstruction results
and achieves state-of-the-art accuracy on the ObMan and DexYCB benchmarks.

2 Related Work

Our work focuses on joint reconstruction of hands and manipulated objects from monoc-
ular RGB images. In this section, we first review recent methods for object shape mod-
eling and 3D hand reconstruction. Then, we focus on hand-and-object interaction mod-
eling from a single color image.
3D object modeling. Modeling the pose and shape of 3D objects from monocular im-
ages is one of the longest standing objectives of computer vision [42, 52]. Recent meth-
ods train deep neural network models to compute the object shape [11, 16, 36, 55, 70]
and pose [31, 32, 34, 68] directly from image pixels. Learned object shape reconstruc-
tion from single view images has initially focused on point-cloud [48], mesh [16, 66]
and voxel [12, 51] representations. In recent years, deep implicit representations [11,
36, 45] have gained popularity. Unlike other commonly used representations, implicit
functions can theoretically model surfaces at unlimited resolution, which makes them
an ideal choice to model detailed interactions. We propose to leverage the flexibility of
implicit functions to reconstruct hands and arbitrary unknown objects. By conditioning
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the signed distance function (SDF) on predicted poses, we can leverage strong shape
priors from available models. Recent work [59] also reveals that it is effective to encode
structured information to improve the quality of NeRF [37] for articulated bodies.

3D hand reconstruction. The topic of 3D hand reconstruction has attracted wide at-
tention since the 90s [23, 50]. In the deep learning era, we have witnessed significant
progress in hand reconstruction from color images. Most works focus on predicting 3D
positions of sparse keypoints [24, 38, 40, 60, 69, 75]. These methods can achieve high
accuracy by predicting each hand joint locations independently. However sparse rep-
resentations of the hand are insufficient to reason precisely about hand-object interac-
tions, which requires millimeter level accuracy. To address this limitation, several recent
works model the dense hand surface [2, 4, 5, 8, 29, 30, 41, 44, 65, 74]. A popular line of
work reconstructs the hand surface by estimating the parameters of MANO [54], a de-
formable hand mesh model. These methods can produce anthropomorphically plausible
hand meshes using the strong hand prior captured by the parametric model. Such meth-
ods either learn to directly regress hand mesh parameters from RGB images [2, 4, 8, 74]
or fit them to a set of constraints as a post-processing step [41, 44, 65]. Unlike previ-
ous methods, we condition the hand implicit representation on MANO parameters and
produce hand reconstructions of improved visual quality.

3D hand-object reconstruction. Joint reconstruction of hands and objects from monoc-
ular RGB images is a very challenging task given the partial visibility and strong mutual
occlusions. Methods often rely on multi-view images [3, 19, 43, 67] or additional depth
information [17, 18, 58, 63, 64] to solve this problem. Recent learning-based meth-
ods focus on reconstructing hands and objects directly from single-view RGB images.
To simplify the reconstruction task, several methods [15, 20, 62, 71] make a strong
assumption that the ground-truth object model is known at test-time and predict its 6D
pose. Some methods propose to model hand interactions with unseen objects at test time
[21, 28, 53]. Most related to our approach, Hasson et al. [21] propose a two-branch net-
work to reconstruct the hand and an unknown manipulated object. The object branch
uses AtlasNet [16] to reconstruct the object mesh and estimate its position relative to
the hand. Their method can only reconstruct simple objects which can be obtained by
deforming a sphere. In contrast, SDF allows us to model arbitrary object shapes.

In order to improve the quality of hand-object reconstructions, [21] introduce heuris-
tic interaction penalties at train time, Yang et al. [71] model each hand-object contact
as a spring-mass system and refine the reconstruction result by an optimization process.
Recent work [33] also applies an online data augmentation strategy to boost the joint
reconstruction accuracy. Though these methods based on parametric mesh models can
achieve relatively robust reconstruction results, the modeling accuracy is limited by the
underlying parametric mesh. Closest to our approach, Karunratanakul et al. [26] pro-
pose to model the hand, the object and their contact areas using deep signed distance
functions. Their method can reconstruct hand and object meshes at a high resolution
and capture detailed interactions. However, their method is model-free and does not
benefit from any prior knowledge about hands or objects. A concurrent work [72] uses
an off-the-shelf hand pose estimator and leverages hand poses to improve hand-held
object shapes, which operates in a less-challenging setting than ours. Different from
previous works, our method brings together the advantages of both parametric models



AlignSDF 5

RGB Input

ResNet Heatmaps

Hand
Encoder

β⃗h

θ⃗p

MANO

Lβ⃗h

θ⃗h Lθ⃗h

j⃗h Lj⃗h

Object
Encoder t⃗o

3D
Points

Hand SDF
Decoder

Lrech

×
Transform

+

3D
Points

Object SDF
Decoder

Lreco

×
Transform

+

Lt⃗o

Result

Marching
Cubes

Marching
Cubes

Fig. 2: Our method can reconstruct detailed hand meshes and object meshes from
monocular RGB images. Two gray blocks of 3D points indicate the same set of 3D
query points. The red arrows denote different loss functions applied during training.
The dashed arrows denote Marching Cubes algorithm [35] used at test time.

and deep implicit functions. By embedding prior knowledge into SDFs learning, our
method can produce more robust and detailed reconstruction results.

3 Method

As illustrated in Figure 2, our method is designed to reconstruct the hand and object
meshes from a single RGB image. Our model can be generally split into two parts: the
hand part and the object part. The hand part estimates MANO parameters and uses them
to transform 3D points to the hand canonical coordinate frame. Then, the hand SDF
decoder predicts the signed distance for each input 3D point and uses the Marching
Cubes algorithm [35] to reconstruct the hand mesh at test time. Similarly, the object
part estimates the object translation relative to the hand wrist and uses it to transform
the same set of 3D points. The object SDF decoder takes the transformed 3D points
as input and reconstructs the object mesh. In the following, we describe the three main
components of our model: hand pose estimation in Section 3.1, object pose estimation
in Section 3.2, and hand and object shape reconstruction in Section 3.3.
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3.1 Hand pose estimation

To embed more prior knowledge about human hands into our model, following previous
works [20, 21, 71], we employ a parametric hand mesh model, MANO [54], to capture
the kinematics for the human hand. MANO is a statistical model, which could map pose
(θ⃗p) and shape (β⃗h) parameters to a hand mesh. To estimate hand poses, we first feed
features extracted from ResNet-18 [22] to the hand encoder network. The hand encoder
network consists of fully connected layers and regresses θ⃗p and β⃗h. Then, we integrate
MANO as a differentiable layer into our model and use it to predict the hand vertices
(v⃗h), the hand joints (⃗jh) and hand poses (θ⃗h).

We define the supervision on the joint locations (Lj⃗h
), the shape parameters (Lβ⃗h

)
and the predicted hand poses (Lθ⃗h

). To compute Lj⃗h
, we apply L2 loss between pre-

dicted hand joints and the ground truth. However, using Lj⃗h
alone can result in ex-

treme mesh deformations [21]. Therefore, we use another two regularization terms:
Lβ⃗h

and Lθ⃗h
. The shape regularization term (Lβ⃗h

) constrains that the predicted hand

shape (β⃗h ∈ R10) is close to the mean shape in the MANO training set. The predicted
hand poses (θ⃗h ∈ R48) consist of axis-angle rotation representations for sixteen joints,
including one global rotation for the wrist joint and fifteen rotations for the other local
joints. The pose regularization term (Lθ⃗h

) constrains local joint rotations to be close to
the mean pose in the MANO training set. We also apply L2 loss for the two regulariza-
tion terms. For the task of hand pose estimation, the overall loss Lhand is the summation
of all Lj⃗h

, Lβ⃗h
and Lθ⃗h

terms:

Lhand = λj⃗h
Lj⃗h

+ λβ⃗h
Lβ⃗h

+ λθ⃗h
Lθ⃗h

, (1)

where we set λj⃗h
, λβ⃗h

and λθ⃗h
to 5× 10−1, 5× 10−7 and 5× 10−5, respectively.

3.2 Object pose estimation

In our method, we set the origin of our coordinate system as the wrist joint defined
in MANO. To solve the task of object pose estimation, we usually need to predict the
object rotation and its translation. However, estimating the 3D rotation for unknown ob-
jects is a challenging and ambiguous task, especially for symmetric objects. Therefore,
we here only predict the 3D object translation relative to the hand wrist. To estimate
the relative 3D translation (⃗to), we employ volumetric heatmaps [38, 46] to predict per
voxel likelihood for the object centroid and use a soft-argmax operator [60] to extract
the 3D coordinate from heatmaps. Then, we convert the 3D coordinate into our wrist-
relative coordinate system using camera intrinsics and the wrist location.

During training, we optimize network parameters by minimizing the L2 loss be-
tween the estimated 3D object translations t⃗o and corresponding ground truth. For the
task of object pose estimation, the resulting loss Lobj is the summation of Lt⃗o

:

Lobj = λt⃗o
Lt⃗o

, (2)

where we empirically set λt⃗o
to 5× 10−1.
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3.3 Hand and object shape reconstruction

Following previous works [26, 45], we use neural networks to approximate signed dis-
tance functions for the hand and the object. For any input 3D point x⃗, we employ the
hand SDF decoder and the object SDF decoder to predict its signed distance to the hand
surface and the object surface, respectively. However, it is very challenging to directly
learn neural implicit representations for this task, because SDF networks have to handle
a wide range of objects and different types of grasps. As a result, Grasping Field [26]
cannot achieve satisfactory results in producing detailed hand-and-object interactions.

To reduce the difficulty for this task, our method makes an attempt to disentangle
the shape learning and the pose learning, which could help liberate the power of SDF
networks. By estimating the hand pose, we could obtain the global rotation (θ⃗hr) and its
rotation center (⃗th) defined by MANO. The global rotations center (⃗th) depends on the
estimated MANO shape parameters (β⃗h). Using the estimated θ⃗hr and t⃗h, we transform
x⃗ to the canonical hand pose (i.e., the global rotation equals to zero):

x⃗hc = exp(θ⃗hr)
−1(x⃗− t⃗h) + t⃗h, (3)

where exp(·) denotes the transformation from the axis-angle representation to the ro-
tation matrix using the Rodrigues formula. Then, we concatenate x⃗ and x⃗hc and feed
them to the hand SDF decoder and predict its signed distance to the hand:

SDFh(x⃗) = fh(I⃗ , [x⃗, x⃗hc]), (4)

where fh denotes the hand SDF decoder and I⃗ denotes image features extracted from
the ResNet backbone. Benefiting from this formulation, the hand SDF encoder is aware
of x⃗ in the canonical hand pose and can focus on learning the hand shape. Similarly,
by estimating the object pose, we obtain the object translation t⃗o and transform x⃗ to the
canonical object pose:

x⃗oc = x⃗− t⃗o. (5)

Then, we concatenate x⃗ and x⃗oc and feed them to the object SDF decoder and predict
its signed distance to the object:

SDFo(x⃗) = fo(I⃗ , [x⃗, x⃗oc]), (6)

where fo denotes the object SDF decoder. By feeding xoc into fo, the object SDF de-
coder can focus on learning the object shape in its canonical pose.

To train SDFh(x⃗) and SDFo(x⃗) we minimize L1 distance between predicted signed
distances and corresponding ground-truth signed distances for sampled 3D points and
training images. The resulting loss is the summation of Lrech and Lreco :

Lrec = λrechLrech + λrecoLreco , (7)

where Lrech and Lreco optimize SDFh(x⃗) and SDFo(x⃗), respectively. We set λrech

and λreco to 5 × 10−1. In summary, we train our model in an end-to-end fashion by
minimizing the sum of losses introduced above:

L = Lhand + Lobj + Lrec. (8)
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Given the trained SDF networks, the hand and object surfaces are implicitly defined
by the zero-level set of SDFh(x⃗) and SDFo(x⃗). We generate hand and object meshes
using the Marching Cubes algorithm [35] at test time.

4 Experiments

In this section, we present a detailed evaluation of our proposed method. We intro-
duce benchmarks in Section 4.1 and describe our evaluation metrics and implementa-
tion details in Sectoins 4.2-4.3. We then present hand-only ablations and hand-object
experiments on the ObMan benchmark in Sections 4.5 and 4.4 respectively. Finally,
we present experimental results for the DexYCB benchmark in Section 4.6. In the ap-
pendix, we illustrate our network architecture in Section A and provide more imple-
mentation details in Section B. We also show additional qualitative results in Section C.

4.1 Benchmarks

ObMan benchmark [21]. ObMan contains synthetic images and corresponding 3D
meshes for a wide range of hand-object interactions with varying hand poses and ob-
jects. For training, we follow [26, 45] and discard meshes that contain too many double
sided triangles, obtaining 87,190 samples. For each sample, we normalize the hand
mesh and the object mesh so that they fit inside a unit cube and sample 40,000 points.
At test time, we report results on 6285 samples following [21, 26].
DexYCB benchmark [6]. With 582K grasping frames for 20 YCB objects, DexYCB
is currently the largest real benchmark for hand-object reconstruction. Following [33],
we only consider right-hand samples and use the official “S0” split. We filter out the
frames for which the minimum distance between the hand mesh and the object mesh is
larger than 5 mm. We also normalize the hand mesh and the object mesh to a unit cube
and sample 40,000 points to generate SDF training samples for DexYCB. As a result,
we obtain 148,415 training samples and 29,466 testing samples.

4.2 Evaluation metrics

The output of our model is structured, and a single metric does not fully capture per-
formance. Therefore, we employ different metrics to evaluate our method. Please see
Section B in the appendix for more details.
Hand shape error (Hse). We follow [26, 45] and evaluate the chamfer distance be-
tween reconstructed and ground-truth hand meshes to reflect hand reconstruction accu-
racy. Since the scale of the hand and the translation are ambiguous in monocular images,
we optimize the scale and translation to align the reconstructed mesh with the ground-
truth and sample 30,000 points from both meshes to calculate the chamfer distance. Hse

(cm2) is the median chamfer distance over the entire test set.
Hand validity error (Hve). Following [19, 76] we perform Procrustes analysis by
optimizing the scale, translation and global rotation with regard to the ground-truth. We
report Hve (cm2), the chamfer distance after alignment.
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Fig. 3: Three baseline models for hand-only ablation experiments. Dashed arrows de-
note the Marching Cubes algorithm [35] used at test time.

Object shape error (Ose). We reuse the optimized hand scale and translation from
the computation of Hse to transform the reconstructed object mesh, following [26]. We
follow the same process described for Hse to compute Ose (cm2).
Hand joint error (Hje). To measure the hand pose accuracy, we compute the mean
join error (cm) relative to the hand wrist joint over 21 joints following [75].
Object translation error (Ote). As we mention in Section 3.2, we predict the position
of the object centroid relative to the hand wrist. We compute the L2 distance (cm)
between the estimated object centroid and its ground-truth to report Ote.
Contact ratio (Cr). Following [26], we report the ratio of samples for which the inter-
penetration depth between the hand and the object is larger than zero.
Penetration depth. (Pd). We compute the maximum of the distances (cm) from the
hand mesh vertices to the object’s surface similarly to [21, 26].
Intersection volume (Iv). Following [21], we voxelize the hand and the object using a
voxel size of 0.5 cm and compute their intersection volume (cm3).

4.3 Implementation details

We use ResNet-18 [22] as a backbone to extract features from input images of size
256 × 256. To construct volumetric heatmaps, we employ three deconvolution layers
to consecutively upsample feature maps from 8 × 8 to 64 × 64 and set the resolution
of volumetric heatmaps to 64 × 64 × 64. Please see the network architecture of the
SDF decoder in Section A in the appendix. To train hand and object SDF decoders,
we randomly sample 1,000 3D points (500 positive points outside the shape and 500
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Table 1: Hand-only ablation experiments
using 87K ObMan training samples.

Models Hse ↓ Hve ↓ Hje ↓
(a) 0.128 0.113 -
(b) 0.126 0.112 1.18
(c) 0.124 0.109 1.20
(c∗) 0.101 0.087 -

Table 2: Hand-only ablation experiments
using 30K ObMan training samples.

Models Hse ↓ Hve ↓ Hje ↓
(a) 0.183 0.160 -
(b) 0.176 0.156 1.23
(c) 0.168 0.147 1.27
(c∗) 0.142 0.126 -

Input ResNet

Hand SDF
Decoder

Object SDF
Decoder

(d)

Output Input ResNet
MANO
Decoder

Hand SDF
Decoder

Object SDF
Decoder

(e)

Output

Input ResNet
Object Pose

Decoder

Hand SDF
Decoder

Object SDF
Decoder

(f)

Output Input ResNet
Object Pose

Decoder

MANO
Decoder

Hand SDF
Decoder

Object SDF
Decoder

(g)

Output

Fig. 4: Four models for hand-object ablation experiments. Dashed arrows denote the
Marching Cubes algorithm [35] used at test time.

negative points inside the shape) for the hand and the object, respectively. We detail
our data augmentation strategies used during training in Section B in the appendix. We
train our model with the Adam optimizer [27] with a batch size of 256. We set the initial
learning rate to 1 × 10−4 and decay it by half every 600 epoch on ObMan and every
300 epoch on DexYCB. The total number of training epochs is 1600 for ObMan and
800 for DexYCB, which takes about 90 hours on four NVIDIA 1080 Ti GPUs.
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Table 3: Hand-object ablation experiments using 87K ObMan training data.
Models Hse ↓ Hve ↓ Ose ↓ Hje ↓ Ote ↓ Cr Pd Iv

(d) 0.140 0.124 4.09 - - 90.3% 0.50 1.51
(e) 0.131 0.114 4.14 1.12 - 94.7% 0.58 2.00
(f) 0.148 0.130 3.36 - 3.29 92.5% 0.57 2.26
(g) 0.136 0.121 3.38 1.27 3.29 95.5% 0.66 2.81

(g∗) 0.111 0.093 2.11 - - 94.5% 0.76 3.87

Table 4: Comparison with previous state-of-the-art methods on ObMan.
Methods Hse ↓ Hve ↓ Ose ↓ Hje ↓ Ote ↓ Cr Pd Iv

Hasson et al. [21] 0.415 0.383 3.60 1.13 - 94.8% 1.20 6.25
Karunratanakul et al. [26]-1De 0.261 0.246 6.80 - - 5.63% 0.00 0.00
Karunratanakul et al. [26]-2De 0.237 - 5.70 - - 69.6% 0.23 0.20

Ours (g) 0.136 0.121 3.38 1.27 3.29 95.5% 0.66 2.81

4.4 Hand-only experiments on ObMan

To validate the effectiveness of our method, we first conduct hand-only ablation ex-
periments on ObMan. To this end, as shown in Figure 3, we first build three types of
baseline models. The baseline model (a) directly employs the hand SDF decoder to
learn SDFh(x⃗) from backbone features, which often results in a blurred reconstructed
hand. The baseline model (b) trains the hand SDF decoder and the MANO network
jointly and achieves better results. However, the reconstructed hand still suffers from
ill-delimited outlines, which typically result in finger merging issues, illustrated in the
second and third columns of Figure 5. Compared with the baseline model (b), the base-
line model (c) further uses the estimated MANO parameters to transform sampled 3D
points into the canonical hand pose, which helps disentangle the hand shape learning
from the hand pose learning. As result, the hand SDF decoder can focus on learning the
geometry of the hand and reconstruct a clear hand. The model (c∗) uses ground-truth
hand poses, which is the upper-bound of our method. Tables 1 and 2 present quantita-
tive results for these four models. In Table 1, we present our results using all ObMan
training samples and observe that the baseline model (c) has the lowest Hse and Hve,
which indicates that it achieves the best hand reconstruction quality. The baseline model
(c) can also perform hand pose estimation well and reduce the joint error to 1.2 cm. It
shows that the model (c) can transform x⃗ to the hand canonical pose well with reliable
θ⃗hr and t⃗h and benefit the learning of the hand SDFs. In Figure 5, we also visualize
results obtained from different models and observe that our method can produce more
precise hands even under occlusions. To check whether our method can still function
well when the training data is limited, we randomly choose 30K samples to train these
three models and summarize our results in Table 2. We observe that the advantage of
the model (c) is more obvious using less training data. When compared with the model
(a), our method can achieve more than 8% improvement in Hse and Hve, which further
validates the effectiveness of our approach.
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Input (a) (b) (c) GT

Fig. 5: Qualitative comparison of hand reconstructions between different hand-only
baseline models on ObMan (87K training samples).

4.5 Hand-object experiments on ObMan

Given promising results for hand-only experiments, we next validate our approach for
the task of hand-object reconstruction. As shown in Figure 4, we first build four base-
line models. The baseline model (d) directly uses the hand and the object decoder to
learn SDFs. Compared with the model (d), the model (e) estimates MANO parameters
for the hand and uses it to improve the learning the hand SDF decoder. The model (f)
estimates the object pose and uses the estimated pose to learn the object SDF decoder.
The model (g) combines models (e) and (f) and uses estimated hand and object poses
to improve the learning of the hand SDFs and the object SDFs, respectively. The model
(g∗) is trained with ground-truth hand poses and object translations, which serves as
the upper-bound for our method. We summarize our experimental results for these five
models in Table 3. Compared with the baseline model (d), the model (e) achieves a
6.4% and 8.8% improvement in Hse and Hve, respectively. It shows that embedding
hand prior knowledge and aligning hand poses to the canonical pose can improve learn-
ing the hand SDFs. By comparing the model (f) with the baseline model (d), we align
object poses to their canonical poses using estimated object pose parameters and greatly
reduce Ose from 4.09 cm2 to 3.36 cm2. Finally, our full model (g) combines the ad-
vantages of models (e) and (f) and can produce high-quality hand meshes and object
meshes. In Table 4, we compare our method against previous state-of-the-art methods
and show that our approach outperforms previous state-of-the-art methods [21, 26] by a
significant margin. When we take a closer look at metrics (Cr, Pd, Iv) that reflect hand-
object interactions, we can observe that the reconstructed hand and the reconstructed
object from our model are in contact with each other in more than 95.5% of test sam-
ples. Compared with the SDF method [26], our method encourages the contact between
the hand mesh and the object mesh. Compared with the MANO-based method [21],
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Input [21] [26] Ours GT

Fig. 6: Qualitative comparison between different types of methods in hand-object ex-
periments on ObMan. Compared with recent methods [21, 26], our approach produces
more precise reconstructions both for the hands and objects.

Table 5: Comparison with previous state-of-the-art methods on DexYCB.
Method Hse ↓ Hve ↓ Ose ↓ Hje ↓ Ote ↓ Cr Pd Iv

Hasson et al. [21] 0.785 0.594 4.4 2.0 - 95.8% 1.32 7.67
Karunratanakul et al. [26] 0.741 0.532 5.8 - - 96.7% 0.83 1.34

Ours (g) 0.523 0.375 3.5 1.9 2.7 96.1% 0.71 3.45

the penetration depth (Pd) and intersection volume (Iv) of our model is much lower,
which suggests that our method can produce more detailed hand-object interactions. In
Figure 6, we also visualize reconstruction results from different methods. Compared
to previous methods, our model can produce more realistic joint reconstruction results
even for objects with thin structures. We include more qualitative analysis on ObMan
in Section C in the appendix.

4.6 Hand-object experiments on DexYCB

To validate our method on real data, we next present experiments on the DexYCB
benchmark and compare our results to the state of the art. We summarize our exper-
imental results in Table 5. Compared with previous methods, we achieve a 29.4% im-
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Fig. 7: Qualitative results of our model on the DexYCB benchmark. Our model pro-
duces convincing 3D hand-and-object reconstruction results in the real-world setting.

provement in Hse and a 20.5% improvement in Ose, which shows that our method im-
proves both the hand and object reconstruction accuracy. The hand-object interaction
metrics for DexYCB also indicate that our method works well for real images. Figure 7
illustrates qualitative results of our method on the DexYCB benchmark. We can ob-
serve that our method can accurately reconstruct hand shapes under different poses and
a wide range of real-world objects. Please see more qualitative results on DexYCB in
Section C in the appendix.

5 Conclusion

In this work, we combine advantages of parametric mesh models and SDFs for the
task of a joint hand-object reconstruction. To embed prior knowledge into SDFs and to
increase the learning efficiency, we propose to disentangle the shape learning and pose
learning for both the hand and the object. Then, we align SDF representations with
respect to estimated poses and enable learning of more accurate shape estimation. Our
model outperforms previous state-of-the-art methods by a significant margin on main
benchmarks. Our results also demonstrate significant improvements in visual quality.
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[32] Labbé, Y., Carpentier, J., Aubry, M., Sivic, J.: Single-view robot pose and joint
angle estimation via render & compare. In: CVPR (2021)

[33] Li, K., Yang, L., Zhan, X., Lv, J., Xu, W., Li, J., Lu, C.: ArtiBoost: Boosting
articulated 3D hand-object pose estimation via online exploration and synthesis.
In: CVPR (2022)

[34] Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: DeepIM: Deep iterative matching for
6D pose estimation. In: ECCV (2018)

[35] Lorensen, W.E., Cline, H.E.: Marching Cubes: A high resolution 3D surface con-
struction algorithm. TOG (1987)

[36] Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
Networks: Learning 3D reconstruction in function space. In: CVPR (2019)

[37] Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: NeRF: Representing scenes as neural radiance fields for view synthesis. In:
ECCV (2020)

[38] Moon, G., Chang, J.Y., Lee, K.M.: V2V-PoseNet: Voxel-to-voxel prediction net-
work for accurate 3D hand and human pose estimation from a single depth map.
In: CVPR (2018)

[39] Moon, G., Shiratori, T., Lee, K.M.: DeepHandMesh: A weakly-supervised deep
encoder-decoder framework for high-fidelity hand mesh modeling. In: ECCV
(2020)

[40] Mueller, F., Bernard, F., Sotnychenko, O., Mehta, D., Sridhar, S., Casas, D.,
Theobalt, C.: GANerated hands for real-time 3D hand tracking from monocular
RGB. In: CVPR (2018)



AlignSDF 17

[41] Mueller, F., Davis, M., Bernard, F., Sotnychenko, O., Verschoor, M., Otaduy,
M.A., Casas, D., Theobalt, C.: Real-time pose and shape reconstruction of two
interacting hands with a single depth camera. TOG (2019)

[42] Mundy, J.L.: Object recognition in the geometric era: A retrospective. In: Toward
Category-Level Object Recognition, Lecture Notes in Computer Science (2006)

[43] Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Full DOF tracking of a hand inter-
acting with an object by modeling occlusions and physical constraints. In: ICCV
(2011)

[44] Panteleris, P., Oikonomidis, I., Argyros, A.: Using a single RGB frame for real
time 3D hand pose estimation in the wild. In: WACV (2018)

[45] Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF:
Learning continuous signed distance functions for shape representation. In: CVPR
(2019)

[46] Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric
prediction for single-image 3D human pose. In: CVPR (2017)

[47] Peng, S., Jiang, C., Liao, Y., Niemeyer, M., Pollefeys, M., Geiger, A.: Shape As
Points: A differentiable poisson solver. In: NeurIPS (2021)

[48] Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep learning on point sets for
3D classification and segmentation. In: CVPR (2017)

[49] Qian, N., Wang, J., Mueller, F., Bernard, F., Golyanik, V., Theobalt, C.: HTML:
A parametric hand texture model for 3D hand reconstruction and personalization.
In: ECCV (2020)

[50] Rehg, J.M., Kanade, T.: Visual tracking of high DOF articulated structures: an
application to human hand tracking. In: ECCV (1994)

[51] Riegler, G., Ulusoy, A.O., Geiger, A.: OctNet: Learning deep 3D representations
at high resolutions. In: CVPR (2017)

[52] Roberts, L.G.: Machine perception of three-dimensional solids. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1963)

[53] Romero, J., Kjellström, H., Kragic, D.: Hands in Action: Real-time 3D reconstruc-
tion of hands in interaction with objects. In: ICRA (2010)

[54] Romero, J., Tzionas, D., Black, M.J.: Embodied Hands: Modeling and capturing
hands and bodies together. TOG (2017)

[55] Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFu:
Pixel-aligned implicit function for high-resolution clothed human digitization. In:
ICCV (2019)

[56] Saito, S., Yang, J., Ma, Q., Black, M.J.: SCANimate: Weakly supervised learning
of skinned clothed avatar networks. In: CVPR (2021)

[57] Spurr, A., Dahiya, A., Wang, X., Zhang, X., Hilliges, O.: Self-supervised 3D hand
pose estimation from monocular RGB via contrastive learning. In: CVPR (2021)
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AlignSDF: Pose-Aligned Signed Distance Fields
for Hand-Object Reconstruction

Appendix

In this appendix, we provide additional details for our experimental settings as well
as qualitative results of our method. We first present details for our network architecture
in Section A. Section B then provides additional implementation details for our training
and evaluation procedures. Finally, we present and discuss additional qualitative results
in Section C.

A Network Architecture
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Fig. A.1: Network architecture used for our hand and object SDF decoders. Follow-
ing [26], we also use five fully connected layers (marked in purple) for the SDF de-
coder. The number in the box denotes the dimension of features. x⃗ denotes the original
3D coordinate. x⃗hc and x⃗oc denote the transformed 3D coordinate in the hand and ob-
ject canonical coordinate system, respectively.

Following previous works [21, 26], we use ResNet-18 [22] as our backbone net-
work. To achieve a fair comparison with the previous method [26], as shown in Fig-
ure A.1, we also use five fully connected layers to estimate the signed distance from
the query point to the hand surface or the object surface. The SDF decoder takes the
256-dimensional image features and 6-dimensional point features as inputs. The image
features are extracted from the ResNet-18 backbone. Following Equation 3 and Equa-
tion 5 in our paper, we transform the original 3D point x⃗ into its counterpart x⃗hc in the
hand canonical coordinate system or its counterpart x⃗oc in the object canonical coordi-
nate system. Then, we construct point features by concatenating x⃗ and x⃗hc for the hand
SDF decoder or by concatenating x⃗ and x⃗oc for the object SDF decoder.

B Training and Evaluation

We train all of our models with the following data augmentation. We randomly rotate
the input image and 3D points in the camera coordinate system. We empirically find that
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Fig. C.1: Qualitative results of our method on the ObMan [21] benchmark. Our method
can produce convincing 3D reconstruction results even in cluttered scenes.

this data augmentation can boost the performance for 3D reconstruction. We randomly
augment training samples via [−45◦, 45◦] rotation for our experiments on ObMan [21]
or [−15◦, 15◦] rotation for our experiments on DexYCB [6].

We set the hand wrist joint defined by MANO [54] as the origin of our coordinate
system. In training, we use a fixed scaling factor to scale all negative points (i.e., points
that lie in the hand or object mesh) across the dataset within a unit cube. This results in
a scaling factor of 7.02 and 6.21 on ObMan and DexYCB, respectively.

To measure the physical quality of our joint reconstruction, we report Contact Ra-
tio (Cr), Penetration Depth (Pd) and Intersection Volume (Iv). We use the trimesh li-
brary to detect whether there exists a collision between the hand mesh and the object
mesh and compute the max penetration depth between two meshes. We follow the same
process as [25, 26] to compute Iv .

C Qualitative results

We present additional qualitative results on ObMan [21] in Figure C.1 and DexYCB [6]
in Figure C.2. We also study failure cases on DexYCB in Figure C.3. From Figure C.1,



AlignSDF III

Fig. C.2: Qualitative results of our method on the DexYCB [6] benchmark. Our method
can also produce realistic 3D reconstruction results for real scenes.

we observe that our method can deal with a wide range of objects and recovers de-
tailed interactions between the hand and the object. In Figure C.2 we show qualitative
results of our method for real images from the DexYCB benchmark. We can see that
our method can reconstruct objects of different sizes and often achieve the excellent
reconstruction of hands and objects.

While our method advances the state of the art accuracy by a significant margin, it
still does not achieve satisfactory performance in some cases. In Figure C.3 we show
four typical failure cases on DexYCB. As shown in Figure C.3(a), when the hand or
the object is heavily occluded, our method sometimes cannot make robust predictions.
In Figure C.3(b), we show that motion blur in input images might also disturb 3D re-
construction results. As shown in Figure C.3(c, d), the recovery of thin structures and
objects with complex shapes remains challenging. To deal with these issues, future
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Fig. C.3: Failure cases of our method on the DexYCB [6] benchmark.

works could leverage the temporary information from videos to filter input noise and
gather more details about 3D scenes.
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