
HAL Id: hal-03761440
https://hal.inria.fr/hal-03761440

Submitted on 26 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Create Efficient and Complex Reservoir Computing
Architectures with ReservoirPy

Nathan Trouvain, Nicolas P. Rougier, Xavier Hinaut

To cite this version:
Nathan Trouvain, Nicolas P. Rougier, Xavier Hinaut. Create Efficient and Complex Reservoir Com-
puting Architectures with ReservoirPy. SAB 2022 - FROM ANIMALS TO ANIMATS 16: The 16th
International Conference on the Simulation of Adaptive Behavior, Sep 2022, Cergy-Pontoise / Hybrid,
France. �hal-03761440�

https://hal.inria.fr/hal-03761440
https://hal.archives-ouvertes.fr

Create Efficient and Complex Reservoir
Computing Architectures with ReservoirPy

Nathan Trouvain1,2,3[0000−0003−2121−7826], Nicolas
Rougier1,2,3[0000−0002−6972−589X], and Xavier Hinaut1,2,3,∗[0000−0002−1924−1184]

1 INRIA Bordeaux Sud-Ouest, France.
2 LaBRI, Bordeaux INP, CNRS, UMR 5800.
3 Institut des Maladies Neurodégénératives,
Université de Bordeaux, CNRS, UMR 5293.

*Corresponding author: xavier.hinaut@inria.fr

Abstract. Reservoir Computing (RC) is a type of recurrent neural net-
work (RNNs) where learning is restricted to the output weights. RCs
are often considered as temporal Support Vector Machines (SVMs) for
the way they project inputs onto dynamic non-linear high-dimensional
representations. This paradigm, mainly represented by Echo State Net-
works (ESNs), has been successfully applied on a wide variety of tasks,
from time series forecasting to sequence generation. They offer de facto
a fast, simple yet efficient way to train RNNs.
We present in this paper a library that facilitates the creation of RC
architectures, from simplest to most complex, based on the Python sci-
entific stack (NumPy, Scipy). This library offers memory and time ef-
ficient implementations for both online and offline training paradigms,
such as FORCE learning or parallel ridge regression. The flexibility of
the API allows to quickly design ESNs including re-usable and customiz-
able components. It enables to build models such as DeepESNs as well
as other advanced architectures with complex connectivity between mul-
tiple reservoirs with feedback loops. Extensive documentation and tuto-
rials both for newcomers and experts are provided through GitHub and
ReadTheDocs websites.
The paper introduces the main concepts supporting the library, illus-
trated with code examples covering popular RC techniques from the
literature. We argue that such flexible dedicated library will ease the
creation of more advanced architectures while guarantying their correct
implementation and reproducibility across the RC community.

Keywords: Reservoir Computing · Echo State Network · Recurrent
Neural Networks · Python · Online Learning · Offline Learning · Toolbox.

1 Introduction

Within the field of Recurrent Neural Networks (RNNs), Reservoir Computing
(RC) is an interesting paradigm of timeseries and sequence processing. Most of
RC techniques rely on a reservoir, a pool of randomly – and recurrently – con-
nected neurons, in charge of projecting data into a high dimensional space able

2 N. Trouvain et al.

to encode temporal information. This reservoir is connected to an output layer
called readout whose role is to extract information from the reservoir activity.
In a more formal way, the readout neurons act as a linear layer which can be
used to perform regression or classification on high dimensional representations
of any timeseries processed by the reservoir. As opposed to more popular Deep
Learning strategies, Reservoir Computing techniques do not require gradient er-
ror backpropagation algorithm to work. The only trained connections being the
readout connections, a simple linear regression can be computed between the
activations of the reservoir and the desired target values to obtain a functional
model.

Reservoir Computing is mostly known through its two first and most widely
used instances: Echo State Networks (ESNs) [13] and Liquid State Machines
(LSMs) [15], their spiking neural networks counterpart. Although existing since
the beginning of the 2000s, RC techniques are less well-known compared to other
RNN-based Deep Learning architectures like Long Short-TermMemory networks
(LSTMs). In the meantime, they have been successfully applied to various tasks
and problems (some are listed in this review by [25]) and even demonstrates
state of the art performances for tasks such as chaotic timeseries forecasting [30]
or sound processing [27]. It was shown that ESNs needed less data than LSTMs
to obtain good performances while being trained in much less time (e.g. see [27]).

Several code implementations of RC, in particular for ESNs, can be found
online, but these implementations are often isolated scripts written in Python or
Matlab. They often provide reusable objects intended to allow reproduction of
specific results and techniques, but do not offer any way to re-use, re-combine or
extend their code. Whereas Deep Learning architectures have thrived, supported
by complete, user-friendly toolboxes enabling such flexibility and re-usability, RC
may remain an underground technique without this kind of off the shelf, ready
to use and yet permissive programming frameworks and libraries. Libraries like
Oger were successful attempts of creating a rather complete RC tool. However,
Oger was originally written in Python 2 (whose support have ended in 2020)
and its maintenance has not been continued.

ReservoirPy provides an implementation only relying on general scientific li-
brairies like Numpy and Scipy, in order to be more versatile than specific frame-
works (e.g. TensorFlow, PyTorch) and provide more flexibilty when building
custom architectures. On the one hand, TensorFlow and PyTorch were mostly
developed for gradient descent based learning algorithms, and most of their fea-
tures are useless, if not cumbersome, to develop RC techniques. For instance,
they are usually optimized to perform several epochs of training on batches of
independent samples, or to differentiate any kind of operations happening under
their scope, which is not often useful for RC. On the other hand, libraries such
as Scikit-Learn [17] are geared towards static data processing and do not inte-
grate much timeseries processing or online learning tools. Most importantly, we
designed ReservoirPy as a highly flexible tool offering the possibility to design
several kinds of RC architectures while promoting reusable components. Indeed,
numerous Reservoir Computing extensions and derivatives have been developed

Create Efficient and Complex Reservoir Computing Architectures 3

(see [23] for a recent review): they generally include modified learning methods
and architectures and some of them allow for the composition of several reser-
voirs (decoupled-ESNs [31], tree ESNs [7], deep reservoirs [8], hierarchical-task
reservoirs[18], and more exotic architectures like Reservoir-of-Reservoirs (RoR)
[4] or self-supervised pairs of reservoirs [2]).

In this paper, we detail the backbone of ReservoirPy, its major components
and how to combine them to design complex architectures, with different learning
rules and feedback loops. We then introduce the library usage with a simple
example of timeseries forecasting using online and offline trained ESNs. Then,
we give more details about more advanced features and minimal implementations
of advanced or exotic RC architectures, such as Deep ESNs or Extreme Learning
Machines (ELMs) [12], as a proof of concept of ReservoirPy capacities. Finally,
we present future features and conclude about the potential of ReservoirPy on
the RC community.

2 Flexible Reservoir Computing

Most RC techniques rely on interconnected and interchangeable building blocks:
an ESN can be defined as a network connecting a reservoir of neurons to a layer
of readout neurons. Inside an ESN, a reservoir can be connected to several inde-
pendent readouts, and to several input sources. In more complex architectures,
like DeepESNs [6] or Hierarchical ESNs [18][26], reservoirs can be layered, and
readouts inserted between them, with feedback connections possibly connecting
all these blocks in different ways. Some architectures might also use other addi-
tional blocks and operators than reservoirs and readouts. Our tool enables such
flexibility using 4 components.

2.1 Functional nodes

The minimal component is the Node. A Node is a Python class that can be
equipped with several functions and parameters in order to operate on a time-
series.

All Nodes are recurrent operators, meaning that they at least carry two
elements: (1) an internal state vector xt storing their last output, accessible any-
time through the state() method, and (2) a generic forward function defined
as forward(xt, ut) = xt+1. This function takes as input a single timestep of input
data ut and the current value of the Node’s internal state xt, and outputs an
updated value xt+1 for this state. A new Node can either be created by passing
a forward function and its parameters as argument to the Node class construc-
tor, or by defining a new specialized class that inherits from the Node class. An
initialization function may also be added, to allow for the dynamic initialization
of the Node’s parameters as well as the inference of input and internal state vec-
tors dimensions directly from data. Hence, the minimal creation of a new Node
requires the declaration of two functions and an optional dictionary mapping

4 N. Trouvain et al.

parameters and hyperparameters names to their values, without enforcing any
inheritance from the class itself.

For instance, our Reservoir Node implementation of a reservoir is a subclass
of Node holding several parameters and hyperparameters, among which:

– a matrix W, defining the connection weights between the reservoir neurons,
– a matrix Win defining the connection weights between the input neurons

and the reservoir neurons,
– a coefficient lr, called leak rate, which defines the time constant of the reser-

voir neurons.
– a function f , used as an activation function for the reservoir neurons, usually

the hyperbolic tangent applied element-wise on the activation vector.

These parameters are used in the Reservoir forward function definition:

forward(xt, ut) = (1− lr)xt + lrf(Wxt +Winut) = xt+1 (1)

Nodes forward function can be triggered by calling the Node on a single
data point like a Python function. Since Nodes are mainly designed to process
timeseries or sequential data, it is also possible to use a forward function on
several points of a timeseries, updating its Node internal state several times and
gathering temporal information. This can be done using the run() method of a
Node.

import numpy as np

from reservoirpy.nodes import Reservoir

A Reservoir with 100 neurons and lr=0.1

res = Reservoir(units=100, lr=0.1) # Activation is tanh by default.

u = np.array([[1.0, 0.0]]) # 1 timestep of 2D data.

U = np.array([[1.0, 0.0], # 2 timesteps of 2D data.

[0.0, 1.0]])

s1 = res(u) # Update reservoir state on 1 timestep.

s = res.state() # Current state of the reservoir.

Update reservoir state on a sequence of 3 timesteps.

S = res.run(U)

Parameters can be accessed as attributes.

print(res.lr, res.Win)

In the code above, as the Reservoir class is already implemented as a sub-
class of Node within the library, internal code machinery like Reservoir’s forward
function is hidden. Only necessary hyperparameters, like the number of neurons
inside the reservoir, were given to the Reservoir constructor. All other parame-
ters were initialized when the Node was first used, i.e. when s1 = res(u) was

Create Efficient and Complex Reservoir Computing Architectures 5

executed. This allows the Node to infer the shape of all other parameters like the
input matrixWin based on data dimension and to build them using initialization
functions.

2.2 Learning rules

The second major component of the library are the learning rules. A learning
rule can be declared as a function that takes sequences of data as arguments and
updates the Node parameters. Once learning rules functions have been loaded
into a Node, it is possible to use the same mechanisms described in the previous
section about forward function definition. There is is two main ways of using
them:

Offline learning A learning rule is said to be offline if the parameters estimation
of the learned model is performed only once, on a single corpus of data, and
cannot be modified later. This is for instance the case for the L2-regularized
linear regression, also called ridge regression or Tikhonov regression, widely used
in Reservoir Computing to train ESNs, and implemented by our library in the
Ridge Node. Nodes equipped with offline learning rules can be trained using the
fit() method.

import numpy as np

from reservoirpy.nodes import Ridge

readout = Ridge()

Update parameters of the Node.

readout.fit(X_train, y_train)

Additionally, offline learning can be performed incrementally or using batches
of data to pre-compute some parts of the learning process. A partial fit()

method can be defined in order to perform such operations on chunks of the
dataset.

Online learning Online learning rules describe continuous learning processes,
during which the learned parameters are updated as soon as new data is fed to the
model. This learning procedure is more biologically relevant since the model does
not learn its parameters in one single step but rather in small successive steps,
trying to improve its predictions to minimize a cost function. Taking inspiration
from this idea of progressive training, Nodes carrying an online learning rule can
update their parameters using a method named train(). The FORCE Node is an
example of Node trained using the online learning rule described by [24].

import numpy as np

from reservoirpy.nodes import FORCE

6 N. Trouvain et al.

readout = FORCE()

Update parameters of the Node once.

s0 = readout.train(one_x, one_y)

Update parameters of the Node

on a sequence (several times in a row)

S = readout.train(X_train, Y_train)

Note that the train() method can be called on single timesteps of data,
triggering a single step of learning. Calling this methods returns an array hold-
ing the output of the Node forward function, before learning was applied. This
method can also be called on sequences of data. In such case, the Node param-
eters evolve at each timestep of data in the sequence, and the method call will
return the sequence of responses obtained from each training step.

2.3 Models as computational graphs

While Nodes offer a way to quickly define reusable operations and estimators,
Models allow to compose these operations and create complex architectures in-
volving several Nodes in interaction. We define Models as a simple mean of
managing computational graphs, without any heavy pre-existing framework.

Models are subclasses of Node, and therefore expose the same interface:
function-like calls, run, fit and the train method of a Model triggers one-
timestep update of all Nodes in the Model, sequential update of all Nodes in
the Model, fitting of all offline learner Nodes and training of all online learner
Nodes, respectively.

Models are created by linking Nodes using the “>>” Python operator. The
forward function of a Model created by linking a Node A to a Node B will be
defined as the composition fModel = fB ◦ fA of A and B forward functions.
However, Nodes involved in a Model do not store any reference to other Nodes
in the Model. That is, Nodes can be shared between different Models without
requiring to copy or to reinitialize them. This feature provides a flexible way of
defining Reservoir Computing architectures involving several readouts or several
pathways, allowing to train Nodes using a Model and to run them using another.

model1 = nodeA >> nodeB # A Model with two Nodes.

Another Model. nodeA state and parameters are

shared with model1.

model2 = nodeA >> nodeC

The result of nodeB(nodeA(u)):

s = model1(u)

Create Efficient and Complex Reservoir Computing Architectures 7

u[t]

C D

E

F

B

A

Fig. 1. An advanced example of Model graph, involving 6 interconnected Nodes.

Since Models are a Node subclass, they can also be linked to other Nodes,
allowing to chain the linking operator. Models can also be merged using the
“&” Python operator. Merging a Model A and a Model B will create a third
model containing an unique version of all the Nodes present in A and B, along
with the union of all their connections. This allows to design architectures with
several pathways, as shown in the code below, defining the graph of Nodes in
fig:complex-graph. Note the usage of Input() and Output() Nodes in order to
clearly define the input and output of the graph. These Nodes have no effect
on the Model behavior other than forcing Nodes A, B and C to receive inputs
from the input source, and F to be the final output of the Model. Note also that
many-to-one and one-to-many connections can be declared by connecting Nodes
to lists of Nodes and vice-versa.

from reservoirpy.nodes import Input, Output

path1 = A >> F

path2 = B >> E

One-to-many connection using a list

path3 = Input() >> [nodeA, nodeB, nodeC]

Chain of connections

path4 = A >> B >> C >> D >> E >> F >> Output()

Merge all pathways to create Fig. 1 graph:

model = path1 & path2 & path3 & path4

One limitation of the Model object is the necessity for the declared compu-
tational graph to be a directed acyclic graph of Nodes. If this condition is not
met, Nodes cannot be topologically sorted and operation order within the Model
forward function is undefined. Nevertheless, this condition can be skirted using
feedback connections between Nodes in the graph as explained in sec:feedback.

Once a Model has been defined, it can be either fitted offline or trained
online using the same methods as for a Node. Models training procedure is
identified using “duck-typing”. If all trainable Nodes (e.g. all readout Nodes

8 N. Trouvain et al.

such as Ridge or FORCE) in the Model exposes an offline learning interface, then
the Model is considered to be an offline learner. Similarly, if all trainable Nodes
are online learners, then the Model is considered to be an online learner. For
now, mixing different learning procedure is not an allowed behavior, although
it can be achieved by splitting the Model into different pathways with different
learning rules.

2.4 Feedback loops

RC models might require time-delayed connection between different components
of neural networks or computational models. Usually, these connections are used
to connect readout layer of neurons to reservoir neurons in a feedback loop, in
order to tame reservoir neurons activities using the output signal of the network.

Our library differentiates itself from most other RC tools by providing a
rather simple and flexible interface to define such delayed connections, using a
similar operation than the Model definition in sec:model. A feedback connec-
tion between two Nodes can be defined using the “<<” Python operator. This
operation must be performed on the receiver Node, and will create a copy of
the Node storing the feedback link. This mechanism is different from the link-
ing mechanism used to define Models. Feedback connections are stored in the
form of a reference to the signal sender within the signal receiver. This implies
that feedback connections can only be defined once on a receiver Node, instead
of being decoupled from the Node object like regular connections stored in a
Model.

nodeA = nodeA << nodeB # Copying nodeA.

nodeA <<= nodeB # Using in place modification.

Feedback connections may need an initialization step. Reservoirs, for in-
stance, receive the feedback signal through neuronal connections whose weights
are stored in a Wfb matrix. Feedback connections initialization functions can
be created and loaded into Nodes to tackle these situations. Plus, feedback sig-
nal may come from any type of Node, including Models. It is therefore possible
to design complex feedback graphs to transform the feedback signal before it
reaches the receiver Node, or to get feedback from several Nodes gathered in a
Model at once.

Once a feedback connection has been defined, a feedback receiver Node can
retrieve the current feedback signal sent by the connected Node using the method
feedback(). This method will fetch the state of the feedback sender Node, or
the state of the outputs Nodes of the feedback sender Model. When running or
training a Model over a sequence of data, and if the feedback sender and receiver
Nodes are part of the Model, then feedback will be sent through the connection
while respecting a one timestep delay between the sender and the receiver. For
instance, if a reservoir and a readout are connected to form a Model, and if the

Create Efficient and Complex Reservoir Computing Architectures 9

reservoir receives feedback from the readout, then the reservoir will receive at t
inputs ut and feedback signal yt−1, y being the state (or output) of the readout.

In addition to setup regular feedback connections as defined in RC, feedback
connections mechanism can be hijacked to build teacher Nodes or reward Nodes,
and help building architectures based on online learning such as the model from
[2] (see sec:asabuki), or help implementing reward-modulated online learning
rule like the 3-factor Hebbian learning rule proposed by [11] (ongoing work).
These reward or teaching Nodes can be used to provide a connected Node with
some target values for training at runtime, even if these targets values are not
available before runtime, e.g. if these values are computed by some part of a
Model and used to train some other part.

3 Getting started: ESN for timeseries forecasting with
ReservoirPy

This section introduces how to use ReservoirPy to define, train and run Echo
State Networks (ESN) for some classic literature benchmarks. Since ESN is
among the most used techniques of Reservoir Computing, ReservoirPy intro-
duces special optimizations to increase their performances and leverage larger
corpus of data. Reservoirs and readouts objects also provide users with many op-
tions to precisely tune and adapt their behavior to different needs. For example,
it is possible to switch the Reservoir forward function between two different
definitions, the first one applying leaky integration to neurons states after apply-
ing the activation function, like in [6] or [13], the second one before like in [2] or
[5]. Other tunable parameters include spectral radius of the recurrent matrix W,
input and feedback scaling, random weights distribution, leaking rate, additive
noise in the input, internal states and feedback, and many more. On top of these
included features, users may also define their own Nodes and Models using the
interface described in sec:flexible-rc

3.1 Step 1: Choose a timeseries for one timestep ahead prediction

ReservoirPy contains 7 timeseries generators, and this number is steadily in-
creased with each new release. Currently available timeseries generators are listed
in sec:datasets.

For this tutorial, we draw 2000 points of the well-known Mackey-Glass time-
series, used in many RC benchmarks. We then split this timeseries in order to
create two series shifted in time by one timestep. The goal of our task will thus
be to predict ut+1 knowing ut.

from reservoirpy.datasets import mackey_glass

tau=17 series is chaotic

X = mackey_glass(2000, tau=17)

10 N. Trouvain et al.

test_len = 500 # Split for training/testing.

X_train, y_train, X_test, y_test = ...

3.2 Step 2: Define your ESN

An ESN can be defined as a simple Model with two Nodes: a reservoir, connected
to a readout. We will create two Models for this tutorial: an ESN geared with
an offline learning rule, and an ESN equiped with an online learning rule. Both
can share the same reservoir. Inside the 100 neurons reservoir, spectral radius of
matrix W is set to 0.9, input scaling of Win to 0.1, leaking rate to 0.3, and a
Gaussian noise with a gain of 0.01 is added to the inputs. These hyperparameters
may be suboptimal, and are just provided for the sake of example. We also set
the offline readout regularization parameter to 10−6 (also called ridge).

from reservoirpy.nodes import Reservoir, Ridge, FORCE

reservoir = Reservoir(100, sr=0.9, lr=0.3,

input_scaling=0.1,

noise_in=0.01)

off_readout = Ridge(ridge=1e-6) # Offline readout

on_readout = FORCE() # Online readout

esn_off = reservoir >> off_readout # Offline ESN

esn_on = reservoir >> on_readout # Online ESN

3.3 Step 3.1: Train the offline model

The offline learner ESN can be trained using the fit() method of the Model.
Because this method call will also be the first use of our ESN on our dataset,
fit() will also trigger all initialization functions available in the Nodes, building
random parameters matrices using the previously defined spectral radius and
input scaling for instance. These functions will also infer the input and output
dimension of all Nodes in the Model, i.e. an input dimension of 1 and an output
dimension of 1 as the input of our Model is the 1-dimensional Mackey-Glass
timeseries and the output is a 1-dimensional forecast of this timeseries.

esn_off.fit(X_train, y_train)

3.4 Step 3.2: Train the online model

Whereas offline learning can only be performed once via the fit() method,
online learning may happen several times in the life cycle of a Model. Hence,

Create Efficient and Complex Reservoir Computing Architectures 11

the train() method can be invoked several times in a row to sequentially train
the online learner ESN. For the sake of example, let’s create a simple for-loop
updating the Model’s parameters several time on only one timestep of data at a
time.

Y = []

for x, y in zip(X_train, y_train):

Nodes and Models only accept 2D arrays

as parameters, so reshaping is important.

y_hat = esn_on.train(x.reshape(1, -1),

y.reshape(1, -1)

Y.append(y_hat)

Models can also be trained in one line of code be providing the train()

method with a sequence of inputs and targets values.

Y = esn_on.train(X_train, y_train)

3.5 Step 4: Evaluate the model

Once trained, Models or Nodes can be run to outputs predictions. ReservoirPy
exposes some common metrics in the obersvables module to evaluate this kind
of tasks, such as Root-Mean Square Error (RMSE).

from reservoirpy.observables import rmse

y_pred_off = esn_offline.run(X_test)

y_pred_on = esn_online.run(X_test)

print("RMSE offline: ", rmse(y_test, y_pred_off))

>>> RMSE offline: ...

print("RMSE online: ", rmse(y_test, y_pred_on))

>>> RMSE offline: ...

4 Advanced features

In addition to the interface described in sec:flexible-rc, that encompasses most
of RC enthusiasts needs from “classic” RC techniques to “deep” architectures
training, ReservoirPy offers some more advanced tools, listed in this section.

12 N. Trouvain et al.

Parallel execution A special Node ESN can be loaded with a reservoir and an
offline readout such as the Ridge Node to speed up both training and inference of
ESNs on large corpus of data. This is typically useful when dealing with language
data or batched timeseries in general, where each independent sentence in the
corpus can be processed in parallel by the reservoir while the readout gathers
all internal states emitted and performs linear regression. Parallel execution is
based on the joblib library, allowing to easily switch between different execution
backends.

Memory efficient linear regression Linear regression for offline learning or read-
out weights is performed in ReservoirPy using the following equation:

Wout = YX⊤(̇XX⊤ + λId)−1 (2)

where X is the design matrix, which stores all the reservoir activations com-
puted over the training data in an ESN; Y is a matrix storing all the target
vector for all the activation vectors in X; Wout is the learned weight matrix;
λ is a regularization parameter and | · |−1 stands for Moore-Penrose pseudo in-
version of a matrix. The Ridge Node is optimized as proposed by [14], to avoid
storing the full design matrix X, which can occupy a huge space in memory
if the dataset is long and/or if the states dimension is high. This optimization
involves computing the XX⊤ and YX⊤ terms “on the fly”, using a summation
of XiX

⊤
i and YiX

⊤
i computed on batches (or single timesteps) of data i. These

matrices have a maximum dimension of N ×N and O ×N respectively, where
N is the dimension of the reservoir states (or more generally of the Ridge Node
inputs) and O is the dimension of the target vectors Yi. This can be significantly
more memory efficient than storing design matrices of dimension N×L or O×L
where L is the length of the training dataset.

Custom matrix initialization Most Nodes accepts parameters functions or arrays
to define their parameters, like the reservoir weight matrices. This allows to
use ReservoirPy with handcrafted initialization rules. The module mat gen also
provides some specific initialization techniques, like fast scaling of spectral radius
as presented by [9].

Hyperparameter tuning utilities We rely on hyperopt [3], a general purpose opti-
mization library, to perform efficient searches of optimal hyperparameters. Reser-
voirPy provides users with helpers to handle hyperopt machinery, and some vi-
sualization tools, along with tutorials and examples.

Timeseries generators These generators can solve on demand the set of dif-
ferential equations describing chaotic attractors using Scipy [29] tools such as
solve ivp, or yield values from a discrete timeseries defined by a recurrent rela-
tion. Users can refine their parameters, initial conditions, integration time step,
and solving method when applicable. We provide:

– Lorenz attractor timeseries;

Create Efficient and Complex Reservoir Computing Architectures 13

u[t]

u[t]

r3

readoutr2

r1

r3

readoutr2

r1

u[t]

readout

1

readout

2

r2

r1

A B C

Fig. 2. Some advanced RC models architectures. Nodes r1, r2 and r3 are reservoirs.
Plain arrows are direct connections at time step t. Dashed arrows are feedback connec-
tions from t− 1 states to t. Gray dashed arrows are teacher connections. A DeepESN
[6] B DeepESN with inputs-to-all connections [6] C Mutually supervised reservoirs [2].

– Mackey-Glass timeseries;
– Doublescroll attractor timeseries;
– Rabinovich-Fabrikant attractor timeseries;
– Logistic map;
– Hénon map;
– NARMA discrete timeseries.

5 Advanced architectures

This section presents some examples of advanced model architectures imple-
mented with ReservoirPy. These examples are not meant to be full reproduc-
tions of any research paper, but rather seek to give clues on how to achieve
some possibly advanced design patterns. The hereafter selected models have
been encountered in the RC literature, and come with a minimal ReservoirPy
architecture.

5.1 Deep Echo State Networks

Deep Echo State Networks (DeepESNs) have been first introduced by [6] in 2017
and have been since a quite trendy research topic in the RC community. They
consist in several reservoirs connected together in a sequential way, and a readout
taking as input all the reservoirs in the model. Assuming that we want to create
a DeepESN with three reservoirs, and that all Nodes have been constructed with
some relevant parameters, a minimal ReservoirPy infused script for a DeepESN
Model would be:

deep_esn = r1 >> r2 >> r3 \ # Without input-to-all.

& [r1, r2, r3] >> readout

14 N. Trouvain et al.

inputs = Input() # Adding input-to-all.

deep_esn_ia = inputs >> [r1, r2, r3] & deep_esn

where r1, r2 and r3 are three Reservoir Nodes and readout might be a
Ridge or a FORCE Node. This DeepESN Model can then be trained offline or
online, using either its fit() or train() method. Corresponding graphs are
displayed in fig:advancedA and fig:advancedB.

5.2 Extreme Learning Machines

While ReservoirPy project was not initially including Extreme Learning Ma-
chines (ELMs)[12], it appears that they can be designed using the tools described
in this paper with a few tricks. Indeed, ELMs can be seen as a restricted version
of ESNs, where the state recurrence and the leaky integration are removed from
the reservoir. In that case, neurons in the reservoir respond without integrating
temporal context, as if each timesteps of inputs was i.i.d. Recurrence can be
shut down by setting the spectral radius of the reservoir recurrence matrix W
to 0, and the leaking rate to 1. We also change the weight distribution in matrix
Win, which are by default randomly chosen between 1 and −1, for a Gaussian
distribution. Finally, we augment connectivity of the Win matrix to 1 to depict
a fully connected layer of neurons.

from reservoirpy.mat_gen import normal

Create an 'i.i.d states' reservoir (sr=0.0)

static_res = Reservoir(100, lr=1.0, sr=0.0,

input_connectivity=1.0,

Win=normal)

Connect with an offline readout.

readout = Ridge()

elm = static_res >> readout

5.3 Mutually supervised reservoirs

Asabuki et al. [2] proposed in 2018 a model able to perform chunking tasks
on sequences, without explicit supervision [2]. This model is composed of two
ESNs equiped with an online learning rule, and feedback connections going from
the readouts to their respective reservoirs. The readouts were trained by mutual
supervision: readout 1 has to learn how to predict a normalized response of
readout 2, and readout 2 learns the opposite mapping (see fig:advancedC). In
the following example, we propose an implementation of this model using teacher
Nodes. Online learners may invoke their train() method using a Node as target.
Each time the online learning Nodes train themselves, they first fetch a target

Create Efficient and Complex Reservoir Computing Architectures 15

value from this Node, using a mechanism similar to feedback connections. We
will not detail the exact implementation of this model. In the following code, we
assume that we have properly parametrized reservoir Nodes and online readout
Nodes and that we have defined an additional Normalize subclass of Node able
to normalize the responses of the readouts as explained in [2].

reservoir1 = reservoir1 << readout1 # Feedbacks.

reservoir2 = reservoir2 << readout2

model = reservoir1 >> readout1 \ # Model.

& reservoir2 >> readout2

teacher1 = read1 >> Normalize() # Teacher Nodes,

teacher2 = read2 >> Normalize() # can be Models.

Training Model. We assume that readout were

defined with names, here "readout1" and "readout2".

model.train(X, Y={"readout1": teacher2,

"readout2": teacher1}

6 Discussion

ReservoirPy is a Python library for Reservoir Computing architectures, from
ESNs to deep ESNs, providing users with online and offline learning rules, com-
plete feedback loop support, and a powerful syntax to quickly develop any kind
of model using reusable building blocks. We demonstrated its ability to handle
exotic architectures of reservoirs where learning could be performed in unusual
ways. Such architectures provide new ideas “to think how learning could be per-
formed”, which is particularly interesting in computational neuroscience were
people try to understand how different learning and memory mechanisms in-
teract in the brain [1]. Some of these works studied how a couple of reservoirs
could learn to train one another to find chunks in a sequence [2] or how to
model working memory in reservoirs [16][22]. More generally, we are aiming at
replication and implementation of additional tools emerging from literature, like
new learning rules such as Intrinsic Plasticity (unsupervised training of reservoir
units) [19] or the three-factor Hebbian learning rule from [11], and new results on
non-linear vector autoregressive machines equivalence with reservoirs from [10].
Other ongoing and future work will also focus on improving general performance
and usability of the tool and add spiking version of reservoirs. We thus plan on
integrating parallel computation procedures to any kind of model, and study the
possibility to perform some computations on graphical processing units (GPU)
to speed up linear algebra operations for large sized reservoirs.

ReservoirPy has been built without strongly enforcing design principles from
other classical libraries (e.g. TensorFlow or Scikit-Learn). This choice has been

16 N. Trouvain et al.

motivated by the will to offer a high degree of flexibility, tailored to RC tech-
niques. Such flexibility and design choice allow for rapid and efficient prototyping
of original reservoir architectures. We believe this is an important step towards
the development of a new family of more complex reservoir architectures, such
as Deep Learning ones (e.g. Transformers [28]). Indeed, future trends in machine
learning are probably in-between Reservoir Computing and Deep Learning ap-
proaches where parts of advanced models are kept untrained [20][21].

ReservoirPy is a community oriented project: we provide tutorials and exten-
sive documentation. We welcome any feedback or contribution, from improve-
ment of the code base to implementation of new tools, or publication of new
examples and use cases.

7 Acknowledgment

This project was supported by Inria.

References

1. Alexandre, F., Hinaut, X., Rougier, N., Viéville, T.: Higher cognitive functions in
bio-inspired artificial intelligence. ERCIM News 125 (2021)

2. Asabuki, T., Hiratani, N., Fukai, T.: Interactive reservoir computing for chunking
information streams. PLoS computational biology 14(10), e1006400 (2018)

3. Bergstra, J., et al.: Hyperopt: A python library for optimizing the hyperparameters
of machine learning algorithms. In: SciPy. pp. 13–20 (2013)

4. Dale, M.: Neuroevolution of hierarchical reservoir computers. In: Proceedings of
the Genetic and Evolutionary Computation Conference. pp. 410–417 (2018)

5. Enel, P., Procyk, E., Quilodran, R., Dominey, P.: Reservoir computing properties
of neural dynamics in prefrontal cortex. PLoS Comput Biol 12(6), e1004967 (2016)

6. Gallicchio, C., Micheli, A., Pedrelli, L.: Deep reservoir computing: a critical exper-
imental analysis. Neurocomputing 268, 87–99 (2017)

7. Gallicchio, C., Micheli, A.: Tree echo state networks. Neurocomputing 101, 319–
337 (2013)

8. Gallicchio, C., Micheli, A., Pedrelli, L.: Deep reservoir computing: A critical ex-
perimental analysis. Neurocomputing 268, 87–99 (2017)

9. Gallicchio, C., Micheli, A., Pedrelli, L.: Fast spectral radius initialization for re-
current neural networks. In: INNS Big Data and Deep Learning conference. pp.
380–390. Springer (2019)

10. Gauthier, D.J., Bollt, E., Griffith, A., Barbosa, W.A.S.: Next generation reservoir
computing 12(1), 5564

11. Hoerzer, G.M., Legenstein, R., Maass, W.: Emergence of Complex Computational
Structures From Chaotic Neural Networks Through Reward-Modulated Hebbian
Learning 24(3), 677–690

12. Huang, G.B., Wang, D.H., Lan, Y.: Extreme learning machines: A survey. Int. J.
Mach. Learn. & Cyber. 2(2), 107–122 (Jun 2011)

13. Jaeger, H.: The “echo state” approach to analysing and training recurrent neu-
ral networks. Bonn, Germany: German National Research Center for Information
Technology GMD Tech. Report 148, 34 (2001)

Create Efficient and Complex Reservoir Computing Architectures 17

14. Lukoševičius, M.: A practical guide to applying echo state networks. In: Neural
Networks: Tricks of the Trade, pp. 659–686. Springer (2012)

15. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
computation 14(11), 2531–2560 (2002)

16. Pascanu, R., Jaeger, H.: A neurodynamical model for working memory. Neural
networks 24(2), 199–207 (2011)

17. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011)

18. Pedrelli, L., Hinaut, X.: Hierarchical-task reservoir for online semantic analysis
from continuous speech. IEEE TNNLS pp. 1–10 (2021)

19. Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J.J., Stroobandt, D.: Im-
proving reservoirs using intrinsic plasticity 71(7), 1159–1171

20. Shen, S., Baevski, A., Morcos, A.S., Keutzer, K., Auli, M., Kiela, D.: Reservoir
transformers. arXiv preprint arXiv:2012.15045 (2020)

21. Shrivastava, H., Garg, A., Cao, Y., Zhang, Y., Sainath, T.: Echo state speech
recognition. In: ICASSP. pp. 5669–5673. IEEE (2021)

22. Strock, A., Hinaut, X., Rougier, N.P.: A robust model of gated working memory.
Neural Computation 32(1), 153–181 (2020)

23. Sun, C., Song, M., Hong, S., Li, H.: A review of designs and applications of echo
state networks. arXiv preprint arXiv:2012.02974 (2020)

24. Sussillo, D., Abbott, L.F.: Generating Coherent Patterns of Activity from Chaotic
Neural Networks 63(4), 544–557

25. Tanaka, G., et al.review 115, 100–123
26. Triefenbach, F., Jalalvand, A., Schrauwen, B., Martens, J.: Phoneme recognition

with large hierarchical reservoirs. In: NIPS. pp. 2307–2315 (2010)
27. Trouvain, N., Hinaut, X.: Canary song decoder: Transduction and implicit segmen-

tation with esns and ltsms. In: ICANN. pp. 71–82. Springer (2021)
28. Vaswani, A., et al.: Attention is all you need. In: NIPS. pp. 5998–6008 (2017)
29. Virtanen, P., et al.: SciPy 1.0: Fundamental Algorithms for Scientific Computing

in Python. Nature Methods 17, 261–272 (2020)
30. Vlachas, P.R., et al.: Backpropagation algorithms and Reservoir Computing in Re-

current Neural Networks for the forecasting of complex spatiotemporal dynamics.
Neural Networks 126, 191–217

31. Xue, Y., Yang, L., Haykin, S.: Decoupled echo state networks with lateral inhibi-
tion. Neural Networks 20(3), 365–376 (2007)

	Create Efficient and Complex Reservoir Computing Architectures with ReservoirPy

