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1 IntroductionGossiping (also called total exchange or all{to{all communication) in interconnection networks isthe process in which initially each processor has an item of information that must be distributedto every other processor of the system.The gossiping problem was originally introduced by the community of discrete mathemati-cians, to which it owes most of its terminology, as a combinatorial problem in graphs. Nonethe-less, it was soon realized that, once cast in more realistic models of communication, gossiping isa fundamental primitive in multiprocessor systems. Gossiping arises in a large class of parallelcomputation problems, such as linear system solving, matrix manipulation, and sorting, whereboth input and output data are required to be distributed across the network [6, 8, 16]. Dueto the considerable practical relevance in parallel and distributed computation and the relatedinteresting theoretical issues, gossiping has been extensively studied in the literature [9, 13, 15].The great majority of the previous work on gossiping has considered the case in which theitems of information known to a processor at any given time during the execution of the gossipingprotocol can be freely concatenated and the resulting (longer) message can be transmitted in aconstant amount of time, that is, it has been assumed that the time required to transmit amessage is independent from its length. While this assumption is reasonable for short messages,it is clearly unrealistic in case the size of the messages becomes large. Notice that most of thegossiping protocols proposed in the literature require the transmission of messages of size �(n),where n is the number of nodes in the network. Therefore, it would be interesting to have gossipingprotocols that require only the transmission of bounded length messages between processors. Inthis paper we consider the problem of gossiping in communication networks under the restrictionthat communicating nodes can exchange up to a �xed number p of items of information duringeach call.1.1 The ModelWe assume that the network is modelled by the complete graph and that the processors arelabelled with the integers in the set f0; : : : ; n� 1g.Gossiping: Each processor i, with 0 � i � n � 1, has a block of data B(i). The goal is todisseminate these blocks so that each processor gets all the blocks B(0); � � � ; B(n� 1).The process is accomplished by means of a sequence of calls between processors. During eachcall, communicating nodes can exchange blocks they know. We assume that each processor canparticipate in at most one call at time. This communication model is usually referred to as1



telephone model or Full{Duplex 1{Port (F1) [16, 13, 9, 17]. Another popular communicationmodel is the mail model or Half{Duplex 1{Port (H1) [16, 13, 9, 17], in which during each callany node can either send a message to one of its neighbors or receive a message from it but notsimultaneously.Furthermore, we add the condition that during each call communicating nodes can exchangeup to p blocks, where p is an a priori �xed integer. The problem of estimating number of callsnecessary for gossiping in the H1 model has been considered in [2]. The problem of minimizingthe time (number of rounds) to complete the gossiping process in the H1 and F1 model, has beenconsidered in [4] and [3], respectively; analogous problems have been studied in [11, 10, 14, 12, 7,5]. Packet routing in interconnection networks in the F1 model has been considered in [1].In this paper we give a lower bound on the minimum possible number of calls c(n; p) necessaryto complete gossiping among n nodes under the condition that during each call communicatingnodes can exchange at most p blocks.Notice that if n � p + 1 then the bound on p does not impose any actual restriction to thesize of the message exchanged during the gossiping process and c(n; p) = 2n� 4 (see [13]).We also notice that c(n; 1) = n(n�1)=2, for each n � 2; indeed if during each call communicatingnodes can exchange at most one block then it is necessary for any node to receive each of theblocks of the other nodes during n� 1 di�erent calls.Therefore, in the following we will consider p � 2 and n > p+ 1.2 Lower BoundsIn this section we give lower bounds on the minimum possible number of calls c(n; p) necessaryto complete gossiping among n nodes under the condition that during each call communicatingnodes can exchange at most p blocks.Since each node must receive n � 1 blocks, we have that the number of blocks sent duringthe process is at least n(n� 1). Moreover, since initially each node knows only its own block wehave that at least n of the messages sent during the gossiping protocol can carry at most oneblock. That means that at least n calls between two nodes can carry at most p+1 blocks in bothdirections while all the remaining call can carry up to 2p blocks. Therefore, we have that c(n; p)must satisfy 2p(c(n; p)� n)p + n(p + 1) � n(n � 1) which implies the following lower bound onc(n; p) c(n; p) � n22p + p� 22p n: (1)We give now a lower bound which improves on (1) for most of the values of n and p.2



Theorem 2.1 For each p � 2 and n � p+ 2, if n = hp+ k, for some h � 1 and 2 � k � p+ 1,then c(n; p) � n22p + �1� k2p � 12(k � 1)�n: (2)Proof. Fix any gossiping protocol A on nodes 0; : : : ; n-1 that uses messages of size at most pand denote by c(A) the number of calls made by A. Denote by ai(x) the number of calls duringwhich node x receives exactly i blocks, for each 0 � x � n � 1 and 1 � i � p. Since the numberof calls involving node x is Ppi=1 ai(x) the total number of calls made by A is2c(A) = n�1Xx=0 pXi=1 ai(x) (3)We want therefore to bound the sum in (3). The fact that each node must receive the blocks ofeach of the other n � 1 nodes implies thatn� 1 � pXi=1 iai(x) � a1(x) + p pXi=2 ai(x); (4)which implies pXi=1 ai(x) � �n� 1� a1(x)p �+ a1(x): (5)Let us now write for each node xa1(x) = t(x)p+ j(x); with t(x) � 0; 0 � j(x) < p: (6)Writing n = hp+ k, for some h � 1 and 2 � k � p+ 1, inequalities (5) and (6) givepXi=1 ai(x) � �hp+ k � 1� t(x)p� j(x)p �+ a1(x) � h + a1(x)� t(x) + �k � 1� j(x)p � : (7)Recalling (6) we have pXi=1 ai(x) � h+ p� 1p a1(x) + 1pj(x) + �k � 1� j(x)p � : (8)By (3) and (8) we obtain2c(A) � n�1Xx=0 pXi=1 ai(x) � nh+ p� 1p n�1Xx=0 a1(x) + 1p n�1Xx=0 j(x) + n�1Xx=0 �k � 1� j(x)p � (9)with �k � 1� j(x)p � = � 1 if 0 � j(x) � k � 20 if k � 1 � j(x) < p. (10)Denoting by Z the set of nodes for which the left{end side of (10) is 0, that is,Z = �x j 0 � x � n � 1; �k � 1� j(x)p � = 0� = fx j 0 � x � n� 1; j(x) � k � 1g (11)3



from (9) we obtain that2c(A) � nh+ p� 1p n�1Xx=0 a1(x) + 1p n�1Xx=0 j(x) + n� jZj:Since Pn�1x=0 j(x) �Px2Z j(x) � jZj(k � 1) we get2c(A) � nh + n + p� 1p n�1Xx=0 a1(x)� p� k + 1p jZj: (12)We want now a lower bound for Pn�1x=0 a1(x). Let us �rst observe that the �rst time each node isinvolved in a call it can send only its own block, thereforen�1Xx=0 a1(x) � n: (13)Moreover, n�1Xx=0 a1(x) � n�1Xx=0 j(x) � Xx2Z j(x) � jZj(k � 1): (14)>From (12), using (13) and (14) we get2c(A) � nh+ n+ 1p maxf(p� 1)n� (p� k + 1)jZj; jZj(k� 1)(p� 1)� (p� k + 1)jZjg: (15)Therefore,2c(A) � nh+ n+ 1p min0�z�nmaxf(p� 1)n� (p� k + 1)z; ((k � 1)(p� 1)� p+ k � 1)zg: (16)An easy computation gives1p min0�z�nmaxf(p� 1)n� (p� k + 1)z; ((k � 1)(p� 1)� p+ k � 1)zg = �1� 1k � 1�nand this value is attained when z = n=(k � 1), for each 2 � k � p+ 1. Therefore, by (16) we get2c(A) � nh + 2n� � nk � 1� :Recalling that h = (n� k)=p we get the desired bound. 2Notice that bounds (1) and (2) coincide for k = 2 and k = p+ 1.3 Upper BoundIn this section we give a protocol to perform complete gossiping among n nodes under the con-dition that during each call communicating nodes can exchange at most p blocks.The main result of this section will be the following theorem.4



Theorem 3.1 There exist a protocol that performs gossiping among n nodes with packets of sizeup to k with at most n22p + �1� k2p � 12(k � 1)�n+ pcalls.Notice that the di�erence between the number of calls required by the proposed protocol andthe lower bound given in (2) is less than p, a value not depending on n, so the protocol isasymptotically optimal.We describe now the protocol.Again we write n = hp + k, for some h > 0 and 2 � k � p+ 1. Moreover, all the operations onthe nodes 0; : : : ; n� 1 are intended modulo n. Finally, by saying that a node knows/sends [a; b]we will mean that the node knows/sends the blocks of all the nodes a; a+ 1; : : : ; b if a � b and ofthe nodes a; : : : ; n� 1; 0; : : : ; b if a > b.We design an almost optimal protocol as follows. In a �rst phase consisting of n � 1 callseach node is involved in at least one call. We design the calls in such a way that each nodei = p; : : : ; n � 1 knows either [i � p; i] or [i � p; i + k � 1]. Moreover the nodes knowing p + kblocks are of the form p� 1 + j(k� 1) for some j.In a second phase consisting of p calls we extend the above property to all the nodes.In a third phase the above property allows to make calls so that each node learns p new blocksat each call. Finally, in a last phase we complete the protocol.First Phase. For t = 1; : : : ; p�1 during the t{th call nodes t�1 and t communicate exchangingall the blocks they know, that is, t � 1 sends [0; t� 1] and receives [t].Therefore, at the end of call p� 1 each node i, for i = 0; : : : ; p� 2, knows [0; i+1] and node p� 1knows [0; p� 1].Let now � = b(n� 1� p)=(k� 1)c and consider integers � and � such thatp+ �(k � 1) + � � n� 1 with 0 � � � k � 2; (17)this implies 0 � � � �.During the call p+�(k�1)+� the node p�1+�(k�1) communicates with node p+�(k�1)+�receiving the block [p+ �(k � 1) + �] and sending [�(k� 1) + �; p+ �(k� 1) + �� 1].According to (17) this �rst phase consists of n� 1 calls. At the end of this phase we have:� for i = 0; : : : ; p� 2, node i knows [0; i+ 1];� node p� 1 knows [0; p+ k � 2]; 5



� node p� 1 + �(k� 1), with 0 < � < � knows [�(k� 1)� 1; p+ �(k � 1) + k � 2](namely it knows the p blocks [�(k�1)�1; p�1+�(k�1)�1] learned from p�1+�(k�1),its own block, and the k � 1 blocks learned during the calls with p + �(k � 1) + �, for0 � � � k � 2);� node p� 1 +�(k � 1), knows between p+ 2 and p + k blocks according to the values of kand n, namely [�(k � 1)� 1; n� 1].� node p+ �(k � 1) + �, with 0 � � � k � 2 and p + �(k � 1) + � � n � 1, knows the p + 1blocks [�(k� 1) + �; p+ �(k � 1) + �].Notice that for each i � p we have two types of nodes:{ nodes of type 1 that know at least [i� p; i]{ nodes of type k that know [i� p; i+ k � 1];at the end of Phase 1 the nodes of type k are all the nodes p� 1 + �(k� 1), for 1 � � < �.Second Phase. The �rst call is between p�1 and p�1+�(k�1); node p�1 receives the block[n � 1] and sends [0; : : : ; p� 1 + (� + 1)(k � 1)� n]; this is possible since p+ �(k � 1) � n � 1and k � p+ 1. After this call node p� 1 and p� 1 +�(k � 1) are both of type k.Now node n� 1 will communicate with each of the nodes i = 0; : : : ; p� 2 as follows:Case 1 If i 6� p � 2 (mod (k � 1)), then n � 1 sends [i� p + 1;�1] to i and so i knows[i� p+ 1; i+ 1];Case 2 If i � p� 2 (mod (k� 1)) and i � k � 2, then n� 1 sends [i� (k+ p� 2);�1] toi and so i knows [i� (k + p� 2); i+ 1];Case 3 If i � p� 2 (mod (k � 1)) and i < k � 2, then n � 1 sends [�p;�1] to i and so iknows at least [�p; 0].Node n � 1 receives all the blocks of i = 0; : : : ; p � 2. Therefore, after the above calls also thenode n � 1 will know p+ k blocks and it will be of type k.We can now relabel the nodes i = 0; : : : ; p� 2 in the following wayIf i satis�es Case 1, the it is relabeled i+ 1;If i satis�es Case 2, the it is relabeled i+ 1� (k � 1);If i satis�es Case 3, the it is relabeled 0; 6



Therefore, at the end of the second phase, with the above relabeling of the nodes we have dn=(k�1)e nodes of type k, that is all the nodes i with i � p � 1 (mod (k � 1)) and the node n � 1.Moreover,each node of type 1 knows the p+ 1 blocks [i� p; i];each node of type k knows the p+ k blocks [i� p; i+ k � 1].Third Phase. It consists of h0 = b(h� 1)=2c steps. During each step each node i, 0 � i � n� 1,communicates with i + p + 1. Therefore, during each step there are n calls and each node isinvolved in 2 of them.We organize the calls in such a way that at the end of each step s:1) each node of type 1 knows the (2s+ 1)p+ 1 blocks [i� (s+ 1)p; i+ sp];2) each node of type k knows the (2s+ 1)p+ k blocks [i� (s+ 1)p; i+ sp + k � 1].We prove now by induction that it is possible to keep 1) and 2) at each step. The property istrivially true at the beginning of third phase for s = 0. Suppose now that it is true for some s < h0.Consider step s+ 1 and let i and i+ p+ 1 communicate. Always i sends [i� (s+ 1)p+1; i� sp].Since s+ 1 � h0 these p blocks are unknown to i+ p+ 1.Notice that we perform the calls doing �rst, in any order, the calls for which i is of type 1. Inthat case i can receive [i + sp + 1; i+ (s + 1)p] from i + p + 1; by inductive hypothesis these pblocks are known to i+ p+ 1 but unknown to i.After we do, in any order, the calls for which i is of type k. In that case i can receive [i+ sp +k ; i+ (s+1)p+ k� 1] from i+ p+ 1. By inductive hypothesis and as result of the previous callsof step s+ 1, these p blocks are known to i+ p+ 1 but unknown to i. Therefore, 1) and 2) hold.Considering the above properties 1) and 2) for s = h0 we get that at the end of the third phaseeach node of type 1 knows the (2h0 + 1)p+ 1 blocks [i� (h0 + 1)p; i+ h0p];each node of type k knows the (2h0 + 1)p+ k blocks [i� (h0 + 1)p; i+ h0p+ k � 1].Last Phase. We distinguish two cases.Case 1. h is odd and h0 = (h� 1)=2.In such a case the nodes of type k know hp+ k = n blocks, that is, all the blocks.A node i of type 1 knows hp + 1 blocks, in particular it knows all blocs but [i + h�12 p + 1; i+h�12 p+k�1]. Therefore if two nodes i and j such that maxfi; jg�minfi; jg � k+1 communicate7



they can send each other the missing blocks. Therefore, since n � p + k, we can organize callsamong the the nodes of type 1 so to end the protocol with d(n � dn=(k � 1)e)=2e calls.Case 2. h is even and h0 = h=2� 1.We �rst organize calls between nodes of type k. A node i knows all the blocks but [i+ h�22 p+k+1; i+ h2p+k�1]. Therefore if two nodes i and j such that maxfi; jg�minfi; jg � p communicatethey can send each other the missing blocks. Therefore, since n � 2p + 2 we can organize callsamong the the nodes of type k so to let each of them know all the blocks with ddn=(k � 1)e=2ecalls.For the nodes of type 1 let us label them from 0 to n�dn=(k�1)e�1 and let node i call nodei+ p� b(p+ 1)=(k� 1)c. Each node is involved in 2 calls. This implies each node can learn thep+ k� 1 blocks it does know yet. To this aim we need n� dn=(k� 1)e calls to end the protocol.We count now the total number of calls made by the above protocol. We have� n� 1 calls during the �rst phase� p calls during the second phase� h0n = b(h� 1)=2cn calls during the third phase� d(n � dn=(k � 1)e)=2e or ddn=(k � 1)e=2e + n � dn=(k � 1)e calls during the last phaseaccording to h odd or even.Therefore for the third and last phase we haveh� 12 n + d(n� dn=(k � 1)e)=2e � h� 12 n + n2 � n2(k � 1) + 1 = h2n� n2(k � 1) + 1if h is odd andh� 22 n+ n� bdn=(k � 1)e=2c � h � 22 n+ n� n2(k � 1) + 1 = h2n� n2(k� 1) + 1if h is even.Therefore, recalling that h = (n� k)=p, the number of calls made by the protocol is at mostn� 1 + p+ h2n� n2(k � 1) + 1 = n22p + �1� k2p � 12(k � 1)�n+ p:Example 3.1 Let us consider p = 4 and n = 16; this implies k = 4. The following table givesthe knowledge of each node after the �rst phase. The � indicates the nodes of type k.8



0 [0,1]1 [0,2]2 [0,3]3 [0,6]4 [0,4]5 [1,5]6* [2,9]7 [3,7]8 [4,8]9* [5,12]10 [6,10]11 [7,11]12* [8,15]13 [9,13]14 [10,14]15 [11,15]The following table gives the interval of blocks known by each node after the second phasebefore and after the relabeling, respectively.0 [0,1][13,15]1 [0,2][14,15]2 [0,3][12,15]3 [0,6][15]4 [0,4]5 [1,5]6 [2,9]7 [3,7]8 [4,8]9 [5,12]10 [6,10]11 [7,11]12 [8,15]13 [9,13]14 [10,14]15 [11,15][0,2]
0* [12,3]1 [13,1]2 [14,2]3* [15,6]4 [0,4]5 [1,5]6* [2,9]7 [3,7]8 [4,8]9* [5,12]10 [6,10]11 [7,11]12* [8,15]13 [9,13]14 [10,14]15* [11,2]The following table gives the interval of blocks known by each node after each step of the thirdphase after the call of the nodes of type 1 and of type k.
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0* [12,3][8,11]1 [13,1][2,5]2 [14,2][3,6][10,13]3* [15,6][11,5]4 [0,4][5,8]5 [1,5][6,9]6* [2,9][14,1]7 [3,7][8,11][15,2]8 [4,8][9,12]9* [5,12][1,4]10 [6,10][11,14][2,5]11 [7,11][12,15]12* [8,15][4,7]13 [9,13][14,1][5,8]14 [10,14][15,2]15* [11,2][7,10]
0* [12,3][8,11][4,7]1 [13,1][2,5][9,12]2 [14,2][3,6][10,13]3* [15,6][11,5][7,10]4 [0,4][5,8][12,15]5 [1,5][6,9][13,0]6* [2,9][14,1][10,13]7 [3,7][8,11][15,2]8 [4,8][9,12][0,3]9* [5,12][1,4][13,0]10 [6,10][11,14][2,5]11 [7,11][12,15][3,6]12* [8,15][4,7][0,3]13 [9,13][14,1][5,8]14 [10,14][15,2][6,9]15* [11,2][7,10][3,6] = 0* ALL1 [9,5]2 [10,6]3* ALL4 [12,8]5 [13,9]6* ALL7 [15,11]8 [0,12]9* ALL10 [2,14]11 [3,15]12* ALL13 [5,1]14 [6,2]15* ALLIn the last phase the calls that complete the protocol are between nodes1 and 8, 2 and 10, 4 and 11, 5 and 13, 7 and 14.Example 3.2 Let us consider p = 9 and n = 22; this implies k = 4. The following table givesthe knowledge of each node after the �rst phase. The � indicates the nodes of type k.0 [0,1]1 [0,2]2 [0,3]3 [0,4]4 [0,5]5 [0,6]6 [0,7]7 [0,8]8 [0,11]9 [0,9]10 [1,10]11* [2,14]12 [3,12]13 [4,13]14* [5,17]15 [6,15]16 [7,16]17* [8,20]18 [9,18]19 [10,19]20 [11,21]21 [12,21]The following table gives the interval of blocks known by each node after the second phase beforeand after the relabeling, respectively. The relabeling gives to node i = 0; : : : ; 7 the new label `(i)with `(0) = 1, `(1) = 0, `(2) = 3, `(3) = 4, `(4) = 2, `(5) = 6, `(6) = 7, `(7) = 5.10



0 [0,1][14,21]1 [0,2][13,21]2 [0,3][16,21]3 [0,4][17,21]4 [0,5][15,21]5 [0,6][19,21]6 [0,7][20,21]7 [0,8][18,21]8 [0,11][21]9 [0,9]10 [1,10]11* [2,14]12 [3,12]13 [4,13]14* [5,17]15 [6,15]16 [7,16]17* [8,20]18 [9,18]19 [10,19]20 [11,21]21 [12,21]
0 [0,2][13,21]1 [0,1][14,21]2 [0,5][15,21]3 [0,3][16,21]4 [0,4][17,21]5 [0,8][18,21]6 [0,6][19,21]7 [0,7][20,21]8 [0,11][21]9 [0,9]10 [1,10]11 [2,14]12 [3,12]13 [4,13]14 [5,17]15 [6,15]16 [7,16]17 [8,20]18 [9,18]19 [10,19]20 [11,21]21 [12,21][0,2]

!
0 [13,0]1 [14,1]2* [15,5]3 [16,3]4 [17,4]5* [18,8]6 [19,6]7 [20,7]8* [21,11]9 [0,9]10 [1,10]11* [2,14]12 [3,12]13 [4,13]14* [5,17]15 [6,15]16 [7,16]17* [8,20]18 [9,18]19 [10,19]20* [11,21]21* [12,2]The following table gives the interval of blocks known by each node after each step of the thirdphase after the call of the nodes of type 1 and after the calls of nodes of type k. The calls betweennodes of type k are between nodes2 and 14, 5 and 17, 8 and 20, 14 and 21.Relabelling the nodes of type 1 with labels from 0 to 13, we can organize calls among them so thatwe have 0 [13,0][1,9][4,12]1 [14,1][2,10][5,13]2 [16,3][4,12][7,15]3 [17,4][5,13][6,16]4 [19,6][7,15][10,18]5 [20,7][8,16][11,19]6 [0,9][10,18][13,21]7 [1,10][11,19][0,14]8 [3,12][13,21][16,2]9 [4,13][14,0][17,3]10 [6,15][16,2][19,5]11 [7,16][17,3][20,6]12 [9,18][19,5][6,8]13 [10,19][20,6][7,9]References[1] N. Alon, F.R.K. Chung, and R.L. Graham \Routing Permutations on Graphs via Matchings", Proc.25th ACM Symposium on the Theory of Computing (STOC '93), San Diego, CA (1993), 583{591.11
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