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1. INTRODUCTION 

 

The southern Tyrrhenian Sea is the youngest volcanically active back-arc basin of the 

western Mediterranean, and is a complex geodynamic and geological system (Fig. 1.1). It 

is considered to be the result of subduction of the Ionian oceanic plate under the European 

plate (Barberi et al., 1974; Francalanci et al., 1993; Savelli, 2002).  

 

 

Figure 1.1 - Geographical  and structural sketch map of Southern Tyrrhenian Sea (From Ventura et al., 

1999) 

 

The southern Tyrrhenian area developed from the Miocene to the Present within the 

framework of the coeval formation of the Apennine-Maghrebid Chain, structured above 

the north-western-subducting Ionian oceanic slab (Doglioni et al., 2004; Rosenbaum et al., 

2004). Seismic studies reveal a thin crust about 15-20 km beneath the Aeolian arc 

(Piromallo and Morelli, 2003). It becomes thicker under the Calabrian peninsula (to about 
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25 km), but thins westward, reaching typical oceanic values of about 10 km in the Marsili 

basin.  

 The nature of the mantle under the Aeolian arc, in general, beneath Italy is still a matter of 

debate, and various sources have been proposed:  a MORB-type mantle under the Aeolian 

arc (Francalanci et al., 1993); a HIMU-type mantle (that is, “high µ”; µ = 
238

U/
204

Pb) 

mixed with shallow DM (Depleted Mantle) under the Tyrrhenian Sea (Gasperini et al., 

2002); several upper-mantle domains beneath central-southern Italy (Peccerillo and Panza, 

1999); and, lastly, a sub-continental mantle under the whole European continent (Dunai 

and Baur, 1995; Gautheron and Moreira, 2002).  

Subduction processes involving oceanic (Ionian plate) and continental crust (final dipping 

stage of Adria micro-plate), aborted rifting (Pantelleria) and opening of back-arc basins 

(Tyrrhenian Sea) all make the Italian geodynamic setting varied and complex (fig. 1.2). 

 

Figure 1.2 - Map of the south Tyrrhenian subduction zone. The Ionian microplate subducts under the 

Tyrrhenian microplate (From Gvirtzman and Nur, 1999). 

 

Recent geological modeling (Gvirtzman and Nur, 1999) and geophysical studies 

(Chiarabba et al., 2008) suggest rapid south-eastward roll-back of the oceanic slab beneath 

the southern Tyrrhenian. Several authors (e.g., Trua et al., 2003; De Astis et al., 2006) 

hypothesize the lateral migration of African asthenospheric enriched mantle around the 

slab edges, into the colder mantle wedge. Ingress of the African mantle is demonstrated by 

the eruption of Ocean Island Basalt (OIB) magmas, anomalous in subduction-related 
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systems, at the northern slab edge environments (K- and Na-rich alkaline magma from the 

Vulture–Campania area), on the Italian mainland and southern ones (Na-alkaline magmas 

from the islands of Ustica and Prometeo) (Fig. 1.3).  

 

Figure 1.3 - Subduction processes involving Ionian oceanic lithosphere and tyrrhenian lithosphere (From 

Trua et al., 2007) 

 

Quaternary IAB-type volcanic activity is represented by the Aeolian volcanic arc, the 

Marsili basin and the seamounts located in and around it. Petrologically, the related IAB-

type volcanic rocks comprise calc-alkaline to shoshonitic products, with rare potassic rocks 

(Beccaluva et al., 1985; Tonarini et al., 2001b).  

A major contribution to understanding of the nature and evolution of the Italian mantle has 

come from the study of trace elements, extensively carried out over the past twenty years. 

However, in order to discriminate between the various mantle sources and the possible 

contribution of the crust to arc magmas, helium takes on importance. Helium is a very 

powerful tracer, since the concentration of  
3
He in oceanic and continental crust is 

practically zero (Poreda and Craig, 1989). In addition, as 
4
He it is not produced in 

significant amounts by radioactive processes, it becomes an important factor revealing 

information on deep environments. The 
3
He/

4
He isotope ratio of oceanic arc basalts 

commonly fall in the range 6–8 Ra (where Ra is atmospheric 
3
He/

4
He; 1.39 x 10

-6
; Poreda 

and Craig, 1989). Values which are typical of normal mid-ocean ridge basalts (MORB) 

plot in the range 8 ± 1 Ra (Farley and Neroda, 1998). Helium in crustal fluids is enriched 

in radiogenic 
4
He produced by the decay of U and Th. Crustal-radiogenic He is typically 

less than 0.1 Ra (O’Nions and Oxburgh, 1988). The absence of any significant contribution 
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of radiogenic He to oceanic arc basalts implies that subduction of altered oceanic crust and 

oceanic sediments does not enrich the mantle wedge in radiogenic helium. This is probable 

due to the loss of He from the subducting slab in the early stages of the process, before 

reaching the area of magma generation in the mantle wedge (Hilton et al., 1992, 2002).  

In particular, fluid inclusions in phenocrysts generally preserve the He isotope ratio closest 

to the mantle source. In this hypothesis, which is the continuation and integration of 

research by Di Liberto (2003), new analyses of He isotope ratios from fluid inclusions 

trapped in olivine and pyroxene phenocrysts are presented for the islands of Panarea and 

Stromboli and the Marsili volcano. The isotope ratios of helium and argon in quartz 

xenoliths hosted by calc-alkaline lava of the Paleostromboli II period (Omo lavas) were 

measured and compared with those of Martelli et al. (2010) on the ultramafic lava 

xenoliths of San Bartolo lavas (Stromboli island). 
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2. GEOLOGICAL AND GEODYNAMIC SETTINGS 

 

Southern Tyrrhenian Sea is a back-arc basin developed from Miocene to Present in 

the frame of the coeval formation of Apennine-Maghrebid Chain, structured above the 

north-western subducting Ionian oceanic slab (Doglioni et al., 2004; Rosenbaum et al., 

2004). Its evolution has been characterized by great tectonic extension inducing volcanic 

activity and recent diffusing seismic activity, all migrated in space and time from North-

West to South-East (Savelli, 1988; Beccaluva et al.,  1994; Selvaggi and Chiarabba, 1995; 

Neri et al., 1996; Favali et al., 2004). 

The geodynamic evolution of Sothern Tyrrhenian basin is morphologically evidenced by 

two main abyssal plains, the oceanic crust floored sub-basins of Vavilov (4.3–2.6 Ma) and 

Marsili (2 Ma), respectively; inside them the two greatest Tyrrhenian seamounts developed 

(Barberi et al., 1978; Kastens et al., 1990). In the surrounding areas of Marsili basin 

numerous other seamounts are located, representing the Western and North-Eastern 

submerged prosecution of the Aeolian Arc: Sisifo, Enarete, Eolo, Lametini, Alcione, 

Glabro and Palinuro.  

The Moho depth is located 15-20 km below the Tyrrhenian abyssal plains and ~10 km 

beneath Vavilov and Marsili seamounts (Steinmetz et al., 1983; Locardi and Nicolich, 

1988) corroborated with the following geophysical data. High resolution seismic reflection 

sections suggest a strong extensional setting of the Tyrrhenian basin (Finetti, 2004).  

An extremely high heat flow with regional values around 120 mW/m
2
 and local maxima in 

correspondence of Vavilov (140 mW/m
2
) and Marsili (250 mW/m

2
) areas has been 

recorded (Della Vedova et al., 2001; Mongelli et al., 2004). Furthermore, on the uppermost 

and central portions of Vavilov and Marsili volcanoes, heat flow achieves 300 and 500 

mW/m2, respectively (Verzhbitskii, 2007). These positive heat flow anomalies coincide 

with gravity and magnetic ones (Faggioni et al., 1995; Cella et al., 1998). Thus, the 

geophysical data strongly suggest the presence of magmatic bodies intruding shallow, 

thinned and stretched crustal levels. In turn, the diffuse and localised high heat flows are 

related to the upraising of basaltic melts at lower depth below the Tyrrhenian sea-floor. 

Therefore, volcanic Tyrrhenian seamounts can be considered huge heat sources; and the 

Marsili seamount is the most intense one. 
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2.1 Marsili seamount 

 

The Marsili seamount rises 3500 m from the abyssal plain to 489 m minimum 

depth. The volcanic edifice is about 60 km long and about 20 km wide (Fig.2.1).  The 

dimensions and the distinctive morphology of the Marsili volcano are suggested to result 

from the superinflation of a spreading ridge, attributed to a higher than normal magma 

production (Marani and Trua, 2002).  

 

 

Figure 2.1 – Bathimetric and morphologic map of  Marsili volcano (From Caso et al., 2010) 

 

As the spreading rate of the Marsili back arc basin did not significantly change 

during the growth of the Marsili volcano, which began construction 0.7 Ma ago, it has been 

suggested that the excess magma production of the volcano was related to melting of the 

underlying mantle wedge. Melting was triggered by the lateral ingression of hot 

asthenospheric fluxes of African mantle around the edges, and ultimately over the top of 

the Ionian slab, which lies 350 km depth beneath the Marsili volcano.  
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The southern Tyrrhenian sea, back-arc basin magmatic activity is characterised by 

eruption of a wide range of magmas that requires the involvement of at least four distinct 

mantle source: IAB, MORB, and OIB-type, and a mantle source generated by subduction 

related enrichment of the OIB-type mantle source (Trua et al., 2004a; Trua et al., 2004b). 

Magma derived from an IAB-type mantle are by far the most common  and cover most of 

the known subduction related volcanic suites of the southern Tyrrhenian basin. These 

magmas includes: calc-alkaline and shoshonites rocks of the Marsili and Vavilov basins, 

the Marsili seamount, the Anchise seamount and the Aeolian islands and related 

seamounts; arc tholeiites recovered from Lamentini seamount; and potassic rocks present 

at Vulcano and Stromboli island, and probably also present in the Albatros seamount. 

Magmas  derived from a MORB-type mantle were only recovered from the Vavilov back-

arc basin. Magmas derived from an OIB-type mantle coexist with magmas derived from 

the IAB-type mantle source in both Vavilov and Marsili backarc basins, although the 

former are restricted to a few areas: the Magnaghi, Vavilov and Aceste seamounts. Finally, 

the potassic and ultrapotassic magmas of the eastern margin of the southern Tyrrhenian sea 

can be related to an OIB-type mantle source enriched by subduction-related components. 

2.2 Aeolian Arc 

The Aeolian arc is an archipelago of seven volcanic islands and several seamounts, 

located close to the north-eastern Sicilian coast (fig. 2.2), and represents an expression of 

the Italian quaternary magmatism that took place in a subduction related setting. 

 

 

 

 

 

Figure 2.2- (a) Simplified sketch of the tectonic setting (red lines) of Southern Italy.(b) Geographical map 

of Aeolian islands 

 

 

 

(a) 

(b) 
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Volcanic activity presently occurs at Stromboli, Vulcano and Panarea, with lavas and 

pyroclastic products in the first island and fumarolic activity in the others; volcanic activity 

occurred at Lipari in historical time (Pichler, 1980). 

The volcanism of this area evolved over a short period of time (1 Myr). Its magmatological 

features change from the calc-alkaline (CA) series of Alicudi and Filicudi to the high 

potassium (HKCA) and shoshonitic (SHO) series of the present activity shown by Vulcano 

and Stromboli (Barberi et al., 1974; Ellam and Harmon, 1990; Francalanci et al., 1993; De 

Astis et al., 2000). Tholeiitic rocks have also been dredged up from the sea floor of the area 

(Beccaluva et al., 1982). 

The transition from CA to HKCA and SHO magmas is one of the most significant issues of 

the Aeolian magmatism and has significant implications as far as the genesis and evolution 

magma models and mantle source characterization are concerned.  

Recent studies (Calanchi et al., 2002) have highlighted many differences between the 

western and the eastern sector of the arc in terms of the increase in both the 
87

Sr/
86

Sr 

isotope ratio and HFSE concentration and the decrease in the LILE/HFSE ratios. 

Moreover, strong resemblances between the isotope features and the incompatible element 

ratios of the Stromboli and mafic rocks from active Campanian volcanoes (Vesuvio and 

Phlegrean Fields) have been noticed. Accordingly, Gasperini et al. (2002) considered the 

Campanian and Aeolian magmas as being a transition term from the Latium-Tuscany 

magmatism to that of Mount Etna. 

Most authors have described the variations in many incompatible elements and in the Sr, 

Nd and Pb isotope ratios in the Aeolian arc in terms of the possible mixing of a mantle 

source with a crustal component (Ellam et al., 1988; Francalanci, Taylor et al., 1993; 

Calanchi et al., 2002; Gasperini et al., 2002). 

The Aeolian archipelago was previously considered as being a single structure related to 

the subduction zone (Gasparini et al., 1982; Ellam et al., 1989); nevertheless recent 

geophysical and geochemical data and a structural analysis of the arc suggest that it could 

be separated into two different sectors: a western one and an eastern one, divided by the 

islands of Vulcano and Lipari (Calanchi et al., 2002). Regional fault systems oriented E-W, 

NW-SE and NE-SW strongly control the distribution of volcanoes (Calanchi et al., 2002). 

In particular, the islands of the western sector were built up along an en-echelon dextral 

strike-slip fault system with a predominant WNW-ESE direction (Finetti and Del Ben, 

1986). In the central part of the arc, Salina lies on the intersection between the western 
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sector and the Lipari-Vulcano alignment, the northern extension of the Tindari-Letoianni-

Malta escarpment transcurrent fault (Gasperini et al., 2002). 

In the eastern sector of the arc, the NE-SW-trending extensional structures control the 

islands of Panarea and Stromboli (Beccaluva et al., 1985; Gabbianelli et al., 1993). 

The islands of Alicudi and Filicudi represent the typical mafic and intermediate CA terms 

with relatively un-radiogenic strontium isotopes. On the easternmost side, Stromboli 

displays a full evolution of the magmatic terms (CA - HKCA - SHO), showing the highest 

radiogenic strontium signature with a strong affinity to the Campanian magmatism. This 

affinity led some researchers to hypothesise a similar mantle source (Peccerillo and Panza, 

1999; De Astis et al., 2000; Peccerillo, 2001).  

A seismic zone beneath the Aeolian arc dips 50°- 60° in an approximately NW direction 

under the Tyrrhenian Sea (Barberi et al., 1973). The location of the Aeolian arc is on the 

continental slope that separates Sicily from the Tyrrhenian abyssal plane at the boundary 

between the African and the European plates (fig.2.2). The continental nature on both sides 

of the plate boundary (Finetti and Morelli, 1972) and the occurrence of shoshonitic rocks 

suggests that the Aeolian arc is in a senile stage of its evolution. Starting from this point, 

some authors (Francalanci, Taylor et al., 1993) pointed out that the lower continental crust 

could also possibly have been involved in the subduction process under the eastern sector 

of the Aeolian arc; nevertheless the geochemical characteristics of the vulcanite’s erupted 

in Central Campania and in the Aeolian Islands suggest that the nature of the slab beneath 

the Calabrian arc is oceanic (Beccaluva et al., 1989; Serri et al., 1990).  

The subduction of the Ionian plate most probably is at the origin of the Aeolian arc 

formation and represents the last stage of the Apennine collision. 

This process started 30 Myr ago with the westward subduction of the Adria plate under the 

European margin, (Doglioni et al., 1999) and ended about 13 Myr ago with the collision 

between the continental crusts of the two plates (Beccaluva et al., 1985).  As a result of this 

collision, the subduction rotated the direction of convergence to the northwest with the 

opening of the Tyrrenian Sea as a back arc basin about 8 Myr ago (Beccaluva et al., 1990). 

The absence of deep earthquakes in central Italy indicates that there is no active shallow 

subduction in this area (Westaway, 1992). On the contrary, the subduction of the oceanic 

Ionian plate is currently active beneath Sicily coherently with the sismicity, at depths of 

200-500 Km, ubiquitous under the southeastern Tyrrhenian Sea (Istituto Nazionale di 

Geofisica, unpublished data, from Gasperini et al., 2002) (Fig.2.3). 
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The northern and the southern parts of the subducting plate have different directions and 

subduction velocities, about 1 cm/yr for the passive subduction (i.e. gravitational sinking) 

under Tuscany and 5 cm/yr for the active subduction under Sicily, and this is the cause of a 

differential in the subduction length between the two ends of the plate, in part absorbed by 

trench roll-back and the counter clockwise rotation of Italy (Gasperini et al., 2002). 

 

 

 

 

 

Figure 2.3- Depth to 

the Benioff zone under 

the Aeolian arc (after 

Ellam et al., 1988, 

modified); Dashed 

contours show the 

depth to the Benioff 

zone in Km, the solid 

lines indicate strike-slip 

faults. 

 

 

 

 

 

 

 

Coherently with the high-resolution tomographic model of Piromallo and Morelli (1997), 

where a 400 km-wide gap is observed under Vesuvius at a depth of 150 km in the high-

velocity material (representing the subducting plate), Gasperini et al. (2002) envisage the 

rupture of the plate corresponding to a broad window in the Adria plate under southern 

Italy. On the contrary, De Gori et al. (2001) propose a tomographic model where an almost 

continuous slab is indicated under the Apennines; Gvirtzman and Nur (2001) indicate a 

complete break-off of the subducted lithosphere under the Apennine zone and a strong 

pull-down related to a rapid rollback of the oceanic slab under the South Tyrrhenian Sea 

without the rupture of the dipping plate (Fig. 2.4).  
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Figure 2.4 - Schematic palinspastic reconstruction of the central Mediterranean since Miocene (from 

Gvirtzman and Nur, 2001) 
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3. LOCATION AND BRIEF DESCRIPTION OF SAMPLES 

To determine the He and Ar isotope composition of the mantle beneath southern 

Tyrrhenian sea, fluid-inclusion study has been performed on quartzite nodules of  

Stromboli volcano hosted by calcalkaline lavas and fresh olivine and/or pyroxene were 

sampled from Panarea, Stromboli and Marsili volcano. Details of sample location and 

rock-type are given in Table I (Appendix A). 

To following a brief petrographic description of rock samples taken at Stromboli, Panarea 

and Marsili volcano. 

 

3.3 Marsili volcano 

The submarine volcanic samples analysed in this study have been recovered during 

oceanographic cruises (Marani et al., 1999; Trua et al., 2003, 2004a, 2004b), and have 

been furnished by Dr. Italiano, INGV sez. Palermo. The sampled rocks are aphyric or with 

a low porphiricity index. Only MRS 04 porphiric sample was selected in order to analyze 

noble gases in fluid inclusions. MRS 04 is characterized by a basaltic composition (see fig. 

3.5 TAS diagram). Chemical analyses are reported in tab II (Appendix B).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 - Olivine  morphology is 

euhedral, in the range of 1-2 mm in 

diameter, and it occasionally contains 

Cr-spinel inclusions. 

0.25 mm 
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The MRS 04 lava is characterized by vesicular textures. Vesicles vary from irregular to 

sub-spherical shape, in the range of 1-6 mm in diameter. MRS 04 natural mineral 

assemblage includes plagioclase and olivine as the dominant phases, and cpx in minor 

abundance. Olivine  morphology is euhedral, in the range of 1-2 mm in diameter; crystals  

occasionally contain Cr-spinel inclusions. Olivine SEM-EDS analyses reveal   high 

forsteritic components (Fo89-90) with a Fe-Mg exchange coefficient (Kd
Fe-Mg

 ol-liq ) = 0.24 

(calculated considering the liquid as whole rock), approaching to the equilibrium value (Kd 

= 0.26) Di Carlo et al., 2006. 
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Figure 3.5 – Total Alkali vs. silica classification diagram (Le Bas et al.,1986) for 

Neogene-Quaternary southern Tyrrhenian volcanic rocks. Ultramafic xenoliths 

data from (Laiolo and Cigolini, 2006). 
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3.1 Stromboli island 

HP and LP magma 

Two types of magma, mainly differing in crystal and volatile contents, have fed the 

volcano since the beginning of its persistent activity: a highly porphyritic magma (HP-

magma), erupted as scoriaceous bombs, lapilli and lavas during the normal activity and 

effusive episodes, and a volatile-rich, aphyric to slightly porphyritic magma, with low 

phenocryst contents (LP-magma), which is emitted as pumices only during paroxysms. 

The latter is usually mingled with the HP-magma (Fig. 3.1), mainly due to syn-eruptive 

processes (Bonaccorso et al., 1996; Bertagnini et al., 1999; Francalanci et al., 1999; Rosi et 

al., 2000). The HP-magmas are high-K shoshonitic basalts with a phenocryst content of 

∼50 vol.% and a volatile content 0.60 wt.%. The LP-magmas are slightly less evolved 

high-K basalts, with lower silica and K2O contents than the HP-magmas (SiO2 48.2–49.2 

wt.% and 48.6–51.5 wt.%, and K2O1.5–2 wt.% and 2–2.5 wt.%, respectively. They show a 

crystal content <5% vol, with high volatile contents up to 3.4 wt.% (Métrich et al., 2001; 

Bertagnini et al., 2003). The HP-magmas have slightly higher incompatible trace element 

contents, except for Sr, and lower MgO and compatible trace element abundances than LP-

magmas (Francalanci et al., 2004). 

Volatile-rich magmas are thought to originate in the lower part of the plumbing system, 

whereas HP-magmas are associated with a shallow reservoir and result from the 

crystallisation of the LP-magma, mainly driven by decompression and water loss at low 

pressure, associated with minor crystal fractionation and recycling of old crystals. The 

latter are brought into the shallow reservoir by the replenishing LP magma (Francalanci, 

1993; Francalanci et al., 1999, 2004, 2005; Métrich et al., 2001; Bertagnini et al., 2003; 

Vagelli et al., 2003; Landi et al., 2004). Accordingly, the dynamics of the shallow 

magmatic system has been envisioned as a steady state, continuously erupting and 

crystallising magma chamber that is replenished at a constant rate by the LP-magma. 

Mixing and olivine+clinopyroxene+plagioclase crystallisation control the evolution of the 

magmas feeding the present-day activity of Stromboli (Armienti et al., 2007). 

 



 18 

 

 

 

 

 

 

 

 

 

Ol 
PST9 

71 
71 

73 
75 

75 
77 

80 
81 

84 

100 micron 

%Fo 

Figure 3.1 -  LP pumice: selected olivine between 0.5 e 1 mm, rich in bubbles. Chemical 

composition: between Fo71 and Fo90, mingling with HP within a single crystal, da 

Martelli et al.,2010 
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Quartz xenoliths 

The samples studied are represented by quartz xenoliths hosted by calc-alkaline basaltic 

andesite lavas of both the Paleostromboli II period (about 60 ka). The size of the xenoliths 

varies from a few to about 10 cm. They are mainly made up of quartz grains of different 

shapes and sizes (Vaggelli et al, 2003).  The outer contact with host lavas is commonly 

sharp and characterised by the presence of a coronitic texture mainly constituted by 

prismatic clinopyroxene microcrystals, elongated perpendicular to the contact interface 

and, subordinately, by interstitial plagioclase, K- feldspar and glass. 

These quartzites are restites from partial melting, involving felsic crustal rocks at the 

magma/wall rock contact. Restitic quartz re-crystallises at variable and generally high 

temperatures, leading to the formation of quartzites with different textures (Fig 3.2). 

 

 

 

Figure 3.2 -  Inequigranular granoblastic nodules with medium/large re-crystallised 

quartz crystals. 

 

Ultramafic xenoliths 

Ultramafic xenoliths are represented within a large basaltic lava field of Stromboli, known 

as San Bartolo lavas (high-K calc-alkaline –HKCA, erupted <5 ka BP) and consist of 

dunite and wehrlite. Thermobarometric studies estimated for the crystallization of gabbroic 

materials a minima equilibration pressures of 0.17–0.24 GPa, at temperatures ranging from 

940 to 1030◦C (Cigolini et al., 2006). These materials interacted with hydrous ascending 

HKCA basaltic magmas (with temperatures of 1050–1100°C) at pressures of about 0.2–0.4 

GPa. These pressure regimes are nearly identical to those found for the crystallization of 

phenocrystic phases within HKCA basaltic lavas. Dunite and wehrlite show 
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porphyroclastic-heterogranular textures. These ultramafic materials are in equilibrium with 

more primitive basaltic magmas (under moderately hydrous and anhydrous conditions) at 

pressures of 0.8–1.2 GPa, which is below the crust-mantle transition, located at about 20 

km depth under Stromboli (Laiolo and Cigolini, 2006). 

 

3.2 Panarea island 

A Panarea were collected several representative samples of different rock types. Only two 

samples (Castello formation and Punta Torrione) it was possible to carry out the analysis of 

noble gases. The other samples show a low gas content in fluid inclusions., it cannot to 

measure the gas noble contents and isotope ratios.  

Castello formation 

The sample Castello formation consists of high-K calc-alkaline andesite. This 

sample exhibits intersertal or porphyritic seriate textures with phenocrysts of plagioclase, 

clinopyroxene, orthopyroxene, and rare amphibole; the latter is completely transformed to 

opaque oxides (Fig. 3.3).  The porphyritic index (P.I.) is in the range 30-20%. Plagioclase 

makes up more than 50% of the phenocryst content and consists of complexly zoned and 

twinned crystals with anorthite contents between An80 and An35. Clinopyroxene 

phenocrysts show very limited compositional variability; orthopyroxene show both normal 

and reverse zoning . 

Punta Torrione 

Thick bedded,  massive, brown tuff, locally rich millimetric euhedral Cpx crystals 

(Fig. 3.4). Formed by millimetric glass fragments, it exhibits CA basaltic andesite 

composition. Lucchi et al. (2010) have recently suggested that the source of brown tuff is 

located beyond Panarea, within the La Fossa Caldera of Vulcano. 

 

 

 

Figure 3.4 - Millimetric euhedral Cpx 

crystals from brown tuff. 
Figure 3.3 - Amphibole is completely 

transformed to opaque oxides 

0.25 mm 
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4. EXPERIMENTAL TECHNIQUES 

Rock samples were crushed to a grain size below 2 mm, taking into account that most of 

the minerals have a grain size below 1 mm. Then 0.5 mm crystals were selected by hand 

under a binocular microscope. Separated minerals were ultrasonically cleaned in 5% 

HNO3, and then in distilled water and high-purity acetone. During each analytical session, 

about 1 g of olivines or 2 g of pyroxenes were loaded in the crusher and pumped to an ultra 

high vacuum overnight baking at 130 °C. The loaded quantities above reported were 

established considering the expected amount of noble gases produced by crushing. Gases 

were extracted by in-vacuo crushing at about 200 bar pressure, so as to minimize the 

contribution of noble gases in the crystal lattice due to radioactive decay (Hilton et al., 

1999). Helium, neon, and argon were cleaned up in a stainless steel ultra- high-vacuum 

line, by adsorbing reactive species in Zr–Al getter pumps, separating Ar from He and Ne 

by charcoal trap cooled at 77°K by liquid nitrogen. Noble gases analyses were performed 

using a sector-type mass spectrometer installed at noble gas laboratory of the INGV–

Palermo. 

He and Ne were then adsorbed and concentrated in another charcoal trap (cryogenic 

pump), cooled down at 12°K by a cold-head. This trap was strategically positioned close to 

the He mass spectrometer in order to concentrate each sample in a small volume (about 

few tens of cm
3
) before expansion in the mass spectrometer, thus reducing the analytical 

error during analysis. A temperature controller allowed to separate the two species by 

releasing He at 40°K and Ne at 85°K, that were then separately admitted in a split flight 

tube mass spectrometer (Helix SFT) for isotope analysis. Ar previously adsorbed was 

finally released from the charcoal by heating the trap at room temperature and then 

admitted in a multi-collector mass spectrometer (Argus). Analytical error in air standard 

He isotope analysis was generally below 1%, while in Ar analysis was generally below 

0.1%. The He and Ar abundances and isotope compositions were measured, as well the 

4
He/

20
Ne ratios, were determined in all of the investigated samples. During the 

experiments, typical He, Ne, and Ar blanks were negligible. The uncertainties in the noble-

gases abundances were less than 10%.. The analytical results are listed in Table 5.1. 
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5. Helium and argon data 

5.1 Helium 

 

The chemical and isotopic compositions of noble gases from fluid inclusions 

provide direct evidence of the origin of magmatic fluids (e.g., Vityk et al., 1993; Moore et 

al., 2001; Boyce et al., 2003; Naden et al., 2003). Chemically inert noble gases can be used 

to trace the sources of trapped fluids, because their compositions are the result of physical 

processes such as mixing of fluids from several sources (mantle, crust, air, etc.).  

As the gas  extracted by the crushing technique produces a bulk sample resulting from 

many individual grains of differing densities and sizes of inclusions, noble gas abundances 

cannot easily be related to any magmatic process. For this reason, little importance is 

usually placed on the amounts of noble gases measured from FI bulk analysis.  

Nevertheless, the good reproducibility of our data from various populations of crushed 

crystals of the same products indicates that abundances can yield estimates of the average 

contents of noble gases in magma. The table 5.1 lists helium and argon abundances and 

their isotopic ratios. 

Fig. 5.1 shows that greater He abundances were measured in olivines and pyroxenes from 

the Marsili volcano and the ultramafic lava xenoliths of San Bartolo (Stromboli).  
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Figure 5.1- He abundances  vs. Ra/Rc crystals from the Marsili volcano, Panarea and Stromboli islands. 

The data of LP magma and ultramafic xenoliths  from Martelli et al., 2010. 
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Place Sample Mineral 
[He]×10

-13 

mol/g 

3
He/

4
He 

(Rc/Ra) 

Error 

% 
[40Ar*]×10

-13
 

mol/g 
40
Ar/

36
Ar 

Error  

% 
38
Ar/

36
Ar 

Error  

% 
4
He/

20
Ne 

            

Marsili MRS 04 ol 34 7.08 0.07 0.86 464.8 0.02 0.15 0.06 3203.74 

Marsili MRS 04 ol 42 7.09 0.072 0.341 304 0.02 0.18 0.06 1444.21 

Marsili MRS 04 cpx 16 6.89 0.119 0.64 363.3 0.02 0.19 0.06 709.97 

Panarea   Castello formation cpx 0.03 3.39 0.15 0.22 301.16 0.02 0.18 0.06 2.90 

Panarea Punta Torrione cpx 1.1 5.1 0.12 0.032 304.02 0.02 0.12 0.06 16.79 

Stromboli HP ol 0.25 0.53 0.06 0.35 301.5 0.02 0.02 0.06 3.95 

Stromboli HP ol 0.09 n.d n.d 0.49 307.78 0.02 0.14 0.06 n.d 

Stromboli HP ol 0.01 n.d n.d 0.029 298.94 0.06 0.20 0.27 10.2 

Stromboli HP cpx 0.02 n.d n.d 0.0095 320.34 0.02 n.d n.d 1.70 

Stromboli Lp ol 8 4,56 0.06 0.92 297.9 0.06 0.19 0.25 62.91 

Stromboli Lp cpx 5 4,48 0.082 0.92 297.78 0.04 0.19 0.04 57.30 

Stromboli Lp cpx 1.8 4,04 0.124 0.24 296.41 0.02 0.19 0.07 9.51 

Stromboli Lp ol 10 4,36 0.057 1.22 296.53 0.02 0.20 1.05 108.88 

Stromboli Lp cpx 7.4 4,16 0.091 1.10 298.31 0.02 0.19 0.06 20.66 

Stromboli Ultramafic xenoliths ol 26 4,49 0.058 0.44 308.59 0.06 0.23 0.12 217.99 

Stromboli Ultramafic xenoliths cpx 49 4,34 0.049 3.20 299.37 0.03 0.19 0.05 29.41 

Stromboli Ultramafic xenoliths cpx 23 4,66 0.041 0.80 298.33 0.04 0.19 0.12 48.19 

Stromboli Ultramafic xenoliths ol 12 4,36 0.108 0.45 298.96 0.30 0.19 0.06 11.29 

Stromboli Ultramafic xenoliths ol 45 4,74 0.047 27 364.14 0.02 0.18 0.06 425.86 

Stromboli Ultramafic xenoliths cpx 22 4,37 0.07 1.7 299.13 0.02 0.19 0.06 37.53 

Stromboli Ultramafic xenoliths cpx 37 4,33 0.052 5.2 301.75 0.02 0.19 0.06 32.73 

Stromboli Quartz xenoliths Quarz 2.1 1.15 0.046 36 350.25 0.02 0.19 0.06 1.48 

Stromboli Quartz xenoliths Quarz 3.4 1.39 0.038 26 334.5 0.02 0.02 0.06 1.43 

Stromboli Quartz xenoliths Quarz 4.3 1.13 0.029 7.6 328.95 0.02 0.19 0.06 0.85 

Stromboli Quartz xenoliths Quarz 0.3 n.d  24 373.54 0.02 0.19 0.06 0.72 

Stromboli Quartz xenoliths Quarz 0.1 n.d  3.7 338.16 0.02 0.19 0.06 0.48 

Stromboli Quartz xenoliths Quarz 1.1 0.54 0.044 5.2 359.74 0.02 0.19 0.06 1.10 

Stromboli Quartz xenoliths Quarz 0.77 0.72 0.035 17 385.65 0.02 0.18 0.06 0.67 

Stromboli Quartz xenoliths Quarz 0.23 n.d  n.d n.d  n.d  n.d 

Stromboli Cpx Omo cpx 1.1 3.78 0.15 0.071 298.64 0.02 0.20 0.06 11.52 

Stromboli Cpx Omo cpx 1.33 2.74 0.15 n.d n.d  n.d  25.5 

Stromboli Plg Omo plg 0.72 2.65 0.18 0.23 297.85 0.02 0.19 0.06 1.46 

Table 5.1 - Noble-gas abundance and isotope ratios in the investigated minerals . n.d.: not determined. The data of LP magma and ultramafic 

xenoliths  from Martelli et al., 2010. 
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He abundances from Marsili were 3.45-4.24 (× 10
-12 

mol/g) and 1.6 (× 10
-12 

mol/g) in 

olivines and pyroxenes, respectively. The data from Stromboli varied widely from 1.62 (× 

10
-15 

mol/g) to 4.97 (×10
-12 

mol/g) in pyroxene and from 8.76 (×10
-15 

mol/g) to 4.47 (×10
-12 

mol/g) in olivine. The greater He abundances in the xenoliths ultramafic San Bartolo lavas 

with respect to all the other samples from Stromboli may be explained by their greater 

formation pressure (P > 0.65-1.1 Gpa, equivalent to a depth of 19-33 km, Laiolo and 

Cigolini, 2006; Cigolini et al., 2008). The low gas content of HP products meant that their 

chemical concentrations could be measured, but not their 
3
He/

4
He ratios (

3
He could not be 

detected in HP products, since it was from 10
5
 to 10

6
 times less abundant than 

4
He). The 

situation was similar at Panarea, where highly degassed magma and small quantities of He 

in samples meant that neither abundances nor 
3
He/

4
He isotopic ratios could be measured. 

This was only possible in two pyroxene samples from Punta Torrione (“brown tuff” in the 

literature) and Punta del Tribunale (Castello formation). 

The rocks from Panarea are compositionally variable in terms of major elements, trace 

elements and isotopes - the result of several processes, including supergene alteration. The 

products interact with the extensive gaseous exhalations and low-pH fluids released over 

the area. The originally andesitic-dacitic composition of the local volcanic products have 

been variously altered to argillic hydrothermal facies. A well-developed system of 

fractures and faults enhanced the circulation of hydrothermal fluids inside the volcanic 

rocks. XRD analyses show the typical mineralogical composition of volcanic rocks 

(alunite, jarosite, kaolinite, quartz) altered by an acidic environment. 

A separate discussion is reserved for the He and Ar abundances in quartzite nodules hosted 

by calc-alkaline lava of the Paleo-Stromboli II period (Omo lavas).  

Table 5.1 lists, also, the  
4
He/

20
Ne ratios of all samples. 

3
He/

4
He ratios were corrected for 

air contamination according to 
4
He/

20
Ne ratios and expressed as Rc/Ra, the former being 

the 
3
He/

4
He ratio in air, and the latter the corrected ratio. At Marsili, the Rc/Ra ratios vary 

in the range 7.07-7.09 in olivine and 6.89 in pyroxene, and these values are the highest 

found in the Mediterranean basin, together with R/Ra ratios measured in peridotite mineral 

phases from the Hyblean Plateau (Sapienza et al., 2005), Mt. Etna (Nuccio et al., 2008) and 

the volcano of Alicudi (Martelli et al., 2008). The He isotopic composition of Marsili (~7 

Ra) is the highest in the region, and implies that crustal fluids did not significantly modify 

the He isotopes of the mantle source. According to Trua et al. (2010), sample MRS 04 

approaches typical MORB values, due to its high CaO content in the host olivine and the 

high CaO/Al2O3 ratio of the melt inclusions.  
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Figure 5.2-  A comparison of the 
3
He/

4
He of phenocryst-hosted fluid inclusions with 

3
He/

4
He of free gases 

from the same volcanic district. Free gas data are from Stromboli (Inguaggiato and Rizzo, 2004) and 

Panarea (Caliro et al., 2004). 

 

At Stromboli, He isotopic ratios in free gases and thermal waters match data from fluid 

inclusions in olivine and pyroxene (fig. 5.2). This shows that the isotopic signature is 

maintained as the gas ascends toward the surface, confirming that the maximum 
3
He/

4
He 

ratio of fluids generally reflects degassing of magmatic bodies at depth (Martelli et al., 

2004). The 
3
He/

4
He ratios vary in the ranges 3.70-4.66 for pyroxene and 4.36-4.74 for 

olivine. The He isotope data therefore indicate that pyroxene from the Omo lava has lower 

Rc/Ra values than that of LP magma and the San Bartolo ultramafic xenoliths. Samples 

having similar 
4
He/

20
Ne ratios contain a similar percentage of air (Sano and Wakita, 1985). 

Since the pyroxene of the Omo lava has a 
3
He/

4
He ratio lower than those of LP magma, for 

the same 
4
He/

20
Ne ratio (Fig. 5.3), air contamination cannot be the main process 

responsible for the observed differences in Rc/Ra values. This difference may be explained 

by degassing at shallow depths, which would induce progressive 
3
He depletion in the 

magma during vesiculation (Nuccio and Valenza 1998). As magma rises through the 

volcanic conduit, pressure decreases, and the magma reaches volatile saturation and begins 

to exsolve gases into bubbles. According to Nuccio and Valenza (1998), if magma 

depressurization develops rapidly, He isotopes may undergo kinetic fractionation, because 

3
He diffuses into the growing bubbles faster than 

4
He, so that the magma progressively 

becomes depleted in 
3
He. This process can be modeled by Rayleigh’s distillation. The two 

samples from Panarea display very different 
3
He/

4
He ratios and helium abundances. The 
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Castello formation sample is very low in He, and has a 
3
He/

4
He ratio of 3.39 Ra, whereas 

the Punta Torrione samples have abundant He, with values similar to those of the 

Stromboli lava pyroxene, which has a 
3
He/

4
He  ratio of 5.1 Ra, like that measured at Salina 

and Vulcano (Martelli et al., 2008). These flows belong to different volcanic series, and are 

interpreted as deriving from different mantle sources. The Punta Torrione flow belongs to 

the calc-alkaline basalt series which is similar in composition to the western arc, whereas 

the Castello flow is geochemically similar to that of Stromboli (Calanchi et al., 2002). 

Lucchi et al. (2010) have recently suggested that the source of brown tuff is located beyond 

Panarea, within the La Fossa Caldera of Vulcano. 
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Figure 5.3 - Uncorrected R/Ra versus He/Ne molar ratios scatter plot. All samples,  are variably 

contaminated by air (
4
He/

20
Neair =0.318; 

4
He/

20
Nea.s.w. =0.285). Olivine and pyroxene plot on a mixing curve 

between air and a magmatic end-member with R/Ra = 4.75 and 3.75. 

 

Fig. 5.3 plots the 
3
He/

4
He ratios, uncorrected for air contamination, versus 

4
He/

20
Ne ratios.  

Note the clear-cut contribution of upward-moving air  from olivine to pyroxene. 

At Stromboli, a trend of mixing with air exists (confirmed by 
40

Ar/
36

Ar between 296 and 

360), but it does not significantly affect 
3
He/

4
He ratios. The curves represent the theoretical 

mixing lines between air and two possible end-members at 4.75 and 3.75 Ra. Exactly how 

this contamination occurred is debated, and two alternative processes have been considered 

to explain it: 
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1. The Stromboli magmas were contaminated by fluids with an atmosphere-like 

signature in the shallow system. Generally, the 
4
He/

20
Ne ratios of pyroxene are 

lower than those of olivine, especially in the ultramafic xenoliths, which may 

indicate a larger fraction of atmospheric neon in pyroxene, which crystallizes after 

olivine. The process is less clear for LP products, in which the 
4
He/

20
Ne ratio is 

sometimes higher in pyroxene than in olivine.  

Di Carlo et al. (2006) suggest that clinopyroxene precedes olivine in the 

crystallization sequence and persists as the liquidus phase down to at least 200 

Mpa. This may explain the 
4
He/

20
Ne ratio measured in the volatile-rich high-K 

basalt from the recent eruptive activity of Stromboli; 

2. In their hypothesis on the origin of this atmospheric component, Nuccio et al. 

(2008) report that microscopic inspection of the crystals reveals that most of them 

have a number of microcracks connected with the surface, and propose that they 

trap air during eruptive activity or later. Such entrapped air can be released easily 

only when the crystals are crushed and the microcracks are exposed. Clearly, as a 

given atmospheric contribution causes more significant effects when added to 

smaller amounts of gas, it is not surprising that this phenomenon is more evident in 

products containing the smallest amounts of gas. 

The origin of the HP shallow magma is mainly attributed to discrete intrusions of deep LP 

magma into shallow reservoir and its mixing with the residing HP magma (Francalanci et 

al., 1999; Landi et al., 2004). This induces mineral phase dissolution, followed by 

crystallization, mainly driven by water loss at low pressure (Métrich et al., 2001; Landi et 

al., 2004; Francalanci et al., 2005). Continuous mixing between these two magmas has 

been clearly documented in several textural, mineralogical, chemical and isotopic studies 

(Francalanci et al., 1999, 2004, 2005; Landi et al., 2004, 2006, 2008b; Armienti et al., 

2007). The shallow magma system is also affected by significant recycling of crystals 

deriving from old cumulus crystal mushes (perhaps up to 10 ka in age) situated just below 

the volcanic edifice, as indicated by isotope studies on bulk rocks and in situ Sr isotope 

microanalysis (Francalanci et al., 2005).  

The refilling magma batches derive from volatile-rich parental melts via crystal 

fractionation, at a lithostatic pressure of 200–300 MPa, corresponding to a depth of ~7.5–

11 km, as determined from H2O and CO2 contents dissolved in melt inclusions within 

olivine in LP pumice (Métrich et al., 2001, 2005; Bertagnini et al., 2003).  
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According to Vaggelli et al. (2003) and Francalanci et al. (2004, 2005), mixing between 

HP and LP magmas, concomitant with continuous crystallization of olivine, pyroxene and 

plagioclase, occurs in an intermediate reservoir at a depth of ~3 km, probably the remnant 

of an old Stromboli structure. Continuous refilling of the shallow magma body from depth, 

together with concomitant magma emission, determines the steady state of the plumbing 

system (Landi et al., 2008a). Given that mingling exists, Martelli et al. (2010) have 

demonstrated that the 
3
He/

4
He values measured in LP are not influenced by HP helium 

released during crushing. Assuming a hypothetical 
3
He/

4
He ratio of HP = 3 Ra, they show 

that the LP values are not influenced by HP contributions (Fig. 4.4). 

 

 

 

 

Figure 5.4 – Mixing of a hypothetical 
3
He/

4
He ratio of HP with  LP magma; data from Martelli et al. 2010. 

 

5.1.1 Cogenetic olivines and pyroxenes 

 

In Fig. 5.5 all the studied pairs of cogenetic olivines and pyroxenes are plotted against their 

respective 
3
He/

4
He ratios, expressed as Rc/Ra. These ratios are generally lower than 

MORB values (8±1 Ra), except for sample MRS 04 (Rc/Ra 7.09). Basalts with 
3
He/

4
He 

lower than the southern Italian  maximum (~7 Ra) contain radiogenic He. In the prevailing 

hypothesis, this is derived from the mantle wedge (Martelli et al., 2004). However, crustal 

contamination of magma prior to eruption has occasionally been recorded in southern 

Italian volcanism (Ellam and Harmon, 1990; De Astis et al., 2000).  
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(a) 

 Of the six cogenetic olivine and pyroxene phenocrysts, five pyroxene samples have 

lower 
3
He/

4
He than the olivine ones. This may indicate subtle crustal contamination, and 

pyroxene 
3
He/

4
He measurements can consequently only be considered as a lower limit on 

the magmatic value.  

The generally lower 
3
He/

4
He ratios found in clinopyroxene compared with olivine may be 

broadly interpreted in at least four ways:  

1) clinopyroxene postdates olivine traps helium later, within a parent magma having a 

decreasing 
3
He/

4
He ratio; 

2) lower 
3
He/

4
He ratios in clinopyroxene may be the result of a lower effective closure 

temperature. The pyroxenes continue to exchange helium with the magma after the 

olivines had closed (Marty et al., 1994; Hilton et al., 1995); 

3) helium isotopes are affected by mass-dependent fractionation throughout the crystal 

lattice (Harrison et al., 2004). This may occur during helium diffusion from 

phenocrysts within sub-solidus magma; 

4) helium isotopes undergo mass-dependent fractionation during bubble exsolution 

and degassing. 

 All these possibilities explaining the disequilibria among the above cogenetic 

minerals may be considered valid for the case in question, as no clear position can 

currently be stated with respect to one hypothesis or another. 

 

Figure 5.5 - Comparison of He concentration values (a)  and  of Rc/Ra  values (b)  between cogenetic olivine 

and clinopyroxene. 

5.2 Argon 

Fig. 5.6 shows the 
40

Ar/
36

Ar versus 
4
He/

20
Ne ratios of the samples. The measured 

40
Ar/

36
Ar ratios fall in the range of subduction-related volcanism, well below typical 

mantle values (Burnard et al., 1997; Fischer et al., 2005), and close to the atmospheric 

signature. At Stromboli and Panarea, olivine and pyroxene have low 
40

Ar/
36

Ar ratios, 
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varying in the range 296-360 at Stromboli and 301-304 at Panarea, close to the 

atmospheric signature (
40

Ar/
36

Ar = 295.5). At Marsili, the 
4
He/

20
Ne ratios of all samples 

showed high values (
4
He/

20
Ne > 3000 in olivine), suggesting low atmospheric 

contamination, according to the highest measured values of 
40

Ar/
36

Ar (363-465).  

It should be noted that the 
40

Ar/
36

Ar ratios in quartz xenoliths are higher than those for air 

(295.5) but much lower than MORB values (
40

Ar/
36

Ar > 40000; Burnand et al., 1997), 

supporting the hypothesis that fluids were released by a basaltic magma, partly trapped as 

fluid and melt inclusions, in accordance with the model in which partial melting of crustal 

rocks occurred in the middle-lower crust, forming rhyolitic melts + CO2 fluids (Zanon et 

al., 2003).  

 

290,0

350,0

410,0

470,0

0,1 1 10 100 1000 10000
4
He/

20
Ne

4
0
A
r/
 3
6
A
r

Olivine Ultramafic xenoliths Cpx ultramafic xenoliths Olivine LP
Cpx LP Olivine MRS 04 Cpx MRS 04
Cpx Punta Torrione Cpx Omo Plg Omo
Quartz xenoliths Cpx Castello formation Cpx HP
Olivine HP air

AIR

 

Figure 5.6 - 
40
Ar/

36
Ar versus 

4
He/

20
Ne ratios of the all samples. In the plot is reported the air value for 

40
Ar/

36
Ar and 

4
He/

20
Ne ratios. 

 

To rule out possible air contamination, all 
40

Ar data were corrected for atmospheric 

contamination on the basis of 
36

Ar abundances, assuming that 
36

Ar dissolved in magma is 

negligible: 

                       40
Ar*= 

40
Arobserved – 

40
Arair 

where:     
40

Arair= (
40

Ar/
36
Ar)air×

36
Arobserved 
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40
Ar/

36
Ar versus Ar* values confirm atmospheric contamination for the Stromboli and 

Panarea samples and, low air contamination for the Marsili samples. They also emphasize 

the high content of argon in the fluid inclusions hosted in quartz xenoliths  (Fig. 5.7). 
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Figure 5.7- 
40
Ar/

36
Ar vs. Ar* diagram  in mineral samples investigated. The dotted curve contains the 

samples of quartz xenoliths.   

 

5.3 Diffusion of Helium and Argon in quartz xenoliths 

 

As inclusion fluids may be trapped both at the time of formation of host minerals 

and after it,  their chemical and isotopic compositions can provide unique insights into the 

evolution of fluid compositions over time. Noble gases can be transported and fractionated 

by diffusion, and the lighter noble gases are expected to be the more active in this respect. 

Diffusion has been extensively discussed as a reason for retention of noble gases within 

individual minerals, especially in the context of age estimates. On a larger scale, several 

diffusion paths are possible, e.g., diffusion along grain boundaries, which may affect large-

scale transport. However, as obtaining coefficients for such pathways by experiment or in 

the field is problematic, such a process is sometimes hypothesized but cannot be 

quantitatively evaluated. Diffusion clearly provides the potential for generating isotopic 

variations as well, although this has not been widely documented, since many silicate 

phases may be open to noble gas loss by diffusion at elevated temperatures but not at lower 



 32 

ones. Current mechanistic understanding of solid-state diffusion of noble gases through 

crystalline materials is based on limited experimental results. Measurement of diffusion 

coefficients typically entails direct determination of concentration profiles following 

inward diffusion (charging experiments; e.g., Watson and Cherniak, 2003) or, more 

commonly, measuring gas release during step-heating of samples with either natural or 

artificially added diffusant (degassing experiments; e.g., Fechtig and Kalbitzer, 1966; 

Dunai and Roselieb, 1996; Farley, 2000; Shuster et al., 2004). Several studies have been 

carried out on the kinetics of noble gas diffusion inside silicate minerals, olivine and 

pyroxene, but diffusion kinetics in quartz minerals have not yet been well characterized 

(Masarik et al., 2001a; Niedermann, 2002). The works of Trull et al. (1991), Watson and 

Cherniak (2003) and Shuster and Faerley (2005) yield information on the various trends of 

diffusion coefficients according to temperature for He in quartz and olivines, and for Ar in 

quartz (Fig. 5.8). The Arrhenius plot shows that the trends of He and Ar with temperature 

are linear, in both quartz minerals and olivine, revealing different diffusion parameters for 

each element. In particular, the diffusion coefficients calculated by Trull et al. (1991) for 

He in olivine and quartz differ. Temperature being equal, the diffusion coefficients of He 

in quartz are higher than those of olivine (logD:10
-6
> 10

-10
 at 1000°C ), fitting the low He 

measured in quartz xenoliths with respect to the olivine of all samples (Fig. 5.8). 
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Figure 5.8- Arrhenius plot shows trends of He and Ar with temperature in quartz and olivine.  
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Fig. 5.8 also shows that the calculated Ar diffusion coefficients (D) in mineral quartz 

are lower than those of He at the temperatures, between 1200 and 300 °C.   

The Ar diffusion coefficients measured by Watson and Cherniak (2003) perfectly match 

the data in Fig. 5.9, showing He versus Ar* abundances.   
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Figure 5.9 –  He vs Ar* abundances diagram in all samples. The dotted curve contains the samples of quartz 

xenoliths.   

 

It is clear that the Ar abundances measured in quartz xenoliths are comparable to or more 

abundant than those of the olivine and pyroxene of all samples. Fig. 5.10 shows that low 

Rc/Ra values correspond to high Ar*. These data match the high values of 
40

Ar/
36

Ar 

measured, showing that diffuse, selective loss of He with respect to Ar is the prevailing 

process, so that atmospheric contamination is a secondary process. Thus, the low values of 

Rc/Ra  in the quartz xenoliths are due to loss of He by diffusion.  The Rc/Ra versus 

He/Ar* graph (fig.5.11) also confirms this hypothesis. The above figures confirm the 

observations of Watson and Cherniak (2003) as regards the diffusion of Ar in quartz, 

which is lower than that of He.   
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Figure 5.10- He isotope ratios  vs  Ar* abundances diagram in all samples. 
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Figure 5.11- He isotope ratio  vs  Ar* scatter plot  in all samples. 
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The above authors also state that crystal density affects diffusion coefficients, particularly 

those of olivine and quartz, which are 3.27 and 2.65 g/cm
3
, respectively. These values 

imply a ranking of structural openness, or ionic porosity, in the order quartz > olivine. It is 

also useful to know that Ar atoms are ~70% larger than He ones. The observed slow 

diffusion of Ar with respect to He in the quartz studied by Watson and Cherniak (2003)  is 

reasonable, simply because of the difference in size of the atoms. These considerations also 

fit the hypothesis of Vaggelli et al. (2003) on the origin of quartzite nodules and their 

formation pressure. These authors interpret the restitic product of a partial melting process 

as involving felsic metamorphic rocks surrounding the deepest magmatic reservoir, and 

crustal rocks such as “felsic granulite/orthogneiss” are assumed to occur below Stromboli 

at a depth of about 11 km. The fact that the Stromboli magma led to the formation of 

restitic quartzite has significant implications with regard to magma evolution processes, 

because it is direct evidence of crustal contamination. 

 

5.4 Interference of magmatic source 

 

The
 3
He/

4
He ratios measured in the olivine and pyroxene from Marsili are similar to 

those measured at Pantelleria, Etna, the Hyblean plateau and the volcano of Alicudi ( ~ 7 

Ra). Although all these volcanoes derived from a variety of tectonic regimes (subduction-

related, intraplate, rifting), their similarities suggest the common origin of their 

geochemical features. Their characteristics are consistent with a HIMU-like mantle (high 

U/Pb). The 
3
He/

4
He ratio of the HIMU end-member is (6.8 ± 0.9 Ra, Hanyu and Kaneoka, 

1997; Moreira and Kurz, 2001). 

The ratios of helium and argon isotopes from mafic volcanic rocks from the Marsili 

volcano does not allow us to discriminate the source mantle beneath the most recent basin 

of the Southern Tyrrhenian back-arc basin, although we can certainly state that the mantle 

composition was little affected by subduction-related metasomatism. 

Recent studies (Trua et al., 2010) show that the melt inclusions of sample MRS 04 have 

relatively flat normalized trace element patterns, which is not observed in the other Marsili 

whole rocks, but which broadly overlap the field of the N-MORB bulk rock samples 

recovered from the nearby Vavilov back-arc basin. The discovery of these melt inclusions 

documents the existence of MORB melts beneath the Marsili back-arc basin, hitherto not 

identified by whole rock analyses of its lavas. Analyses of fluid inclusions of the olivine 
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and pyroxene of sample MRS 04 may support the remarks of the above authors on the 

presence of a MORB-type mantle component in the samples from Marsili. 

The low He isotope ratios of basalts from the eastern Aeolian Islands are typical of 

subduction zones. The absence of radiogenic He in oceanic-arc basalts and fluids suggests 

that the direct addition of radiogenic He by subduction of oceanic lithosphere is unlikely 

(Patterson et al.,1994; Dodson and Brandon, 1999; Bach and Niedermann, 1998; Hilton et 

al., 2002). The presence of radiogenic He in the Plio-Quaternary basalts of Italy therefore 

relies on a continental source. The presence of subducted continental crust in Italy is well 

documented (e.g., Carminati et al., 2005).  

The isotope trace element signature of Italian back-arc basalts supports contamination of 

the mantle wedge by fluids derived from subducted crustal rocks (Gasperini et al., 2002; 

Peccerillo, 2005). The radiogenic He in the mantle wedge may originate from two sources:  

(1) 
 
He ingrowth in the mantle wedge after metasomatic enrichment by U and Th, and/or 

(2) addition of crustal radiogenic He to the mantle wedge via fluids from the subducted 

slab. The effect that both processes have on altering the isotopic composition of mantle He 

strongly depends on the initial concentration of the unmodified mantle. Admittedly, this is 

a poorly constrained parameter, as the depleted MORB-mantle (DMM) source has a 

relatively well-established He concentration (1.5 x 10
-5
cm

3
STP/g) (Allegre et al., 

1986/1987; Sarda and Graham, 1990).  The duration of the ingrowth of 
4
He due to 

metasomatic addition of U and Th from the slab is limited. Westward subduction of the 

Ionian-Adria micro-plate started no earlier than 30 Ma ago (Doglioni et al., 1999), 

providing an upper limit. 

The metasomatized mantle has maximum contents of 200 ppm U and 950 ppm Th, 

producing 1.5 x 10
-6 

cm
3
 STP 

4
He/g in 30 Ma (Martelli et al., 2004). This is sufficient to 

reduce the 
3
He/

4
He of a DMM source (typically 7–9 Ra) by less than 10%, and cannot 

explain the low ratios of Italian basalts. Post-metasomatic He ingrowth could only decrease 

mantle 
3
He/

4
He significantly if the initial He mantle concentration were two orders of 

magnitude or less than the DMM concentration. For radiogenic He in the Italian basalts to 

originate in subducted continent-derived material, a mechanism to transport crustal He to 

the fluids metasomatizing the mantle wedge is required. Of the common rock-forming 

minerals, garnet probably has the highest closure temperature (Tc = 600°C; Dunai and 

Roselieb, 1996) and could transport crustal radiogenic He to the greatest depths. It is worth 

noting that, if the Tc of He in garnet is as low as the value proposed by Blackburn and 

Stockli (2006) (110–300°C), He would not be transported to significant depths. 
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In order to assess the maximum amount of He that could be transferred to the mantle 

wedge above the subducting slab, we assume that all the He produced in the garnet of the 

crustal basement is entirely transferred to the wedge via an aqueous fluid or melt.  

Therefore, neither post-metasomatic ingrowth nor the direct addition of crustal He can 

explain the low 
3
He/

4
He mantle prevalent in Italian magmatism, if it started with DMM He 

concentrations. A mantle reservoir with a He concentration low enough for either 

mechanism to have generated radiogenic 
3
He/

4
He would rapidly evolve into low 

3
He/

4
He 

(unless buffered by additional He from elsewhere). It is very unlikely that a low (He) 

HIMU mantle reservoir could consistently evolve the remarkably constant 
3
He/

4
He ratio 

which is typical of the global HIMU mantle source (Hanyu and Kaneoka, 1997). It is more 

probable that mantle He was lost as a result of metasomatism. One mechanism may be that 

percolation of metasomatic fluids devolatilizes the mantle wedge in a manner similar to 

that during aqueous/carbonic fluid infiltration through crustal rocks (Bickle and Baker, 

1990).  

As regards the origin of the quartzite nodules, the literature reports that they also occur in 

other volcanoes of the Aeolian Arc (e.g. Filicudi, Alicudi, Salina,Vulcano), where they 

appear to have a similar origin (Francalanci and Santo 1993; Peccerillo et al. 1993; Zanon 

2001; Frezzotti et al. 2002). This indicates that crustal contamination is a common process 

occurring in most of these volcanoes, and may be responsible for a typical characteristic of 

the Aeolian magmas, i.e., the steeper evolutionary trends of the magmatic series, crossing 

the borderlines between various fields in the K2O vs. silica classification diagram 

(Francalanci 1997, and references therein). 
  

Quartzite nodules at Stromboli are found only in the calc-alkaline lava of Strombolicchio 

and PSTII. Previous studies have reported the occurrence of felsic nodules in 

Strombolicchio since the late 19
th
 century (Johnston-Lavis 1893). Honnorez and Keller 

(1968) suggest that they are metamorphic in origin, due to contacts between sedimentary 

rocks and calc-alkaline lava. Pezzino and Scribano (1989) describe two types of quartzite 

nodules: the first of sedimentary origin from quartzite, and the second of metamorphic 

origin from the Hercynian Calabro-Peloritano basement. Their petrographic characteristics 

indicate that they represent restitic rocks produced by partial melting of crustal rock. The 

almost exclusive presence of quartz is interpreted as the result of melting, when quartz 

remained as a residual phase. The abundance of argon (2.94 to 23 × 10
-12 

mol/g) and the 

high 
40

Ar/
36

Ar ratio (323-385) of the quartz xenoliths analysed in the present study confirm 

this hypothesis since, in agreement with Zanon et al. (2003), fluids released by basaltic 
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magma during partial melting of crustal rocks are partly trapped in fluids and melt 

inclusions. 

The presence of quartzite nodules only in calc-alkaline rocks of significantly different ages 

is interpreted by Vaggelli et al. (2003) as due to their density or, more probably, to their 

short residence time in reservoirs and/or fast upwelling. Calc-alkaline magma does have a 

constant, quite primitive composition, indicating its rather rapid transit through the 

continental crust. Fast upwelling has also been suggested on the basis of fluid-inclusion 

evidence in quartzite nodules Vaggelli et al. (2003). It may therefore be hypothesized that, 

in the case of longer magma residence time, xenoliths are completely digested by 

assimilitation+fractional crystallization. These processes lead to increasing contents of 

potassium, incompatible trace elements and silica and higher Sr isotope ratios in the host 

magma, thus generating more evolved and Sr radiogenic magma with a different serial 

affinity (e.g., high-K andesites of PST I).  The general evolution of Stromboli therefore 

involved processes which also occur in the other volcanoes of the Aeolian Arc, which are 

similarly characterized by several compositional variations in rocks which occurred over a 

short period of time. The presence of felsic metamorphic rocks affected by partial melting 

processes in the basement may also be evidence which can be extended to the rest of the 

Aeolian Arc. 
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6. CONCLUSIONS 
 

Noble gas analyses on phenocrysts from volcanic rocks from the islands of Panarea 

and Stromboli and the volcano of Marsili were carried out to evaluate the origin of 

magmatic fluids in the southern Tyrrhenian basin.  

Helium isotopes in phenocrysts from volcanic rocks from the Aeolian Islands and Marsili 

have  inhomogeneous 
3
He/

4
He ratios.  

Analyses of fluid inclusions of the olivine and pyroxene of sample MRS 04 may support 

the remarks of Trua et al. (2010) on the presence of a MORB-type mantle component in 

the samples from Marsili,  although a HIMU-type source may be hypothesized to explain 

the isotopic ratios of He and Ar.  

The He and Ar isotopic ratios from mafic volcanic rocks from the Marsili volcano cannot 

discriminate the mantle source under the most recent back-arc of the southern Tyrrhenian 

basin, although the mantle composition was definitely only slightly affected by subduction-

related metasomatism. 

The
 3
He/

4
He ratios measured in the olivine and pyroxene from Marsili are similar to those 

measured at Pantelleria, Etna, the Hyblean plateau and the volcano of Alicudi (~7 Ra). 

Although all these volcanoes derived from a variety of tectonic regimes (subduction-

related, intraplate, rifting), their similarities suggest the common origin of their 

geochemical features. Their characteristics are consistent with a HIMU-like mantle (high 

U/Pb). The 
3
He/

4
He ratio of the HIMU end-member is (6.8 ± 0.9 Ra, Hanyu and Kaneoka, 

1997; Moreira and Kurz, 2001). 

At Stromboli, He isotopic ratios in free gases and thermal waters match data from fluid 

inclusions in olivine and pyroxene. This shows that the isotopic signature is maintained as 

the gas ascends toward the surface, confirming that the maximum 
3
He/

4
He ratio of fluids 

generally reflects degassing of magmatic bodies at depth (Martelli et al., 2004). 

On Panarea, highly degassed magma and small quantities of He in samples meant that 

neither abundances nor 
3
He/

4
He isotopic ratios could be measured. This was only possible 

in two pyroxene samples from Punta Torrione (“brown tuff” in the literature) and Punta del 

Tribunale (Castello formation; Calanchi et al., 2002). 

The two samples from Panarea display very different 
3
He/

4
He  ratios and He abundances. 

The Castello formation sample is very low in He and has a 
3
He/

4
He ratio of 3.39 Ra, 

whereas the Punta Torrione sample has a 
3
He/

4
He  ratio of 5.1 Ra, like that measured at 

Salina and Vulcano (Martelli et al., 2008). The latter value may confirm that the source of 
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brown tuff is located beyond Panarea, within the La Fossa Caldera of Vulcano (Lucchi et 

al. 2010). 

At Stromboli and Panarea, olivine and pyroxene have low 
40

Ar/
36

Ar ratios, in the range of 

subduction-related volcanism, well below typical mantle values (Burnard et al., 1997; 

Fischer et al., 2005) and close to the atmospheric signature (
40

Ar/
36

Ar = 295.5). 

Lastly, this study aimed at measuring He and Ar isotopic ratios in quartz crystals, in 

particular in the quartz xenoliths of the Omo formation on Stromboli. Results show that the 

use of these crystals to determine abundances of He and consequently the 
3
He/

4
He isotopic 

ratios are unsatisfactory. Our data show diffuse, selective loss of He with respect to Ar in 

the quartz crystals, matching the data of Watson and Cherniak (2003) on diffusion of Ar in 

quartz, which is much lower than that of He. 

The high Ar abundances measured, comparable to or more abundant than those of the 

olivine and pyroxene of all samples, probably indicates that the low values of Rc/Ra  in the 

quartz xenoliths are due to loss of He by diffusion. This supports the hypothesis that fluids 

were released by a basaltic magma, partly trapped as fluid and melt inclusions, in 

accordance with the model in which partial melting of crustal rocks occurred in the middle-

lower crust, forming rhyolitic melts + CO2 fluids (Zanon et al., 2003). 
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Appendix A 

 

 

Table I - Sampling location and rock-type 

 

 

 

 

 

 

 

 

 

Place Sample 
Location 

N 

Location  

E 

Water depth 

(m) 

Stratigraphic 

unit Rock type Classification 

        

Marsili MRS 04 39°23'15'' 14°27'53'' 3050-2725  lavas Island Arc Basalt lavas (IAB) 

Panarea Castello formation 38°38'01'' 15°04'30''  Castello lavas HKCA andesite lava flows 

Panarea Punta Torrione 38°37'46.7'' 15°04'16.1''  Punta Torrione lavas CA basaltic andesite/andesite 

Stromboli HP magma  

38°47'34.8'' 15°12'57.7''  La petrazza scoria/ lavas 

HK-basalts/basaltic shoshonites 

 highly porphyritic 

Stromboli LP magma  38°47'34.8'' 15°12'57.7''  Blond lavas pumice HK-basalts/basaltic shoshonites low porphyritic 

Stromboli SBX 38°48'23'' 15°14'10''  San Bartolo lavas Ultramafic Xenolithics wehrlite 

Stromboli Quartz  Xenoliths 38°47'33.7'' 15°14'16''  Omo lavas quartzite nodules calc-alkaline basaltic andesite lavas 

Stromboli Omo lava 38°47'33.7'' 15°14'16''  Omo lavas lavas calc-alkaline basaltic andesite lavas 
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Appendix B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table II- Chemical analyses of samples rock 

 

 

 

 

SiO2 TiO2 Al2O3 P2O5 Fe2O3 MgO MnO CaO Na2O K2O LOI   
Sample 

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %   

MRS 4 49.2 1.05 16.9 0.21 8.94 7.72 0.13 11.15 3.151 0.45 1.02  

Castello Formation 61.17 0.55 15.98 0.17 6.95 3.36 0.11 6.63 2.55 2.53 0.9  

Punta Torrione 60.03 0.72 17.41 0.09 7.00 2.72 0.14 6.91 2.95 2.05 0.09  
HP magma  49.85 0.99 18.08 0.44 8.79 5.95 0.16 10.78 2.60 2.07 0.28  
Lp magma  49.93 0.95 17.09 0.52 9.27 6.35 0.20 11.11 2.52 2.05 0.51  
San Bartolo 

xenolithics 
44.55 0.25 3.63 0.14 11.71 28.61 0.19 9.67 0.43 0.24 0.70 

 
San Bartolo lavas 54.22 0.93 19.84 0.44 6.75 2.40 0.15 8.08 2.80 4.26 0.14  

Omo lavas 55.65 0.81 17.83 0.21 7.70 3.95 0.20 8.52 2.86 2.01 0.26  

             

             

Rb Sr Y Nb Zr Cr Ni Ba La Ce V Co  
Sample 

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

MRS 4 47 344 23 9 118 125 65 162 26 55 195 68 

Castello Formation 80 479 24 7 107 35 10 418 22 40 193 19 

Punta Torrione 8.4 157 5.9 0.4 14.7 9.4 7.6 98.4 11.9 22.3 125 8.7 

HP magma  63 725 24 17 145 49 44 902 43 92 260 30 

Lp magma  62 521 12 14 95 48 50 872 38 90 274 30 

San Bartolo 

xenolithics 9.1 90 6.9 2 25 800 596 120 5 12 127 110 

San Bartolo lavas 111 485 n.d 18 72 29 21 1407 38 93 198 n.d 

Omo lavas 46 443 20 4 89 92 31 640 47 98 215 25 
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Appendix C 

 

Samples preparation for Fluid Inclusions  study. 

In order to get the necessary amount of phenocrysts for fluid inclusion analyses, lava and 

lapilli sampled were broken into small pieces by mechanical disintegration through a jaw 

crusher (Retsch BB200). After that  the sample 

werw sieved using three different sievers of 2,1 and 

0.5 mm. From the 0.5-1 mm fraction, olivine and 

clinopyroxene phenocrysts were separated at first 

through magnetic concentration (by Frantz 

isodynamic magnetic separator) and after several 

thousand of  olivine and pyroxene for each sample 

were handpicked under a and fluid inclusion-

bearing olivine were careful selected. 

The crystals with small pieces of basalt adhering 

were eliminated together with those displaying 

alteration or iron tarnish. Aim of this operation was 

to make samoples as much as possible pure and 

free from alteration. In general sample weight in 

order of 2.0 to 4.0 g  should be sufficient for two 

replicate analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. C.1 – Jaw crusche (Retsch 

BB200) at INGV – Palermo. 

Fig. C.2 – Shaker for sieves 

Fig. C.3 – Franz magnetic separator (CFTA) 
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This part of work had required much time and patience. Separates minerals, free of 

adhering matrix, were cleaned in an ultrasonic bath, with three cycles of 10 minutes, two in 

distelled water and one in acetone and then dried prior to loading into crushing device. 

 

Crushing procedure 

As result of the above discussion, crushing extraction 

were carried out on our mineral samples with the intent 

of chemically and isotopically analyzing the nobles 

gases trapped in fluid inclusion. The sample crusher 

used for this work had been devoloped in our group and 

was designed to hold a single stinless-steel sample 

containers into which about 1-2 g of olivine or pyroxene 

grains can be loaded (fig 2).  

The amount of sample material used foe each analyses 

is function of  the expected amount of gas trapped and 

of the pressure of trapping.  

The crushing device consists of a piston/cylinder operated by a hydraulic press and crusher 

chamber where the inclusion gases are released. A pressure control system permits to 

gradually increase the acting pressure on the grain samples. After sample loading, the 

sample chamber and all extraction lines (under pumping) are heated to ≈125°C overnight, 

in order to reduce gas adsorption and to induce immediate release of the adsorbed volatiles 

into the detection system. At the beginning of each day, before the sample run, an eventual 

presence of gas leaks was checked by perfming a procedural blank ( crusher blank 

hereafter) by operating the detection system prior to crushing. Typical crusher blank levels 

(in term of partial pressures) were 1× 10
-14 

and 1× 10
-11 

mbar for  
4
He and 

36
Ar, 

respectively. 

Short crush times werw employed to help avoid the release of extraneous volatiles 

contained in crystal lattice sites. 

For calibrating the real fluid inclusion release by crusching olivine, some analyses were 

run by simulating crush action with an empty sample chamber, and crushing inclusion-free 

pieces of synthetic degassed quartz. 

Gas liberated by sample crushing are then expanded into the 976 cm
3 
gas preparation line. 

The gas preparation section serves to remove reactive gases and partition the noble gases 

into two fraction, He + Ne and Ar. 

Fig. C.4 – Binocular microscope for 

manual picking. 
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Helium and Neon were isolated from other components by sequential exposure to (i) two 

Ti getters at 250 °C. (ii) two liquid nitrogen-cooled charcoal traps, and (iii) a liquid He-

cooled charcoal traps (14°K). Then, 

Helium is separated from Neon at 35° K 

and Neon is successively released 

heating at 75 °K the cryostat. These 

gases were introduced successively into 

the VG 5400 mass spectrometer. Argon 

is concentrated in the charcooal traps 

and subsequently released by heating 

that, after He and Ne analyses. 

Mesassurements are made in static 

vacuum prior to residual sample 

evacuation using a dedicated ion pump.  

The mass spectrometer sensitivity and 

the mass discrimination corrections for 

the noble gases were calibrated after 

each crushing run by analysis of gas 

aliquots of known volume and isotopic 

composition from gas pipettes.  

 

 

After each analysis, the crusher was opened, the remnant of the crushing sieved using three 

sieves (0.5, 0.25 and 0.10 mm) and the four resulting fractions weighted for estimate the 

real amount of crushed sample. 

The crushing procedure applied to the sample was rather successful, as the totality of the 

20 analysed sample released an enough quantity of gas to be distinguished from blank and 

to be measured with very low analytical errors (see Tab 4). 

The high performance of the VG 5400 helium spectrometer and the rigorous calibration 

procedure allow us to obtain very modest analytical errors. Several repeatability tests have 

displayed that the overall uncertainties of our isotopic data are below 1%. 

Table X summarizes the results of helium, neon and argon analyses for gases extracted by 

vacuum crushing techniques. 

Fig. C.5 – Crusher devise installed at the noble 

gas lab of the INGV Palermo. 
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Duplicate or triplicate analyses of the samples were carried out when sufficient quantities 

of olivine or pyroxene were available. 

The nobles gases were analyzed in two magnetic sector noble gas mass spectrometer. The 

abundances of He, Ne and Ar isotopes were determined. 
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