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1.1 Liver Physiology  
 

The body’s largest organ, the liver weighs 1400-1600 

grams in men and 1200-1400 grams in women. The fold of 

peritoneum known as the falciform ligament separates the 

right and left lobes anteriorly, while the fissure for the 

ligamentum teres separates them inferiorly, and the 

ligamentum venosum fissure separates them posteriorly. 

The liver is the human body’s largest glandular organ and is 

located strategically to collect all the food supply flowing 

through the portal vein from the pancreas, spleen and 

intestine.  

The hepatic parenchyma comprises, at the microscopic 

level, various hexagonal or pyramidal classical lobules. In 

turn, the lobules are mostly composed of thin layers of 

hepatocytes (the most common kind of liver cell), radiating 

from the central vein to the edge of the lobule. Small blood 

vessels, called sinusoids, are placed between the radiating 

rows of hepatocytes. Though the portal vein, the sinusoids 

obtain blood that is rich in oxygen from the hepatic artery 

and nutrients from the intestines. The oxygen and nutrients 

spread into the liver cells through the capillary walls. 
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Specialized macrophages called Kupffer cells are found 

within the sinusoids and these cells play a significant role in 

the process of recycling old red blood cells. The portal area, 

which is the complex at the corners of each lobule, is made 

up of parts of the hepatic portal vein, the hepatic artery, the 

bile duct, and the nerve. The bile is able to drain from the 

hepatocytes via the many minute bile ducts that together 

form  the hepatic duct, which is the main bile duct of the 

liver. This goes on to join the cystic duct, which leading 

from the gallbladder subsequently comprises the common 

bile duct and then drains into the duodenum. At the center 

of each lobule there is a central canal which is a blood 

vessel receiving blood from the hepatic portal vein and the 

hepatic artery through the sinusoids, and goes on to drain 

the blood into the hepatic vein. (Fig 1.1) 
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Figure 1.1 Parenchymal liver structure: a)the cords of hepatocytes and 
blood-containing sinusoids radiate to the peripheral portal from the 

central vein; b) pyramidal lobules (http://3.bp.blogspot.com/-) 

 

1.2 Liver Functions 
 

In terms of functionality, the liver can be considered as an 

assortment of various compartments that exert control 

over metabolic (metabolism of glucose and lipids), 

catabolic, bio-transformatory (breaking down of serum 

proteins, hormones and alteration of contaminants), 

synthetic (coagulation factors and serum proteins), 

removal (biliary components) and storage functions 
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(glycogen, triglycerides, metals and vitamins) (Pilkis et al, 

1992; Strange ;1984). 

Blood circulation in liver occurs in such a way as to bring 

very significant volumes of blood into contact with the 

lobules’ cells. Therefore these cells can very easily  take in 

materials from the blood as well as secrete materials into it. 

This occurs extremely frequently, because the liver’s 

function consists of maintaining the proper concentrations 

of many components in the blood. The majority of liver 

functions are carried out by the hepatocytes; the phagocytic 

Kupffer cells lining the sinusoids, however, play the role of 

cleansing the blood. 

Liver Functions: 

 The metabolism of carbohydrates  

 Glycogenesis   

 Glycogenolysis  

 Gluconeogenesis  

 The synthesis and secretion of the bile that is 

necessary to emulsify fats. Some of the bile is stored 

http://www.daviddarling.info/encyclopedia/C/carbohydrate.html
http://www.daviddarling.info/encyclopedia/F/fat.html
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in the gallbladder while some of it empties directly 

into the duodenum.  

 The breakdown of hormones such as insulin  

 The metabolism of proteins  

 The metabolism of lipids:  

 the synthesis of cholesterol  

 triglyceride production  

 The breaking down of hemoglobin to create 

metabolites that are added as pigment (bilirubin and 

biliverdin) to bile.  

 the production of protein C, protein S and 

antithrombin as well as blood coagulation factors I 

(fibrinogen), II (prothrombin), V, VII, IX, X and XI,   

 The conversion of ammonia into urea.  

 The breaking down of toxic substances and the 

majority of medicinal products in the process of 

drug metabolism.  

 The storage of multiple substances such as, vitamin 

B12, iron, copper and glucose in the form of 

glycogen.  

http://www.daviddarling.info/encyclopedia/H/hormone.html
http://www.daviddarling.info/encyclopedia/I/insulin.html
http://www.daviddarling.info/encyclopedia/P/protein.html
http://www.daviddarling.info/encyclopedia/B/bilirubin.html
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 Various Immunological effects:  thanks to the many 

immunologically active cells contained in the liver’s 

reticuloendothelial system, it functions as a 'sieve' 

for the antigens it receives through the portal 

system.  

 The production of red blood cells in first trimester 

fetuses. Bone marrow nearly wholly assumes this 

role by the 32nd week of gestation. 

Parenchymal liver cells (hepatocytes) are able to detoxify 

and re-process ingredients absorbed from food thanks to 

the unique protein and gene expression patterns that they 

possess. Nutrients received by the liver are transformed 

and the organ secretes multiple proteins including albumin, 

various plasma carrier proteins, and the majority of 

coagulation factors. Lipids are delivered to other tissues in 

the form of lipoproteins and carbohydrates are stored as 

glycogen in the liver itself, which enables it to maintain the 

stability of blood glucose levels. Another function of the 

liver is synthesizing bile, which plays a fundamental role in 

the digestion of fats. The liver is also responsible for 

producing almost 80% of the cholesterol contained in the 
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human body. The liver is capable of capturing, storing, and 

releasing minerals, vitamins A, D, K, B12, potent growth 

factors such as HGF, hormones, and other substances that 

are biologically active. The liver thus plays a crucial role in 

homeostasis and maintaining the ‘quality’ of blood. The 

result of acute or chronic liver function deficiency is 

‘hepatic encephalopathy’, coma, and death (Pacheco et al, 

2009). The major function of the liver, that of filtering toxic 

substances from the blood, explains liver cells’ astonishing 

capacity for proliferation. A percentage of hepatocytes are 

routinely killed off by continuous toxic stress, which causes 

surviving cells to initiative  the required proliferative 

response. Hepatocytes in the majority of mammals take the 

form of polyploid cells displaying unique and highly 

articulated functions and gene expression signatures that 

are the foundation of an extremely specific phenotype. 

Hepatocytes go on working to maintain bodily homeostasis 

even in cases where 90% of the organ is absent and the 

liver cells that remain are all carrying out substantial 

proliferation, which illustrates how committed they are to 

their function. Studies involving the multiple sequential 
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transplantation of hepatocytes and partial hepatectomies 

reveal the virtually unlimited regenerative capacity of 

hepatocytes (Rhim et al, 1994; Overturf et al, 1997).  

Liver function covers a great deal of ground, given that this 

organ contributes to a wide variety of biochemical and 

physiological processes, ranging from metabolic and 

synthetic function to processes of detoxification. 

Nonetheless, it is the hepatocyte itself whose function is so 

essential in maintaining healthy life and dealing with states 

of disease. In severely ill patients, the beginning of liver 

failure is a sure forecast of a terminal outcome. However, 

whereas the glomerular filtration rate acts as a clear 

quantifier of key renal function, no quantitative test for 

liver function is clinically available at most practice sites. 

Although indirect assessments of this function are 

commonly conducted (for instance, through the 

measurement of levels of its end products and by-products 

in blood) and acute injury can be detected by measuring an 

increase in transaminases, there is no test widely available 

that would allow the direct measurement of hepatocellular 

function (Bennink et al, 2012). 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bennink%20RJ%22%5BAuthor%5D
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In a regenerating liver, a partial reversion to a fetal 

phenotype is indicated by actively proliferating hepatocytes 

that express alpha-fetoprotein (AFP) and other fetal 

markers (Meier et al, 2006). While hepatocytes do perform 

extremely specialized and essential functions throughout 

the body, there is a general consensus that they are not 

entirely terminally differentiated. Indeed, this phenotypic 

plasticity characteristic of hepatocytes enables them to 

trans-differentiate, becoming bile duct epithelial cells and 

oval cells that can serve as facultative progenitor cells when 

required (Nishikawa et al, 2005). Hepatocytes are often 

considered to be functional stem cells on the basis of their 

phenotypic plasticity as well as their extensive capacity to 

regenerate themselves when mature. Similar to cancer cells 

or hematopoietic stem cells, these cells are able to 

reproduce in vivo as well as in culture. Cultured 

hepatocytes are able to reactivate telomerase activity, 

which partly accounts for their extraordinary ability to 

proliferate (Nozawa et al, 1999). Genetic changes are 

recognized as governing hepatic cells proliferation; in 

addition, it has been recently found that epigenetic 
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modulations represent important mechanisms in genomic 

imprinting in embryos; even more significantly, they 

contribute to regulating the expression of multiple tumor 

suppressors. The balance in the expression of the genes 

controlling xenobiotic metabolism versus those involved in 

proliferation is found to be significantly modified by DNA 

methyltransferases. DNA methylation is considered to be 

crucial in the control of hepatocyte proliferation and 

differentiation during the development and regeneration of 

the liver (Anderson et al, 2009; Waterland et al, 2009).  

The proliferation of liver cells is dependent on paracrine-

signaling that involves extrahepatic humoral factors and a 

coordinated cross-talk among the various populations of 

liver cells. The scientific community has recently begun to 

focus on a new cell-to-cell communication concept. This 

communication is facilitated by exosomes, which are 

membrane-bound vesicles the size of a nanometer involved 

in the modulation of proliferation for multiple types of 

cells; they are commonly considered to represent a  

prospective therapeutic instrument in the promotion of 

cancer immunity (Li et al, 2005; Aharon and Brenner 
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2009). Exosomes can also be produced by liver cells, 

according to the evidence (Conde-Vancells et al, 2008).  

1.3. Liver regeneration  
 

In contrast to most other mammalian organs, hepatic 

regeneration is not solely dependent on stem cells. Rather, 

functional parenchymal cells divide in order to re-establish 

the initial mass during regeneration of the liver (Fausto, 

2005). The liver is the only mammalian organ capable of 

swiftly regaining its former dimension, structure, and 

function even when as little as 10% of the original tissue 

remains (Myronovych et al, 2008). Liver regeneration 

occurs through an highly complex and orchestrated process 

characterized by very tightly coordinated cascades of 

signaling pathways, both intra and extracellular. Hepatic 

regeneration is in many respects quite similar to the 

development of the liver during embryogenesis; 

furthermore, it demonstrates its distinctive embryonic 

memory when faced with serious injury. A better 

understanding of the mechanisms that govern hepatic 

development and regeneration can also help us to 
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comprehend the etiology of chronic and acute diseases of 

the liver as well as hepatocarcinogenesis and 

developmental defects (Fausto et al, 2006).  

1.4 Pathology 
 

Jaundice, which is a yellowing of the eyes and skin, is a 

common indicator of a damaged liver. Jaundice occurs 

whenever there is a buildup of bilirubin, a yellow 

breakdown product of red blood cells, in the blood. Hepatic 

diseases include: 

 Hepatitis, an inflammation of the liver that 

primarily results from  one of several viruses but 

can also be caused by certain poisons, hereditary 

conditions, or  autoimmunity.  

 Cirrhosis, which is the development of fibrous 

tissue in the liver in the place of dead hepatic cells. 

Liver cells death can be caused by factors such as 

alcoholism, viral hepatitis, or contact with other 

chemicals that are toxic to the liver.  

 Cancer of the liver (primarily manifesting as 

hepatocellular carcinoma or cholangiocarcinoma as 

http://www.daviddarling.info/encyclopedia/H/hepatitis.html
http://www.daviddarling.info/encyclopedia/I/inflammation.html
http://www.daviddarling.info/encyclopedia/C/cirrhosis_of_the_liver.html
http://www.daviddarling.info/encyclopedia/L/liver_cancer.html
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well as metastatic cancers, usually originating in 

other parts of the gastrointestinal tract).  

 Wilson's disease, an hereditary disease that causes 

a retention of copper in the body.  

 Hemochromatosis, an hereditary disease that 

produces an accumulation of iron in the body, which 

gradually results in damage to the liver.  

 Primary biliary cirrhosis, an autoimmune disease 

that affects the small bile ducts  

 Gilbert's syndrome, a genetic disorder in the 

metabolism of bilirubin that affects approximately 

5% of the population.  

 Primary sclerosing cholangitis, an autoimmune 

condition that produces inflammation of the bile 

duct.  

 Budd-Chiari syndrome, a hepatic vein obstruction.  

  

http://www.daviddarling.info/encyclopedia/H/hemochromatosis.html
http://www.daviddarling.info/encyclopedia/G/genetic_disorder.html
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1.5 Liver grafts 

In 1963 a team of surgeons with Dr. Thomas Starzl at its 

head performed the first human liver transplant in history 

(Starzl et al.; 1963). In the following years, Starzl went on to 

carry out further transplants and the first operation 

displaying short-term success was conducted in 1967, as 

indicated by a post translation survival period of one year. 

Over the 1970s several feasible surgical techniques were 

developed, but the transplantation of the liver continued to 

represent an experimental practice with the one year 

survival rate of patients hovering around 25%. When Sir 

Roy Calne eventually introduced ciclosporin, patient 

outcomes were significantly improved and over the course 

of the 1980s liver transplantation came to be recognized as 

a standard clinical treatment for all patients exhibiting the 

proper indications, adult as well as pediatric subjects 

(Starzl et al.; 1981). Generally speaking, as long as the 

recipient does not exhibit any other conditions that would 

make a successful transplant impossible, liver 

transplantation can be considered a potential treatment for 

any acute or chronic condition that results in permanent 

http://en.wikipedia.org/wiki/Thomas_Starzl
http://en.wikipedia.org/wiki/Human
http://en.wikipedia.org/wiki/Liver_transplantation#cite_note-0
http://en.wikipedia.org/wiki/Liver_transplantation#cite_note-0
http://en.wikipedia.org/wiki/Roy_Calne
http://en.wikipedia.org/wiki/Ciclosporin
http://en.wikipedia.org/wiki/Liver_transplantation#cite_note-1
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dysfunction of the liver. Unqualified contraindications 

include active septic infections, the active abuse of drugs or 

alcohol and metastatic cancer located externally to the 

liver. At one time HIV infection was included among these 

absolute contraindications, but in recent years this 

assessment has come under reconsideration. Relative 

counterindications, on the other hand, include serious heart 

disease as well as pulmonary or other disease and 

advanced age, which may prevent or interfere with the 

success of transplantation. Liver transplantation is 

positively indicated in cases of chronic liver diseases that 

will result in irreparable liver scarring or liver cirrhosis.  

The important role of elderly donors 

In relation to patients with end-stage liver disease, 

transplantation of the liver (liver transplantation LT) 

represents the sole opportunity for a cure and, in most 

centers, generally results in a 70% to 85% survival rate 5-

year out. Demand for this operation has increased over 

time, but the rate of organ donation by deceased donors 

has not increased at the same rate. The result is a 

http://en.wikipedia.org/wiki/Absolute_contraindication
http://en.wikipedia.org/wiki/Cirrhosis_of_the_liver
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significant shortfall in the number of organs that may be 

used for transplantation (United Network for Organ 

Sharing). The acceptance of progressively elderly donors 

has represented one answer to this shortfall. While only 

28% of the total number of donors in 1988 were aged 50 

years or over and only 0.05% were more than 65 y.o., these 

percentages had grown by 1995 (42% over 50 and 5% over 

65). They continued to increase, reaching 65% and 10%, 

respectively by 2007 (United Network for Organ Sharing ). 

In Italy, liver donation by older donors has become a 

common practice, with a donor age that is elevated in 

relation to the United States and other European countries 

(Avolio et al., 2011). It is necessary to approach the age of 

donors conservatively to ensure a high level of quality 

among donated organs, but at the same time if an 

excessively strict restriction were to be applied, some 

organs that might otherwise be appropriate for 

transplantation would end up being unintentionally 

excluded. Given the ongoing shortage of available organs 

and the fact that the geriatric population is rapidly 

expanding, a realistic strategy for enlarging the donor pool 
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would be by easing restrictions on donor age. The principal 

issue remains, however, whether or not more mature 

organs grant patients the same survival advantage that 

younger donated organs do. Fortunately, there is evidence 

that the liver holds a privileged place among organs in that 

there are minimal pathophysiological changes displayed as 

a result of aging and a healthy aging process does not 

significantly reduce the overall function of the liver 

(Kampmann et al.,1975; Popper, 1986). Several initial 

studies do show an increased risk of initial poor function, 

primary nonfunction occult tumor transmission in cases 

involving older donors (Wall et al.,1990; Healey et al., 

1998); however, more than one recent study demonstrates 

that, in relation to specific types of patients, satisfactory 

results can be achieved using the livers of donors aged up 

to 80 y.o. (Wall et al., 1993; Emre et al., 1996; Jiménez 

Romero et al., 1999; Grazi et al., 2001; Cuende et al., 2002; 

Mazziotti et al., 1999; Nardo et al., 2004). Nonetheless, the 

lack of consensus among transplant centers in relation to 

an upper age limit for accepting donors can be read as the 

lack of a clear definition for this issue. Furthermore, it has 
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not been conclusively demonstrated whether using these 

so-called “extreme” donors might result in post-transplant 

adjunctive risks beyond the acceptable parameters (Tector 

et al.,2006). There is still an ongoing and heated debate 

over whether or not it is safe to use grafts for LT that are 

designated as elderly (> 50 years) or even senior (>70 

years). When Detre et al (Detre et al., 1995) analyzed an LT 

cohort of 7,988 recipients in 1995, they found a higher rate 

of re-transplant and graft failure when livers had been 

obtained from donors aged 50 or older. Similar results have 

been reported in relation to large cohorts analyzed more 

recently (Feng et al., 2006; Hoofnagle et al., 1996). After 

analyzing an LT cohort of more than 20,000, Feng et al 

reported finding a direct correlation between an increase in 

the relative risk of graft failure and an increase in the age of 

donors. When combined with additional risk factors such as 

African-American race, height, or cerebrovascular cause of 

death, a donor age of > 70 years was found by the same 

study to result in the highest risk of graft failure. Yet the 

results reported by other studies are dissimilar. For 

instance, when analyzing 741 cases, Anderson et al 
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(Anderson et al., 2008) found no statistically relevant 

difference in the survival rate of patients receiving livers 

from >60 year old donors versus those receiving livers 

from <60 year old donors. In their study of 55 donors aged 

> 70 years, Gastaca et al found an excellent rate of patient 

survival, equal to 91% at 3 years (Gastaca et al.,2005). 

Another study by Cescon et al analyzed a series of 17 liver 

transplantations using octogenarian donors and reported a 

3-year patient survival rate of 75%, notwithstanding an 

evident increase in the risk of viral recurrence in the case of 

HCV recipients (Cescon et al., 2003 a). Cescon et al, in an 

additional study, (Cescon et al., 2003 b), used direct 

experience to observe LTs using >80-year donors and had 

two main findings: first, that early results are comparable 

to the results achieved using livers from donors who are 

younger, and secondly, that the policy of using older donors 

could offer transplant recipients a substantial chance of 

prolonged survival. Even transplants using donors older 

than 80 years have reported successful results (Emre et al., 

1996, Jimenez Romero et al., 1999; Wall et al., 1993) as 

have those with donors older than 90 years (Filipponi et al., 



24 

 

2003), this suggests that the liver fares much better in 

relation to aging-related damage than other organs do 

(Cuende et al.,2002).  

It is widely thought that this is the reason why early post-

implantation function is similar to that seen in the case of 

much younger donors. In theory, there is no upper age limit 

for using cadaveric liver donors and the selection of organs 

is carried out solely on the basis of available pre-LT 

pathological factors (such as fibrosis and steatosis). 

Throughout the world, an expanded donor criteria 

(marginal) grafts can be used to augment the available 

supply of organs for transplantation. Furthermore, multiple 

studies have compared the outcome resulting from 

marginal versus non-marginal graft transplantation in 103 

cases in which liver transplantation was required by 

chronic hepatic failure. According to Bacchella (Bacchella et 

al., 2008) overall marginal graft outcome and the survival 

of recipient was most decisively defined by the first month 

post-transplantation. Additionally, recipients of marginal 

grafts who were designated high- MELD (Model For End-

Stage Liver Disease) displayed a high rate of mortality in 
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the first  week following transplantation. Recipients of 

marginal and non-marginal grafts were found to achieve 

analogous outcomes following the first month after 

transplantation. A significant issue in liver transplantation 

is making the best match between the degree of graft injury 

and the recipient’s clinical status; the researchers thus 

conclude that using marginal graft results in increased 

early mortality in liver transplantation, especially in the 

case of high-MELD recipients. For the other groups, the 

survival rate remained unchanged between marginal and 

non-marginal grafts one week, one month and one year 

after transplantation. It can therefore be concluded that the 

survival rate after the first month following transplantation 

remained the same. In the case of HCV + patients, a study by 

Cescon et al (Cescon et al., 2003 c) provides the first 

evidence that long-term survival is possible, in particular 

for non-HCV+ patients. A very recent Spanish study of more 

than 300 livers obtained from donors aged over 70 years 

demonstrates similar results in those who received grafts 

from donors aged over 80 years: there was a 15.8% 

incidence of primary graft failure, a 72% 1-year graft 
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survival rate and a 51%  5-year survival rate (Cuende et al., 

2002). To conclude, the data they report confirm the 

outcomes previously found in a larger series, which 

supports the safe use of >80 year old donors for LT as a 

result of the fact that these grafts are able to achieve 

normal functional recovery. This policy does impose a strict 

process of selecting among available organs in order to 

diminish the  adjunctive risk factors associated with poor 

outcome. While it has yet to be determined what life 

expectancy applies to patients who receive these organs, 

there is evidence that, particularly in the case of  non-HCV+ 

subjects, it is possible to achieve long-term patient and 

graft survival. When considering the distribution of grafts 

from elderly donors to HCV+ patients,  the high rate and 

rapidity of HCV recurrence represents a significant concern. 

The most common indication for liver transplant is chronic 

liver disease related to the hepatitis C virus.  With the 

exception of a few publications (Doyle et al., 2008), all the 

studies which evaluated the survival of grafts and patients  

with livers from older donors regularly report that 

hepatitis C virus-seropositive recipients showed worse 
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outcomes than recipients whose cirrhosis had other causes 

(Nardo et al., 2004, Lake et al., 2005; Borchert et al., 2005; 

Kim et al., 2005). Furthermore, a study by Melendez and 

Heaton, (Melendez et al., 1999) suggests that marginal 

grafts should only be used with patients who are clinically 

stable and are able to tolerate potential re-transplantations.  

It is important to weigh carefully the possible risks and 

benefits connected to using livers from older donors. Even 

in the case of donors ≥ 80 years, acceptable early functional 

recovery is possible by carefully selecting donors, avoiding 

additional risk factors in donors (i.e. decreasing cold 

ischemia time and avoiding grafts that show moderate or 

severe steatosis), and through a vigilant process of 

allocation (i.e. hepatitis C seronegative recipients with 

moderate MELD scores). It is particularly important 

whenever possible to avoid matching an old graft with an 

older recipient who is infected with the hepatitis C virus. To 

conclude, in LT it is advisable to avoid other risk factors for 

poor graft function (and especially a long ischemia time and 

recipient MELD score >15) in order to improve the 

outcomes of older donors (Grazi et al, 2005). However, in 
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order to definitively assess this option, we must first clearly 

comprehend the cellular and molecular mechanisms that 

hamper hepatic regeneration in older patients.   

 

 

The importance of donor/recipient age in 
transplantation 

The currently available literature does not clearly indicate 

whether or not the process of liver ageing is connected to a 

simultaneous decline in function (Verzaro et al., 2008) and, 

in particular, which estimated age limit can be associated 

with functional decline. Nearly all the cell types that 

contribute to the outcomes of liver transplantation are 

affected by aging: donor-derived hepatocytes (Iakova et al., 

2003; Brouwer et al.,1985; Okaya et al., 2005; Sastre et al., 

1996) as well as recipient cells (inflammatory cells and the 

cells which gradually populate the graft and which are 

derived from the bone marrow of the recipient) (De la 

Fuente et al., 2004; Harris et al.,1998). The liver’s capacity 

to respond to stress is significantly affected by the aging 
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process (De la Fuente et al., 2004; Selzner et al., 2007; Sanz 

et al., 1999; Berenguer et al., 2005; Rifai et al., 2004). 

Whether it be inflammation (Sanz et al., 1999), ischemia-

reperfusion injury,(Okaya et al., 2005; Harris et al., 1998) 

or hepatitis C virus (HCV) recurrence,(Berenguer et al., 

2005; Rifai et al., 2004) this stress response triggers a 

complex cascade that involves donor-derived hepatocytes 

as well as endothelial cells and recipient-derived 

nonparenchymal cells (i.e. T-cells, macrophages and 

platelets). Nonetheless, the overall function of the liver 

does not show significant decline, thanks to the effective 

counterbalance provided by its large, functional reserve, its 

capacity for regeneration and its dual blood supply. 

Furthermore, for unknown reasons atherosclerosis less 

frequently affects the visceral vessels of the abdomen 

(Berenguer et al., 2002). Cells from both donors and 

recipients are involved in these processes; as a result, the 

effects that the age of both donors and recipients has on 

short and long-term outcomes should be considered in 

tandem rather than independently. Recent studies indicate 

that the recurrence of more severe HCV is associated with 
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increased donor age (Rayhill et al., 2007; Khapra et al., 

2006; Berenguer et al.,2002). On the other hand, it is not 

yet clear what effect donor age has on non–HCV-related 

long-term outcomes and reperfusion injury. The findings of 

some series suggest that  recipients who receive older 

grafts are at increased risk for primary non-function and 

display an elevated incidence of  biliary complications 

(Shah et al., 2007; Ploeg et al., 1993); other studies, 

however, do not demonstrate any significant difference for 

any of the outcome parameters under examination (Emre 

et al., 1996). From a pathophysiological standpoint, the 

liver shows minimal age-related alterations in terms of 

morphology, ultrastructure and function than do other 

tissues and organs of the body such as the heart, kidneys 

and lungs (Popper, 1986).  Such alterations include a 

variation in the size of hepatocytes and their mitochondria, 

a reduction in overall mass, reduced phagocytosis among 

Kupffer cells, a propensity for nuclear polyploidy, 

endothelial cell endocytosis, increased lipofuscin pigment 

and reduced blood flow as well as alterations in a range of 

hepatic functions such as  drug metabolism, protein 
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synthesis and biliary secretion (Popper , 1986; Kampmann 

et al., 1975). Taken together, these observations constitute 

the biological rationale for expanding donor eligibility to 

older individuals. 

Even under the dissimilar conditions provided by a liver 

transplantation recipient, a grafted donor liver should 

develop and survive. However, it is not yet clear if a grafted 

liver’s age can be affected by factors presented by the 

recipient. The extent to which the liver is influenced by its  

microenvironment remains a matter of investigation; it has 

not yet been determined whether an aging liver might be 

able to “rejuvenate” when transplanted into a younger 

recipient. Indeed, liver rejuvenation has not been fully 

investigated in the liver transplantation field. There 

remains a relative scarcity of literature that addresses this 

issue and the few studies that have been conducted so far 

do not appear to corroborate this hypothesis. To address 

this issue, Eguchi et al. (2010) investigated the re-

expression of SMP-30 in a biopsied adult liver (n = 6) that 

was transplanted into a pediatric recipient, given that SMP-

30 can be considered to be a marker of senescence. The 
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immunohistochemical staining showed that no liver of a 

pediatric patient who had been the recipient of an adult 

donor showed SMP-30 re-expression or an increase in SMP-

30.  On the basis of these findings, the researchers 

concluded that adult grafted livers do not appear to 

rejuvenate in pediatric recipients. 
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1.6. Liver aging 
 

As developed countries population continues to grow older, 

an understanding of the ageing process that could allow 

healthy ageing has significant medical implications. Not 

only elderly  individuals are more vulnerable to most 

acquired disorders of the liver, they are also more 

susceptible to the consequences of liver disease (Hoare et 

al., 2010). Along with age, also the  occurrence of liver 

disease increases whereas the capacity to sustain a hepatic 

insult decreases as people grow older. Changes at cellular 

and sub-cellular levels underlying this predisposition are 

the focus of a great deal of scrutiny. There has been 

increased interest in the role that ageing plays within the 

sphere of hepatology, in particular in response to the recent 

recognition of the decisive importance of age in  

determining the clinical outcome in cases of infection of 

chronic hepatitis C virus (Poynard et al., 1997) and the 

relevance of the age of donors on post –LT graft survival 

(Keswani et al., 2004). In addition, death related to liver in 

older individuals  increases substantially when compared 

to younger people who display the same condition (Regev 
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et al., 2001). Unlike the majority of other organs, the liver 

does not display marked or well-documented changes in 

both structure and function during the aging process 

(Schmucker, 1985, O’Mahony and Schmucker, 1994; 

Schmucker, 1998; Schmucker, 2004). The few existing 

comprehensive studies on liver morphology during aging 

were qualitative in nature and performed using rodent 

models. A weakness of the studies that have employed 

tissue from human liver has been their dependence on 

postmortem samples or  samples from patients who had 

been diagnosed with liver disease. 

Irrefutable evidence exists suggesting that the ageing 

process take place at the cellular level and that 

inflammation can ‘prematurely’ induce such changes. 

Lipofuscin, that is cytoplasmic accumulation of highly 

oxidized insoluble proteins related to age, is the most 

widespread change on the specimens obtained though 

diagnostic liver biopsy (Schmucker, 2002; Jung et al., 2007). 

These accumulations of protein that is highly cross-linked 

are believed to be related to a failure to degrade damaged 

and denatured proteins and chronic oxidative stress (Jung 
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et al., 2007). There is growing availability of evidence 

suggesting that lipofuscin creates interference with cellular 

pathways because of its capacity to capture metallic cations 

and facilitate further formation of free radicals (Jolly et al., 

1995). There are fewer good quality descriptions about 

sub-cellular hepatocyte changes related to age and the 

majority of these data derives from animal studies. The 

clear decline in the surface area of smooth endoplasmic 

reticulum due to age (Schmucker et al., 2002; Schmucker et 

al., 1980) correlates with a decreased concentrations of 

hepatic microsomal proteins as well as enzymatic activity 

such as glucose-6-phosphatase (Schmucker et al., 1980). 

There are other changes in the structure of hepatic cells 

which include, (a) a decrease in smooth surfaced 

endoplasmic reticulum, (b) and loss of volume of the dense 

body compartment, for instance, secondary lysosomes and 

increased hepatocyte polyploidy (Schmucker, 1990). 

Quantitative evidence is available describing how 

hepatocytes in males of one inbred rat strain (Fischer 344) 

increase in volume through maturity and then successively 

become smaller in such a way that cells in immature and 
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senescent animals present an equivalent size (Schmucker, 

1978). The occurrence of a decline related to age in 

chaperone-mediated autophagy, the cellular pathway 

leading to depletion of molecules and sub-cellular 

organelles, is suggested by recent data. A mouse model 

associated with a decrease in  liver function related to age 

suggested that the restoration of autophagy was associated 

with preservation of the function of liver (Zhang et al., 

2008). Additional data point out a change in hepatocyte 

nuclear morphology connected to age increase. A more 

substantial variation in nuclear size (Watanabe et al., 

1982), associated with higher incidence of polyploidy of 

hepatocytes, is also known to exist (Schmucker et al., 1990) 

Approximately 27% of human hepatocytes show polyploidy 

in individuals aged over 85, compared to approximately 6% 

for subjects in their twenties (Kudryavtsev et al., 1993) 

None of these changes related to age results in significant 

declines of the functions of the liver. There are data, 

however, showing specific age-related changes that include 

decrease of hepatic volume and decline in hepatic 

perfusion. Both these changes can affect specific functions 
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of the liver, for example first pass pharmacokinetics 

(Wynne et al., 1989, Marchesini et al., 1988). Data coming 

from clinical tests on liver function are, however, 

inconclusive and do not identify considerable deficits 

related to age in liver functions (Thompson et al., 1977; 

Tietz et al., 1992; O’Mahony and Schmucker, 1994). Various 

studies show moderate changes connected to age in biliary 

function, such as diminished bile flow and bile acid 

secretion. Whether or not hepatic functions are 

compromised in elderly people or senescent animals is still 

unclear. Hepatologist Hans Popper declared that, “aging 

exerts a limited effect on the constitutive liver functions 

and more on its response to extrahepatic factors. . .” (Butler 

et al., 2008). A more clinically significant change related to 

age may be manifest decline in the hepatic regeneration 

rate that follows chemically induced injury or partial 

resection (hepatectomy). There is general consensus that 

fewer hepatocytes enter the S-phase following partial 

hepatectomy in older individuals and senescent animals 

than in younger subjects and those that do so less rapidly; 

this delay associated to age threatens the rate of hepatic 
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regeneration. This can be explained by the significant 

increase in mortality due to hepatic diseases in older 

individuals compared to younger subjects. Regev and Schiff 

found a 3–5-fold increase in deaths caused by hepatic 

diseases in population over 65 y.o. when compared to 

under 45 people (Regev et al., 2001). The augmented 

demand for donor livers for transplantation is another 

element of concern: evidence exists showing that livers 

from older donors might be less viable than those obtained 

from young donors (Washburn et al., 1996, Selzner, 2009). 

Another element that should be considered is the age of 

recipient; as a matter of fact, Fortner and Lincer report a 

15% increase in post transplant mortality in people 

between 55 and 75 y.o. (Fortner et al., 1990). Aging, thus, 

hampers hepatic regeneration in terms of the rates of post-

resection hepatocyte proliferation.  

Schmucker et al (2011) clearly outline the highlights of 

liver aging: 

 

- Increase in Reactive Oxygen Species Related to 

Age: Reactive oxygen species (ROS) are considered 
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to represent a causative factor that is responsible for 

various pathophysiological changes throughout the 

aging process. According to a recent study by Haga 

et al., an increased expression or phosphorylation of 

p66Shc adapter protein is implicated in the 

enhanced generation of ROS and the initiation of 

apoptosis in hepatocytes following a partial 

hepatectomy in elderly mice; the same however is 

not true in young animals’ livers (Haga et al., 2010). 

The study shows a similar hepatocyte proliferation 

in young and old cohorts, but an impaired cell 

growth only in old mice. In addition, ablation of 

p66Shc reduces post-hepatectomy oxidative stress 

and apoptosis in elderly mice, and this suggested 

that this protein associated to age might be critical 

for the inhibition of liver regenerative capacity in 

old animals. 

- Loss of Telomere Length Related to Age: An 

hypothesis suggested that the reduction related to 

age in hepatocyte telomere length leads to a 

decrease in cell mitosis and apoptosis, therefore 
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producing a decline in the proliferation of cell. 

Takubo et al. showed, for example, a significant age-

related loss in the length of hepatocyte telomere in 

humans, and Aikata et al. independently confirmed 

these data (Takubo et al., 2000; Aikata et al., 

2000).Takubo et al. additionally reported a 

significantly higher rate of telomere shortening in 

hepatocytes than in the majority of other epithelial 

cell types that display high turnover rates such as, 

for example, enterocytes as well as esophageal 

epithelium (Takubo et al., 2000). A recent study 

demonstrates that the hepatocyte’s telomere length 

in humans displays a yearly reduction rate between 

55 and 120 base pairs (Takubo et al., 2010). Visible 

variations in the structure of cells are not 

consistently reflected in concomitant alterations in 

function. Denchi et al. showed that, through the use 

of a telomere restriction fragment deficient mouse 

model, the loss of telomere integrity did not have the 

effect of hampering the regeneration of liver after a 

partial hepatectomy (Denchi et al., 2006). The 
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hepatocytes did enter S-phase, however, mitosis, 

anaphase, and telophase were not found to 

subsequently occur. Further research into liver 

regeneration using this model may be granted 

credence by the recent finding that rejuvenating 

telomerase activity in a telomerase-deficient mouse 

model did act to reverse some heavily documented 

deficits associated with aging (Jaskelioff et al., 2011). 

There is one caveat, however, which is that the aging 

process displayed by this particular telomerase-

deficient mouse model may not effectively replicate 

normal aging in humans. 

 

- Aging Effects on the Hepatocellular Response to 

Factors of Growth: twenty years ago, Sawada was 

able to demonstrate that there was a noticeably 

higher hepatocyte proliferative response to EGF in 

young rats than in elderly animals , suggesting that 

the factor of age in old rats impaired cell 

responsiveness to growth factors (Sawada et al., 

1989). Several studies showed that the activation of 
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a hepatocyte extracellular receptor kinase (ERK) 

was lower in old rodents than in young animals after 

a partial hepatectomy (Palmer et al., 1999; Hutter et 

al., 2000). 

Kamat and others, subsequently focused on the 

molecular pathways regulating the proliferation of 

hepatocyte (Kamat et al., 2008). These researchers 

have reported remarkable decline associated with 

age in the expression of hepatocyte EGF receptor 

mRNA and protein, and in EGF receptor 

phosphorylation as well as the successive ERK 

activation. A number of studies by Wang and 

associates outlined the centrality of transcription 

factors in processes of hepatic regeneration and  the 

critical role that FOXM1B gene plays in hepatocyte 

proliferation (Wang et al., 2001; Wang, et al., 2002). 

Though the use of a mouse model FOXM1B-deficient 

in, these researchers demonstrated that adenovirus 

transfection with FOXM1B was able to restore the 

regenerative capacity of the liver in mature animals 

bringing it to a higher level than that recorded in 
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young adult mice. Non-transfected mice deficient in 

FOXM1B showed no sign of increased hepatocyte 

proliferation. 

 

- Other Causes of Diminished Regeneration: 

Several studies by Le Couteur et al. reported 

significant -changes related to age in the structure of 

the liver sinusoidal endothelium; changes include, a 

loss of fenestrae and a thickening of the endothelial 

cells, which is a process also known as pseudo-

capillarization (Le Couteur et al., 2001;. Le Couteur 

et al., 2002;Le Couteur et al., 2007) 

A great deal of evidence supports the idea that the 

age of liver donors or recipients affects only partially 

the survival rate of post transplantation patients. 

These studies imply that a pre-transplantation 

regimen of growth factors in liver recipients who are 

elderly deserves to be investigated further. 
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1.7 The miRNAs 

 

MicroRNAs or miRNAs are endogenous, highly conserved, 

expressed non-coding RNAs that have a length of 20–24 

nucleotides; they have been found to regulate the 

expression of genes and the differentiation of cells, 

metabolism, cell proliferation, apoptosis, and immunity 

development and disease (Friedman et al., 2009). Although 

some miRNAs are expressed in a broad array of tissues and 

cell types, most miRNAs are expressed only in very specific 

tissues and organs (Lagos-Quintana et al.,2002, Sempere et 

al.; 2004). It was in Caenorhabditis elegans that MiRNAs 

were first described (Lee et al; 1993), along with various 

eukaryotic cells with the exception of algae, fungi and 

marine plants (Boutz et al., 2011) More than one thousand 

specific miRNA have been described thus far in humans 

(Davis-Dusenbery , et al.2010; Deiters et al., 2010; Li et al.; 

2009; Steitz et al., 2009; Eulalio, 2008). MiRNAs are 

responsible for regulating several different physiological 

processes, including the translation efficiency or stability of 

particular mRNAs. Given that individual miRNAs are 
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capable of regulating many different mRNAs (encoded by 

target genes numbering from 250 to 500), it follows that 

approximately 20–80% of transcribed human genes are 

quite likely to be regulated by miRNAs (Deiters et al.; 2010 , 

Eulalio, 2008). The effectiveness of miRNAs in binding and 

neutralizing their targets is dependent on multiple 

parameters, for instance the primary sequence of the 

miRNA and target mRNA, the miRNA’s three-dimensional 

structure, co-factors, and so on). Ever since 1993 when the 

first miRNA lin-4 was discovered in C. elegans (Lee et al.; 

1993), there has been a dramatic increase in our 

understanding of how miRNAs function. Besides their 

important role in controlling physiological processes, 

miRNAs have also been found to play an important part in 

various pathologies; these pathologies include liver 

diseases such as hepatitis, fibrosis and hepatocellular 

carcinoma (HCC) (Boutz et al.; 2011, Li et al.; 2009, Lagos-

Quintana et al., 2002). 

Researchers have become extremely interested in 

understanding the role of miRNAs in tumorigenesis 

following recent findings that demonstrate the differential 
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expression of both miRNAs and their target mRNAs in 

cancer (Calin et al.; 2006 , Calin et al.; 2007). Generally 

speaking, miRNAs use multiple mechanisms, including 

mRNA cleavage, a complimentary base pairing with the 3’ 

UnTranslated Region (UTR) of their target mRNAs resulting 

in translational repression, and mRNA decay that is 

initiated by miRNA-guided rapid deadenylation in order to 

negatively to regulate the expression of genes in 

vertebrates.  

1.8 miRNA biogenesis  
 

MiRNAs are single-stranded RNA sequences, 16- to 29-

nucleotides in length, that operate at the post-

transcriptional level to negatively regulate the expression 

of genes (Bartel 2004; Guo et al. 2010a; Zhang et al. 2009). 

A multistep process is responsible for producing these 

mature miRNAs (Fig. 1) (Kutanzi et al.; 2011). 

In short, the transcription of miRNA is accomplished by 

RNA polymerase II, long primary transcripts (pri-miRNAs) 

(Lee et al. 2002, 2004) that are polyadenylated (AAAAA) 

and capped (7MGpppG). (Fig.1) With the excision of a 65–
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75 nucleotide, the nuclear RNase III Drosha and its cofactor 

Pasha (alternatively known in mammals as DGCR8) act to 

crop these pri-miRNA transcripts into pre-miRNAs having a 

hairpin shape (Lee et al, 2003; Kim, 2004). This cleavage 

event holds great importance in that it predetermines the 

sequence of mature miRNA and generates an ideal 

substrate for subsequent events (Lee et al, 2003; Lund et al, 

2004). Pre-miRNA, the processing intermediate, is then 

exported out of the nucleus by exportin-5 (Exp5), which is a 

member of the family of Ran-dependent nuclear transport 

receptors (Yi et al, 2003; Bohnsack et al, 2004; Lund et al, 

2004).  

Successively, pre-miRNA is cleaved by cytoplasmic RNase 

III Dicer (Bernstein et al, 2001; Grishok et al, 2001; 

Hutvagner et al, 2001; Ketting et al, 2001; Knight and Bass, 

2001). This acts to process the pre-miRNA in order to 

produce a transient 22-nucleotide miRNA:miRNA*duplex, 

which is subsequently loaded into the miRNA-associated, 

multiprotein RNA-induced silencing complex (miRISC). 

This complex includes the Argonaute proteins and the now-

mature single-stranded miRNA is preferentially retained in 
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it. The mature miRNA goes on to bind to complementary 

sites within the mRNA target in order to negatively regulate 

gene expression in one of two ways; these ways depend on 

the degree of complementarity that exists between the 

miRNA and its target. Specifically, miRNAs which bind to 

mRNA targets that present imperfect complementarity 

function to block target gene expression at the protein 

translation level. However, there is recent evidence to 

suggest that miRNAs might also have an effect on the 

stability of mRNA. In general, the complementary sites for 

miRNAs that use this mechanism are to be found in the 3' 

untranslated regions (3' UTRs) of target mRNA genes. The 

miRNA that bind to their mRNA targets with perfect or 

virtually perfect complementarity, on the other hand, 

function to induce target-mRNA cleavage. The miRNAs that 

use this mechanism bind to miRNA complementary sites 

which are normally to be found in the mRNA target’s coding 

sequence or open reading frame (ORF).  
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Fig. 1 the biogenesis and function of miRNA. Mature miRNAs are produced 
through a multistep process. (by: MicroRNA- 

mediated drug resistance in breast cancer. Kutanzi , Yurchenko, Beland 

, Checkhun , Pogribny. Clin Epigenetics. 2011 Aug;2(2):171-185. Epub 2011 
Jun 27) 

 

1.9 Role of miRNAs 
 

It seems that MiRNAs and their targets constitute 

regulatory networks that are remarkably complex, as a 

single miRNA is able bind to and regulate multiple different 

mRNA targets and, conversely, multiple different miRNAs 

are able to bind to and cooperatively exert control over a 

single mRNA target (Lewis et al, 2003). As of today, 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kutanzi%20KR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Yurchenko%20OV%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Beland%20FA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Beland%20FA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Checkhun%20VF%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pogribny%20IP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=MicroRNA-mediated%20drug%20resistance%20in%20breast%20cancer
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researchers have identified more than 1,200 mammalian 

miRNAs, which are potentially able to target as much as one 

third of the protein-coding genes (The miRBase Sequence 

Database—Release 16.0) that are involved in cell 

differentiation, development, signal transduction, 

metabolic pathways, proliferation and apoptosis (Bartel 

2004; Selbach et al. 2008). Given that miRNAs mainly 

function by repressing the expression of their targets, there 

is a minimum threshold amount that must be reached in 

order for miRNAs to effectively exert their function (Brown 

et al., 2007; Sarasin-Filipowicz et al., 2009). Abundantly 

expressed miRNAs therefore appear to be more important 

than miRNAs that are expressed at relatively low levels.  

While there is increasing recognition of the critical role 

played by miRNAs, researchers have yet to completely 

understand the mechanism of their action. It is widely 

known that miRNAs regulate genes, and this is thought to 

occur through either the induction of mRNA cleavage or the 

specific inhibition of translation (Chekulaeva et al., 2009). 

The crucial role that miRNAs play cellular physiology was 

sophisticatedly demonstrated in mice that lack the Dicer 
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enzyme which is necessary for processing the miRNA 

precursor into mature miRNA (Kanellopoulou et al., 2005). 

The majority of research into miRNA so far has focused 

mainly on the role they play in the cytoplasm. Recent 

studies, however, suggest a range of roles for miRNAs, such 

as regulating DNA methylation (Kim et al.,2008; Sinkkonen 

Let al., 2008), regulating target genes by acting at the 5’ 

UTR(Orom et al.,2008),  and importing mature microRNA 

into the nucleus; these suggest additional functional modes 

(Hwang et al., 2007. There is increasing evidence to suggest 

that the role of miRNA is not limited to the regulation of 

gene expression at the post-transcriptional level, but that 

they are also able to modify chromatin (Figure 2). As 

demonstrated by Hwang et al, 2007, human miR-29b 

(unlike the miRNA of other studied animals) is mainly 

localized to the nucleus. MiR-29b presents a distinctive 

hexanucleotide terminal motif that can act as an element of 

transferable nuclear localization, directing the nuclear 

enrichment of the micrRNAs or small interfering RNAs that 

is connected to (Hawang et al.; 2007).  

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hwang%20HW%22%5BAuthor%5D
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Figure 2: The various gene regulation modes carried out by miRNAs  

(Bala S.; et al. 2009) 

 

 

1.10 miRNAs and the liver 
 

The adult liver is rendered unique by its intrinsic capability 

of regenerating through the proliferation of fully 

differentiated cells (Michalopoulos, 2007). Under normal 

circumstances, adult hepatocytes are quiescent and in mice 

will divide only once or twice a year while the frequency of 

division in humans is even lower (Lee, 2001). In responding 

to the injury or loss of liver tissue, however, adult 

hepatocytes are capable of dividing numerous times 



53 

 

(Overturf et al., 1997; Azuma et al, 2007). The hepatocyte 

cell cycle is regulated by a multifaceted network of cytokine 

and growth factor signaling that occurs between 

hepatocytes and other types of liver cell in order to ensure 

that the regeneration of the liver is both rapid and vigorous 

(Fausto et al., 2006). It has been shown that miRNAs work 

post transcriptionally to regulate the genes that orchestrate 

proliferation in both development and cancer, but their role 

in processes of organ regeneration is not yet well known. A 

study by Song  et al (2010) analyzed changes occurring in 

miRNA expression during the regeneration of mouse livers, 

which lead to the finding that miR-21 and miR-378 act to 

regulate organ regeneration. Specifically, this issue was 

investigated by generating mice who had a hepatocyte-

specific inactivation of DGCR8, which is a vital constituent 

of the microprocessor complex. As DGCR8 functions to 

anchor the primary miRNA transcript for its cleavage by 

Drosha, it acts upstream of Dicer and, when it is deficient, 

there is a disruption in the processing of miRNAs but not 

other small RNAs (Michalopoulos, 2007). These findings 

therefore suggest that miRNAs are responsible for 
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regulating hepatocyte G1 to S phase progression in the 

course of liver regeneration.  

A recent study by the Chinese group Hou et al (2011) 

identified the miRNome in both the normal human liver 

and hepatocellular carcinoma. For this study they used 

massively parallel signature sequencing (MPSS) of miRNAs, 

which is able to provide an in-depth identification of 

miRNome, thus revealing differences in  miRNA expression 

as well as the abundance characterizing individual miRNA. 

This group used MPSS in order to conduct an in-depth 

analysis of the miRNomes located in three normal tissues of 

the liver (distal normal liver tissue of hepatic hemangioma), 

a liver affected by severe chronic hepatitis B, a liver 

infected with HBV, an HCV-related HCC, two HBV-related 

HCCs and an HCC without either HBV or HCV infection. 

They furthermore normalized the abundance value of each 

known miRNA through the use of ‘‘transcripts per million 

(TPM)’’ in each library of small RNA. The results were as 

follows: 85.9% of miRNAs were poorly expressed (<10 

TPM) in normal liver tissue, while _13.2% of miRNAs were 

modestly expressed (10–10,000 TPM) and a mere _0.9% 
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(9) of miRNAs were abundantly expressed (>10,000 TPM), 

yet these made up _88.2% of all miRNA reads conducted 

(Table 1). The three miRNAs that were expressed most 

abundantly were miR-122 (52.0% expression), miR-192 

(16.9% expression), and miR-199a/b-3p (4.9% 

expression). Table 1 shows the other miRNAs found to be 

expressed in the normal human liver.  

 

 

 

Table 1: the miRNAs that are most abundantly expressed in normal 

human liver 

 

miR-122 52.0%

miR-192 16.9%

miR-199a/b-3p  4.9%

miR-101 3.7%

let-7a 3.3%

miR-99a 2.2%

let-7c 2.1%

let-7b 1.7%

let-7f 1.5%

Total  88.2%

Avergage Ratio in 

miRNome
miRNA
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One of the first instances of a tissue-specific miRNA was 

miRNA-122. A trademark of liver tissues, miR-122 is highly 

expressed in the livers of all mammals, in which is 

completely conserved the sequence of the mature miRNA. It 

may be seen to chiefly define many of the characteristics 

specific to hepatocytes, characteristics such as lipid 

metabolism, tropism to hepatitis viruses, the production of 

cholesterol production, and so on (Norman et al, 2006; 

Diaz-Toledano, Ariza-Mateos et al, 2009). MiR-122 

inhibition leads to the upregulation of hundreds of genes, 

several of which do not typically find expression in the 

healthy liver of an adult (Krutzfeldt, Rajewsky et al, 2005). 

The loss of miR-122 expression in liver cancer is correlated 

with the suppression of the liver phenotype and the 

acquirement of invasive properties (Coulouarn et al, 2009). 

The expression signature of microRNA in the liver also goes 

through changes during development: besides miR-122, 

many other microRNA (including miR-1, miR-16, miR-27b, 

miR-30d, miR-126, miR-133, miR-143, and the let-7 family) 

are also abundantly expressed in the adult liver, and miR-
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483 and miR-92a are expressed in the liver of the fetus 

(Girard et al, 2008).  

An extensive literature exists in relation to the miRNA 122, 

but there is not the same clear understanding of the specific 

roles this miR plays outside of disease-associated functions 

(such as hepatocellular carcinoma (HCC) and the hepatitis 

C virus (HCV)), particularly in relation to normal liver 

development. As demonstrated by Xu et al(2010), miRNA 

122 is strongly upregulated for the duration liver 

embryonic development. In addition, it has been found that, 

during development, miR 122 gradually represses the 

transcriptional repressor CUTL1 that is understood as 

promoting proliferation and suppressing differentiation. As 

for miR-192, which is the human liver’s second most 

abundant miRNA, there is yet little known about the roles it 

plays in liver biology and liver disease pathogenesis. As of 

today, there exists a relative scarcity of literature about the 

other miRNAs that the Chinese group found to be more 

expressed in the normal human liver. 
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1.11 miRNAs in liver diseases 
 

Improvements in functional analysis techniques for and the 

characterization of miRNAs has not only revealed the role 

they play in multiple cellular processes, it has also 

uncovered abnormal miRNA expression patterns in several 

diseases, among them cancer(Lu et al, 2005), viral 

infections(Houzet et. al, 2008), inflammation(Baltimore et 

al., 2008), diabetes (Lynn et al, 2007), cardiovascular 

disease (Latronico et al., 2007) and Alzheimer’s (Sethi et al., 

2009). In responding to liver insults by antigens, viruses, 

toxins or bacteria, the interaction between immune and 

parenchymal cells plays a unique role in the liver. There is 

strong evidence to suggest that miRNAs can be 

characterized as key regulators in relation to both innate 

and adaptive immune responses (Baltimore et al., 2008; Bi 

et al., 2009); they may thus play a role in autoimmune, 

inflammatory or viral liver diseases (Bala et al.;2009). In 

virtually every aspect of cellular activity, miRNAs are found 

to be implicated. MiRNAs continue to be used as markers of 

disease and factors of prognosis. They can also determine 

the success of specific therapies and may function as 
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pharmacological targets. According to Jin et al (2009), 

miRNA expression changes over the course of non-alcoholic 

fatty liver disease and the inhibition of certain miRNAs, 

such as miR-122, have been found to potentially produce a 

deregulation of steroid and lipid metabolism as well as the 

development of hepatic steatosis. A long-term study of liver 

cancer patients also correlated poor prognosis with 

noteworthy changes in the level of expression of 19 

miRNAs (out of 196 total measured); these included miR-

21, miR-199a and miR-301 (Jiang et al, 2008). According to 

recent research, miRNAs are also involved in the regulation 

of HCV infection. HCV, an enveloped RNA virus that forms 

part of the Flavivirus family, is able to cause acute as well as 

chronic hepatitis in humans through the infection of liver 

cells. With approximately 170 million people infected on a 

global level, HCV is recognized as a significant cause of 

chronic liver disease. The disease is fatal, in that as much as 

70% of patients end up presenting persistent infection 

following inoculation. The disease displays wide variation, 

with cases ranging from asymptomatic chronic infection to 

cirrhosis as well as hepatocellular carcinoma or HCC 
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(Hoofnagle et al, 2002). The replication of HCV appears to 

be associated with an increased expression of the 

cholesterol biosynthesis genes that are regulated by miR-

122 and, as a result, it is considered to be a possible target 

for intervention through antivirals (Randall et al., 2007). 

MiR-122 was the first liver-specific cellular miRNA to be 

identified, and has been demonstrated to boost HCV 

replication through the targeting of the viral 5’ non-coding 

region (Jopling et al., 2005). Given that cellular miRNAs 

have an important role to play in viral pathogenesis, they 

are also likely to be involved in HBV infection. In fact, the 

livers of HCV- and HBV-infected individuals suffering from 

hepatocellular cancer were found to contain a differential 

pattern of miRNAs expression (Ura et al., 2009).  There was 

a clear differentiation of 19 total miRNAs between HBV and 

HCV groups and, in the HCV group 13 miRNAs out of 19 

were found to be down regulated while in the HBV group, 6 

were found to display a decreased expression. The miRNAs 

that were differentially regulated the HBV and HCV groups 

included miR-20, miR-134, miR-151, miR-190, miR-193 and 

miR-211. An interesting finding of the same study was that 
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a pathway analysis of targeted genes employing infection-

associated miRNAs was able to differentiate the genes into 

two different groups. What remains to be evaluated is the 

question of whether differentially regulated miRNAs might 

be used as potential biomarkers in order to differentiate 

between HBV and HCV in early stages of pathogenesis. A 

study by Jiang et al (2008), did show an increased 

expression of miRNA in hepatitis-positive and cirrhotic 

liver samples, and the team proposed that significant 

changes in the expression of miRNA might occur while 

cirrhosis and chronic viral hepatitis are developing.  

Chronic hepatitis is another live pathology of high 

importance. Chronic hepatitis is recognized as contributing 

to liver fibrosis; it has been linked to fibrosis caused by 

fibrin deposition by hepatic stellate cells, or HSC (Bataller 

et al., 2005). MiR-195 has been the focus of intense 

investigation in multiple experimental models in relation to 

hepatic fibrogenesis. It has been reported that  the down-

regulation of cyclin E1 and the upregulation of p21 

expression carried out by miR-195 causes a proliferation of 

interferon beta (IFNβ)-driven HSC and successive 
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fibrogenesis (Sekiya et al.,2011). Additionally, the major 

driver of fibrosis in the liver has been identified as the 

activation of hepatic stellate cells. In a recent study, 

Roderburg and colleagues were able to systematically 

analyze miRNA regulation in a mouse model of carbon 

tetrachloride [CCl(4)]-induced hepatic fibrogenesis. In the 

livers of mice who were undergoing hepatic fibrosis, they 

found that a group of miRNAs were specifically 

deregulated. Of particular interest, they found that all three 

members of the miR-29 family turned out to be down-

regulated to a significant degree in CCl(4)-treated mouse 

livers (Roderburg et al., 2011). The experimental data from 

this study were also found to correlate with the findings 

obtained from human patient material, in that a reduced 

expression of miR-29 was observed in the livers of patients 

suffering from advanced liver fibrosis. Roderburg and 

colleagues succeeded in demonstrating that, in terms of the 

mechanism, TLR signaling and activation of the NF-κB 

signaling cascade functioned to mediate the 

downregulation of miR-29 in murine HSC (Roderburg et 

al.,2011). On this basis, the authors came to the conclusion 
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that miR-29 works to mediate the regulation of liver 

fibrosis in cases that involve a TGF-β1- and NF-κB-

dependent downregulation of the members of the miR-29 

family within HSC. And lastly, a recent study showed that 

four different human and murine miRNAs (miR-200a, miR-

200b, miR-199a and antisense miR-199a*) were very 

significantly upregulated in progressing mouse liver 

fibrosis, as compared to the controls in a CCl(4)-induced 

mouse model that were compared to animals treated with 

olive oil (Murakami et al., 2011). Again, these experimental 

results were successfully correlated with human data. The 

progression of hepatic fibrosis in this model driven by 

CCl(4) was found to be both linked to and significantly 

correlated with an over-expression of miR-200 as well as 

miR-199 (Murakami et al.,2011). 

The literature being produced most recently displays an 

abundance of studies that profile liver tumors.  A complex 

disease, liver cancer displays extraordinary heterogeneity 

in terms of cause and outcome; this involves epigenetic and 

chromosomal instability(El-Serag et al., 2007) as well as 

abnormalities in both coding and non-coding gene 
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expression, including the expression of miRNAs (Liang et 

al., 2007; Varnholt et al., 2008). Worldwide, HCC is 

recognized as the third most common cause of cancer death 

and the fifth most widespread malignancy (El-Serag HB et 

al., 2007). HCC’s main etiologies include chronic liver 

disease caused by chronic hepatitis C or hepatitis B or virus 

infections, metabolic disorders such as nonalcoholic 

steatohepatitis or insulin resistance, hereditary 

hemochromatosis, alcoholic steatohepatitis and immune-

related diseases including PBC and autoimmune Hepatitis 

(Thorgeirsson SS et al., 2002). Several studies exist which 

identify specific miRNA signatures in the formation 

(Braconi et al., 2008, Varnholt et al., 2008; Wang Yet al., 

2008) and progression of HCC which might potentially be 

exploited for use as potential cancer biomarkers. In most 

studies, it has been reported that microRNA including miR-

21, miR-18,  miR-224miR-221, miR-301, miR-222,  and 

miR-373 are upregulated (Jiang et al., 2008, Ladeiro et al., 

2008; Wong et al., 2008) in HCC while miR-130a, miR-122, 

miR-150, miR-125, miR-200, miR-199, and members of the 

let-7 family (Wong et al., 2008; Murakami et al., 2006; 
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Gramantieri et al., 2008; Gramantieri et al., 2009; Fornari et 

al., 2009) were reported to undergo downregulation in 

HCC. The Chinese group (Hou et al., 2011) also found a 

similar result. Given that only a few specific miRNAs are 

expressed abundantly in the miRNome and these appear to 

play the most important role in liver biology as well as HCC, 

in this study only those miRNAs with a TPM of >2000 

(which accounted for _99% of the total miRNome) and a 

greater than 1-fold alteration were treated as most likely to 

have importance in the pathogenesis of HCC. The third-

ranked most abundant miRNA found in the human liver, 

miR-199a/b-3p, was found to display a marked decrease in 

every one of the sequenced HCC samples when compared 

to matched liver tissue that was non-neoplastic. An 

interesting aspect is that, in miRNoma, there was no 

significant difference found between miRNomes of normal 

liver tissue and HBV or HCV-infected liver tissues. MiR-221 

is a popular example of an miRNA that plays a critical role 

in the development of HCC on the basis of apoptosis 

regulation. There are two contrasting roles that it fulfills in 

relation to regulating apoptosis: one role is pro-apoptotic 
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pathway and the other is anti-apoptotic pathway. MiR-221 

was found on the one hand to be drastically up regulated in 

reaction to apoptosis mediated by death receptor; its 

ectopic expression might, on the other hand, protect both 

primary hepatocytes and hepatoma cells from apoptosis.  

A study carried out by Laidero et al (2008) engaged in the 

analysis of miRNA profiling for two series of liver tumors 

that were fully annotated, with the aim of uncovering 

associations that may exist between clinical and 

pathological features and oncogene/tumor suppressor 

mutations. Researchers compared the expression levels of 

250 miRNAs located in forty-six malignant and benign 

hepatocellular tumors to the levels in four normal liver 

samples. They thereby identified and validated miR-21, 

miR-200, miR-200c, miR-10b, miR-224, and miR-222-

specific deregulation in benign or malignant tumors and 

the overexpression of miR-224 in all tumors. Furthermore, 

miR-96 overexpression was reported in HBV tumors, while 

miR-126* was found to be down-regulated in the case of 

alcohol-related hepatocellular carcinoma. Invasive growth 

and the spread of tumor cells throughout the body 
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represents a marker of malignancy. Researchers described 

miR-31 as a master regulator in relation to the metastasis 

of various types of cancer because it is able to control both 

metastasis-relevant genes as well as genes promoting 

proliferation, and because it was additionally found to 

control the cell cycle as well as apoptotic cell death 

(Schmittgen, 2010). miR-492 is another miRNA that was 

found to be connected with metastasis. It was in relation to 

hepatoblastomas that miR-492 was first found to have 

relevance, and it has also been shown to be up regulated in 

the case of metastatic hepatoblastoma (von Frowein et al., 

2011). 

  

http://www.ncbi.nlm.nih.gov/pubmed?term=%22von%20Frowein%20J%22%5BAuthor%5D
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 1.12 The potential of miRNAs in diagnostics, 

disease prognosis and therapy 
 

There is an increasing amount of evidence to suggest that 

miRNAs have an important role to play in a wide range of 

diseases of the liver, from viral hepatitis and cancers to 

metabolic diseases. Due to the unique expression profile 

that miRNAs display in different types of cancer and at 

different cancer, as well as in other diseases, these small 

molecules might be exploited for use as novel biomarkers 

in disease diagnostics and might furthermore represent a 

novel strategy in terms of miRNA gene therapy. Kota et al 

(Kota et al., 2009) recently suggested the possible 

therapeutic use of miRNAs when they demonstrated that, in 

a mouse model of HCC, administering miR-26a, (which 

down regulates cyclins D2 and E2 and is under-expressed 

in HCC cells) through the use of adeno-associated virus 

(AAV) functions to inhibit the proliferation of cancer cells 

and results in the induction of tumor-specific apoptosis as 

well as dramatically protecting from disease progression, 

without associated toxicity. This research further 

demonstrated that anti-miRNA compounds could be safely 
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and effectively delivered in vivo; the way is now open for 

these basic research findings to be translated into clinical 

applications. Other factors must also be taken into 

consideration: some miRNA genes (such as, for instance, 

miR-1) have been shown to undergo methylation-mediated 

regulation in HCC cell lines (Datta et al., 2008), which 

suggests a significant connection between the DNA 

methylome and the miRNome. More specifically, some 

reports exist which show that miRNA expression profiles 

vary between malignant cholangiocytes, malignant 

hepatocytes and benign forms of liver cancer(Ladeiro et al., 

2008), which suggests that miRNA profiling might be 

employed as molecular diagnostic markers in relation to 

liver disease. 

In relation to disease diagnosis, the analysis of circulating 

miRNAs has gained increasing importance recently. 

Hepatocytes are found to express a distinct set of miRNAs, 

and of these the most abundant is miRNA 122 (Lagos-

Quintana et al., 2002). Recent studies employing rodents 

demonstrate that miRNA 122, in addition to other miRNAs 

that are hepatocyte-abundant, are released from cells in the 
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course of drug-induced injury to the liver (Wang et al., 

2009; Laterza et al., 2009). It was possible to detect these 

hepatocyte-derived miRNAs (HDmiRs) in plasma or serum, 

and levels increased in relation to the dose as well as 

duration of drug exposure (Farid et al, 2011). Furthermore, 

HDmiRs were found to be correlated with aspartate 

transaminases (AST), serum transaminases and alanine 

transaminase (ALT) in addition to liver histology. Beyond 

the diagnostic potential represented by miRNA, 

experimental animal studies also show that miRNAs can be 

considered a feasible target for therapeutic intervention 

aimed at minimizing and even reversing severe tissue 

injury of the type caused by ischemic tissue insults 

(Bonauer et al., 2009). It has recently been demonstrated in 

humans that, in the HDmiRs, it is also possible to detect 

miRNA 122 in serum and its levels were found to be 

elevated in patients presenting hepatocyte injury produced 

by alcoholic, viral or chemical-related hepatotoxicity 

(Zhang et al., 2010; Bihrer et al., 2011). In these same 

patients, serum and plasma miRNA 122 were also closely 

correlated with both transaminases as well as liver 
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histology. Recent small animal model-based studies as well 

as studies in humans demonstrate that HDmiRs represent 

highly sensitive and stable serum biomarkers of injury in 

the liver (Wang et al., 2009; Laterza et al., 2009 Zhang et 

al.,2010; Bihrer et al., 2011). HDmiRs appeared, in both 

humans and rodents, to increase earlier and more quickly 

in serum than it did in AST and ALT. Specifically, levels of 

miR-122 were substantially elevated even in the case of 

subjects who had transaminases below. A study by Farid et 

al. (2011) demonstrated that the idea of miRNAs as hepatic 

injury biomarkers can be considered feasible in the setting 

of liver transplantation as well. Serum HDmiR levels were 

found to be elevated in patients presenting liver injury after 

liver transplantation as well as during acute rejection. On 

the other hand, hepatic levels of miRNA in liver graft 

biopsies were found to exhibit decreased expression with 

prolonged warm ischemic times. Serum HDmiRs showed 

similar kinetics during acute rejection; however, miRNA 

levels increased and decreased sooner than did 

transaminases. As was the case in prior studies as well (15, 

18), miRNAs showed higher sensitivity than did 
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transaminases and the stability of miRNA was confirmed, 

following the results of previous studies (Chen et al.,2008; 

Mitchell et al., 2008; Li et al.,2011; Cortez et al.,2009; El-

Hefnawy et al., 2004; Kosaka et al.,2010). It is possible that 

HDmiRs might offer a solution to the urgent need for 

superior non-invasive biomarkers that would be able to 

serve as earlier and more sensitive markers of rejection or 

liver graft dysfunction. Improved markers would greatly 

aid in the management of liver transplant recipients and 

would enable the safer reduction of immunosuppressive 

medication in order to achieve an improved equilibrium 

between desired effects (such as prevention of graft 

rejection) and side effects (such as toxicity, infection or 

malignancy). 

There are also other miRNAs that might be evaluated for 

use as therapeutic targets: 

- It has been suggested that miRNA-221 represent a 

possible therapeutic target for the treatment of 

hepatitis and liver failure (Sharma et al., 2011) 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sharma%20AD%22%5BAuthor%5D
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- miRNA 492 might function as a biomarker in 

evaluating hepatoblastoma progression. 

 

- The induced expression of miRNA-29 has also been 

proposed as a possible therapeutic agent in treating 

liver fibrosis (Chau et al., 2011). 

 

 

  

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Chau%20BN%22%5BAuthor%5D
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2. THE AIM 
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The main objectives of this thesis are as follows: 

 The first objective is to study the aging of the 

human liver, evaluating the expression of 

miRNAs, which play a fundamental role in the 

regulation of genetic expression. The applied 

experimental strategy is to investigate the 

miRNA profiling in hepatic biopsies obtained 

from donors of different ages (from 13 to 90 

years old) and identify miRNAs most 

significantly associated with aging. As of 

today, there are no available published data 

related to age-dependent miRNA human 

liver. Furthermore, clinical evidence from the 

organ transplant context suggests that there 

is a difference between the liver’s 

chronological and biological ages. As a matter 

of fact, the use of 90 year-old donors leads to 

transplant engraftment results that are 

comparable to those achieved by using 

younger donors (40-50 y.o.).   
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 The second objective is to analyze the role of 

recipient microenvironment and to address 

the question of whether the new (younger or 

older) microenvironment may in some way 

affect the transplanted organ. To this regard 

the task is to study the effect produced by 

donor/recipient age mismatch on the 

miRNAs identified in the first objective. To 

this end, the research attempted to evaluate 

the effect of the greatest donor/recipient age 

mismatches, both when  the recipient is much 

younger than the donor (24.6 ± 2.5 years) 

and vice versa (24.6 ± 7 years). In order to 

better to clarify the role of donor-recipient 

age-mismatch, this study foresees the 

analysis of  control group in which 

donor/recipient age mismatch is absent (±4 

years). No literature exists in relation to this 

issue.  

 



77 

 

 Lastly, the discussion has also a clinical 

perspective on the donor/recipient age 

mismatch effects in terms of transplant 

success, tolerance onset together with 

immunosuppressive therapy regulation.  

 

This study was forms part of the 2008 PRIN project titled 

“Pretransplant liver biological age and age-mismatch 

between donor and recipient as new predictors of transplant 

outcome,” which aims to identify biomarkers of biological 

aging in the context of liver transplantation.  
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3. MATERIALS and METHODS 
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3.1 Liver samples 

 
The biological samples for the study are the fragments of 

liver biopsies performed on donors undergoing liver 

transplant (by the unit of liver transplantation- S'Orsola 

Malpighi Hospital in Bologna, Italy) during 2008–2011 

were used for this study. 

The samples were cut, placed inside cryovials, immediately 

frozen in liquid nitrogen and stored at -80°C. The liver 

fragments, initially vary in size between 200 and 300 mg. 

These dimensions have been reduced to 30-40 mg in liquid 

nitrogen. The fragment thus obtained was then 

disintegrated with an electric immersion homogenizer. 

The liver biopsies were collected before transplantation, 

from 50 donors for 4 age categories: young people from 20 

to 30 years, 31 to 50 years, 51 to 70 years, more than 71 

years. (Table 3.1) 
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AGE GROUP GROUP 1 

(< 30 years) 

GROUP 2 

(31-50 years) 

GROUP 3 

( 51-70 years) 

GROUP 4 

( >71 years) 

Number 9 7 18 16 

 

Table 3.1: donors divided into 4 age groups 

 

 

Table 3.2 shows all analyzed samples divided into 4 groups 

according to age. 
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Table 3.2: 50 samples analyzed, divided into 4 age groups: donor age and 

sex, recipient age 

4 F 18 54

5 M 30 58

16 F 13 14

17 M 23 46

20 M 26 64

22 M 29 37

39 M 20 49

49 M 16 64

50 F 18 69

6 M 43 57

7 M 44 41

10 M 37 51

15 M 50 65

24 M 50 66

44 M 43 21

45 M 45 49

1 M 59 62

2 F 58 52

3 F 69 50

11 F 63 59

12 F 67 27

13 F 58 -

14 M 54 -

21 F 60 60

23 F 53 45

25 F 59 58

26 M 66 55

27 F 54 64

28 M 58 67

31 F 69 59

35 F 59 56

37 F 61 52

38 F 70 53

41 F 69 63

Age Group 1 ( 20 -30 years)

Age Group 2 (31-50 years)

Age Group 3 (51-70 years)

donor sex
donor 

age

recipient 

age

Sample 

Code

8 F 73 64

9 F 76 42

18 F 82 -

19 M 87 59

29 M 84 68

30 M 76 43

32 F 77 47

33 M 82 50

34 F 90 40

36 M 82 57

40 M 74 66

42 M 77 48

43 F 74 56

47 M 72 46

48 F 78 25

52 M 74 68

Age Group 4 (71-90 years)
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3.2 Follow-up samples 
 

In order to evaluate the effect of the mismatch of age 

donor/recipient in liver transplantation, we analyzed the 

samples follow-up. The follow up samples used for this 

study were from recipients several months after 

transplant(by the unit of liver transplantation- S'Orsola 

Malpighi Hospital in Bologna, Italy) performed during 

2008–2011. This biopsy has a high net weight of 

approximately  3-4 mg. The follow-up samples were liver 

biopsies obtained at 7-23 months after transplantation. All 

analyzed samples, both donor and recipient, come from 

males.  

The weight of each sample is approximately 3 to 4 mg. 

The follow-up samples were divided into three groups 

based on the mismatch of age donor / recipient. (Tab 3.3) 

- In the first group, the samples analyzed are from 

matches in which the recipient is older than the 

donor and the age mismatch is greater than 14 years 

(RECIPIENT AGE > DONOR AGE)  
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- In the second group, the recipients were younger 

than the donors, with an age difference of 18 to 29 

years (RECIPIENT AGE < DONOR AGE) 

- In the third group, donors and recipients are the 

same age ± 4. 

 

 

First group:  

 

 

Second group:   

 

  

SAMPLE  
CODE 

DONOR  
AGE 

RECIPIENT  
AGE 

DONOR  
SEX 

RECIPIENT  
SEX 

AGE MISMATCH  
(YEARS DON - YEARS  

RECIPIENT)  
DISEASES RECIPIENT HEPATITIS  

RECIPIENT FOLLOW UP  

19 87 60 M M 27 hepatocellular  
carcinoma/cirrhosis 12 months 

42 77 48 M M 29 post-necrotic  
cirrhosis C+  13 months 

46 75 57 M M 18 hepatocellular  
carcinoma/cirrhosis 10 month 

RECIPIENT AGE  < DONOR AGE  

AGE MISMATCH  
(YEARS DON - YEARS  

RECIPIENT)  
6 43 57 M M -14 alcoholic cirrhosis 23 months 

15 50 66 M M -16 hepatocellular  
carcinoma/cirrhosis B+ 18 months 

24 50 65 M M -15 hepatocellular  
carcinoma/cirrhosis C+  19 months 

39 20 49 M M -29 amyloidosis 8 months 

RECIPIENT AGE  > DONOR AGE  

DISEASES RECIPIENT HEPATITIS  
RECIPIENT 

SAMPLE  
CODE 

DONOR  
AGE 

RECIPIENT  
AGE 

DONOR  
SEX 

RECIPIENT  
SEX FOLLOW UP  
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Third group:  

 

Tab 3.3. three different groups of follow-up analyzed based on age of the 

recipient 

 

 

All follow-up samples was performed using real time PCR 

(qRT PCR) to evaluate the expression of miRNAs. The same 

analysis was performed on biopsies of the donor. 

 

 

3.3 Total and small RNA extractions 
 

Total RNA and miRNA were extracted from liver biopsies 

and follow-up using two different protocols: 

- mir Vana™ miRNA Isolation Kit (Ambion) for liver 

biopsies analysis 

AGE MISMATCH  
(YEARS DON - YEARS  

RECIPIENT)  
84 49 49 M M 0 hepatocellular  

carcinoma/cirrhosis B+ 7 months 
7 44 41 M M 3 other disease 8 months 

45 45 49 M M -4 post-necrotic  
cirrhosis C+  7 months 

FOLLOW UP  DISEASES RECIPIENT HEPATITIS  
RECIPIENT 

RECIPIENT AGE  = DONOR AGE  

SAMPLE  
CODE 

DONOR  
AGE 

RECIPIENT  
AGE 

DONOR  
SEX 

RECIPIENT  
SEX 
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- AllPrep DNA/RNA/Protein (Qiagen) for follow up 

analysis 

 

The mirVana™ miRNA Isolation Kit: employs an organic 

extraction followed by immobilization of RNA on glass-fiber 

filters to purify either total RNA, or RNA enriched for small 

species, from tissue samples. In particular, the sample is 

first lysed in a denaturing lysis solution which stabilizes 

RNA and inactivates RNases. The lysate is then extracted 

once with Acid-Phenol:Chloroform which removes most of 

the other cellular components, leaving a semi-pure RNA 

sample. This is further purified over a glass-fiber filter by 

one of two protocols to yield either total RNA or a size 

fraction enriched in miRNAs. The glass-fiber filter 

procedure uses solutions formulated specifically for miRNA 

retention to avoid the loss of small RNAs that is typically 

seen with glass-fiber filter methods. 

 

The mirVana miRNA Isolation  includes the following steps: 

 Weigh the biopsy fragment: all fragments weighing 

40-80 mg 
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 Aliquot 10 volumes per tissue mass of Lysis/Binding 

Buffer into a homogenization vessel on ice  

 Keeping the sample cold, thoroughly disrupt the 

tissue in Lysis/Binding Buffer using a motorized 

rotor-stator homogenizer.  

 Add 1/10 volume of miRNA Homogenate Additive to 

the tissue lysate, and mix well by vortexing or 

inverting the tube several times. 

 Leave the mixture on ice for 10 min.  

 Add a volume of Acid-Phenol:Chloroform that is 

equal to the lysate volume before addition of the 

miRNA Homogenate Additive.  

 Vortex for 30–60 sec to mix. 

 Centrifuge for 5 min at maximum speed (10,000 x g) 

at room temperature to separate the aqueous and 

organic phases. After centrifugation, the interphase 

should be compact; if it is not, repeat the 

centrifugation. 

 Carefully remove the aqueous (upper) phase 

without disturbing the lower phase, and transfer it 

to a fresh tube. Note the volume removed. 
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 Add 1.25 volumes of room temperature 100% 

ethanol to the aqueous phase 

 Pipet the lysate/ethanol mixture (from the previous 

step) onto the Filter Cartridge 

 Centrifuge for ~15 sec to pass the mixture through 

the filter. Centrifuge at RCF 10,000 x g (typically 

10,000 rpm). 

 Discard the flow-through, and  repeat until all of the 

lysate/ethanol mixture is through the filter. 

 Apply 700 μL miRNA Wash Solution 1 (working 

solution mixed with ethanol) to the Filter Cartridge 

and centrifuge for ~5–10 sec. 

 Discard the flow-through from the Collection Tube, 

and replace the Filter Cartridge into the same 

Collection Tube. 

 Wash the filter twice with 500 μL Wash Solution 

2/3: Apply 500 μL Wash Solution 2/3 (working 

solution mixed with ethanol) and draw it through 

the Filter Cartridge as in the previous step. 

 Repeat with a second 500 μL aliquot of Wash 

Solution 2/3. 
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  After discarding the flow-through from the last 

wash, replace the Filter Cartridge in the same 

Collection Tube and spin the assembly for 1 min to 

remove residual fluid from the filter. 

 Elute RNA with 100 μL 95°C Nuclease-free Water: 

Transfer the Filter Cartridge into a fresh Collection 

Tube (provided  of pre-heated (95°C) nuclease-free 

water to the center of the filter, and close the cap.  

 Spin for ~20–30 sec at maximum speed to recover 

the RNA. below.  

 Collect the eluate and place at -80 ° C 

 

AllPrep DNA/RNA/Protein Mini Kit: allows simultaneous 

purification of DNA, RNA, and protein from the same 

precious sample (resume in flow chart Fig 3.4). The 

peculiarity of this kit is that it allows the extraction of 

DNA/RNA and protein fragment from the same small, up to 

30 mg. 

 All pieces weigh less than 10 mg 

 Tissues are first lysed and homogenized, using a 

motorized rotor-stator homogenizer,  in Buffer RLT 
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which immediately inactivates DNases and RNases 

as well as proteases to ensure isolation of intact 

DNA, RNA, and proteins.  

 The lysate is then passed through an AllPrep DNA 

spin column. This column, in combination with the 

high-salt buffer, allows selective and efficient 

binding of genomic DNA. The column is washed and 

pure, ready-to-use DNA is then eluted.  

 Ethanol is added to the flow-through from the 

AllPrep DNA spin column to provide appropriate 

binding conditions for RNA, and the sample is then 

applied to an RNeasy spin column, where total RNA 

binds to the membrane and contaminants are 

efficiently washed away. High-quality RNA is then 

eluted in RNase-free water.  

 Buffer APP, a novel aqueous protein precipitation 

solution, is added to the flow-through of the RNeasy 

spin column, and the precipitated proteins are 

pelleted by centrifugation. Intact total proteins are 

redissolved in an appropriate buffer and then ready 

to use in downstream applications. The kit includes 
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Buffer ALO, which is compatible with SDS-PAGE, for 

dissolving the protein pellet.  

The AllPrep DNA/RNA/Protein Mini Kit includes 

the following steps: 

 Tissues are first lysed and homogenized, using a 

motorized rotor-stator homogenizer 

Tutti I campioni pesano 4-5 mg 

 Centrifuge the lysate for 3 min at maximum speed. 

Carefully remove the supernatant by pipetting, and 

transfer it to the AllPrep DNA spin column placed in 

a 2 ml collection tube. Close the lid gently, and 

centrifuge for 30 s at ≥8000 x g (≥10,000 rpm). 

 (STEP A) Place the AllPrep DNA spin column in a 

new 2 ml collection tube, and store at room 

temperature (15–25ºC) or at 4ºC for later DNA 

purification. Use the flow-through for RNA 

purification. 
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Total RNA purification 

 Add 350 μl of 100% ethanol to the flowthrough, and 

mix well by pipetting. Do not centrifuge. 

  Transfer up to 700 μl of the sample, including any 

precipitate that may have formed, to an RNeasy spin 

column placed in a 2 ml collection tube. Close the lid 

gently, and centrifuge for 15 s at ≥8000 x g (≥10,000 

rpm).  

 (STEP B) Transfer the flow-through to a 2 ml tube 

for protein purification in steps . 

  Add 700 μl Buffer RW1 to the RNeasy spin column. 

Close the lid gently, and centrifuge for 15 s at ≥8000 

x g (≥10,000 rpm) to wash the spin column 

membrane. Discard the flow-through. 

 Add 500 μl Buffer RPE to the RNeasy spin column. 

Close the lid gently, and centrifuge for 15 s at ≥8000 

x g (≥10,000 rpm) to wash the spin column 

membrane. Discard the flow-through. 

 Add 500 μl Buffer RPE to the RNeasy spin column. 

Close the lid gently, and centrifuge for 2 min at 
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≥8000 x g (≥10,000 rpm) to wash the spin column 

membrane. 

 Place the RNeasy spin column in a new 2 ml 

collection tube and discard the old collection tube 

with the flowthrough. Centrifuge at full speed for 1 

min. 

 Place the RNeasy spin column in a new 1.5 ml 

collection tube. Add 30–50 μl RNase-free water 

directly to the spin column membrane. Close the lid 

gently, and centrifuge for 1 min at ≥8000 x g 

(≥10,000 rpm) to elute the RNA. 

  If the expected RNA yield is >30 μg, repeat step 12 

using another 30–50 μl of RNase-free water.  

Total protein precipitation  
 

 Add 600 μl  of Buffer APP to the flow-through from 

STEP B. Mix vigorously and incubate at room 

temperature for 10 min to precipitate protein. 

 Centrifuge at full speed for 10 min. 

 (STEP C) Transfer the supernatant to a new 2 ml 

tube. 
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 Add 500 μl of 70% ethanol to the protein pellet. 

Centrifuge at full speed for 1 min, and remove the 

supernatant by using a pipet or by decanting as 

much liquid as possible. It is not necessary to 

resuspend or incubate the pellet. 

 Dry the protein pellet for 5–10 min at room 

temperature. 

 Add up to 100 μl 8 M urea and mix vigorously to 

dissolve the protein pellet. 

 Incubate for 5 min at 95°C to completely dissolve 

and denature the protein. Then cool the sample to 

room temperature. 

 Centrifuge for 1 min at full speed to pellet any 

residual insoluble material. The supernatant can be 

stored at –20°C . 

Purification of miRNA from cells and tissues 

using the AllPrep® DNA/RNA/Protein Mini Kit 

and RNeasy® MinElute® Cleanup Kit 
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 Add 1 volume of 100% ethanol to the supernatant 

from STEP C, and mix well by pipetting up and 

down.  

 Transfer up to 700 μl of the sample to an RNeasy 

MinElute spin column placed in a 

 2 ml collection tube.  Close the lid gently, and 

centrifuge for 15 s at ≥8000 x g (≥10,000 rpm). 

Discard the flow-through. Repeat this step until the 

entire sample has passed through the RNeasy 

MinElute membrane. 

 Place the RNeasy MinElute spin column in a new 2 

ml collection tube. Add 500 μl Buffer RPE to the spin 

column. Close the lid gently, and centrifuge for 15 s 

at ≥8000 x g (≥10,000 rpm) to wash the spin column 

membrane. Discard the flowthrough.  

  Add 500 μl of 80% ethanol to the RNeasy MinElute 

spin column. Close the lid gently, and centrifuge for 

2 min at ≥8000 x g (≥10,000 rpm) to wash the spin 

column membrane. Discard the flow-through and 

collection tube. 



95 

 

 Place the RNeasy MinElute spin column in a new 2 

ml collection tube. Open the lid of the spin column, 

and centrifuge at full speed for 5 min. Discard the 

flow-through and collection tube. 

 Place the RNeasy MinElute spin column in a new 1.5 

ml collection tube (supplied). Add 14 μl RNase-free 

water directly to the center of the spin column 

membrane. 

 Close the lid gently, and centrifuge for 1 min at full 

speed to elute the RNA. 

 
Genomic DNA purification 
 

  Add 500 μl Buffer AW1 to the AllPrep DNA spin 

column from STEP A. Close the lid gently, and 

centrifuge for 15 s at ≥8000 x g (10,000 rpm). 

Discard the flow-through. 

 Add 500 μl Buffer AW2 to the AllPrep DNA spin 

column. Close the lid gently, and centrifuge for 2 min 

at full speed to wash the spin column membrane. 

 Place the AllPrep DNA spin column in a new 1.5 ml 

collection tube. Add 100 μl Buffer EB directly to the 
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spin column membrane and close the lid. Incubate at 

room temperature (15–25ºC) for 1 min, and then 

centrifuge for 1 min at ≥8000 x g (10,000 rpm) to 

elute the DNA 

 Repeat below with 50 μl Buffer EB to elute further 

DNA 
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Fig. 3.4: Flowchart AllPrep DNA/RNA/Protein procedure 
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3.4 Analysis of total RNA extracted 
 

- Bioanalyzer analisys 

 

RNA integrity was verified using the Agilent 2100 

Bioanalyzer (Agilent Technologies). 

Qualitative and quantitative RNA testing was performed 

by capillary electrophoresis gel denaturant on 

equipment using microchips Agilent RNA 6000 Nano 

Assay (Agilent Technologies, USA). In particular, 

electrophoresis allows visualization of the two peaks of 

rRNA and 18S, 28S (Fig. 2.5), which together account for 

about 80% of total RNA, as well as a peak on RNA 

complex of low molecular lost. The integrated area 

under the two peaks rRNA allows an estimate of the 

concentration of total RNA which is a parameter great 

importance particularly in view of subsequent uses that 

require a high level of RNA quality. This quantification 

was performed only for the samples of RNA extracted 

from biopsies. 
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Fig. 3.5: Example of Electropherogram 

 

- Nanodrop analysis  

 

RNA extracted using the protocols described above was 

analyzed by spectrophotometer (NanoDrop-1000, Thermo 

Scientific, USA) to verify the quantity using 1 μl of extracted 

RNA. This quantification was performed both for the 

samples of RNA extracted from biopsies at time zero and 

for the follow-up RNA samples. 

  

Small RNA 
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3.5  Affymetrix GeneChip Arrays 
 

The methodology used for the analysis of the 

transcriptome, is that of Affymetrix microarrays (Human 

Genome U133 Plus 2.0). The Affymetrix chip allows to 

analyze simultaneously transcribed approximately 47.000 

in order to study the different gene expression in different 

age-groups. 

The laboratory where I conducted this research is not 

equipped with the necessary platform for reading 

Affymetrix chips. For this reason, RNA extracts were sent to 

the laboratory of the Department of Biomedical Sciences at 

the University of Modena. I personally (though not 

operationally) oversaw the Modena team in the process of 

preparing the chips. 

Biopsy samples analyzed were 35, including 13 females and 

22 males. The following table 3.6 shows the data for the 35 

biopsies divided into 4 age groups based on age of the 

donor: 
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Table 3.6: samples used for transcriptome analysis 

  

5 M 30 58

16 F 13 14

17 M 23 46

20 M 26 64

22 M 29 37

39 M 20 49

6 M 43 57

7 M 44 41

10 M 37 51

15 M 50 65

24 M 50 66

44 M 43 21

45 M 45 49

1 M 59 62

2 F 58 52

3 F 69 50

11 F 63 59

12 F 67 27

14 M 54 -

21 F 60 60

23 F 53 45

26 M 66 55

27 F 54 64

28 M 58 67

31 F 69 59

8 F 73 64

9 F 76 42

19 M 87 59

29 M 84 68

30 M 76 43

32 F 77 47

33 M 82 50

34 F 90 40

36 M 82 57

42 M 77 48

Age Group 1 ( 20 -30 years)

Age Group 2 (31-50 years)

Age Group 3 (51-70 years)

Age Group 4 (71-90 years)

T
R

A
SC

R
IP

T
O

M
E

 A
N

A
L

Y
SI

S

Sample 

Code
donor sex donor age

recipient 

age
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GeneChip® Expression Analysis 

Total RNA (1 μg to 15 μg) is first reverse transcribed using 

a T7- Oligo(dT) Promoter Primer in the first-strand cDNA 

synthesis reaction. Following RNase H-mediated second-

strand cDNA synthesis, the double-stranded cDNA is 

purified and serves as a template in the subsequent in vitro 

transcription (IVT) reaction. The IVT reaction is carried out 

in the presence of T7 RNA Polymerase and a biotinylated 

nucleotide analog/ribonucleotide mix for complementary 

RNA (cRNA) amplification and biotin labeling. The 

biotinylated cRNA targets are then cleaned up, fragmented, 

and hybridized to GeneChip expression arrays.  

 

The following major steps outline GeneChip expression 

analysis: 

1. Target Preparation: double-stranded cDNA is 

synthesized from total RNA. An in vitro transcription (IVT) 

reaction is then done to produce biotin-labeled cRNA from 

the cDNA. The cRNA is fragmented before hybridization. 
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2. Target Hybridization: A hybridization cocktail is 

prepared, including the fragmented target, probe array 

controls, BSA, and herring sperm DNA. It is then hybridized 

to the probe array during a 16-hour incubation. The 

hybridization process is described in the respective 

sections for the different probe array types. 

 

3. Fluidics Station Setup: The fluidics station is then 

prepared for use by priming with the appropriate buffers. 

 

4. Probe Array Washing and Staining: Immediately 

following hybridization, the probe array undergoes an 

automated washing and staining protocol on the fluidics 

station. 

 

5. Probe Array Scan: Once the probe array has been 

hybridized, washed, and stained, it is scanned. Each 

workstation running Affymetrix Microarray Suite or GCOS 

can control one scanner. The software defines the probe 

cells and computes an intensity for each cell. Each complete 

probe array image is stored in a separate data file identified 
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by the experiment name and is saved with a data image file 

(.dat) extension. 

 

6. Data Analysis: The .dat image is analyzed for probe 

intensities; results are reported in tabular and graphical 

formats.  

The protocol is summarized in the following flowchart (Fig. 

3.7) 
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Fig. 3.7: GeneChip Eukaryotic Labeling Assays for Expression Analysis 
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3.6 MicroRNA profiling 
 

365 human mature miRNAs were profiled in 12 liver 

sample of male subjects of different age (age range 18-90 

y). MiRNA analysis was performed using an Applied 

Biosystem 7900 HT real-time PCR instrument and human 

MicroRNA Array pool A (TaqMan, Applied Biosystem), 

containing 365 different human miRNA assays in addition 

to selected small nucleolar RNAs (snoRNAs). The table 

below (Table 2.8) shows the distribution of samples in the 

4 age groups. 
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Table 3.8: distribution of samples in the 4 age groups 

 

 

Following the protocol: 

 

5 M 30 58

17 M 23 46

20 M 26 64

6 M 43 57

7 M 44 41

10 M 37 51

14 M 54 -

26 M 66 55

28 M 58 67

19 M 87 59

29 M 84 68

30 M 76 43

Age Group 2 (31-50 years)

Age Group 3 (51-70 years)

Age Group 4 (71-90 years)

Age Group 1 ( 20 -30 years)

Sample 

Code

donor 

sex

donor 

age

recipient 

age
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Reverse transcription (RT) Reaction  
 
RNA was converted to cDNA by priming with a mixture of 

looped primers using MegaPlex kit  (Applied Biosystems, 

Foster City CA).  

 
RT Reaction Mix 
 

 Combine the following in a 1.5-mL microcentrifuge 

tube: 

 

 

 

 

 Invert the tube six times to mix, then centrifuge the 

tubes briefly. 

RT Reaction Mix 

Components

Volume for                      

One Sample (µl)

Megaplex RT primers (10X) 0.8

dNTPs with dTTP (100mM) 0.2

MultiScribe Reverse (50 U/µl) 1.5

10X RT Buffer 0.8

MgCl2 (25 mM) 0.9

Rnase Inhibitor (20 U/µl) 0.1

Nuclease-free water 0.2

TOTAL 4.5
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 In a Tube Strip, pipette 4.5 μL of the RT reaction mix 

into each tube 

 Add 6 μL (1 to 350 ng) total RNA into each tube 

containing RT reaction mix. 

 Then invert the tubes six times to mix. Spin briefly. 

 Incubate the plate on ice for 5 min. 

 Set up the run method using the following 

conditions:  

 

 

 

 

 

Preamplification Reactions 
 
In this step, preamplify specific cDNA targets to increase 

the quantity of desired cDNA for gene expression analysis 

using TaqMan® MicroRNA Arrays.   

Stage Temp Time

16 °C 2 min

42 °C 1 min

50 °C 1 sec

Hold 85 °C 5 min

Hold 4 °C ∞

Cycle                                          

(40 cycles)
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PreAmp Reaction Mix: 
 
 

 
 

 

 Invert the tube six times to mix, then centrifuge the 

tubes briefly. 

 Into each tube, pipette 2.5 μL of each RT product 

 Dispense 22.5 μL of PreAmp reaction mix into each 

tube containing the RT product. 

 Then invert the tubes six times to mix. Spin briefly. 

 Incubate the tubes on ice for 5 min. 

 Set up the run method using the following 

conditions: 

 

 

PreAmp Reaction Mix 

Components

Volume for                      

One Sample (µl)

TaqMan preAmp Master Mix, 2X 12.5

MegaPlex PreAmp Primers (10X) 2.5

Nucelase-free water 7.5

TOTAL 22.5
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 Remove the tubes from the thermal cycler. 

 Briefly centrifuge the tubes or plate. 

 Dilute the sample add 75 μL of 0.1✕ TE pH 8.0 to 

each tube. 

 Seal the tubes, then invert six times to mix, and spin 

briefly. 

 

Real-Time PCR Reactions 

 

Prepare the TaqMan® MicroRNA Array: To bring the 

card to room temperature before use  

 Thaw the diluted, stored PreAmp product on ice.  

 Mix by inverting six times, then centrifuge the tube 

or plate briefly. 

Stage Temp Time

Hold 95 °C 10 min 

Hold 55 °C 2 min

Hold 72 °C 2 min

95 °C 15 sec

60 °C 4 min

Hold 99.9 °C 10 min 

Hold 4 °C ∞

Cycle (12 Cycles)
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 Mix the TaqMan Universal PCR Master Mix by 

swirling the bottle. 

 Prepare the PCR reaction mix in a 1.5-mL 

microcentrifuge tube: 

 

 

 

 Invert the tube six times to mix, then centrifuge the 

tubes briefly. 

 Dispense 100 μL of the PCR reaction mix into each 

port of the CARD A v 2 TaqMan MicroRNA Array 

(Fig. 3.9) 

 Centrifuge, then seal the array. 

 Load and run the array using the 384 –well TaqMan 

Low density Array default thermal- cycling 

(conditions in Applied Biosystem 7900HT Fast Real-

Time PCR System instrument) 

Component Volume for One Array

Taqman Universal PCR Master 

Mix, No AmpErase UNG 2X
450

Diluited PreAmp product 9

Nuclease-free water 441

Total 900
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Fig 3.9. TaqMan® Array Microfluidic Card A (Applied Biosystem) 
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3.7 Real Time PCR (qRT PCR) 
 

Expression levels of specific mature miRNAs were assessed 

by real-time PCR analysis using a TaqMan Human 

MicroRNA Assay kit (Applied Biosystems, Foster City, CA).  

 

Quantification using the TaqMan MicroRNA Assays was 

carried out using two-step RT-PCR: 

1. In the reverse transcription (RT) step, cDNA is 

reverse transcribed from total RNA samples using 

specific miRNA primers from the TaqMan MicroRNA 

Assays and reagents from the TaqMan®miRNA 

Reverse Transcription Kit. 

2. In the PCR step, PCR products are amplified from 

cDNA samples using the TaqMan MicroRNA Assay 

together with the TaqMan® Universal PCR Master 

Mix. 

The two steps are summarized in Figure 3.10 
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Figure. 3.10: Real-time PCR kit 'TaqMan MicroRNA Assay'. 

 

Step 1 

 In a test tube add 0.2 ml volume use of 10 ng of total 

RNA per 15 μL RT reaction 

 Prepare the mix for reverse transcription using 

reagents of the kit 'TaqMan ® MicroRNA Reverse 
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Transcription 'primer and 5X contained in the kit' 

TaqMan MicroRNA Assay. 

 

 

 

 

 Each 15-μL RT reaction consists of 7 μL master mix, 

3 μL primer, and 5 μL RNA sample. 

 Mix gently. Centrifuge to bring solution to the 

bottom of the tube. 

 Before opening the RT Primer tubes, thaw the tubes 

on ice and mix by vortexing, then centrifuge them. 

  For each 15-μL RT reaction, combine RT master mix 

with total RNA in the ratio of: 7 μL RT master mix to 

5 μL total RNA. 

Component Master Mix
Master mix 

Volume/15 µl 

reaction100mM dNTPs (with dTTP) 0.15 µl

RNase Inhibitor, 20U/μL 0.19 µl

Nuclease-free water 4.16 µl

Total 7.00 µl

MultiScribe™ Reverse 

Transcriptase, 50 U/μL

1.00 µl

10X Reverse Transcription 

Buffer

1.50 µl
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 Mix gently. Centrifuge to bring the solution to the 

bottom of the tube. 

 For each 15-μL RT reaction, dispense 12.0 μL of RT 

master mix containing total RNA  into a 0.2-mL 

polypropylene reaction tube.  

 Transfer 3 μL of RT primer (tube labeled RT Primer) 

from each assay set into the corresponding RT 

reaction tube. 

 Incubate the tube on ice for 5 min and keep on ice  

 Placed the samples in thermal cycler and run the 

following program. 

 

 

 

 

Step 2 

After the reverse transcription reaction, place the cDNA 

samples on ice and prepare the reaction mix for real-time 

PCR. 

Stage Temp Time

Hold 16 °C 30 min 

Hold 42 °C 30 min

Hold 85 °C 5 min

Hold 4 °C ∞
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 Mix gently. Centrifuge to bring solution to the 

bottom of the tubes. 

 Prepare the PCR reaction tube by dispensing 20 μL 

of the complete PCR master mix into each tube. 

 Load the reaction tubes  into the rotor in real time 

PCR cycler Rotor Gene-Q and start. The samples 

were analyzed in duplicate. Instrument used : real-

time PCR cycler Rotor Gene-Q (Qiagen)  

 Set up the run method using the following 

conditions: 

 

Component
Volume (µl)/ 20 

µl Reaction
TaqMan MicroRNA Assay 

(20X)
1

Product from RT reaction 

(Minimum 1:15 Dilution)
1.33

TaqMan 2x Universal PCR 

FAST Master Mix, No
10

Nuclease-free water 7.67

Total Volume 20
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 The Real Time PCR results were normalized in two 

different ways:  

- miRNA 21 was used to normalize the results 

obtained from the donor. 

- RNU44 was used to normalize the results obtained 

from the follow up. 

Subsequently, the relative expression of the miRNAs 

was evaluated by inserting data into an Excel data sheet 

using the 2 - (Ct) method. 

 

3.8  Protein extraction and western blot analysis 
 

 Total proteins were extracted from 200 mg frozen 

liver tissue. 

 Western blot analysis was performed in 4 young 

subjects compared with 7 older subjects (Table 

3.11) 

Stage Temp Time

Hold 95°C 20 sec

Cycle 60 °C 1 sec

Hold 85 °C 20 sec
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Table 3.11: samples analyzed by western blot analysis 

 

 Keeping the sample thoroughly disrupt the tissue in 

500 µl of RIPA  buffer using a motorized rotor-stator 

homogenizer 

 Leave the mixture on ice for 10 min 

 Vortex for 30–60 sec to mix. 

 Leave the mixture on ice for 10 min 

 Centrifuge for 1 hour at maximum speed (25,000 x 

g) at 4°C 

 The supernatant were quantified using the Bradford 

assay (BioRad Laboratories). 

 

sample 

code

age 

(years)
sex

88 12 M

80 37 M

77 44 M

24 50 M

78 71 M

113 73 M

100 75 M

46 75 M

36 82 M

114 83 M

98 83 M
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Western Blot analysis: 

 

 Take a volume of 40 µg protein extract.  

 Add 2,5 µl  2X Laemmli buffer. 

 Add water to a final volume of 10 µl  

 placing the tubes in the thermocycler at 95 ° C for 5 

minutes 

 With a Hamilton syringe by loading the samples and 

markers in quantities by default on polyacrylamide 

gel. 

 Prepare the gel with the following composition for 

resolving and stacking gel: 

 

 

 

Components Gel Volume (ml)

Water 3.3

30% acrylamide- Bisacrilamide  

solution 37.5: 1
4

1,5M Tris (PH 8,8) 2.5

10% SDS 0.1

10% Ammonium persolfate 0.1

TEMED 0.004

RESOLVING GELS 12% 
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 Perform electrophoresis in 1X Running Buffer at 30 

mA for 1 h at RT. 

 Equilibrate the gel for 1 'in 1X Transfer Buffer. 

 Assemble the transfer apparatus and transfer of 

membrane 1X transfer buffer at 250 mA for 2.5 h at 

4°C. 

 Disassemble the apparatus and stain the membrane 

with Ponceau red to verify the advent of protein 

transfer. 

 Decolorize the membrane in TBS Tween 20 0,1% 

 Membranea Wash in TBS Tween 20 0.1% more 

(TBS-T) 

 Block the membrane for 1 hour at RT gentle 

agitation. 

Components Gel Volume (ml)

Water 2.2

30% acrylamide- Bisacrilamide  

solution 37.5: 1 0.67

1,0M Tris (PH 6,8) 1

10% SDS 0.04

10% Ammonium persolfate 0.04

TEMED 0.004

STACKING GEL 5%
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 Wash the membrane for 1 'in TBS-T. 

 Incubate the membrane overnight at 4 ° C in 

agitation with the primary antibody:  

- SCL1A2 (LSBio, USA) diluted 1:250 in 5% (w/v) 

milk powder in TBS- Tween 20 0.01%   

- actin: diluted 1:1000 in 5% (w/v) milk powder in 

TBS- Tween 20 0.01%   

 Wash the membrane 3 times in TBS-T-7 'at RT in 

agitation.  

 Incubate the membrane for 1 hour at RT in agitation 

with the secondary antibody: 

- anti-mouse diluted 1:1000 in 5% (w/v) milk 

powder in TBS- Tween 20 0.01% for SCL1A2 

- anti–goat diluted 1: 1500 in 5% (w/v) milk 

powder in TBS- Tween 20 0.01% for Actin 

 Detected with ECL Advance Western Blotting 

Detection Kit (Santa Cruz Biotechnology) in the dark 

room to add a photographic plate and, after 30 

minutes for SCL1A2, 1 minute for Actin, the best 

time to impress, to proceed with the development of 

the photographic plate. 
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 Acquiring a digital image of the plates through the 

scanner and the program PhotoShop and 

quantifying the bands using densitometric software 

Quantity-One (Biorad). 

 

3.9 Softwares  
 

Analysis of Gene Chip Affymetrix microarray was 

performed by the group of computer science and statistics 

of the Department of Physics, University of Bologna, by the 

use of the software MATLAB. T student Test and Anova 

were used to assess significance among groups of different 

ages. P values less than 0.05 were considered significant 

Analysis of miRNAs putative targets: SID1.0 (Simple String 

Identifier) was used for identification of miRNAs targets. 

SID1.0 is Fortran program, based on the strategy of 

exhaustive search and specifically designed to screen 

shared data (target genes, miRNAs and pathways) available 

from PicTar and DIANA-MicroT 3.0 databases (Albertini et 

al., 2011). computational tools for determining the most 

energetically favored hybridization sites of small to large 
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RNAs. PicTar (Krek et al., 2005) is capable of identifying 

common targets of known miRNAs. DIANA-microT 

(Kiriakidou et al., 2004) system utilizes experimentally 

derived miRNA/mRNA binding rules.  

 

 

3.10 Statistical analysis of CARD A  
 

MiRNAs from CARD A expressed at detectable level (80% of 

CARD raw data) were included in the final data analysis. 

miRNAs expression was normalized comparing their 

expression to the endogenous control, i.e  the MummU6 

average .  The overall miRNA expression on each array is 

normalised by using miRNA21 or RNU44 median (ΔCt). 

MiRNA fold changes higher than 2 and lower than 0.5 were 

selected (ΔΔCt > 2 and < 0.5). Fold-change was calculated 

based on the estimated mean difference (2^ (-ΔΔCT) ). To test 

the significance of miRNA expression among samples, 

independent or paired sample T-test was used. P values 

less than 0.05 were considered significant. 
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3.11 Statistical analysis of qRT-PCR   
 

To validate miRNA profiling analysis, qRT-PCR was 

performed. Linear regression was applied to data and 

independent or paired samples T test was used to 

determine statistical significance of miRNA or mRNA 

expression among groups. P values less than 0,05 were 

considered significant. 
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4. RESULTS 
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4.1 MicroRNA expression patterns  
 

To identify miRNAs differentially expressed in human liver 

during aging. liver specimens were first screened using 

miRNA CARD A. 12 liver samples obtained from male 

subjects of different age were analysed as follows: 6 

subjects with an age range of 18-50 years. 3 subjects with 

an age range of 50-70 years and 3 subjects with an age 

range of 70-90 years. Table 4.1 show the age group and the 

mean of each group. 

 

 

Table 4.1: 12 liver sample in age group and mean of the years for each age 

group 

 

 

miRNAs expressed at detectable level in more than 80% of 

samples were included in the analysis. Using these filtering 

criteria, 290 miRNAs of the 365 analysed were included in 

the final analysis, shown in Table 4.2. The first part of the 

table displays the values of the 4 (MammU6) endogenous 

MALE

SAMPLES
GROUP 1 GROUP2 GROUP 3 GROUP 4

YEARS 23;26;30 37;43;44 54;58;66 76;84;87

MEAN 26.3 41.3 59.3 82.3
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controls and their mean, the standard deviation and the 

number of miRNAs actually detected. The second part of 

the table, on the left, shows the miRNAs’ number 

identification (Detector) and the Ct value of 12 samples, 

which were labeled with abbreviations: S01. S02. etc.  The 

Delta Ct (ΔCt) was normalized with the average of the 

(Mumm U6) endogenous control: Delta Ct (ΔCt) = Ct – 

Average MummU6. The Ct value is listed from smallest to 

largest.  The third part of the table contains those miRNAs 

were not detected in any of the 12 samples. 

 

 

 

 

#   Detector S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 
107 RNU48-4373383 2,15 2,04 0,89 1,72 1,54 1,11 1,50 0,84 1,46 1,19 1,16 1,60 

20 hsa-miR-19b-4373098 2,22 2,06 3,02 2,59 2,85 1,92 2,05 2,48 3,28 2,80 2,27 2,50 
67 hsa-miR-126-4395339 2,50 2,19 2,75 2,39 3,03 2,45 2,91 2,26 3,04 2,40 2,26 2,16 
41 hsa-miR-30c-4373060 2,85 3,64 3,49 4,46 4,45 3,50 4,07 3,98 4,27 4,11 3,43 4,25 
62 hsa-miR-122-4395356 3,11 3,07 2,99 4,14 3,13 2,99 3,37 3,74 3,79 3,94 3,60 3,25 

116 hsa-miR-192-4373108 3,19 2,55 2,81 2,90 3,21 2,78 3,58 2,66 2,72 2,90 2,77 2,59 
95 hsa-miR-146b-5p-4373178 3,26 5,71 5,57 3,50 4,79 2,28 3,69 4,63 4,31 4,66 4,11 3,79 
37 hsa-miR-29a-4395223 3,31 3,85 4,51 4,15 4,44 3,89 3,89 4,33 4,34 3,91 3,93 4,97 

146 hsa-miR-223-4395406 3,31 4,95 4,55 4,42 4,10 2,58 3,27 4,17 3,21 4,19 3,61 3,95 
27 hsa-miR-24-4373072 3,53 2,77 2,92 3,28 3,08 3,24 2,91 3,14 3,11 3,66 3,29 3,26 
40 hsa-miR-30b-4373290 3,84 3,81 3,71 4,50 3,87 3,37 3,85 3,90 4,08 4,18 3,83 4,12 

115 hsa-miR-191-4395410 4,62 4,44 4,59 4,49 4,74 4,57 4,76 4,40 4,31 4,63 4,74 4,26 
21 hsa-miR-20a-4373286 4,64 4,01 4,81 4,74 4,91 3,96 3,86 4,73 5,11 5,11 4,57 5,03 
16 hsa-miR-17-4395419 4,70 4,23 4,93 4,52 5,04 4,34 4,47 4,56 4,77 5,12 4,92 4,64 
58 hsa-miR-106a-4395280 4,82 4,21 4,80 4,55 5,27 4,58 4,39 4,73 4,73 5,14 4,93 4,61 

120 hsa-miR-194-4373106 4,87 4,61 4,59 5,21 4,84 4,70 4,99 4,70 4,92 5,16 4,61 4,57 
92 hsa-miR-145-4395389 4,98 4,53 4,87 5,50 6,04 3,95 4,42 5,05 5,75 4,97 4,29 5,05 

Delta Ct =  (Ct) - (Average Ct MummU6) 

Detector S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 
11 MammU6-4395470 6,47 6,21 7,42 6,45 6,64 6,97 6,64 6,11 6,32 6,30 6,55 6,95 
12 MammU6-4395470 6,73 6,19 7,46 6,30 6,92 6,92 6,46 6,06 6,44 6,26 6,57 6,40 
35 MammU6-4395470 6,20 6,13 7,11 6,19 6,72 6,96 6,37 6,07 6,31 6,18 6,59 6,17 
36 MammU6-4395470 6,31 5,97 7,20 6,13 6,65 6,83 6,47 6,06 6,23 6,14 6,55 6,60 

Average CT 6,43 6,13 7,30 6,27 6,73 6,92 6,49 6,07 6,33 6,22 6,56 6,53 
StDev 0,23 0,11 0,17 0,14 0,13 0,06 0,11 0,02 0,08 0,07 0,02 0,33 
Number of expressed miRNA 303 308 301 294 296 300 304 307 303 296 306 303 
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23 hsa-miR-21-4373090 5,27 5,66 5,06 5,40 4,93 4,75 5,41 5,16 4,76 5,46 5,16 5,51 
93 hsa-miR-146a-4373132 5,28 4,38 4,60 4,54 4,59 4,70 4,88 4,53 4,49 4,70 3,95 5,01 
59 RNU44-4373384 5,42 5,80 5,39 5,54 5,51 5,10 5,42 5,38 5,60 5,48 5,53 5,33 
39 hsa-miR-29c-4395171 5,63 5,38 6,17 6,19 6,55 5,72 5,69 6,47 6,26 6,17 5,82 6,55 

177 hsa-miR-342-3p-4395371 5,88 5,84 5,69 5,60 5,90 5,71 5,91 5,33 5,13 5,60 5,40 4,94 
85 hsa-miR-139-5p-4395400 5,91 5,44 5,75 6,04 6,62 5,56 6,31 5,93 6,15 5,68 6,02 5,76 
15 hsa-miR-16-4373121 5,98 5,69 6,20 6,00 6,30 5,89 6,37 6,13 6,02 6,32 6,24 5,82 

308 hsa-miR-574-3p-4395460 6,09 5,60 5,40 5,75 6,59 5,20 6,18 5,44 6,00 6,03 6,06 5,79 
350 hsa-miR-885-5p-4395407 6,29 5,41 5,39 6,27 5,78 5,72 6,31 5,85 5,91 6,04 6,18 6,01 
119 hsa-miR-193b-4395478 6,30 5,77 5,39 5,59 5,94 5,15 6,06 5,91 5,66 5,63 5,79 5,52 

66 hsa-miR-125b-4373148 6,30 6,46 6,07 7,40 6,62 5,63 6,16 6,77 7,24 6,94 6,25 6,75 
225 hsa-miR-484-4381032 6,43 6,67 6,40 5,77 6,81 5,82 6,81 6,01 6,01 5,69 6,32 5,96 
100 hsa-miR-150-4373127 6,44 5,53 5,93 6,27 4,65 5,98 5,13 4,90 5,76 5,68 3,93 5,45 

97 hsa-miR-148a-4373130 6,49 6,47 6,66 7,43 6,65 6,32 6,51 6,97 7,09 7,22 6,91 6,76 
91 hsa-miR-143-4395360 6,50 6,38 7,25 7,23 7,64 6,10 6,24 7,00 7,81 6,94 5,94 6,65 
29 hsa-miR-26a-4395166 6,58 6,66 6,78 7,46 6,78 5,79 6,31 6,91 7,28 6,99 6,56 6,75 
89 hsa-miR-142-3p-4373136 6,94 7,64 7,56 8,24 6,83 6,62 6,83 7,30 7,11 7,68 6,31 7,36 

111 hsa-miR-186-4395396 6,96 6,60 6,89 6,68 7,01 6,51 6,74 6,00 6,25 6,33 6,57 6,49 
145 hsa-miR-222-4395387 7,04 6,94 7,17 6,91 6,30 6,60 6,44 6,79 6,51 6,53 5,90 6,44 

54 hsa-miR-100-4373160 7,05 6,83 6,68 7,79 6,93 6,37 6,70 7,02 7,66 7,65 6,80 7,96 
121 hsa-miR-195-4373105 7,07 7,29 7,30 7,89 7,17 6,53 6,50 7,62 7,79 7,68 6,82 7,40 

52 hsa-miR-99a-4373008 7,14 7,13 6,67 8,02 7,25 6,31 6,97 7,37 7,69 7,97 7,00 7,42 
167 hsa-miR-331-3p-4373046 7,17 6,86 6,54 6,94 6,55 6,34 6,95 6,72 6,53 6,92 6,48 6,85 
126 hsa-miR-199a-3p-4395415 7,20 7,79 7,77 8,05 7,75 6,29 6,90 7,83 8,62 8,11 7,10 7,68 

47 hsa-miR-92a-4395169 7,37 6,88 6,82 7,36 7,25 6,07 7,23 8,04 7,74 7,76 7,02 7,49 
87 hsa-miR-140-5p-4373374 7,50 7,77 7,93 8,28 8,08 7,47 7,57 7,46 7,97 8,04 7,35 7,44 

137 hsa-miR-214-4395417 7,66 8,15 7,74 7,64 8,39 6,64 7,51 8,12 8,61 8,06 7,33 7,83 
192 hsa-miR-374a-4373028 7,72 7,51 7,23 7,48 7,80 7,03 7,50 7,32 7,56 7,46 7,55 7,42 

60 hsa-miR-106b-4373155 7,75 8,11 7,68 7,88 7,72 7,28 7,83 7,65 7,56 8,04 7,63 7,89 
4 hsa-let-7e-4395517 7,78 8,03 7,04 8,36 7,64 7,12 7,58 7,99 8,33 8,40 7,84 7,97 

24 hsa-miR-22-4373079 7,81 8,51 8,26 8,15 7,86 8,03 8,35 8,18 7,92 8,47 8,34 8,00 
19 hsa-miR-19a-4373099 7,89 8,02 8,70 8,51 8,75 7,91 7,78 8,30 8,61 8,61 8,23 8,23 

158 hsa-miR-320-4395388 7,96 8,05 8,10 7,89 8,64 7,74 8,15 7,85 8,28 8,21 8,38 8,09 
30 hsa-miR-26b-4395167 7,97 7,81 7,81 8,91 7,84 7,12 7,41 8,06 8,20 8,15 7,64 7,92 
32 hsa-miR-27b-4373068 7,98 7,70 7,53 8,60 7,45 7,60 7,41 8,24 8,02 8,51 7,66 7,88 
48 hsa-miR-93-4373302 8,01 8,31 8,08 8,23 8,49 7,76 7,96 8,15 7,86 8,61 8,17 8,30 
31 hsa-miR-27a-4373287 8,03 8,18 8,26 8,26 8,37 7,34 7,60 8,24 8,47 8,57 7,32 8,14 

6 hsa-let-7g-4395393 8,04 8,31 8,21 8,61 8,37 7,95 8,08 8,15 8,48 8,48 8,24 8,17 
132 hsa-miR-203-4373095 8,09 7,78 7,25 7,73 9,21 8,38 7,97 7,04 7,66 7,93 8,12 8,15 

33 hsa-miR-28-3p-4395557 8,14 7,54 7,49 8,20 8,04 7,59 8,17 7,76 7,77 7,86 7,49 7,98 
101 hsa-miR-152-4395170 8,23 8,34 7,89 8,41 8,23 7,85 7,86 8,02 8,13 8,03 7,86 7,87 
184 hsa-miR-365-4373194 8,49 7,65 7,51 8,38 7,96 7,54 8,48 7,81 8,16 8,13 8,17 7,90 

22 hsa-miR-20b-4373263 8,67 7,37 8,16 8,02 8,49 7,70 8,07 8,09 8,47 8,57 8,20 8,29 
34 hsa-miR-28-5p-4373067 8,74 8,69 8,12 9,20 8,65 8,11 8,61 8,58 8,61 9,01 8,19 8,66 

194 hsa-miR-375-4373027 8,78 8,38 8,57 7,78 6,89 6,92 7,74 9,26 8,55 8,64 7,62 7,63 
142 hsa-miR-218-4373081 8,90 8,85 9,38 9,37 9,20 8,68 8,68 8,96 9,70 8,88 7,81 9,07 
176 hsa-let-7b-4395446 9,06 10,00 8,59 10,24 9,21 8,85 9,25 9,79 10,09 10,08 9,35 9,94 

45 hsa-miR-34a-4395168 9,18 10,14 9,20 9,12 8,91 9,29 8,51 9,70 8,66 9,12 8,34 8,27 
179 hsa-miR-345-4395297 9,21 8,79 8,88 9,52 9,37 8,51 8,83 8,84 8,43 8,83 8,96 8,99 
218 hsa-miR-451-4373360 9,30 8,51 9,29 9,56 9,97 7,36 9,30 9,45 10,17 9,12 8,53 9,59 

75 hsa-miR-132-4373143 9,35 9,71 9,26 8,96 9,35 8,46 8,90 9,16 9,65 9,47 8,81 8,89 
28 hsa-miR-25-4373071 9,35 9,45 9,29 9,86 9,39 9,00 9,21 9,60 9,35 9,74 9,25 9,58 

288 hsa-miR-532-5p-4380928 9,37 9,46 9,01 9,19 9,46 8,83 9,29 9,22 9,24 9,09 9,06 9,01 
221 hsa-miR-454-4395434 9,43 9,22 9,67 8,97 9,56 9,17 9,05 8,54 8,49 9,05 9,11 8,78 

73 hsa-miR-130a-4373145 9,44 9,89 9,85 10,14 9,54 8,67 9,44 9,46 9,51 10,02 9,35 9,77 
1 hsa-let-7a-4373169 9,52 9,93 8,31 10,42 9,32 8,85 9,13 9,73 9,95 9,93 9,72 9,68 

136 hsa-miR-210-4373089 9,59 9,78 10,20 10,04 9,08 10,94 11,02 10,11 10,32 10,05 10,50 9,83 
133 hsa-miR-204-4373094 9,67 9,75 9,68 10,48 10,13 8,53 8,66 10,01 10,33 10,03 9,39 9,50 

14 hsa-miR-15b-4373122 9,76 10,20 8,97 10,09 9,28 8,91 9,85 9,93 9,27 10,32 9,59 9,96 
65 hsa-miR-125a-5p-4395309 9,78 10,03 9,97 10,30 11,00 9,38 10,25 10,32 10,75 10,18 9,82 10,86 
26 hsa-miR-23b-4373073 9,82 9,92 9,46 10,22 9,77 9,26 10,16 10,03 9,70 10,20 10,13 9,87 
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2 hsa-let-7c-4373167 9,84 10,27 8,95 10,72 9,59 9,13 9,65 10,12 10,45 10,71 9,82 10,09

193 hsa-miR-374b-4381045 9,95 9,85 9,40 10,78 10,09 9,38 9,92 10,35 10,44 10,63 10,14 10,16

224 hsa-miR-483-5p-4395449 9,95 9,89 9,26 10,31 10,24 9,82 9,96 9,71 9,60 9,86 9,77 10,04

340 hsa-miR-744-4395435 9,96 10,12 9,41 9,92 9,80 9,42 9,63 9,88 9,69 10,48 9,72 9,71

372 hsa-miR-376c-4395233 9,97 9,81 10,44 10,50 11,23 9,51 10,33 9,90 10,76 10,20 10,03 9,98

9 hsa-miR-10a-4373153 10,02 10,01 10,23 10,85 10,29 9,21 9,85 10,60 11,03 10,53 10,13 10,19

68 hsa-miR-127-3p-4373147 10,20 10,25 10,35 11,05 11,08 9,33 10,23 10,32 11,01 10,45 9,88 10,75

335 hsa-miR-660-4380925 10,27 10,33 10,17 10,51 10,34 9,81 10,15 10,43 10,39 10,35 10,10 10,25

53 hsa-miR-99b-4373007 10,31 10,45 9,89 11,03 10,35 9,36 10,15 10,67 10,84 10,71 9,95 12,60

38 hsa-miR-29b-4373288 10,33 10,43 10,67 10,71 10,33 9,87 9,91 10,74 10,36 10,65 10,08 10,64

3 hsa-let-7d-4395394 10,34 11,08 9,67 11,27 10,71 9,70 10,30 10,65 10,92 11,02 10,74 10,10

223 hsa-miR-455-5p-4378098 10,38 10,25 10,37 10,83 10,50 10,14 10,24 10,52 10,93 10,85 10,48 10,42

56 hsa-miR-103-4373158 10,41 10,36 9,98 10,69 10,32 9,93 10,22 10,50 10,23 10,53 10,44 10,31

287 hsa-miR-532-3p-4395466 10,63 10,77 9,91 10,78 10,47 9,69 10,60 10,41 10,08 10,22 10,38 10,49

128 hsa-miR-200a-4378069 10,65 10,17 10,60 11,71 8,17 10,58 9,89 10,26 11,15 10,52 9,47 10,40

17 hsa-miR-18a-4395533 10,70 10,94 10,71 10,18 10,95 10,04 10,09 10,71 10,42 11,02 10,91 11,05

315 hsa-miR-590-5p-4395176 10,71 10,17 10,79 10,44 10,92 10,42 10,34 10,08 10,35 10,55 10,49 10,20

118 hsa-miR-193a-5p-4395392 10,74 10,36 9,61 11,33 10,19 10,18 10,36 10,72 11,36 11,32 11,00 11,13

13 hsa-miR-15a-4373123 10,74 11,07 11,24 11,57 11,15 11,15 11,07 11,20 10,98 11,25 11,08 10,98

55 hsa-miR-101-4395364 10,95 10,82 11,40 11,88 11,40 10,67 10,80 11,43 11,79 11,51 11,13 11,21

195 hsa-miR-376a-4373026 10,98 10,77 10,76 10,69 11,28 9,67 10,34 10,16 10,86 10,50 9,93 10,18

74 hsa-miR-130b-4373144 10,99 11,79 11,03 12,39 11,15 10,16 10,65 10,17 9,60 10,35 11,04 10,98

174 hsa-miR-340-4395369 11,00 10,26 10,65 11,51 11,10 10,42 10,89 10,90 11,58 11,72 10,93 11,03

351 hsa-miR-886-3p-4395305 11,10 12,42 12,71 12,13 10,93 10,66 9,37 13,75 12,90 12,91 11,08 10,61

104 hsa-miR-181a-4373117 11,12 12,04 11,16 12,39 11,57 10,79 11,47 11,92 12,34 12,45 11,37 11,73

110 hsa-miR-185-4395382 11,14 11,53 11,24 11,04 11,05 11,33 11,48 11,20 11,04 11,13 11,23 10,98

161 hsa-miR-324-5p-4373052 11,24 11,53 11,10 11,75 11,28 10,73 11,28 11,28 11,00 11,67 11,33 11,56

209 hsa-miR-425-4380926 11,28 11,26 10,82 11,52 11,11 11,05 11,72 10,96 10,99 11,28 11,57 11,21

129 hsa-miR-200b-4395362 11,29 11,06 11,41 13,17 9,50 11,32 10,59 11,21 11,91 11,35 10,28 11,50

99 hsa-miR-149-4395366 11,34 12,10 12,04 11,97 12,62 10,84 11,55 11,63 12,42 11,91 11,74 11,98

49 hsa-miR-95-4373011 11,47 11,46 11,11 11,53 11,47 10,62 11,23 11,14 11,67 11,82 11,17 11,25

222 hsa-miR-455-3p-4395355 11,56 11,20 10,72 12,66 11,37 10,62 11,31 12,34 12,45 12,49 11,66 11,80

10 hsa-miR-10b-4395329 11,61 12,12 12,50 12,58 12,61 10,28 11,68 12,43 13,73 12,87 12,02 12,11

205 hsa-miR-411-4381013 11,66 11,70 11,60 11,95 12,31 10,73 11,56 11,46 12,23 11,71 11,27 11,46

173 hsa-miR-339-5p-4395368 11,76 11,83 12,31 12,66 11,55 11,18 11,15 12,18 11,79 12,20 11,16 11,41

160 hsa-miR-324-3p-4395272 11,88 12,12 11,60 12,19 11,73 11,53 11,94 11,92 11,90 12,21 11,91 11,95

352 hsa-miR-886-5p-4395304 11,93 12,80 13,79 12,07 11,50 10,97 8,96 13,50 13,30 12,54 10,87 10,40

84 hsa-miR-139-3p-4395424 11,97 11,76 11,54 12,29 12,67 12,05 12,25 12,36 12,76 12,39 12,12 12,24

163 hsa-miR-328-4373049 12,09 11,90 11,01 12,76 11,56 10,38 11,51 12,09 12,16 12,26 11,41 12,04

123 hsa-miR-197-4373102 12,24 11,81 11,07 12,24 11,65 11,01 11,89 12,02 11,75 12,31 11,47 11,59

180 hsa-miR-361-5p-4373035 12,24 11,96 11,48 12,37 12,29 11,29 11,49 11,97 12,04 12,44 11,81 12,12

172 hsa-miR-339-3p-4395295 12,37 11,70 12,60 12,09 12,20 12,41 12,22 12,16 12,07 12,19 11,98 11,77

76 hsa-miR-133a-4395357 12,38 10,35 12,54 11,79 13,78 10,65 10,70 11,81 13,00 10,97 9,67 11,27

169 hsa-miR-335-4373045 12,38 12,29 11,70 13,21 12,18 11,38 12,79 13,35 13,25 13,47 12,70 11,91

152 hsa-miR-301a-4373064 12,43 12,59 12,44 13,10 12,35 11,89 12,16 12,28 11,99 12,89 12,12 12,45

325 hsa-miR-628-5p-4395544 12,44 11,68 12,14 11,97 12,20 11,90 11,62 11,90 11,70 12,45 12,16 12,01

198 hsa-miR-379-4373349 12,53 12,61 12,69 12,94 13,56 12,08 12,81 12,77 13,50 13,07 12,57 12,87

8 hsa-miR-9-4373285 12,58 12,75 12,91 13,40 13,93 12,35 11,90 12,64 13,36 12,92 11,94 12,70

5 hsa-let-7f-4373164 12,61 12,85 11,85 12,98 12,69 11,93 12,26 12,53 12,72 12,98 12,48 12,66

330 hsa-miR-652-4395463 12,80 13,37 13,05 13,64 13,11 12,28 12,64 13,03 12,93 13,05 12,55 13,18

144 hsa-miR-221-4373077 12,92 12,40 12,04 13,87 13,36 11,47 12,29 13,12 12,44 13,52 12,34 12,47

208 hsa-miR-424-4373201 12,96 13,87 12,60 14,20 12,36 12,41 13,20 13,18 13,54 13,61 14,12 13,83

201 hsa-miR-382-4373019 13,14 13,23 12,45 14,08 13,19 12,32 12,98 13,61 13,78 13,71 12,86 13,38

202 hsa-miR-383-4373018 13,24 13,78 14,10 14,71 15,07 12,21 14,05 15,04 14,75 14,61 14,33 14,31

147 hsa-miR-224-4395210 13,33 14,31 13,45 12,35 10,66 12,95 12,73 12,92 13,07 12,98 12,22 11,85

125 hsa-miR-199a-5p-4373272 13,47 14,21 12,49 14,32 14,15 12,52 13,22 14,01 14,90 14,42 13,30 14,82

149 hsa-miR-296-5p-4373066 13,48 14,16 13,64 14,82 14,44 12,91 13,43 14,22 15,35 14,12 13,16 13,66

61 hsa-miR-107-4373154 13,53 13,25 13,07 14,61 13,82 13,02 13,47 13,36 13,59 13,74 13,74 13,11

86 hsa-miR-140-3p-4395345 13,54 13,33 13,60 13,41 13,60 13,24 12,91 13,20 13,45 13,08 12,64 13,05

289 hsa-miR-539-4378103 13,54 13,35 13,36 14,33 14,48 12,69 13,53 13,86 13,92 13,87 13,36 13,47

80 hsa-miR-135b-4395372 13,56 13,55 14,24 14,32 14,45 13,92 13,34 14,01 15,45 14,08 13,12 13,28
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188 hsa-miR-370-4395386 13,58 13,68 13,30 13,69 14,32 12,75 13,85 13,33 13,71 13,70 13,21 13,44

236 hsa-miR-491-5p-4381053 13,62 13,29 13,21 14,01 13,56 13,32 13,44 13,28 13,88 13,72 13,96 13,43

90 hsa-miR-142-5p-4395359 13,65 13,82 13,85 14,16 12,83 13,27 13,33 13,51 13,45 14,08 12,46 13,40

181 hsa-miR-362-3p-4395228 13,77 13,97 13,48 14,02 13,92 13,16 13,60 13,81 13,74 13,81 13,56 13,77

250 hsa-miR-505-4395200 13,82 14,17 13,14 13,99 13,58 13,61 14,42 13,86 14,18 14,29 14,36 13,89

238 hsa-miR-494-4395476 13,89 13,45 13,58 14,20 14,66 13,08 14,02 13,84 14,30 14,12 13,71 13,85

379 hsa-miR-511-4373236 13,93 13,72 13,38 14,12 13,92 13,49 14,24 14,07 13,50 13,75 13,61 13,64

70 hsa-miR-128-4395327 13,95 14,17 13,33 14,28 13,57 13,02 14,02 14,18 13,37 14,30 13,83 13,88

98 hsa-miR-148b-4373129 13,97 14,24 13,88 14,70 14,02 13,06 13,64 13,87 13,61 14,15 13,66 13,81

243 hsa-miR-500-4395539 13,98 14,42 14,01 14,21 14,35 13,85 13,99 14,00 13,72 13,67 14,12 14,06

18 hsa-miR-18b-4395328 14,00 14,32 13,81 13,29 14,08 13,52 13,18 13,83 13,51 14,38 14,16 14,04

239 hsa-miR-495-4381078 14,02 14,00 13,76 15,01 14,96 13,06 14,21 13,95 14,45 14,05 13,81 13,94

51 hsa-miR-98-4373009 14,06 14,23 13,43 14,42 13,80 13,70 14,10 13,32 13,67 13,81 14,28 13,83

317 hsa-miR-598-4395179 14,06 14,29 15,03 15,08 15,12 13,99 14,50 14,67 14,90 14,83 14,07 14,45

363 hsa-miR-212-4373087 14,07 13,81 13,74 14,00 13,85 12,65 13,30 13,48 14,06 13,56 13,03 13,57

117 hsa-miR-193a-3p-4395361 14,10 14,47 13,96 13,64 14,23 14,69 13,91 14,22 14,43 14,45 14,22 13,70

42 hsa-miR-31-4395390 14,11 10,87 14,05 12,61 12,83 13,82 11,47 13,89 15,07 11,35 9,91 12,42

309 hsa-miR-576-3p-4395462 14,14 14,17 14,41 14,95 15,00 14,24 14,28 14,38 14,71 14,75 14,54 14,51

248 hsa-miR-503-4373228 14,19 14,62 14,18 14,79 14,24 13,61 13,44 14,18 14,19 14,39 14,18 14,74

233 hsa-miR-489-4395469 14,34 14,08 15,67 14,05 15,19 14,79 13,84 14,52 15,31 14,99 14,30 14,31

182 hsa-miR-362-5p-4378092 14,34 15,09 14,07 14,65 14,95 14,07 14,43 14,33 14,10 14,04 14,49 14,33

170 hsa-miR-337-5p-4395267 14,36 14,71 15,47 15,47 16,15 13,99 14,73 14,74 15,09 14,78 14,47 15,15

316 hsa-miR-597-4380960 14,37 14,39 14,73 14,99 14,84 13,97 13,67 14,74 13,85 14,83 14,11 14,19

207 hsa-miR-423-5p-4395451 14,42 14,35 14,10 15,15 14,36 14,07 14,15 14,64 14,56 14,79 14,89 14,77

130 hsa-miR-200c-4395411 14,46 9,34 13,85 13,48 14,60 12,35 12,14 13,74 14,13 10,89 9,88 11,80

219 hsa-miR-452-4395440 14,52 14,82 14,71 14,32 13,15 14,56 14,43 14,47 14,73 14,70 14,24 13,75

94 hsa-miR-146b-3p-4395472 14,54 17,13 15,91 15,42 15,40 13,41 14,74 16,02 15,51 16,53 14,99 15,03

190 hsa-miR-372-4373029 14,64 16,52 15,75 14,89 17,76 12,54 14,98 15,19 16,19 15,75 14,22 14,03

43 hsa-miR-32-4395220 14,78 14,18 14,88 14,67 14,88 14,33 14,45 14,25 14,36 14,74 14,68 14,51

83 hsa-miR-138-4395395 14,79 15,36 14,89 15,89 14,91 14,58 14,17 13,75 16,03 14,87 14,41 15,05

210 hsa-miR-429-4373203 14,86 15,09 15,13 16,61 12,84 14,82 14,43 14,88 15,83 15,38 14,30 15,01

321 hsa-miR-618-4380996 14,88 14,53 15,18 14,65 14,86 14,33 14,35 14,69 15,41 15,74 14,69 14,06

246 hsa-miR-502-3p-4395194 15,05 15,62 14,69 15,58 15,06 14,75 15,01 15,38 15,28 15,28 15,08 15,25

339 hsa-miR-708-4395452 15,05 15,27 15,91 15,98 15,09 14,83 13,54 14,89 16,08 15,27 14,72 14,90

159 hsa-miR-323-3p-4395338 15,21 14,72 14,14 14,87 15,81 13,81 14,98 14,97 15,06 14,63 14,79 14,39

140 hsa-miR-216b-4395437 15,22 13,87 15,81 16,21 13,64 17,15 14,78 15,02 15,18 15,73 14,95 15,20

247 hsa-miR-502-5p-4373227 15,24 15,66 15,01 15,35 15,26 14,84 15,24 15,07 14,86 15,00 15,05 15,17

206 hsa-miR-422a-4395408 15,41 14,60 14,91 15,71 15,43 14,88 15,29 15,40 15,11 15,28 15,65 14,63

231 hsa-miR-487b-4378102 15,42 15,34 15,17 15,67 16,24 14,35 15,30 15,04 15,82 15,08 14,95 14,97

349 hsa-miR-885-3p-4395483 15,61 16,07 15,37 16,25 15,76 15,84 16,44 15,88 15,87 16,42 16,17 16,28

215 hsa-miR-450a-4395414 15,66 16,16 15,70 16,58 15,38 14,87 15,84 15,86 16,54 16,32 16,43 16,72

204 hsa-miR-410-4378093 15,72 15,14 15,62 15,74 16,22 14,40 15,22 15,09 15,33 15,28 15,14 15,22

323 hsa-miR-625-4395542 15,72 16,37 15,87 16,62 16,46 15,88 16,00 15,64 16,18 16,26 15,60 16,02

291 hsa-miR-542-3p-4378101 15,76 16,44 15,77 16,87 15,09 14,84 15,96 16,34 16,52 16,52 16,31 16,50

362 hsa-miR-211-4373088 15,80 15,45

336 hsa-miR-671-3p-4395433 15,80 15,28 14,82 15,79 15,10 14,44 14,51 15,67 14,82 15,63 14,87 15,07

217 hsa-miR-450b-5p-4395318 15,80 16,40 15,21 16,65 14,69 14,82 15,29 16,16 16,40 16,50 16,98 15,49

127 hsa-miR-199b-5p-4373100 15,82 16,48 16,37 16,85 16,74 14,88 15,76 16,35 17,24 17,00 15,69 16,42

311 hsa-miR-579-4395509 15,84 15,43 15,72 16,35 16,08 15,54 15,47 15,90 15,73 16,03 15,99 15,95

211 hsa-miR-431-4395173 16,12 16,08 16,02 15,32 16,84 15,64 15,96 14,94 14,85 15,23 15,60 15,29

114 hsa-miR-190-4373110 16,14 16,27 16,40 16,94 16,40 14,96 15,60 16,13 16,57 16,47 15,98 16,32

183 hsa-miR-363-4378090 16,18 16,26 16,14 16,56 16,52 15,18 16,33 16,15 16,10 16,53 15,82 16,32

168 hsa-miR-331-5p-4395344 16,21 15,52 15,80 15,10 15,95 16,12 16,03 15,85 15,97 16,24 16,12 15,35

341 hsa-miR-758-4395180 16,26 16,02 15,80 16,67 16,93 15,29 16,02 15,91 16,42 16,44 16,00 16,10

229 hsa-miR-486-5p-4378096 16,48 15,02 15,35 15,93 16,33 13,67 15,98 15,46 16,47 15,10 14,92 15,86

171 hsa-miR-338-3p-4395363 16,54 15,97 17,44 16,98 16,14 15,79 16,44 16,55 16,97 16,54 15,62 16,25

79 hsa-miR-135a-4373140 16,55 15,86 18,04 18,70 15,26 16,63 15,24 17,51 17,80 16,59 15,12 16,92

328 hsa-miR-642-4380995 16,56 16,46 16,76 18,01 16,74 15,81 15,10 16,32 16,34 16,67 14,95 16,69

245 hsa-miR-501-5p-4373226 16,58 16,77 15,53 16,05 16,02 15,98 17,06 16,17 15,48 15,66 16,60 16,39

151 hsa-miR-299-5p-4373188 16,59 16,75 16,17 17,01 17,50 15,47 16,26 16,64 17,41 16,59 16,16 16,55

292 hsa-miR-542-5p-4395351 16,63 17,44 17,60 17,00 17,01 17,15 16,89 16,65 17,49 17,33 17,50 17,33
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165 hsa-miR-330-3p-4373047 16,63 17,05 16,69 17,40 16,68 16,60 17,05 16,62 16,23 16,90 16,60 16,88 
153 hsa-miR-301b-4395503 16,74 17,42 16,11 17,50 16,25 16,57 16,32 15,06 14,92 15,55 17,16 16,96 
212 hsa-miR-433-4373205 16,77 16,53 16,42 17,41 17,90 15,69 16,79 16,96 17,51 17,13 16,69 16,87 

88 hsa-miR-141-4373137 16,78 12,18 16,25 15,77 15,95 14,42 14,07 16,16 16,59 13,33 11,77 13,99 
294 hsa-miR-545-4395378 16,85 16,72 16,60 17,03 17,02 16,60 16,64 16,70 16,59 17,41 17,05 16,87 
333 hsa-miR-654-5p-4381014 16,85 17,26 17,37 17,37 18,51 16,72 17,46 17,19 17,73 17,73 17,59 17,08 
200 hsa-miR-381-4373020 16,95 17,32 17,24 18,30 18,71 16,37 17,35 17,05 17,69 17,21 16,88 17,39 

64 hsa-miR-125a-3p-4395310 16,98 16,95 17,19 16,71 18,21 16,96 17,06 16,89 18,09 17,14 16,58 17,29 
355 hsa-miR-889-4395313 17,04 16,66 16,66 17,60 17,48 16,08 17,12 17,33 17,53 17,45 17,12 17,24 
332 hsa-miR-654-3p-4395350 17,12 17,22 16,83 18,03 18,47 16,26 17,65 17,29 18,35 17,60 17,27 17,79 
237 hsa-miR-493-4395475 17,14 16,86 17,38 17,65 17,87 16,05 17,54 16,92 17,36 17,19 16,89 16,59 
112 hsa-miR-187-4373307 17,17 16,88 17,82 17,76 18,79 16,77 17,54 17,77 18,69 17,74 17,16 17,48 
105 hsa-miR-181c-4373115 17,23 17,62 16,80 18,16 17,17 16,56 17,16 17,36 18,22 17,90 17,09 17,34 
242 hsa-miR-499-5p-4381047 17,32 16,37 17,08 18,03 17,99 16,65 16,80 16,73 17,35 17,92 18,06 17,77 
334 hsa-miR-655-4381015 17,39 17,00 17,44 18,53 18,36 16,58 17,60 17,65 18,55 17,83 17,46 17,69 
186 hsa-miR-369-3p-4373032 17,69 18,09 18,11 19,07 18,96 16,92 17,86 18,06 18,55 18,44 17,84 18,18 
187 hsa-miR-369-5p-4373195 17,74 18,15 18,23 18,76 18,56 16,87 17,99 18,14 18,81 18,05 17,52 17,90 

82 hsa-miR-137-4373301 17,90 18,43 18,38 17,75 19,76 16,36 16,36 17,43 16,48 17,20 17,34 16,79 
234 hsa-miR-490-3p-4373215 18,03 17,94 18,41 18,48 19,62 18,28 18,49 18,69 19,61 18,79 18,58 19,85 

78 hsa-miR-134-4373299 18,09 13,25 13,84 13,95 14,63 13,19 13,52 13,53 13,94 13,35 13,28 13,39 
139 hsa-miR-216a-4395331 18,13 17,63 19,12 19,77 17,31 20,60 17,73 18,44 18,31 18,99 18,37 18,34 
143 hsa-miR-219-5p-4373080 18,28 18,14 17,80 18,66 18,02 17,81 17,61 18,25 18,03 18,55 18,07 18,43 
326 hsa-miR-629-4395547 18,34 19,44 18,72 18,70 18,91 18,34 18,11 17,96 18,23 18,21 17,71 18,48 
312 hsa-miR-582-3p-4395510 18,39 18,28 19,13 18,92 19,47 18,47 18,41 19,27 19,09 19,28 19,08 18,96 
103 hsa-miR-154-4373270 18,44 19,16 18,87 19,98 19,22 17,81 18,63 18,95 19,65 18,73 18,27 19,03 
256 hsa-miR-512-3p-4381034 18,48 19,71 19,62 19,10 20,53 19,30 19,44 19,01 19,06 19,41 19,50 19,73 
320 hsa-miR-616-4395525 18,48 17,82 17,94 17,38 18,31 17,16 17,10 18,11 16,77 17,69 17,58 17,40 

77 hsa-miR-133b-4395358 18,50 16,89 18,64 18,60 19,92 17,07 16,87 18,50 19,79 17,65 16,16 17,63 
46 hsa-miR-34c-5p-4373036 18,52 20,03 19,13 19,37 18,57 19,03 18,39 19,43 18,93 19,98 18,06 18,76 

249 hsa-miR-504-4395195 18,57 20,60 19,19 19,97 20,09 16,75 19,01 18,95 19,68 19,42 17,77 20,32 
178 hsa-miR-342-5p-4395258 18,69 18,08 18,26 18,70 17,61 19,29 18,90 18,27 18,81 19,71 18,30 18,31 
226 hsa-miR-485-3p-4378095 18,69 18,33 17,71 19,29 18,83 16,60 18,62 18,65 19,19 18,59 18,11 18,70 
272 hsa-miR-518f-4395499 18,71 17,27 19,84 18,58 20,04 20,81 20,75 21,83 20,12 
298 hsa-miR-548b-5p-4395519 18,74 19,42 18,78 18,50 17,62 19,21 19,64 19,56 19,28 20,10 18,90 17,93 
313 hsa-miR-582-5p-4395175 18,90 18,85 19,49 19,12 18,93 18,55 18,58 19,36 19,14 19,39 18,76 18,65 
303 hsa-miR-551b-4380945 18,97 18,33 19,17 20,97 16,94 17,70 16,75 16,78 17,75 18,36 16,44 17,93 
141 hsa-miR-217-4395448 19,12 19,10 20,30 21,89 17,90 21,58 19,08 20,56 19,93 20,31 19,66 19,62 
244 hsa-miR-501-3p-4395546 19,16 19,25 18,15 20,26 18,49 18,65 19,52 21,33 18,88 18,91 18,87 18,95 
300 hsa-miR-548c-5p-4395540 19,18 20,66 19,60 19,35 18,53 20,23 20,29 20,70 20,37 21,74 20,16 19,43 

7 hsa-miR-1-4395333 19,22 17,19 18,64 19,51 20,12 16,79 17,10 18,87 20,22 17,90 16,40 18,76 
324 hsa-miR-627-4380967 19,43 18,96 19,77 18,75 19,34 18,69 18,80 17,94 18,19 18,40 18,74 18,43 
302 hsa-miR-548d-5p-4395348 19,49 20,27 19,38 19,63 19,23 19,71 20,54 20,59 20,18 21,64 19,95 18,97 
122 hsa-miR-196b-4395326 19,51 19,27 19,27 20,22 20,64 19,37 20,14 17,96 20,17 20,15 18,72 19,40 
196 hsa-miR-376b-4373196 19,62 20,71 20,88 20,87 20,99 18,92 20,26 20,07 20,71 21,05 20,57 20,57 
203 hsa-miR-409-5p-4395442 19,62 19,19 19,01 19,99 20,70 18,61 19,28 19,48 19,79 19,61 19,55 19,53 
109 hsa-miR-184-4373113 19,65 19,55 18,77 19,86 17,48 19,44 18,77 20,07 19,36 20,31 20,15 19,79 
191 hsa-miR-373-4378073 19,82 19,33 22,31 20,33 23,62 18,17 21,39 20,43 22,01 20,73 18,37 20,88 
307 hsa-miR-570-4395458 20,26 19,30 18,83 20,79 19,15 18,28 18,63 19,02 19,59 20,28 20,02 18,63 
164 hsa-miR-329-4373191 20,31 20,34 20,11 21,30 20,89 19,38 20,76 20,54 21,26 21,58 20,21 20,49 
232 hsa-miR-488-4395468 20,34 20,49 20,95 21,86 20,62 19,31 20,08 20,74 21,48 21,40 20,18 20,46 

44 hsa-miR-33b-4395196 20,40 20,99 21,33 22,38 21,33 20,75 20,25 20,85 20,54 21,42 20,23 20,41 
364 hsa-miR-219-1-3p-4395206 20,40 19,96 19,61 20,26 18,97 19,65 18,26 20,23 19,44 20,44 19,92 19,62 
213 hsa-miR-449a-4373207 20,47 20,74 19,30 18,85 20,48 20,31 20,35 18,59 19,47 20,12 19,86 18,98 
189 hsa-miR-371-3p-4395235 20,54 21,38 20,25 17,12 20,58 20,89 22,89 19,61 19,41 
106 hsa-miR-182-4395445 20,57 21,63 19,81 19,09 18,17 20,24 20,49 19,14 18,16 20,21 20,31 20,85 
327 hsa-miR-636-4395199 20,75 20,13 19,91 19,72 20,22 19,75 20,22 20,74 19,64 19,84 20,71 19,98 
329 hsa-miR-651-4381007 20,79 20,15 20,61 21,51 20,09 19,63 20,11 20,38 20,48 21,35 20,31 20,33 
214 hsa-miR-449b-4381011 20,81 20,80 19,50 19,82 20,73 20,15 20,82 19,61 20,02 20,30 20,51 19,93 
230 hsa-miR-487a-4378097 20,85 20,48 20,58 20,80 20,88 19,48 20,49 20,92 21,20 20,62 
310 hsa-miR-576-5p-4395461 20,87 20,37 20,46 20,99 21,21 
197 hsa-miR-377-4373025 20,88 20,61 20,92 23,12 22,12 20,05 20,10 21,44 22,76 21,97 20,78 22,83 
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50 hsa-miR-96-4373372 20,98 22,38 20,50 20,59 18,34 20,28 20,71 21,00 19,09 22,56 21,02 22,09

162 hsa-miR-326-4373050 20,99 21,12 20,53 21,96 21,07 19,93 20,98 21,24 21,49 21,16 20,66 20,82

228 hsa-miR-486-3p-4395204 21,24 20,19 20,44 21,24 21,60 19,12 20,74 20,28 19,73

166 hsa-miR-330-5p-4395341 21,32 21,52 21,37 20,92 21,17 20,73 21,26 20,45 21,04 20,95 21,03 21,52

267 hsa-miR-518b-4373246 21,56

314 hsa-miR-589-4395520 21,62 21,62 21,33 22,29 21,57 21,50 24,17 22,34 22,49 22,22 21,53 22,39

71 hsa-miR-129-3p-4373297 21,65 20,82 20,43 22,64 20,54 21,43 21,16 19,28 19,28 22,22 19,84 21,08

301 hsa-miR-548d-3p-4381008 21,73 22,14 22,51 23,07 22,91 22,49 21,76 22,18 21,72 23,32 22,11 22,84

69 hsa-miR-127-5p-4395340 21,73 22,62 21,85 23,06 23,52 21,06 22,33 21,82 23,11 23,28 21,82 22,11

148 hsa-miR-296-3p-4395212 22,07 24,12 22,38 23,61 23,66 22,36 21,74 23,51 22,84 21,09 22,16

63 hsa-miR-124-4373295 22,07 24,80 22,88 25,27 23,64 23,02 23,15 24,87 24,53 24,01

282 hsa-miR-523-4395497 22,15 21,86 22,28 21,70 22,38 21,56

263 hsa-miR-517a-4395513 22,28 22,65 21,74 22,43 22,56 22,53 22,70 22,49 22,15 22,67 23,34 22,33

108 hsa-miR-183-4395380 22,32 21,07 22,07 19,31 21,64 22,37 21,44 20,28 22,35 21,87 22,75

124 hsa-miR-198-4395384 22,44 23,15 22,43 21,16 23,74 22,25 21,55

274 hsa-miR-519d-4395514 22,57 23,33 22,67 23,91 24,23 25,17 23,96 23,55 23,85 24,19 23,93 24,82

297 hsa-miR-548b-3p-4380951 22,61 20,42 22,98 21,91 21,58 22,14 22,71 20,88 21,86 23,09 21,57

81 hsa-miR-136-4373173 22,63 21,63 23,86 22,23 23,74 22,42 21,80 21,72 23,16 21,94 21,67 21,27

185 hsa-miR-367-4373034 22,71 22,71 23,14 23,56 21,81 22,18 22,83 20,93 24,68

264 hsa-miR-517c-4373264 22,81 23,04 23,23 23,86 23,89 23,45 23,16 22,83 22,73 23,26 22,48 23,87

175 has-miR-155-4395459 22,95 22,65 21,65 23,19 22,09 22,52 21,60 22,56 23,51 21,02 22,66

331 hsa-miR-653-4395403 22,96 23,98 23,50 23,74 26,80 23,72 23,57 26,70 23,88 23,46 25,24

360 hsa-miR-147-4373131 23,09 23,88 24,71 24,02 24,14 24,43 24,01 24,66 25,30 22,86 23,90

96 hsa-miR-147b-4395373 23,30 23,40 21,73 21,56 23,54 23,26 23,97 24,13 23,75 23,22

273 hsa-miR-519a-4395526 23,37 22,26 22,12 23,22 23,08 22,82 22,19 22,71 22,84 23,54 22,60 20,53

293 hsa-miR-544-4395376 23,43 23,72 23,95 23,81 23,47 21,89 22,53 22,17 22,77 22,47 22,65 23,37

131 hsa-miR-202-4395474 23,44 23,31 21,92 23,80 22,33 21,67 21,86 24,91 24,87 23,92 22,88

199 hsa-miR-380-4373022 23,46 24,43 23,98 22,47 22,99 24,35 24,99 22,83 23,45

150 hsa-miR-299-3p-4373189 24,07 23,95 23,34 24,57 24,57 23,52 23,76 24,07 22,84 22,57 23,46

344 hsa-miR-873-4395467 24,25 26,93 26,05 25,76 23,95 27,24 25,72

304 hsa-miR-556-3p-4395456 24,33 25,19 23,83 23,75 24,87 24,70 24,78 23,77 22,93 25,79 24,04

102 hsa-miR-153-4373305 24,41 23,33 23,33 23,88 24,28 21,50 22,19 23,43 24,33 25,01 22,55 23,22

271 hsa-miR-518e-4395506 24,83 24,27 24,67 25,01 23,67 24,93 23,53 24,99

305 hsa-miR-556-5p-4395455 25,28 25,81 24,65 25,35 25,37 24,74

347 hsa-miR-876-3p-4395336 25,34 27,16 28,08 24,49 25,92 25,18 26,73 26,49

157 hsa-miR-302c-4378072 25,36 24,04 24,22 25,36 24,05

382 hsa-miR-520b-4373252 25,52 25,12 24,52 26,01 26,08 24,10 25,08 26,16 26,61 25,51 25,52 25,58

259 hsa-miR-515-3p-4395480 25,70 25,35 24,91 27,15 27,83 27,98 27,21 24,51

240 hsa-miR-496-4386771 25,79 23,67 24,68 25,15 26,25 25,73 24,16

281 hsa-miR-522-4395524 26,43 26,04 24,82 24,82 24,41 25,63 25,13 22,77

306 hsa-miR-561-4380938 26,97 27,38

295 hsa-miR-548a-3p-4380948 27,40 24,87 24,30 26,92 25,48 25,85 26,96 24,40

113 hsa-miR-188-3p-4395217 23,28 23,48

134 hsa-miR-205-4373093 24,42 23,66 22,49 23,49 23,14 24,14

154 hsa-miR-302a-4378070 22,55 23,27 23,40 23,38

156 hsa-miR-302b-4378071 23,70 24,14 24,83 22,67 22,84 23,59 23,28 22,98 21,95 22,45

220 hsa-miR-453-4395429 24,29 25,04 23,26 23,10 25,22 23,63 22,76 23,50

235 hsa-miR-491-3p-4395471 23,90 23,39 24,50 23,89

252 hsa-miR-508-3p-4373233 23,39 24,07 24,64 22,07 23,32 21,83 23,47 25,24 25,70 21,24 24,61

254 hsa-miR-509-5p-4395346 23,83 20,88

260 hsa-miR-515-5p-4373242 26,64

262 hsa-miR-516b-4395172 26,10

265 hsa-miR-518a-3p-4395508 27,27

275 hsa-miR-519e-4395481 26,38

277 hsa-miR-520a-5p-4378085 27,42

290 hsa-miR-541-4395312 24,27 23,71

296 hsa-miR-548a-5p-4395523 28,14 27,89 25,31 28,93

299 hsa-miR-548c-3p-4380993 26,21 25,94 25,33 26,53 27,08 27,04

322 hsa-miR-624-4395541 25,66

345 hsa-miR-874-4395379 15,98 14,86 14,70 15,70 14,77 15,55 15,84 15,98 14,96 15,69

353 hsa-miR-887-4395485 19,95 19,12 19,70 19,63 18,86 19,71 19,26 18,69 18,79

354 hsa-miR-888-4395323 22,28 24,38 22,55 19,27 16,60 20,78 22,25 22,19 21,63 20,59

357 hsa-miR-891a-4395302 24,92 24,73 24,11 25,05 20,89 25,47

373 hsa-miR-384-4373017 28,97

377 hsa-miR-506-4373231 24,88

380 hsa-miR-517b-4373244 24,98

384 hsa-miR-520f-4373256 25,45 24,71 25,92 24,73
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Table 4.2: miRNAs detected with CARD A 

Never expressed miRNA 
25 hsa-miR-23a-4373074 
57 hsa-miR-105-4395278 
72 hsa-miR-129-5p-4373171 

135 hsa-miR-208b-4395401 
138 hsa-miR-215-4373084 
155 ath-miR159a-4373390 
241 hsa-miR-499-3p-4395538 
251 hsa-miR-507-4373232 
216 hsa-miR-450b-3p-4395319 
253 hsa-miR-508-5p-4395203 
227 hsa-miR-485-5p-4373212 
255 hsa-miR-510-4395352 
257 hsa-miR-512-5p-4373238 
258 hsa-miR-513-5p-4395201 
261 hsa-miR-516a-5p-4395527 
266 hsa-miR-518a-5p-4395507 
268 hsa-miR-518c-4395512 
269 hsa-miR-518d-3p-4373248 
270 hsa-miR-518d-5p-4395500 
276 hsa-miR-520a-3p-4373268 
278 hsa-miR-520d-5p-4395504 
279 hsa-miR-520g-4373257 
280 hsa-miR-521-4373259 
283 hsa-miR-524-5p-4395174 
284 hsa-miR-525-3p-4395496 
285 hsa-miR-525-5p-4378088 
286 hsa-miR-526b-4395493 
318 hsa-miR-615-3p-4386777 
319 hsa-miR-615-5p-4395464 
337 hsa-miR-672-4395438 
338 hsa-miR-674-4395193 
342 hsa-miR-871-4395465 
343 hsa-miR-872-4395375 
346 hsa-miR-875-3p-4395315 
348 hsa-miR-876-5p-4395316 
356 hsa-miR-890-4395320 
358 hsa-miR-891b-4395321 
359 hsa-miR-892a-4395306 
361 hsa-miR-208-4373091 
365 hsa-miR-219-2-3p-4395501 
366 hsa-miR-220-4373078 
367 hsa-miR-220b-4395317 
368 hsa-miR-220c-4395322 
369 hsa-miR-298-4395301 
370 hsa-miR-325-4373051 
371 hsa-miR-346-4373038 
374 hsa-miR-412-4373199 
375 hsa-miR-448-4373206 
376 hsa-miR-492-4373217 
378 hsa-miR-509-3-5p-4395266 
381 hsa-miR-519c-3p-4373251 
383 hsa-miR-520e-4373255 
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In Fig 4.3 the most highly expressed miRNAs obtained by 

all the liver biopsies are reported. 

 

 

*Relative expression level. calculated by the median normalized ΔCt values. 

Fig 4.3. The most highly expressed miRNAs in human liver 

 

290 out of 384 miRNAs resulted at detectable levels 

(quality assessment);  analysing age-dependent effects four 

miRNAs were found up-regulated comparing the oldest 

(70-90 years) with the others three age groups. In the Fig. 

4.4 ΔΔCT higher than 1 and lower than -1.5 are reported. 

On the whole, significantly down-regulated miRNAs in 

terms of fold change were observed. It is necessary to 
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remind that MiRNA fold changes higher than 2 and lower 

than 0.5 were considered significant for further analysis. 

 

 

 

 

Fig 4.4. MiRNA profiling results in 12 males (n. 3 older than 70 years 

and n. 9 younger than 70 years).  

 

Mir-31 -200c. -141 and -886-5p resulted upregulated in old 

compared to young subjects as shown in Fig 4.5. 
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Fig 4.5. upregulated MiRNA: results in 12 males from miRNA profiling         

(old vs young) 

 

Because there were no significant differences in miRNAs 

expression between the group of subjects with an age range 

of 50-70 year and the group of subjects with an age range of 

18-50 years, these two age-groups were analysed together. 

Thus, the subsequent analysis were performed compared  

two groups of subjects: older than 70 years and younger 

than 70 years.  
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4.2 Validation of miRNA array results 
 

MicroRNA array results were validated via qRT-PCR. 

MiRNA-31, miRNA-141 and miRNA- 200c and -886-5p. 

miRNA validation was performed in 45 liver samples: 23 

males liver samples, including specimens from males aging 

from 18 to 90 years and 22 females liver samples, the same 

age. All qRT-PCR data were firstly analyzed as unadjusted 

Ct values and secondarly normalized to miRNA21.  

In table 4.6 shows the values of expression of miRNAs 31, 

141 and 200c normalized (in green): 
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Tab 4.6: All qRT-PCR: data analyzed as unadjusted Ct values (withe 

columns). Data standardized to miRNA21 (green columns) 

SAMPLE SEX AGE Ct 21 Ct 31 Ct 141 Ct 200c 31-21 141-21 200-21

2 F 58 15,717 28,353 30,111 29,087 12,636 14,394 13,689

3 F 69 15,543 27,251 28,372 27,447 11,708 12,829 12,548

4 F 18 15,244 30,179 14,935

8 F 73 16,465 29,627 33,908 28,752 13,162 17,443 12,287

12 F 67 16,33 26,76 30,811 25,352 10,43 14,481 9,022

13 F 58 15,97 29,177 28,639 28,536 13,207 12,669 13,138

16 F 13 15,364 29,311 31,747 28,437 13,947 16,383 13,291

18 F 82 15,8 28,485 28,72 26 12,8 13 13,889

21 F 60 16,03 23,436 32,076 28,374 7,406 16,046 12,576

23 F 53 15,839 30,035 34,127 28,065 14,196 18,288 12,226

25 F 59 17,26 28,257 29,779 26,409 10,997 12,519 9,149

27 F 54 16,09 27,49 29,817 26,704 11,4 13,727 11,188

31 F 69 14,218 25,526 28,255 24,047 11,308 14,037 9,829

32 F 77 17,572 26,968 29,509 25,366 9,396 11,937 7,794

34 F 90 16,141 30,399 31,413 28,41 14,258 15,272 12,269

35 F 59 16,352 26,809 28,495 25,085 10,457 12,143 8,733

37 F 61 15,433 27,082 29,131 25,209 11,649 13,698 9,776

38 F 70 16,422 27,909 30,583 26,466 11,487 14,161 10,044

41 F 69 16,844 26,613 29,301 26,024 9,769 12,457 9,18

43 F 74 16,319 24,826 26,364 24,315 8,507 10,045 7,996

48 F 78 17,289 26,784 27,583 24,397 9,495 10,294 7,108

50 F 18 15,995 25,809 26,919 23,206 9,814 10,924 7,211

1 M 59 15,798 29,305 32,372 30,011 13,507 16,574 13,921

5 M 30 15,448 30,065 31,612 29,351 14,617 16,164 13,321

7 M 44 15,859 30,002 32,247 29,243 14,143 16,388 13,795

10 M 37 14,579 27,664 30,293 28,01 13,085 15,714 13,628

14 M 54 14,899 27,726 28,696 28,605 12,827 13,797 12,635

15 M 50 15,398 27,465 30,335 29,341 12,067 14,937 13,624

19 M 87 15,516 27,103 29,562 26,616 11,587 14,046 10,98

20 M 26 14,382 26,858 30,072 29,337 12,476 15,69 14,668

24 M 50 15,122 28,079 29,663 26,832 12,957 14,541 11,71

26 M 66 14,477 29,945 31,091 28,626 15,468 16,614 14,047

28 M 58 14,669 25,654 28,128 25,97 10,985 13,459 10,606

29 M 84 16,181 25,522 31,716 26,804 9,341 15,535 10,623

30 M 76 16,15 28,177 30,128 27,637 12,027 13,978 11,487

33 M 82 15,636 24,832 27,125 24,224 9,196 11,489 8,844

36 M 82 15,415 28,12 30,089 25,125 12,705 14,674 9,71

39 M 20 15,409 28,651 29,753 27,226 13,242 14,344 11,817

40 M 74 15,247 26,446 29,575 26,021 11,199 14,328 10,774

42 M 77 15,94 27,336 30,496 26,458 11,396 14,556 10,518

44 M 43 15,229 29,048 32,189 28,145 13,819 16,96 12,916

45 M 45 16,392 28,023 30,78 27,272 11,631 14,388 10,88

46 M 75 15,244 25,45 26,993 22,701 10,206 11,749 7,457

47 M 72 15,231 26,701 29,607 25,751 11,47 14,376 10,52

49 M 16 15,922 29,308 30,442 25 13,386 14,52 9,078

NORMALIZATION
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RT-PCR analysis confirmed the results obtained by 

microarray for miRNA 31, -141 and -200c. In particular 

miRNA 31 expression levels resulted 4.5 fold higher in the 

old compared to the young subjects. (P=0.007) (Fig.4.7). 

MiRNA-141 expression level was 2.66 fold higher in the old 

compared to the young (P=0.034), and miRNA200c 

expression level was 6.7 fold higher in the old compared to 

the young ( P=0.017) (Fig. 4.7). MiRNA -886-5p was not 

confirmed as differential expressed in old vs young. All 

these differences were not observed in females sample (n. 

22). Samples were normalized to miRNA-21 expression and 

analyzed using the ΔΔCT .  
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Fig 4.7: MiRNA Real time PCR  validation results. 

 

4.3 Linear regression analysis 
 

In Fig 4.8 the linear regression analysis on male samples is 

reported and it confirms the age-dependent increase of 

three miRNAs expression. The same type of analysis has 

been performed for females, but the correlation has not 

been confirmed due to low statistical power (data not 

shown).  
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Fig 4.8: Linear regression analysis fom male samples 
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4.4. mRNA expression patterns  
 

Global liver gene expression profiles were assessed by 

Affymetrix array in 12 males subjects (the same analyses in 

the CARD A). From this analysis about 90 mRNAs resulted 

significantly down-regulated in the old group compared 

with young group (young/elderly ratio <0.67. log(ratio) = -

0.4. ANOVA p<0.05).  The results are reported in Table 4.9.  
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Symbol Description Pval log(O/Y)

SLC1A2 solute carrier family 1 (glial high affinity glutamate transporter), member 2 0,00170445 -1,79726

MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian) 0,022262 -1,35002

SLC1A2 solute carrier family 1 (glial high affinity glutamate transporter), member 2 0,000782043 -1,11444

ELL2 elongation factor, RNA polymerase II, 2 0,0074845 -1,08558

SPINK1 serine peptidase inhibitor, Kazal type 1 0,0417602 -1,02997

PAPPA2 pappalysin 2 0,00479133 -1,00324

USP9Y ubiquitin specific peptidase 9, Y-linked (fat facets-like, Drosophila) 0,0390819 -0,98779

TBL1Y transducin (beta)-like 1Y-linked 0,0279074 -0,94949

SERPINE1 serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1 0,0211862 -0,93055

VIL1 villin 1 0,0269864 -0,91751

TSPYL5 TSPY-like 5 0,012896 -0,88258

PCSK6 proprotein convertase subtilisin/kexin type 6 0,0422326 -0,87952

TTMA two transmembrane domain family member A 0,0134268 -0,7921

STAG3 stromal antigen 3 0,0366479 -0,77449

LOC440731 hypothetical LOC440731 0,0394613 -0,77421

FLJ10986 hypothetical protein FLJ10986 0,00797767 -0,74766

SLC13A3 solute carrier family 13 (sodium-dependent dicarboxylate transporter), member 3 0,0301963 -0,74273

FNDC3B fibronectin type III domain containing 3B 0,0334357 -0,72413

KIAA1729 KIAA1729 protein 1,62E-05 -0,72305

TMCC1 transmembrane and coiled-coil domain family 1 0,0119792 -0,70207

MBNL2 muscleblind-like 2 (Drosophila) 0,0224731 -0,70203

C10orf116 chromosome 10 open reading frame 116 0,0165622 -0,6932

C1orf179 chromosome 1 open reading frame 179 0,0059995 -0,68464

SOX5 SRY (sex determining region Y)-box 5 0,0221148 -0,67805

FLT1 fms-related tyrosine kinase 1 (vascular endothelial growth factor/vascular permeability factor 

receptor)
0,0338911 -0,67741

ADH1A alcohol dehydrogenase 1A (class I), alpha polypeptide 0,0409988 -0,65465

P4HA1 procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide I 0,0189868 -0,6463

INSIG1 insulin induced gene 1 0,047368 -0,64382

VIL1 villin 1 0,0358748 -0,64318

MAPK13 mitogen-activated protein kinase 13 0,0314373 -0,61196

ZDHHC11 zinc finger, DHHC-type containing 11 0,00608822 -0,60078

SERINC5 serine incorporator 5 0,032969 -0,59287

NR0B2 nuclear receptor subfamily 0, group B, member 2 0,0496508 -0,58774

AMDHD1 amidohydrolase domain containing 1 0,00998431 -0,58722

FLT1 fms-related tyrosine kinase 1 (vascular endothelial growth factor/vascular permeability factor 

receptor)
0,0437986 -0,58471

STAB2 stabilin 2 0,0404152 -0,58241

VIL1 villin 1 0,0127921 -0,57754

COL12A1 collagen, type XII, alpha 1 0,0357375 -0,57477

ACOT12 acyl-CoA thioesterase 12 0,0141419 -0,57061

SLC2A3 solute carrier family 2 (facilitated glucose transporter), member 3 0,0116402 -0,56667

MGC88374 similar to CG32662-PA 0,0342419 -0,56572

MAPK13 mitogen-activated protein kinase 13 0,0219773 -0,56222

DPP4 dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2) 0,000191708 -0,56079

DPP4 dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2) 0,0217048 -0,55942

EPB41L4B erythrocyte membrane protein band 4.1 like 4B 0,036748 -0,55406

BCAR3 breast cancer anti-estrogen resistance 3 0,0351837 -0,54476

ADRB2 adrenergic, beta-2-, receptor, surface 0,0197168 -0,53615

BEX2 brain expressed X-linked 2 0,0186238 -0,53555

FNDC3B fibronectin type III domain containing 3B 0,0150789 -0,53148

PPARG peroxisome proliferator-activated receptor gamma 0,0328753 -0,52985

MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian) 0,025658 -0,52258

CDKN2C cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4) 0,0263896 -0,52155

PPP1R1A protein phosphatase 1, regulatory (inhibitor) subunit 1A 0,00325051 -0,50781

LOC253039 hypothetical protein LOC253039 0,0274617 -0,49777

HIST2H2AA3 histone cluster 2, H2aa3 0,0468608 -0,49393

TMCC1 transmembrane and coiled-coil domain family 1 0,0145276 -0,49315

LRP6 low density lipoprotein receptor-related protein 6 0,0411374 -0,49253

BTG1 B-cell translocation gene 1, anti-proliferative 0,00572153 -0,49149
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Table 4.9 . Most significantly down-regulated mRNAs in liver from old vs 

young male subjects 

 

 

4.5. miRNAs and their predicted targets 
 

In principle, the mRNAs that are predicted to be targets of 

specific miRNAs are expressed at significantly lower levels. 

This is likely caused by miRNA-mediated destabilization of 

target mRNA. The predicted targets for each miRNA were 

downloaded from TargetScan. Therefore, a specific 

PANK1 pantothenate kinase 1 0,025233 -0,48285

CYP2C9 cytochrome P450, family 2, subfamily C, polypeptide 9 0,0278149 -0,47437

LOC388323 hypothetical LOC388323 0,0250584 -0,46775

CYP2C9 cytochrome P450, family 2, subfamily C, polypeptide 9 0,0137265 -0,46442

APOF apolipoprotein F 0,0163829 -0,46265

LGR5 leucine-rich repeat-containing G protein-coupled receptor 5 0,0408925 -0,46064

RFTN1 raftlin, lipid raft linker 1 0,00617195 -0,46054

ABHD12 abhydrolase domain containing 12 0,0497302 -0,45535

ALPK3 alpha-kinase 3 0,00688071 -0,45346

SOX12 SRY (sex determining region Y)-box 12 0,0343179 -0,45298

LRRC61 leucine rich repeat containing 61 0,0138211 -0,44759

TSPAN16 tetraspanin 16 0,0322856 -0,44744

FAM79B family with sequence similarity 79, member B 0,0411973 -0,44348

BTG1 B-cell translocation gene 1, anti-proliferative 0,0371544 -0,4416

TPPP brain-specific protein p25 alpha 0,0347178 -0,43646

MGA MAX gene associated 0,0194358 -0,4356

MRPL19 mitochondrial ribosomal protein L19 0,0256339 -0,43446

PPP1R1A protein phosphatase 1, regulatory (inhibitor) subunit 1A 0,0161259 -0,43053

INADL InaD-like (Drosophila) 0,0106325 -0,42973

JMJD2B jumonji domain containing 2B 0,0490932 -0,42895

GGH gamma-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase) 0,0470066 -0,42824

HIBCH 3-hydroxyisobutyryl-Coenzyme A hydrolase 0,020817 -0,42407

MGC26963 sphingomyelin synthase 2 0,025762 -0,42345

SULT1A4 sulfotransferase family, cytosolic, 1A, phenol-preferring, member 4 0,0392332 -0,41975

ARRDC3 arrestin domain containing 3 0,0423418 -0,41577

HAL histidine ammonia-lyase 0,00765585 -0,41094

CREM cAMP responsive element modulator 0,0494307 -0,4087

TGIF2 TGFB-induced factor homeobox 2 0,0188084 -0,40552

SMPD1 sphingomyelin phosphodiesterase 1, acid lysosomal (acid sphingomyelinase) 0,0208767 -0,40424
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software (SID1, Albertini et al. 2011) was used to look for 

matching between the three identified miRNAs and the 90 

genes found to be significantly down-regulated. The 

putative targets gene were identified alone or in 

combination among the 90 down-regulated mRNAs those 

targeting mir-141. -200c and -31 mRNA. Three out of 90  

mRNAs were identified having conserved 3’UTR sites 

targeted from the selected miRNAs (Table 4.10) as listed 

below:  

1) solute carrier family 1-glial high affinity glutamate 

transporter member 2 (SCL1A2/GLT1): target of miRNA 

31 and 200c 

2) elongation factor RNA polymerase II (ELL2): target of 

miRNA141 and 200c 

3) arrestin domain containing 3 (ARDD3): target of miRNA 

31. 
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Tab. 4.10 miRNA-putative mRNAs target correlation in 12 males liver 

samples.  The most highly down-regulated mRNAs in liver from old vs 

younger male subjects and predicted miR target sites 

 

 

4.6 Validation of microarray results 
 

The identified three targets (Tab 4.10) were validated via 

qRT-PCR in liver specimens from 14 young and were 

compared to 13 old males subjects. An age-dependent  

trend of decrease was evidenced in all the the three mRNA 

candidates but  only GLT1 (SCL1A2) was found significant 

(P=0.009) (Fig. 4.11). 

Log OLD/YOUNG 
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Fig 4.11. GLT1 mRNA expression in liver from young  (n. 14) and old male 

subjects (n. 13) 

 

 

ELL2 and ARDCC3 mRNA validation comparing 7 old with 7 

young males is reported in Fig.4.12  (ELL2 P=0.2; ARDCC3 P 

= 0.17)  
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Fig. 4.12 ELL2 and ARDCC3 mRNA expression in liver from young  (n. 7) 

and old male subjects (n. 7) 
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4.7 GLT1 (SCL1A2) protein quantification 
 

Following the decrease in the relative expression of GLT-1 

mRNA, these data were then validated by quantifying GLT1 

protein through the use of Western blot analysis. 

This test was performed in 4 young subjects compared with 

7 older subjects. The result was normalized with actin (Fig 

4.13). Hela was used as positive control. 

 

 

 

Fig. 4.13 Western blot analysis. Upper lane GLT1: HeLa, positive control, 4 

young subjects compared with 7 older subjects. Bottom lane Actin: The 

same samples for GLT1 

 

T test analysis revealed no significant differences between 

young and old samples (Tab 4.14) 
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Tab 4.14:Results of T test analysis 

 

This result was unexpected, as we had previously observed 

a significant decrease in GLT1 mRNA.  

  

SAMPLE
S  

AVERAGE  
GLT1 /ACTIN 

T Test                      

young vs old 

4 YOUNG 0.5
2 7 OLD 0.5
7 

P = 0.10 
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4.8 Follow up analysis 

 
A follow-up analysis was performed in order to evaluate 

the effect of donor/recipient age mismatch. As previously 

described, the samples were divided into three groups 

according to the age of the recipient. miRNAs were 

normalized with the RNU 44 Ct average. The ΔCt was 

subsequently obtained in the following manner:  

ΔCt = (sample Ct– RNU44 average) 

The relative expression was calculated using the formula  

2 (-ΔCt) ±  s.e.m 

The results obtained are reported as follows: 

miRNA 31:  

- Recipient age > donor age: Fig 4.15 displays the 

mean (±; s.e.m) of the relative expression of miRNA 

in donor and follow-up samples in cases where the 

recipient’s age is greater than that of the donor. It is 

clear from the figure that there is an increase in the 

relative expression of miRNA 31 in the follow-up 

samples. The data was analyzed with a paired data T 

Test and found to be significant (P = 0.041).  
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Fig 4.15: mean (± s.e.m) of the relative expression of miRNA 31 in donors 
and follow up (p= 0.041). The recipient is older than the donor 

 
 
 

- Recipient age < donor age: the figure below (Fig. 

4.16) shows the relative expression of miRNA 31 

(mean value ±s.e.m) of the samples in which the 

recipient is younger than the donor. In this case, 

there is no significant variation in expression.   
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Fig 4.16: the mean (± s.e.m) of the relative expression of miRNA 31 in 
donors and follow up. The recipient is younger than the donor.  

 

 

- Recipient age =(± 4 years) donor age: the figure 

below (Fig. 4.17) shows the mean values (±s.e.m) of 

the expression of miRNA 31 in cases where the 

recipient is the same age (± 4 years) as the donor, 

hypothesizing that, at a biological level, this 

difference approximates zero. The value of the T 

Test turned out to be significant in this case as well.  
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Fig 4.17: mean (± s.e.m) relative expression of miRNA 31 in donors and 
follow up. The recipient is the same age (±4 years) as the donor 

 

 

miRNA 141:  

 

- Recipient age > donor age: Figure 4.18 shows the 

mean (±s.e.m) of the relative expression of miRNA 

141 in donor and follow up samples in cases where 

the recipient’s age is greater than that of the donor. 

It is clear from the figure that there is an increase in 

the relative expression of miRNA 141 in follow up 
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miRNA 31 analyzed in the same sample group. The 
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follow up samples turns out to be significant. P = 

0.034 (paired data T Test). 

 

 

 

Fig 4.18: mean (± s.e.m) of the relative expression of miRNA 141 in donor 
and follow up samples (p= 0.034). The recipient is older than the donor 

 

 

- Recipient age < donor age: the figure below (Fig. 

4.19) shows the mean value of the relative 

expression (±s.e.m)  of miRNA 141 in follow up and 

donor samples in cases where the recipient age is 

lesser than that of the donor. The analysis was 

conducted with a T Test and detected no significant 

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

miRNA 141

Donor 

Follow up 

r
e

la
ti

v
e

 e
x

p
r
e

s
s
io

n

P= 0,034



158 

 

variation, although the value P= 0.056 can be 

considered very nearly significant.  

 

 

Fig 4.19: mean (± s.e.m) relative expression of miRNA 141 in donor and 
follow up samples. The recipient is younger than the donor (P= 0.056) 

 

 

- Recipient age =(± 4 years) donor age: the figure 

below (Fig. 4.20) shows the mean values (±s.e.m) of 

the expression of miRNA 141 in cases where the 

recipient is the same age (± 4 years) as the donor, 

hypothesizing that, at a biological level, this 

difference approximates zero. The value of the T 

Test in this case did not turn out to be significant.  
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Fig 4.20: mean (± s.e.m) relative expression of miRNA 141 in donor and 
follow up samples. The recipient is the same age (±4 years) as the donor 

 

 

miRNA 200c:  

- Recipient age > donor age: Figure 4.21 shows the 

mean (±s.e.m) of the relative expression of miRNA 

200c in donor and follow up samples in cases where 

the recipient’s age is greater than that of the donor. 

The significant s.e.m of the results is clear from the 

figure, which is due to the variability of the obtained 

data. Unlike the two previous cases (miRNA 31 and 

miRNA 141) in this case there is no significant 

variation between donor and follow up samples in 

the expression of miRNA 200c, although the 
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progression does follow the same trend as the two 

previously analyzed miRNAs.  

 

 

Fig 4.21: mean (± s.e-m) of the relative expression of miRNA 200c in 
donor and follow up samples. The recipient is older than the donor. 

 
 
 
 

- Recipient age < donor age: the figure below (Fig. 

4.22) shows the mean values (± s.e.m) of the relative 

expression of miRNA 200c in samples in which the 

recipient’s age is lesser than that of the donor. There 

are no significant variations in the expression of this 

miRNA between the samples analyzed.  
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Fig 4.22: mean (± s.e.m) of the relative expression of miRNA 200c in donor 
and follow up samples.The recipient is younger than the donor. 

 

 

- Recipient age =(± 4 years) donor age: the figure 

below (Fig. 4.23) shows the mean values (±s.e.m) of 

the expression of miRNA 200c in cases where the 

recipient is the same age (± 4 years) as the donor. 

The T Test in this case did not turn out to be 

significant either.  
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Fig 4.23: mean (± s-e-m) of the relative expression of miRNA 200c in 
donor and follow up samples. The recipient is the same age (±4 years) as 

the donor. 
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5. DISCUSSION 
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The study described in this thesis is part of a more general 

topic regarding the use of marginal organ donors, and more 

specifically the transplant of livers from “elderly” donors. 

The clinical data and in particular the transplant unit of S. 

Orsola-Malpighi hospital (Bologna, Italy) started the use of 

over-60 year-old donors in their protocol since some years 

(Cescon et al., 2008; Cescon et al., 2003), as already done in 

other European and American transplant units (United 

Network for Organ Sharing). Some clinical data 

demonstrate that the use of elderly donors (even 90 years 

old) leads to engraftment and tolerance results that are 

similar to those obtained using younger donors (40-50 

years old) (Cescon et al., 2003).  

In this context, the present study aimed at two main goals: 

the first one was to characterize the physiological aging 

process of the liver from a molecular point of view, while 

the second was to study the effects produced by 

donor/recipient age mismatch. The research was therefore 

aimed at identifying the changes in human liver gene 

expression associated with age and possible modulations in 

this process when the organ is engrafted into a younger or 
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older microenvironment (recipient). This last question is 

similar to the one addressed by parabiosis experiments in 

which elderly mice were exposed to serum obtained from 

young mice (heterochronic parabiosis). In these 

experiments, an increase of the regenerative capacity of old 

organs and tissues have been observed in old animals 

exposed to a “young” microenvironment, in particular as far 

as hepatocytes  and muscle (Conboy et al.,2005). Using 

heterochronic parabiosis, Villeda and colligues (2001), 

show that blood-borne factors present in the systemic 

milieu can inhibit or promote adult neurogenesis in an age-

dependent fashion in mice. Accordingly, exposing a young 

mouse to an old systemic environment or to plasma from 

old mice decreased synaptic plasticity, and impaired 

contextual fear conditioning and spatial learning and 

memory (Villeda et al., 2011). 

The first part of this thesis is focused on evaluating the age-

related changes in expression profile of both miRNAs and 

mRNA. Although there is a wide and longlasting tradition of 

research on liver aging, and in particular on its morphology 

and metabolism, or even mitochondrial function, the 
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literature on this specific topic is relatively scarce. Recently, 

miRNA expression in various organs such as the brain, liver 

and lung was evaluated in mice of different ages, and this 

study revealed tissue-specific age-related miRNA changes 

(Maes et al., 2007; Li et al., 2009; Williams et al., 2007). 

Williams and co-authors report in mice that miRNA 

transcription remains unchanged during lung aging, which 

suggests that the stable expression of miRNAs might work 

to buffer age-related changes in the expression of protein-

encoding genes (Williams et al., 2007). Other authors found 

an increase in the expression of specific miRNAs in liver 

and brain (Maes et al., 2007; Li et al., 2009). Bates et al. 

(2010) used the Ames dwarf mouse model, an animal 

model that is interesting in the search for the genomic 

factors which control or affect the aging process. Mice 

belonging to this strain are known to live up to 70% longer 

than their wild-type equivalents due to a deficiency in 3 

pituitary hormones (growth hormone, GH, thyreotropin 

and prolactin). This study investigated variations in protein 

and miRNA expression in dwarf mice of different ages and 

their wild-type counterparts using global proteomic 
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profiling together with miRNA microarray analyses, 

followed by a functional analysis of specific miRNA⁄target 

relationships. This study revealed the up-regulation of ten 

miRNAs in dwarf mouse livers, with miRNA-27a clearly 

emerging as the leading significant species of miRNA in this 

context. In the liver of the dwarf mouse, the expression of 

miRNA-27a increases with age. Moreover, miR-34a and 

miR-93 are up-regulated in the liver of wild type aged rats, 

with inverse down-regulation of their predicted targets, 

Sirt1 and Mgst1. Signaling networks involving Sirt1 and 

Mgst1 are the two major components of the stress response 

mechanism to counteract the damaging effect of reactive 

oxygen species (ROS). MiR-34a and miR-93 target among 

others two transcription factors, such as Sp1 and Nrf2 (Li et 

al., 2011). The age-dependent decreased expression of 

specific genes, as well as of the transcription factors known 

to activate these genes, suggests that with age, the 

intertwining signaling involving deacetylation and 

detoxification processes is attenuated in older liver (Li et 

al., 2011). On the whole, the vast majority of liver miRNAs 

exhibiting variation in aged mice are up-regulated (Bates et 
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al., 2010 ;Maes et al., 2007; Li et al., 2009; Li et al., 2011 ). 

The identification of miRNAs involved in the aging process 

is expected also in humans, and may correspond to 

progressive age-related deregulation in their expression 

(Wang, 2007). However data concerning miRNAs 

expression in human tissues, such as basal skeletal muscle, 

suggested an up-regulation of tissues specific miRNA in the 

old men compared to young men (Drummond et al., 2008).  

In the research presented here, we took advantage of high 

throughput techniques by using different types of arrays, i.e 

Affymetrix Genechip (54K) for transcriptome analysis and 

card A system from Applyed Biosystem platform (384 

miRNAs). In agreement with published data, in this 

research any miRNAs resulted down-regulated in human 

old liver samples, confirming data previously reported on 

murine aged liver (Bates et al., 2010 ;Maes et al., 2007; Li et 

al., 2009; Li et al., 2011).Three different miRNAs, such as 

miRNA-31 and miRNA-200c and -141, resulted up 

regulated more than 4 fold in old (>70 years) vs young (<70 

years) subjects. 
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One interesting result is that the up-regulation of these 

three miRNAs was more pronounced in males. Initially, the 

profiling of the miRNAs was carried out on 12 male 

samples, and when validating the results with qRT-PCR, the 

significance previously found was confirmed even thought 

to a lesser extent. The validation was carried out on 47 

subjects, 23 of which were women. Stratifying the 47 

samples by sex, the up-regulation of the three miRNA (31, 

151 and 200c) was confirmed only in the samples from 

males. In the female samples, there is a similar trend even if 

none of them reached statistical significance. This 

unexpected result is explained by the lack of homogeneity 

of the female samples: the young women (aged less than 70 

y.o.) were too few in comparison to the older women (aged 

over 70) and this caused a lack of statistical power.   

From global analysis, liver gene expression profiles were 

assessed by Affimetrix array in 12 male subjects, and 90 

mRNAs were identified as most significantly down-

regulated in the livers of elderly subjects (young/elderly 

ratio <0.67. log(ratio) = -0.4. ANOVA p<0.05).  



170 

 

Subsequently, the predicted target sequences for each 

miRNA were downloaded from TargetScan Mapping. 

Therefore, a specific software (SID1, Albertini et al. 2011) 

was used to look for matching between the three identified 

miRNAs and the 90 genes found to be significantly down-

regulated. The putative targets gene were identified alone 

or in combination among the 90 down-regulated mRNAs 

those targeting miRNA-141, -200c and -31 mRNA.  

By this analysis, three mRNA targets were identified, i.e. 

GLT1 (solute carrier family 1 (glial high affinity glutamate 

transporter), member 2), which is targeted by miRNA 31 

and 200c, ELL2 (RNA polymerase II elongation factor 

(liver), which is targeted by miRNA 141 and 200c, and 

ARRD3 (Arrestin domain containing 3), which is targeted 

by miRNA 31. Validation experiments to confirm the 

decreased concentration of target mRNAs were performed 

by qRT-PCR, but a significant down regulation was 

confirmed only for GLT1 mRNA comparing 70 yrs old 

donors with younger donors. Nevertheless, at a protein 

level, the expression of GLT-1 remained unchanged when 

comparing 70 yrs old donors with younger donors. It is at 
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present unknown whether this is due to an increased 

stability of the protein or to other mechanisms. 

GLT1, the glutamate transporter, is a Na+/K+-ATPase and 

functions to force glutamate to enter the cell against the 

concentration gradient thanks to the creation of an ionic 

gradient: a molecule of glutamate is exchanged through the 

entrance of 3Na+ into the cell and the exit of 1 K+ from the 

cell (Kanner, 2006). The glutamate transporter is very 

important at the hepatic level given that the entire 

organism’s nitrogen is metabolized in the liver. Glutamate 

is produced by glutamine thanks to the activity of 

glutaminase, an enzyme that is found in high 

concentrations associated with mitochondria. Like 

glycemia, hematic concentrations of glutamine must be 

maintained at constant levels in blood to ensure vital 

functions such as central nervous system, renal, intestinal 

and hepatic activity as well as the activity of immune 

system and pancreatic beta-cells. Glutamine is the most 

abundant amino acid found in plasma and an important 

precursor of peptides; it is therefore essential for the 

synthesis of proteins, nucleotides, and nucleic acids. 
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Glutamate has an intercellular concentration that is nearly 

30 times higher than the L-glutamine located in the 

extracellular compartment.  Since glutamate has a negative 

charge and thus cannot be transported outside the cell, 

some transporters are located (at a low density, with the 

exception of SNC) on the plasmatic membrane (GLT-1). 

Glutamate is highly important for trans-deamination, as 

glutamate can remove the amino group for the synthesis of 

other amino acids.  Glutamate can lose the –NH4+ group 

and become 2-oxoglutarate. In some tissue, such as the 

liver, glutamate and NH4+ can combine and, thanks to 

glutamine synthetase, produce glutamine, which will then 

be  exported from the cell (Newsholme et al., 2003). The 

metabolism of glutamine in the liver occurs in different 

spaces: glutamine enters the periportal hepatocytes where 

the enzyme glutaminase has an elevated rate of activity; the 

glutamate produced in periportal cells can be further 

metabolized to produce  other amino acids through 

transamination, may enter the cycle of tricarboxylic acids, 

or may enter into the gluconeogensis pathway, forming 

phosphoenolpyruvate from oxaloacetic acid. In this way, 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Newsholme%20P%22%5BAuthor%5D
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the process of gluconeogenesis beginning from glutamine 

utilizes a large quantity of glutamate in the liver, which 

causes the production and export of glucose (De-Souza et 

al., 2001). In addition, arginine catabolism also provides 

glutamate for the synthesis of glutamine (O’Sullivan et al.; 

1998). 

Thus, GLT1 is  a key regulator of glutamate metabolism. In 

the human liver, GLT-1 mRNA and transmembrane protein 

was strongly expressed by perivenous hepatocytes (Berger 

et al., 2006). In contrast to the brain, where GLT1 is a 

crucial player in glutamatergic neurotransmission, GLT1 

expressions in the peripheral organs such as the liver may 

play a role in glutamate uptake for metabolic purposes or in 

the conversion of glutamate to glutamine (Berger et al., 

2006). As of today, it is not yet understood how these 

pathways are regulated during human aging and how they 

are regulated by the action of miRNAs. The results present 

in the literature only report experiments conducted on 

mice. Our results on miRNAs profiling are in accordance 

with previous data on dwarf mouse liver, displaying an 

increased expression with age (Bates et al., 2010). As far as 
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the regulation of the protein, no data are available to our 

knowledge as far as human liver. Some data reported in the 

literature suggested an up-regulation of GLT-1 as a 

consequence of the beta-catenin activation (Cadoret et al. 

2002). These results suggested that GLT-1 may be involved 

in the proliferative response of the liver to beta-catenin by 

providing glutamate to the cell as a precursor for 

glutamine. An increase in GLT-1 expression in liver has also 

been shown in growing versus non-growing lambs (Howell 

et al. 2003). We observed an up-regulation of miRNAs 

targeting GLT1, that is not mirrored by a decreased level of 

protein. This could be accounted for by a yet unidentified 

mechanism that counteract the action of miRNAs, due to 

the extreme importance of this protein, as discussed, that 

must likely be maintained constant is its transmembrane 

expression throughout lifespan. 

In the second part of the study, we sought to determine 

whether or not the transplanted liver is affected by the new 

microenvironment of the recipient. In particular, we 

studied whether or not the expression of the three miRNAs 

(miRNA 31, 141 and 200c) in the transplanted liver could 
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be affected on the basis of the donor/recipient age 

mismatch. The analyzed samples were sub-divided into 

three groups according to recipient age: in the first group, 

the recipient is much older than the donor (an average 

difference of 24.6 ±7 years); in the second group, the 

recipient is much younger than the donor (an average 

difference of 24.6 ± 2.5 years); the third group, studied as a 

control group, is composed by patients who received an 

organ from a donor of similar age (±4 years). The analysis 

of the relative expression of miRNAs 31, 141, 200c 

produced very interesting results. For miRNA 31, the data 

previously obtained in this study showed that it is up-

regulated in elderly subjects (> 70 years old) but not in 

young subjects (< 70 years old). For the sample group in 

which the recipient is older than the donor, the relative 

expression of miRNA 31 was found to be increased (p 

=0.041) in the follow-up liver as compared to the same 

organ immediately before transplant. This change in 

expression is a very interesting result, as it is likely due to 

the effect of the recipient microenvironment, in this case of 

an elderly subject. For cases in which the recipient is 
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younger than the donor, the progression has an opposite 

trend, that is to say that the relative expression of miRNA 

31 decreases, although not significantly, in the follow-up. At 

any rate, the tendency of the observed effect is in 

accordance with the hypothesis of recipient 

microenvironment effect on the transplanted liver: as the 

recipient is younger, there is a (trend to a) decrease in the 

expression of miRNA. The expression of miRNAs 141 and 

200c in recipients displays a trend that is analogous to the 

expression of miRNA 31 described above. As for miRNA 

141, its relative expression is found to be significantly 

increased in follow-up samples as compared to donor 

(P=0.034) in samples for which the recipient is older than 

the donor. In relation to the same type of sample, miRNA 

200c is also found to have the same type of tendency, 

although in this case it is not significant. In cases where the 

recipient is younger than the donor, the variation in the 

relative expression of miRNA shows a decrease in follow-up 

samples that is very close to being significant, as for miRNA 

141 (P=0.056), whereas it is not significant in relation to 

miRNA 200c. Lastly, for all three miRNAs studied, the 
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analysis of the control group lacking age mismatch detected 

a progression similar to that of the first group in which the 

recipient is older. For this last case, we expected to find a 

similar miRNA expression when comparing the two 

conditions analyzed, that is before and after transplant, in 

that the initial assumption was that age mismatch could 

have an effect on gene expression except in cases lacking 

such mismatch. This unexpected finding leads us to 

hypothesize that there is a significant effect on miRNA 

expression (a decrease) only when the recipient is much 

younger than the donor. Vice versa, miRNAs would have a 

tendency to increase in cases where the recipient is the 

same age or much older than the donor.  

These experiments are surely affected by the small number 

of analyzed samples, but it is necessary to keep in mind that 

the very nature of this experimentation involves 

particularly challenging collection and analysis timeframes 

owing to its relatively rare occurrence.  

Despite being conducted on a small number of samples for 

each group, the second part of the study does therefore 
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allow us to conclude that the younger microenvironment 

produces a significant effect on the expression of miRNAs 

31 and 141.  

The roles of miRNA 31 and miRNA 141 have been widely 

described in the literature. Both are found to be hyper-

expressed in various types of tumor. For miRNA 31, a 

recent study by Karakatsanis et al., (2011) that aimed at 

evaluating the deregulation of miRNAs in patients with 

hepatocellular carcinoma (HCC) and intrahepatic 

cholangiocarcinoma (ICC) identified a significant 

upregulation in HCC of miRNA 31 among others, including 

miRNA 122. The same study also found a down regulation 

of miRNA 200c. In this report, the authors showed that a 

high level of expression of miRNA 21, miRNA 221, miRNA 

31 and miRNA 122 was correlated with cirrhosis but only 

high levels of miRNA 21 and miRNA 221 were found to be 

associated with tumor stage. The aberrant expression of 

miRNAs in ICC has not been the subject of as much research 

as has HCC, perhaps owing to the infrequency of this 

pathology. MiRNA 21, miRNA 31, and miRNA 223 were 

found to be significantly up-regulated in ICCs in 
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comparison with normal samples from cancer-free 

individuals, while miRNA 122, miRNA 145, miRNA 146a, 

miRNA 200c, miRNA 221, and miRNA 222 were instead 

down-regulated. Karakatsanis and colleagues have shown 

that the expression of miRNA 21, miRNA 31, miRNA 122, 

and miRNA 221 in HCC tissues is correlated with cirrhosis, 

and that miRNA 21and miRNA 221 are also associated with 

both tumor stage and poor prognosis in HCC patients. It 

was found that miRNA 21, miRNA 31, and miRNA 223 are 

overexpressed in ICC samples but no correlation was found 

with clinico-pathological features. It was determined that 

the miRNA 31 functions to regulate several metastasis-

related genes in breast cancer tissues and cells. A variety of 

approaches were used to demonstrate that cellular levels of 

miR-31 are correlated with the cell’s capacity to invade and 

metastasize; cells having increased levels of this miRNA, on 

the other hand, were less metastatic (Schmittgen et al., 

2011). MiRNA 141 was also found to be disregulated in 

various types of tumors. The upregulation of miRNA 141 is 

closely associated with tumorigenesis in relation to 

prostate cancer (Xiao et al., 2012 Epub ahead of print). A 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Xiao%20J%22%5BAuthor%5D
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very recent study revealed that plasma miR-141 is a 

sensitive marker and complements CEA for the detection of 

stage IV colon cancer (Cheng et al, 2011). Importantly, Chen 

and colleagues demonstrated that higher plasma levels of 

miRNA 141 is associated with shorter survival rates and 

that miRNA 141 is an independent prognostic indicator in 

relation to colon cancer. Along these lines, in addition to 

cancers of the prostate and colon, circulating levels of 

miRNA 141 have also been found to be associated with 

other pathophysiological conditions such as pregnancy 

(Chim et al., 2008) and ovarian cancer (Taylor et a., 2008). 

An interesting study by Banaudha K et al., (2011) reports a 

direct role for miRNA 141 in suppressing DLC-1, a gene that 

is frequently deleted in HCC as well as other solid human 

tumors (Xue et al., 2008). They point out that DLC-1 

encodes a Rho-GTPase activating protein and represents a 

candidate tumor suppressor gene which is located on 

chromosome 8p21.3-22. HCV’s intracellular induction of 

miRNA 141 appears to translationally inhibit the tumor 

suppressor DLC-1, whose depletion works to promote the 

proliferation of cells. Additionally, the efficient replication 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Cheng%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Banaudha%20K%22%5BAuthor%5D
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of HCV is found to be correlated with a miRNA 141–

mediated reduction of the DLC-1 protein in virus-infected 

cells. The reciprocal relationship that exists between 

miRNA 141 and DLC-1 protein levels in cells infected with 

HCV suggests that virus replication is favored in cells that 

display reduced levels of the DLC-1 protein, though the 

exact mechanism through which miRNA 141 or DLC-1 work 

to modulate virus replication remains unclear (Banaudha et 

al., 2011). In relation to miRNA 200c, there has been 

extensive investigation of the miRNA 200 family in cancer 

cells’ epithelial-to-mesenchimal transition (EMT) (Brabletz  

et al., 2010); in EMT, down-modulation of the miRNA 200 

family functions to enhance cancer aggressiveness and 

metastases, while the reintroduction of miRNAs belonging 

to the miRNA 200 family inhibits their growth in some 

tumors. Furthermore, available literature indicates that this 

miRNA is down regulated in subjects suffering from 

hepatocarcinoma (Karakatsanis et al., 2011). Laidero et al., 

(2008), analyzing miRNA profiling in both benign and 

malign tumors, identified an overexpression of miRNA-224 

in all tumors and a down-regulation of miRNA200c, 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Banaudha%20K%22%5BAuthor%5D
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miRNA-200, miRNA-21, miRNA-224, miRNA-10b, and 

miRNA-222 in benign and malign tumors. All three 

identified miRNAs up-regulated in this research project are 

therefore been observed to be involved in hepatic 

pathology. Nevertheless, it is to be underlined that the 

livers analysed in this study were considered healthy and 

suitable for transplant, therefore we surmise that these 

miRNAs change their expression not only during 

pathological events, but also during physiological aging. 

In this research project, some recipients were HBV and/or 

HCV positive, but it was not possible to stratify the 

analyzed samples according to HCV- or HBV-positivity due 

to the small number of samples (power size effect). The 

recipient’s condition is very important, for instance the fact 

that he or she might be infected with a virus such as HBV 

and HCV. It is well known that the development of chronic 

hepatitis (e.g. induced by HBV of HCV) and HCC are inter-

connected (Haybaeck et al., 2009; Pikarsky et al.,2004; 

Karin et al.,2005; Karin et al.,2005). Using sequencing as 

well as bioinformatics data, the deregulation of miRNA 

transcriptome was identified in HCC development driven 
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by hepatitis-B (Mizuguchi et al., 2011). The microRNAs 

miRNA-7, miRNA-433, miRNA-511 and miRNA-196b in 

humans are known to affect the process of viral polymerase 

and the S gene of HBV, whereas miRNA-205 has an effect on 

the X-gene of HBV, which makes it a potentially useful 

therapeutic tool in treating HBV-induced hepatitis 

(Mizuguchi et al., 2011; Wu et al., 2011). Moreover, miRNA-

345 seems to target the HBV pre-C gene and the down-

regulation of miRNA-345 is known to facilitate the protein 

expression of HBV pre-C, a precursor of HBeAg (Wu et 

al.,2011). MiRNA-122 was also found to be importantly 

involved in controlling hepatitis C virus (HCV) infection, 

along with cholesterol metabolism and the formation of 

HCC (Mizuguchi et al., 2011). HCV is known to be a positive 

sense, single-stranded RNA virus that can result in chronic 

infection, leading to liver cirrhosis, chronic hepatitis, and, in 

many cases, HCC as well (Yang et al., 2010). MiRNA-122 

was found to be essential in the replication of HCV in 

cultured human hepatocyte cell lines (Huh7). Furthermore, 

miRNA-122 binds directly to two adjacent sites along the 

5´-UTR of HCV RNA (Mizuguchi et al., 2011). It is this 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mizuguchi%20Y%22%5BAuthor%5D
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specific binding that is responsible for an increase in viral 

replicon amplification and the synthesis of RNA. It appears 

that miRNA-122 chiefly has a more indirect stimulatory 

effect on the synthesis of viral RNA rather than a direct 

effect on the synthesis of protein (Filipowicz et al., 2011). 

Research by Roberts and colleagues showed that miRNA-

122 works to stimulate the accumulation and translation of 

HCV RNA through the HCV 5`-UTR. Additionally, miRNA-

122 seems to modulate a second replication cycle through a 

mechanism that is not yet clear (Filipowicz et al., 2011). 

One way that miRNA-122 is known to act on its targets 

would be by influencing the stability of viral RNA. 

Nonetheless, miRNA 122 has been discussed as a possible 

target candidate for the control of HCV replication. 

Regrettably, quantitative analyses of miRNA 122 and HCV-

RNA carried out in specimens of infected human liver 

showed a complicated interaction mechanism, given that 

the activation of HCV translation is driven by Argonaute 

rather than taking place through structural transformation 

in the HCV internal ribosomal entry site (IRES) (Vazquez-

Del Mercado et al., 2010.;Roberts et al., 2011).  
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By now the important role of miRNA regulation in a wide 

range of hepatic diseases such as hepatitis, hepatic tumors 

and metabolic diseases is well know. These findings may 

turn out to be extremely useful in clinical practice: thanks 

to the miRNA expression profile, which is characteristic and 

unique for some of the most well-known pathologies, 

miRNAs can act as new biomarkers in diagnosing disease, 

as previously mentioned in this chapter. By now the 

literature has thoroughly identified the panel of miRNA 

most expressed in hepatocytes, among which miRNA 122 is 

the most abundant (Lagos-Quintana et al., 2002). In 

addition to playing an important role in controlling the 

hepatitis-C virus (HCV) as thoroughly described above, 

miRNA 122 is involved in regulating the metabolism of 

cholesterol and more generally in hepatic lipid metabolism: 

by silencing this miRNA, it was possible to observe a 

reduction in hepatic steatosis in mice fed on a diet rich in 

fats (Krutzfeldt et al., 2005; Esau et al., 2006; Filipowicz et 

al., 2011). It is also involved in the formation of hepatic 

carcinoma (Mizuguchi et al., 2011). Recent studies also 

carried out on mice reveal that miRNA 122, together with 
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other miRNAs expressed in the hepatocytes, are released 

into blood following drug-induced hepatic damage (Wang 

et al., 2009; Laterza et al., 2009). It was possible to detect 

that levels of miRNA (hepatocyte-derived miRNAs, 

HDmiRNAs) in plasma or serum increase strictly according 

to the dose and duration of drug exposure (Farid et al, 

2011). In addition, HDmiRNAs are found to be correlated 

with levels of aspartate transaminase (AST), serum 

transaminase  and alanine transaminase (ALT). It has been 

recently demonstrated in humans that the level of miRNA 

122 in serum is elevated in patients presenting hepatic 

lesions owing to alcohol abuse, chemical or viral 

hepatotoxicity (Zhang et al.,2010; Bihrer et al., 2011). In 

these same patients, the dosages of miRNA 122 in serum 

and plasma were strictly correlated with both 

transaminase and hepatic histology. Like human studies, 

recent animal model-based studies demonstrate that 

HDmiRNAs represent highly sensitive and stable serum 

biomarkers for liver lesions (Wang et al., 2009; Laterza et 

al., 2009 Zhang et al.,2010; Bihrer et al., 2011). It was found 

both in humans and in rodents that increases in HDmiRNAs  
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levels occur much more rapidly in serum than in AST and 

ALT.  

HDmiRNAs hold a fundamental importance in the context 

of liver transplantation. A study by Farid et al (2011) has 

demonstrated that serum levels of HDmiRNA are elevated 

in patients presenting liver lesions, both following liver 

transplant and during acute rejection. Serum HDmiRNA has 

shown similar kinetics during acute rejection; however, 

miRNA levels increase before transaminase. HDmiRNAs 

could be considered to be hepatic biomarkers capable of 

providing a tool for evaluating the possibility of rejection or 

dysfunction in the transplanted liver through non-invasive 

and highly sensitive methods. Finding reliable biomarkers 

is extremely important because, as of today, there is no 

parameter that would significantly improve the 

management of liver transplantand indisputably enable the 

reduction of immunosuppressive pharmaceutical dosages, 

thus enabling the achievement of a better equilibrium 

between desirable effects (such as the prevention of 

transplant rejection) and collateral effects (such as toxicity, 

infection and malign tumors). Farid and colleagues (2011) 
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have carried out an important study, testing 15 different 

kinds of hepatocyte- and cholangiocyte-abundant and 

control miRNAs which were selected from among other 

studies (Wang et al., 2009; Chen et al., 2009; Hand et al., 

2009). This group includes miRNA 30a, miRNA 30c, miRNA 

30e, miRNA 122, miRNA 133a, miRNA 148a, miRNA 191, 

miRNA 192, miRNA 194, miRNA 198, miRNA 200c, miRNA 

222, miRNA 296, miRNA 710 as well as miRNA 711; 

however, the three HDmiRs were found to be significantly 

elevated during acute rejection wich HDmiRs, miRNA 122, 

miRNA 148a and miRNA 194. 

Given that the use of much older donors is undergoing an 

enormous increase, the evaluation of liver transplant 

outcomes on the basis of donor/recipient age mismatch is 

gaining increasing importance. Traditionally, using liver 

allografts obtained from older donors was considered to be 

a risk factor for poor graft function (Marino et al., 1995). In 

contrast with other organs, however, the liver is known to 

undergo only minor loss of function in the majority of 

healthy elderly subjects (Schmucker et al., 2005; 

Timchenko et al., 2009). Using elderly donors for hepatic 
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transplantation continues to be controversial owing to 

considerations regarding inferior outcomes. Several studies 

about successful transplantations using grafts from very 

old donors were recently published. Andormo and 

colleagues utilized a graft obtained from an 84 y.o. donor 

(Andorno et al., 2001). Moreover, other groups reported 

liver transplantations from donors who were even older 

than 90 y.o. (Grazi et al., 2008; Romagnoli et al., 2001; 

Karpen et al., 2010). By other authors, it has been shown 

that liver function in older donors can be considered 

comparable to that of younger donors. Comparing the 

outcome of liver transplantation from donors who are older 

and younger than 60 y.o., Zhao et al. showed equivalent 

graft function between the groups (Zhao et al., 2004). Oh et 

al. report no differences in graft survival or the incidence of 

primary nonfunction when comparing organs obtained 

from donor groups aged below or above 50 y.o. (Oh et al., 

2000). According to Gastaca et al, no differences were 

found in primary disfunction or acute re-transplantaton 

rate when comparing the outcomes of donors aged over 70 

y.o. with donors who were younger (Gastaca et al., 2005). 
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6. CONCLUSIONS 

  



191 

 

Through this research: 

 For the first time, 3 miRNAs that we propose as 

biomarkers of human liver aging have been 

identified; miRNA 31, 141 and 200c are found to be 

up-regulated in old people, especially in males aged 

> 70 years. In relation to females, it is not possible to 

provide the same result as the analyzed sample was 

deficient in young subjects and this resulted in a lack 

of statistical power.  

 For the first time, this research highlights the effect 

of an age mismatch, where a young (recipient) 

microenvironment induced in old liver a 

modification of the expression of miRNA31 and 141 

similar to that observed in young organs. It is not yet 

known whether this modification in miRNAs 

expression is mirrored by histological or functional 

outcomes and how long it lasts in time.  

This study offers quite significant opportunities for 

further research which are of noteworthy importance 

for the study of transplant tolerance and the possibility 



192 

 

of reducing immunosuppressive therapy, on the basis of 

the donor/recipient age mismatch effect as well.  
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