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Abstract

In human-robot interaction field, the robot is no longer considered as a tool but as a
partner, which supports the work of humans. Environments that feature the interaction
and collaboration of humans and robots present a number of challenges involving robot
learning and interactive capabilities. In order to operate in these environments, the robot
must not only be able to do, but also be able to interact and especially to ”understand”.

This thesis proposes a unified probabilistic framework that allows a robot to develop
basic cognitive skills essential for collaboration. To this aim we embrace the idea of motor
simulation - well established in cognitive science and neuroscience - in which the robot
reenacts in simulation its own internal models used for physically performing action. This
particular view o�ers the possibility to unify apparently distinct cognitive phenomena such
as learning, interaction, understanding and dialogue, just to name a few. Ideas presented
here are corroborated by experimental results performed both in simulation and on a
humanoid robotic platform.

The first contribution in this direction is a robust Bayesian method to estimate (i.e.
learn) the parameters of internal models by observing other skilled actors performing
goal-directed actions. In addition to deriving a theoretically sound solution for the learn-
ing problem, our approach establishes theoretical links between Bayesian inference and
gradient-based optimization methods. Using the expectation propagation (EP) algorithm,
a similar algorithm is derived for multiple internal models scenario.

Once learned, internal models are reused in simulation to ”understand” actions per-
formed by other actors, which is a necessary precondition for successful interaction. We
have proposed that action understanding can be cast as an approximate Bayesian infer-
ence in which the covert activity of internal models produces hypotheses that are tested
in parallel through a sequential Monte Carlo approach. Here, approximate Bayesian infer-
ence is o�ered as a plausible mechanistic implementation of the idea of motor simulation
making it feasible in real-time and with limited resources.

Finally, we have investigated how the robot can learn a grounded language model
in order to be bootstrapped into communication. Features extracted from the learned
internal models, as well as descriptors of various perceptual categories, are fed into a novel
multi-instance semi-supervised learning algorithm able to perform semantic clustering and
associate words, either nouns or verbs, with their grounded meaning.
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Chapter 1

Introduction

1.1 Motivations
Human-Robot Interaction (HRI) has recently received great attention in the
academic community. The development and evaluation of robotic systems
that are able to e�ectively interact and collaborate with a human have be-
come one of the most studied fields of robotics. The robot is no longer
considered as a tool, programmed to perform a predetermined task, but as
a partner, which supports the work of humans, cooperate and interact with
him and his environment. This shift has brought the robot to move from fac-
tories and laboratories, to less structured and more complex environments,
populated by humans. In order to operate in these environments, the robot
must not only be able to ”do”, but also be able to ”interact” and especially to
”understand”. Collaboration become necessary to the robot in these environ-
ments. But what are the cognitive skills necessary for a robot to cooperate
with a human being?

Collaboration means working with someone on something. It aims at
reaching a common goal. In order to assist a human in a task, a robot
must know his intentions and understand what he is doing. The robot must
also know the common goal and understand their environment and how the
partner interacts with it. Based on this information the robot can plan
an action to support the partner and eventually achieve the common goal.
Therefore the robot needs the abilities of perceiving and comprehending its
environment, planning and learning.

[Goodrich and Schultz, 2007] gives an overview of the internal mechanisms
of a cognitive robot leading to joint actions and collaboration.

“The environment and the partners are observed by sensors. This
sensor data is processed to gain an understanding of the environment
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and provides perception. The perceived data is used firstly to learn
and expand the own knowledge, then to gain an understanding of
the state of the environment and the partners, and to estimate the
intention of the partners. When partners are collaborating, a joint in-
tention is retrieved from the single intentions. A set of actions leading
to fulfil the joint intention is found by action planning. At last actions
are taken either by single partners or jointly that lead to transitions in
the state of the environment. The loop is closed, as the robot observes
the actions of itself and of others and the change in the environment.”

In human-robot collaboration, the human displays an intention to reach a
certain goal. It is the robots task to estimate this intention which may
be communicated by the human explicitly or implicitly. The main ways of
communicating one’s intention are speech and actions.

Speech is the most natural way of communication for humans. Through
words and phrases partners can easily exchange a large amount of complex
information and directly inform the other of their intentions and their goals.
The same does not apply to a robot. The focus here is on processes that
connect symbolic language to the physical world with the ultimate aim of
modeling situated language use. This problem is known as symbol ground-
ing problem: in order to actually attribute meaning to language there must
be interaction with the world to provide relevance to the symbolic represen-
tation. In terms of robotics there is a need to ground actions and visual
information with symbolic information provided by language. For instance,
the action verb ’grasp’ could be grounded in the real-world robot behaviour
of reaching and closing the gripper on an object. So the grounding problem is
fundamental to achive the development of social robots and to human-robot
collaboration.

Actions are another means of communication. Communicative gestures
are a form of non-verbal communication in which visible bodily actions com-
municate particular messages. Pointing gestures, primitive signs, or sign
language gestures are examples of communicative gestures. Another kind of
gestures are the manipulative gestures, i.e. physical non-verbal communica-
tion that does not communicate specific messages. An observer may derive
the intention of others partners from watching their actions and behaviour.
Though a partner does not necessarily want to communicate through these
manipulations or motions, intention can be derived by others nevertheless.
Humans are able to discern intentions and goals of other humans by observ-
ing them in motion. It has been proposed that actions are recognized via
predictive processes. In this view, the motor system produce predictions in
the service of object and action perception, realizing what has been called
action simulation or motor simulation. This is done by reusing one’s own
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motor repertoire, and this explains motor involvement during action per-
ception (mirror neurons). Our architecture uses an inverse-forward model
coupling in a dual role: either for executing an action, or for perceiving the
same action when performed by a partner. In this way the robot is able to
perform the actions required to achieve a particular goal and, at the same
time, understand the goals of the human partner.

1.2 Scope and contributions
This thesis proposes a unified framework that allows a robot to develop
basic cognitive skills essential for collaboration. In order to achieve this,
the learning process go through a number of developmental stages. In our
view, the cognitive development begins with the process of learning a sense
of bodily self. The robot must learn to control its own body and the relations
between sensors and actions. For instance, to reach for an object, the robot
must compute the changes in joint angles of the arm that will bring the hand
to the desired position. This mapping is also known as inverse mapping or
inverse model. To learn this transformation, one solution is to learn two
models, one for the sensorimotor transformation (the inverse model) and one
for predicting the sensory consequences of the motor command (the forward
model).

The robot first learns by associating spontaneous motor commands with
the sensory consequences of those spontaneous actions(motor babbling). On
each trial, the robot generates a spontaneous pattern of motor commands
and receives sensory feedback of the resulting hand position. At this point,
the system can learn to associate the patterns from the motor commands
to sensory space. Learning forward model is essentially a problem of model
matching. The data collected during motor babbling are used to learn the
parameters of a model, which approximates the real one. This approach is
known as a generative approach. The problem typically involves solving a
system of many coupled variables and is usually formalized as an optimiza-
tion problem. However we addressed this problems from the point of view
of probabilistic inference. In the inference view, variables couplings are ex-
plicitly formulated as conditional dependencies in a joint distribution and
approximated inference methods are used to yield (approximate) solutions
to the optimization problem. In this thesis, we present a methodology for
learning forward models based on this Bayesian view. The method is demon-
strated on feedforward networks.

Using forward model, the robot can observe and infer the state of human
partner from its sensor and then perform an action which will have a similar
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e�ect. The robot can learn a repertoire of actions by observing and imitating
the partners. This repertoire of actions consists of inverse models. We present
a probabilistic method to infer a sequence of motor commands using only the
learned forward model. This method of direct inversion of the forward model
allows the robot to collect examples of actions by observing the partner,
which will be used later for learning inverse models.

Inverse and forward models used in motor control can be reused for motor
simulation in support of action prediction and understanding. The same in-
ternal models that the robot uses for performing goal-directed action can be
re-enacted “in simulation” and used for inferring others’ actions (and possi-
bly imitating them). Since inverse models have associated goals, recognition
of inverse models entails recognition of the (more plausible) action goals.
However, it is unlikely and impractical that all models are maintained in
parallel for the entire period of recognition. In ambiguous situations, where
the environment does not provide su�cient information for recognition, there
might be hundreds or thousands of internal models making the problem of
action recognition intractable with scarce resources. However, casting the
problem of action understanding in a Bayesian framework permits to adopt
e�cient techniques for approximate probabilistic inference under the con-
straint of limited resources. We present an action understanding framework,
based on particle filters, a Monte Carlo technique for sequential simulation.
Our framework permits to easily embed a huge number of internal models
by exploiting all the prior knowledge available to the agent and to limit the
activation of internal models.

Finally, we have investigated the lexical acquisition problem, particularly
how a robot can be bootstrapped into communication and what are the nec-
essary prerequisites for robots in order to learn a language. In particular,
we focused on grounded systems that learn to generate and understand con-
textualized spoken descriptions of observed objects and actions in a visual
scenes. Our goal is to take advantage of acquired concepts (representing
physical properties and spatial relation of objects, and actions naming), and
language model (encoding all syntactic and semantic constraints) to engage
in simple verbal interaction with human partner.

This thesis proposes the following:
• A robust Bayesian method to estimate the parameters of internal mod-

els. This approach establishes theoretical links between Bayesian in-
ference of model parameters and gradient-based optimization methods.
The method is demonstrated on feedforward networks.

• An expectation propagation (EP) algorithm to estimate the parameters
of multiple internal models.
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• E�cient processing of multiple forward-inverse models achieved by us-
ing prior information over possible contexts and goal-directed actions,
and by adopting an approximate inference procedure (sequential Monte
Carlo simulation) for tracking several competing hypotheses.

• A multi-instance semi-supervised learning algorthm to resolve the se-
mantic clustering.

• An expectation maximization (EM) algorithm to resolve word-to-meaning
association and synthactic bootstrapping.

1.3 Dissertation Outline
The remainder of the dissertation is organized as follows. Chapter 2 de-
scribes a Bayesian view on two classical motor learning algorithm: Distal
learning and MOSAIC. We show how these problems, usually formalized as
optimization problems, can be solved using the Bayesian approach. Chapter
3 describe a generative Bayesian model for action understanding, in which
inverse-forward model pairs are considered ‘hypotheses’ of plausible action
goals that are explored in parallel via an approximate inference mechanism
based on particle filtering. Chapter 4 described a multi-instance learning
algorithm to resolve the semantic clustering and an EM algorithm to learn a
grounded language model.



Chapter 2

Bayesian Motor Learning

2.1 Introduction
Motor learning is fundamental and very interesting problem in robotics.
There have been many attempts at creating learning frameworks, enabling
robots to autonomously learn complex skills ranging from task imitation to
motor control. However, learning is not an easy task. The problem typically
involves solving a system of many coupled variables and is usually formal-
ized as an optimization problem, where these couplings are implicit in a cost
function. However the problem can be addressed from the point of view of
probabilistic inference. In the inference view, variables couplings are explic-
itly formulated as conditional dependencies in a joint distribution. Inference
methods like message passing algorithms can be used to yield (approximate)
solutions to the optimization problem. These principles have been introduced
by Toussaint in motion control and planning problem. Our goal is to apply
the same principles to the motor learning problem. The following section
present a Bayesian view on motor learning problem and a general approach
to solving it. We begin by describing our assumption about the controlled
plant and the learner.

2.2 Motor learning problem
We assume that the plant can be characterized by a next-state function f and
an output function g. At time step t ≠ 1 the learner produces a control ut≠1
(for simplicity we will consider a discrete time system). The resulting next
state xt is determined by Eq. 2.1, which describes the causal relationship
between the command and the state of the plant.

xt = f(xt≠1, ut≠1) (2.1)
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The function f describes the plant dynamics. Corresponding to each state
xt there is an observed output yt:

yt = g(xt) (2.2)

The dynamics function and the output function together determine a state-
dependent mapping from control to output. The goal of the learning proce-
dure is to produce a system which can generate an appropriate control ut≠1
given a desired output yú

t or a generic input pt≠1.

ut≠1 = h(yú
t , xt≠1) (2.3)

The learner will make appropriate adjustments to the input-to-control map-
ping h based on data obtained from interacting with the controlled plant. In
the current work we assume that the learner is able to observe only controls
and outputs of the system. The internal state must be induced as part of
the learning procedure. To simplify the problem, we assume that the output
function g is known, although an complete formulation could be considered.

2.2.1 Forward model
A forward model is an internal model that produces a predicted state x̂t

based on the state xt≠1 and the command ut≠1:

x̂t = f(xt≠1, ut≠1, w) (2.4)

The forward model directly corresponds to the state dynamics function f
shown in Eq. 2.1. As this function expresses the physical properties of the
system, the forward model represents a causal relationship between states
and commands. Thus, if such causal mappings have to be learned, it will
result in a well-defined problem and learning can be done using classical
supervised algorithm. By comparing predicted output ŷ and actual output
yú, the learner could use the resulting prediction error yú ≠ ŷ to adjust the
parameters of the model w.

2.2.2 Inverse model
An inverse model is an internal model that produces a command ut≠1 as a
function of the current state xt≠1 and the desired future output ŷt:

ut≠1 = h(yú
t , xt≠1, v) (2.5)

so that h and f have an inverse relationship and yield an indentity mapping
when placed in series. Whereas forward models are uniquely determined,
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inverse models are generally not. Classicaly, physical systems are character-
ized by a many-to-one mapping from commands to outputs. So there are an
infinite number of possible inverse model. A typical example is the inverse
kinematics of redundant robots.

Inverse kinematics Given a joint configuration q, the task space posi-
tion x can be determined exactly, but there may be many possible joint
configurations q for a given task space position x. Due to the many-to-one
relationship, the position-to-join mapping is ill-posed and q may form a non-
convex solution space. Thus, when naively learning such inverse mapping
from data, the learning algorithm will potentially average over non-convex
sets of the solutions. The resulting mapping will contain invalid solutions
which can cause poor prediction performance.

We describe an indirect approach to motor learning known as distal super-
vised learning. Distal supervised learning avoids the nonconvexity problem
and also avoids certain other problems associated with direct approaches to
motor learning.

2.3 A Bayesian view on distal learning
The basic idea behind the distal supervised approach ([Jordan and Rumel-
hart, 1992]) is that the information encoded in the forward model can help
to resolve the non-uniqueness of the inverse model. The forward model is un-
derstood as a “distal teacher” which guides the learning of the inverse model.
The inverse and the forward model are joined together and are treated as
a single composite learning system. The intuition behind this approach is
that the inverse model will learn a correct solution for a particular desired
trajectory when minimizing the error between the predicted output of the
forward model ŷ and the desired future output yú. Thus, this approach is
fundamentally goal-directed.

In practice, the distal teacher employs two interacting learning process:
one process where the forward model is learned from a set of training pairs
{ut≠1, yt}, and another process where the learned forward model is used for
determining the control sequence {uú

t }T
t=1, given the desired output sequence

{yú
t }T

t=1. Both problems can be solved easily using a Bayesian approach.
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(a) (b)

Figure 2.1: Graphical models for Bayesian distal learning: (a) for parameters
learning and (b) for motion rate control

2.3.1 Forward model: single time-slice learning
In this section, we first address the case of single-step learning. This example
will help us to introduce some of the issues we face in this work, and has no
practical relevance. Throughout the derivation we will make use of identities
for Gaussians which are summarized in the appendix.

First we need to estimate the parameter w œ Rs of the forward model
from a single training pair {ut≠1, yt}. Consider the join probability distribu-
tion:

P (xt≠1, xt, ut≠1, yt, w) = P (xt|xt≠1, ut≠1, w)P (yt|xt)P (xt)P (w) (2.6)

as also illustrated by the graphical model in Figure 2.1. We recognize the
first distribution as the forward model, and assume

P (xt|xt≠1, ut≠1, w) = N (xt|f(xt≠1, ut≠1, w), C) (2.7)

As we said, f is a non-linear function and C is the covariance of this coupling
(or equivalently C≠1 is the precision of the forward model). The second
distribution in Eq. 2.6 is the output model:

P (yt|xt) = N (yt|g(xt), Q) (2.8)

where g is the non-linear output function and Q is the associated covariance.
Finally, we call P (w) the parameter prior and assume

P (w) = N (w|ŵ, H≠1) (2.9)
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where ŵ is a prior solution and H is, as we will show later, a learning rate
matrix.

Given this model we can compute the posterior parameter conditioned
on the observed output yt, the current state xt≠1 and the control ut≠1. We
have

P (w|xt≠1, ut≠1, yt)
=

⁄
P (xt|xt≠1, ut≠1, w)P (yt|xt)P (w)dxt

=
⁄

N (xt|f(xt≠1, ut≠1, w), C)N (yt|g(xt), Q)N (w|ŵ, H≠1)dxt

We need to linearize the functions f and g in order to proceed. We use
the following linearization:

f(xt≠1, ut≠1, w) ¥ f(xt≠1, ut≠1, ŵ) + Jf (w ≠ ŵ)
= x̂t + Jf (w ≠ ŵ)

g(xt) ¥ g(xt≠1) + Jg(xt ≠ xt≠1) = Jgxt + g(xt≠1) ≠ Jgxt≠1

= Jgxt + ỹt

where x̂t is the predicted state and ỹt is a partial approximation of the output
at time t. The Jacobian matrix Jf and Jg are defined as:

Jf = ˆf

ˆw

-----
xt≠1,ut≠1,ˆw

Jg = ˆg

ˆxt

-----
xt≠1

Applying the Gaussian identities given in the appendix we have

P (w|xt≠1, ut≠1, yt)

¥
⁄

N (xt|x̂t + Jf (w ≠ ŵ) , C) N (yt|Jgxt + ỹt, Q) N
1
w|ŵ, H≠1

2
dxt

=
⁄

N
Ë
xt|C≠1 (x̂t + Jf (w ≠ ŵ)) , C≠1

È
N

Ë
xt|JT

g Q≠1 (yt ≠ ỹt) , JgQ≠1JT
g

È

· N
1
w|ŵ, H≠1

2
dxt

Applying the identities A.5 produces a Gaussian over xt which integrates to
1. Using the short hand A = JgCJT

g + Q we get:

P (w | xt≠1, ut≠1, yt)
= N (Jg (x̂t + Jf (w ≠ ŵ)) | yt ≠ ỹt, A) N

1
w | ŵ, H≠1

2

= N
Ë
Jg (x̂t + Jf (w ≠ ŵ)) | A≠1 (yt ≠ ỹt) , A≠1

È
N [w | Hŵ, H]

= N
Ë
w | JT

f JT
g A≠1 (yt ≠ ỹt ≠ Jgx̂t + JfJgŵ) , JT

f JT
g A≠1JgJf

È
N [w | Hŵ, H]
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Using the short hand J = JgJf and noting that

ỹt + Jgx̂t = g(xt≠1) + Jg (x̂t ≠ xt≠1) = ŷt

we find the final solution

P (w | xt≠1, ut≠1, yt)
= N

Ë
w | JT A≠1Jŵ + JT A≠1 (yt ≠ ŷt) , JT A≠1J

È
N [w | Hŵ, H]

= N
Ë
w |

1
JT A≠1J + H

2
ŵ + JT A≠1 (yt ≠ ŷt) , JT A≠1J + H

È

= N
3

w | ŵ +
1
JT A≠1J + H

2≠1
JT A≠1 (yt ≠ ŷt) ,

1
JT A≠1J + H

2≠14

Thus, Bayesian inference produces the maximum a posteriori (MAP) esti-
mate:

wMAP = ŵ +
1
JT A≠1J + H

2≠1 1
JT A≠1 (yt ≠ ŷt)

2
(2.10)

We can use Woodbury identity:
1
JT A≠1J + H

2≠1
JT A≠1 = H≠1JT

1
JH≠1JT + A

2≠1
= J# (2.11)

and rewrite wMAP as follows

wMAP = ŵ + J# (yt ≠ ŷt) (2.12)

Using a di�erent linearization of the function f

f(xt≠1, ut≠1, w) ¥ x̂t + Jfw

we get a slightly di�erent solution

wMAP =
1
JT A≠1J + H

2≠1 1
Hŵ + JT A≠1 (yt ≠ ŷt)

2

=
1
JT A≠1J + H

2≠1
Hŵ + J# (yt ≠ ŷt)

Further, using the identity
1
JT A≠1J + H

2≠1
H = I ≠

1
JT A≠1J + H

2≠1
JT A≠1J = I ≠ J#J (2.13)

we get
wMAP =

1
I ≠ J#J

2
ŵ + J# (yt ≠ ŷt) (2.14)
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2.3.2 Inverse model: single time-slice learning
By changing some of the assumptions made above and using the same Bayesian
network, we can estimate the control u. We will prove that, given the forward
model, we can always find the optimal control uú to get the desired output
yú. We have no need to use a parametric function to model the controller and
to explicitly formulate the conditional dependencies of the variables involved
in the forward model and the inverse model.

Consider the join probability distribution:

P (xt≠1, xt, ut≠1, ut≠2, yú
t , w) = P (xt|xt≠1, ut≠1, w)P (yú

t |xt)P (ut≠1 | ut≠2)

Here, we call P (ut≠1 | ut≠2) the control prior and assume

P (ut≠1 | ut≠2) = N (ut≠1 | ut≠2 + k, K) (2.15)

where k is a vector that induces an asymmetry in the control prior and K is
the control metric. Given this model we can compute the posterior control
conditioned on a desired output

P (ut≠1 | xt≠1, ut≠2, yú
t , w) =

⁄
P (xt|xt≠1, ut≠1, w)P (yú

t |xt)P (ut≠1 | ut≠2)dxt

We use the following linearization:

f(xt≠1, ut≠1, w) ¥ f(xt≠1, ut≠2, w) + Ju (ut≠1 ≠ ut≠2) (2.16)
= x̂t + Ju (ut≠1 ≠ ut≠2) (2.17)

g(xt) ¥ Jgxt + ỹt (2.18)

The posterior control is

P (ut≠1 | xt≠1, ut≠2, yú
t , w) = N

1
ut≠1 | uMAP , U

2

with MAP solution

uMAP = ut≠2 + J#(yú
t ≠ ŷt) + (I ≠ J#J)k (2.19)

J# = K≠1JT
1
JK≠1JT + A

2
(2.20)

A = JgQJT
g + C (2.21)

J = JgJu (2.22)

The solution presented here is obtained from the work of Toussaint and his
framework, called AICO. For more details we recommend [Toussaint and
Goerick, 2010].
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2.3.3 Comparison with gradient-based optimization al-
gorithm

In this section we compare the results obtained above with some gradient-
based optimization algorithm. We show how Bayesian machinery led to
comparable results and easily resolved some issues. We simplify some of the
assumptions made above, namely, we consider the output variable y as a
direct noised observation of the state of the system. The equation 2.12 can
be semplified as follows

wMAP = ŵ +
1
JT

f (C + Q)≠1Jf + H
2≠1

JT
f (C + Q)≠1 (yt ≠ ŷt) (2.23)

The above equation shows that the MAP parameter solution is very similar
to classical gradient-based solution.

In the classical limit C æ 0, Q æ 0 and H æ 0 (tight constraint, zero
observation noise and zero learning rate) the equation gives a step closer to
the gradient descent direction. Special choices of the learning rate matrix H
and covariance matrix C correspond to special classical optimization strate-
gies. For instance, Gauss-Newton algorithm follows from choosing C = I
and H = 0, and Levenberg algorithm follows from choosing H = ⁄I.

Assuming C = I and zero observation noise, we derive the covariance
matrix associated with the MAP solution as follows

HMAP = JT
f Jf + H (2.24)

H≠1
MAP = H≠1 ≠ H≠1JT

f (I ≠ JH≠1JT )≠1JH≠1 (2.25)

These equations corresponds to the incremental method of obtaining Fisher
information matrix. Then, updating the covariance associated with MAP
solution means estimating the Fisher Information matrix at ŵ. The gradient
H≠1

MAP Jf is called natural gradient in Riemann space, and the equations
suggest the Amari’s natural gradient descent algorithm.

2.3.4 Bayesian distal learning
Now, we try to put it all together. Suppose we want to achieve a particular
output yú. We do not know the true dynamics of the system f , but we have
only an approximation, given by the forward model fw. Equation 2.19 allows
us to calculate, based on the (incorrect) parameters of the forward model,
the control u. When we execute the control, we observe di�erent output, y.
We use the pair (u, y) to reestimate the parameters of the forward model w.
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2.4 Learning along trajectory
Here, we move from single time slice model to time extended models of
the whole trajectory. The inference techniques in such temporal models are
e�ectively described in terms of message passing algorithms. In most realistic
cases exact inference is infeasible because the shape of the exact probability
distributions would be very complex. Approximate inference method, like
Belief Propagation, can be used to yield (approximate) solutions to these
problems. A more detailed description of message passing in general factor
graphs is given in [Kschischang et al., 2001]. Here we only give the message
equations in general factor graph.

2.4.1 Message passing algorithm
We consider the problem of finding the marginal p(x) for particular variable
node x. By definition, the marginal is obtained by integrating the joint
distribution over all variables except x so that

p(x) =
⁄

x\x
p(x) (2.26)

where x\x denotes the set of variables in x with variable x omitted. The
idea is to substitute for p(x) using a factor graph and then interchange sum-
mations and products in order to obtain an e�cient algorithm. We see that
the joint distribution can be written as a product of the form

p(x) =
Ÿ

i

fi(xi) (2.27)

where xi denotes the set of variable nodes that are adiacent of factor fi. In
factor graphs, the two key equations are the messages sent from a variable x
to a local factor fi:

µxæfi(x) =
Ÿ

fjœN(x)\fi

µfjæx(x) (2.28)

and from a factor to a variable

µfiæx(x) =
⁄

xi\x
f(xi)

Ÿ

xjœxi\x

µxjæfi(xj) (2.29)

where xi is the domain of fi and N(x) are the factors that depends on x.
Finally the marginal distribution can be written as

p(x) =
Ÿ

fiœN(x)
µfiæx(x) (2.30)
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Figure 2.2: The same graphical model as for redundant distal learning (Figure
2.1(a)) but for multiple time slices.

We can represent these messages as vector of discrete probabilities, or as the
mean and the covariance of a Gaussian random variable, etc.

The equation 2.28 says that to evaluate the message sent by a variable node
to a factor node, take the product of the incoming messages along all other
links coming into the variable node. In this case, the product of the message
can be implemented by dividing the marginal by the message to be excluded

µxæfi(x) = p(x)
µfiæx(x) (2.31)

For Gaussian messages, we can define division as in the junction tree al-
gorithm by using the canonical parmetrization, i.e., using precision matrix.
The equation 2.29 says that to evaluate the message sent by a factor node
to a variable node along the link connecting them, take the product of the
incoming messages along all other links coming into the factor node, multiply
by the factor associated with that node, and then marginalize over all of the
variables associated with the incoming messages.

2.4.2 Forward model
Now, we derive the messages for multi-step learning. We will derive only
some of the messages of the Bayesian network. The remaining messages can
be derived in the same way. We consider the joint probability distribution

P (x1:T , u1:T , y1:T , w) =
C

TŸ

t=1
P (xt | xt≠1, ut≠1, w) P (yt | xt)

D

P (x0)P (w)
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Here, we use a di�erent linearization of f and g functions
f(xt≠1, ut≠1, w) ¥ f(x̂t≠1, ut≠1, ŵ) + Jx (xt≠1 ≠ x̂t≠1) + Jw (w ≠ ŵ)

= x̃t + Jx (xt≠1 ≠ x̂t≠1) + Jw (w ≠ ŵ)
g(xt) ¥ g(x̂t) + Jg(xt ≠ x̂t) = Jgxt + g(x̂t) ≠ Jgx̂t

= Jgxt + ỹt

We begin by deriving the message sent from factor gt to state xt. We have
µgtæxt(xt) = N (yt | Jgxt + ỹt, Q)

= N
Ë
xt | JgQ≠1 (yt ≠ ỹt) , JT

g Q≠1Jg

È
(2.32)

We also define
µxtæft(xt) = µgæxt(xt) µft≠1æxt(xt)

= N
Ë
xt | JT

g Q≠1 (yt ≠ ỹt) , JT
g Q≠1Jg

È
N (xt | ft, Ft)

= N (xt | gt, Gt)
where

gt = ft + J#
g (yt ≠ ŷÛ) (2.33)

Gt =
1
JT

g Q≠1Jg + F≠1
t

2≠1
(2.34)

J#
g = JT

g Ft

1
JgFtJT

g + Q
2≠1

(2.35)
ŷÛ = ỹt + Jgft = g(x̂t) + Jg(ft ≠ x̂t) (2.36)

The message µxtæft≠1 can be derived in exactly the same way. The mes-
sages µftæxt and µftæxt≠1 are analogous to forward and backward message
of extended Kalman smoothing. These messages correspond directly to the
prediction made by the forward model. Concerning the message µftæw, we
have

µftæw(w)

=
⁄

P (xt | xt≠1, ut≠1, w)µxt≠1æft(xt≠1)µxtæft(xt)dxt≠1dxt

=
⁄

P (xt | xt≠1, ut≠1, w)N (xt≠1 | gt≠1, Gt≠1) N (xt | bt, Bt) dxt≠1dxt

= N [w | st, St] (2.37)
where

st = Stŵ + JT
wA≠1

t (bt ≠ x̃t ≠ Jx(gt≠1 ≠ x̂t≠1)) (2.38)
St = JT

wA≠1
t Jw (2.39)

At = C + Bt + JxGt≠1JT
x (2.40)



2. Bayesian Motor Learning 17

Equation 2.38 represents a partial approximation of the parameters w based
on the contribution of a single factor ft. It can be rewritten as follows

st = ŵ +
1
JT

wA≠1
t Jw

2≠1
JT

wA≠1
t (bt ≠ x̃t ≠ Jx(gt≠1 ≠ x̂t≠1))

= ŵ + J#
w (bt ≠ x̂Û) = ŵ + J#

w (x̂Ù ≠ x̂Û) (2.41)

The variable x̂Û and x̂Ù are respectively the forward and backward approxima-
tion of the state xt. The error in the state space is mapped in the parameter
space through J#

w (pseudo-inverse of the jacobian Jw) and used to correct the
current solution. In most cases, the matrix J#

w can not be calculated because
JT

wA≠1
t Jw is singular and the inverse does not exist.

All partial solutions are then used to calculate the belief on the parameters
b(w) as follows

b(w) = N (w | ŵnew, Ŵ) (2.42)
ŵnew = ŵold +

ÿ

t

J#
H(x̂Ù ≠ x̂Û) (2.43)

J#
H = ŴJT

wA≠1
t (2.44)

Ŵ =
A

ÿ

t

JT
wA≠1

t Jw + H
B≠1

(2.45)

The matrix J#
H can be interpreted either as a normalization costant that

weights each contribution, or as the so-called singularity-robust inverse, where
the learning rate matrix H acts as a regularizer.

2.4.3 Algorithm summary
A standard algorithm would resolve the recursive equations by first iterat-
ing forward over time to compute the forward messages, and then iterate
backward over time to compute the backward messages. The algorithm we
propose is given by the following message passing scheme:

1. Initialize all beliefs uniformly, except for x0.

2. Update the state space beliefs

b(xt) = µgtæxtµft≠1æxtµftæxt (2.46)

first iterating forward for t = 1, .., T , then iterating backward for t =
T ≠ 1, .., 1. We use local linearization at ŵ = b(w) and x̂t = bold(xt).
This will yield a preliminary belief over possible state.
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3. Update the parameter space beliefs

b(w) = P (w)
Ÿ

t

µftæw (2.47)

using local linearizations at ŵ = bold(w) and x̂t = b(xt). This generates
a new estimate of forward model parameter.

4. Iterate until convergence.

Since the messages depend on the point of linearization we have to it-
erate the forward and backward sweeps until convergence. We can make a
direct comparison with the EM algorithm. The step (1) corresponds to the
E-step, which estimates the hidden variables of the model and the step (2)
corresponds instead to the M step which computes the new parameters.

Iterating steps (2) and (3) also means to propagate up µftæw and down
µwæft messages between the state-level and the parameter-level until coher-
ence between both levels is achieved. In the first case, the prediction error
y≠ŷ is propagated from the output space to the parameter space and is used
to calculate a new estimate; in the second case, the new estimate is used to
recalculate the prediction error. When this error is small enough, the algo-
rithm converges to a solution. This process is mediated by the state space,
which acts as a glue. The prediction error is initially projected in the state
space (to correct the state prediction made by the forward model) and then
projected into the parameter space (to correct the its current parameters).

2.5 Multiple paired forward-inverse model
Now, we assume that the dynamics of the system f are not fixed over time
but can take on a possibly infinite number of di�erent forms. These di�erent
forms correspond to the context of the control and include such factors as
interactions with objects or changes in the environment. This can either
be parameterized by assuming there is a set of system dynamics fi or by
including a context parameter c as part of the dynamics

xt = f(xt≠1, ut≠1, ct = i) = fi(xt≠1, ut≠1) (2.48)

where ct encapsulates the context at time t. The aim of the overall controller
is to learn to control the system under di�erent and unknown contexts. We
address this problem using a Bayesian approach.
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(a) (b)

Figure 2.3: On the left is the graphical model for multiple forward-inverse
model learning. On the right is the corresponding factorized approximation.

Suppose we have a training set consisting of pairs {ut≠1, yt} and to know
the number of models to be learned, N . We can model the new system with
the Bayesian network as shown in Figure 2.3(a), which is a hybrid network,
ie a network of discrete and continuous variables. In this hybrid network,
the messages exchanged between variables and factors are no longer Gaus-
sian distributions, but are mixture of Gaussians (MOG) distribution. To
compute the belief of a single variable, we must combine a Gaussian prior
with n mixture of Gaussians likelihoods that yields an MOG posterior with
O(2n) modes. Hence, the full posterior over a single variable cannot be rep-
resented exactly or compactly. We may approximate the posterior with a
single Gaussian (moment matching).

2.5.1 Expectation Propagation
Expectation propagation exploits the fact that the likelihood is a product
of simple terms. If we approximate each of these terms well, we can get a
good approximation to the posterior. EP is like Belief Propagation, except
that the messages it sends only contain expectation of features, instead of full
(marginal) belief states. For many probabilistic models, the joint distribution
of data D and hidden variables (including parameters) ◊ comprises a product
of factors in the form

p(D, ◊) =
Ÿ

i

fi(◊i)

where ◊i represents the subset of variables associated with factor fi. It apply
to any model defined by a directed probabilistic graph in which each factor is
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a conditional distribution corresponding to one of the nodes, or an undirected
graph in which each factor is a clique potential. We approximate this using
a fully factorized distribution of the form

q(◊) =
Ÿ

k

qk(◊k) (2.49)

where ◊k corresponds to an individual variable node. Each factor q(◊k) rep-
resents an approximated belief of node ◊k and is defined as

qk(◊k) =
Ÿ

i

f̃ki(◊k) (2.50)

In order to obtain a pratical algorithm, we need to constrain the approxi-
mated factor f̃ki(◊k) in some way. We shall assume that they come from the
exponential family.

Suppose that we wish to refine the particular term f̃i(◊i) = r
kœ◊i

f̃ki(◊k)
keeping all other terms fixed. We first remove the factor f̃i(◊i) from the
current approximation to the posterior by defining the unnormalized distri-
bution

qold(◊) = q(◊)
f̃i(◊i)

=
Ÿ

k

qk(◊k)
f̃ki(◊k)

=
Ÿ

k

qold
k (◊k) (2.51)

We see that each message qold
k (◊k) is a prior term and is equivalent to the

message µxkæfi . Note that we could instead find qold
k (◊k) from the product

of factors j ”= i, although in practice division is usually easier. This is now
combined with the exact factor fi(◊i) to give a distribution

1
Zi

fi(◊)qold(◊) (2.52)

where Zi is the normalization constant given by

Zi =
⁄

◊i

fi(◊i)qold(◊) (2.53)

which involves taking the marginal of fi(◊i) multiplied by any terms from
qold(◊) that are functions of any of the variables in ◊i. Expectation prop-
agation chooses each approximation such that the posterior using the term
exactly and the posterior using the term approximately are close in KL-
divergence

KL

A
1
Zi

fi(◊)qold(◊)
----- qnew(◊)

B

(2.54)
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It is straightforward to obtain the required expectations for any member of
the exponential family, provided it can be normalized, because the expected
statistics can be related to the derivatives of the normalization coe�cient

mnew
k = mold

k + Vold
k �mk

Zi (2.55)
Vnew

k = Vold
k ≠ Vold

k

1
�mk

Zi�mk
ZT

i ≠ 2�Vk
Zi

2
Vold

k (2.56)

We see that the revised factor f̃i(◊i) can be found by taking the new posterior
approximation and dividing out the remaining factors so that

f̃i(◊i) = K
qnew(◊)
qold(◊) = K̄

Ÿ

k

qnew
k (◊k)
qold

k (◊k) (2.57)

The coe�cient K is given by

K =
⁄

◊i

f̃i(◊i)qold(◊) = K̄
Ÿ

j ”œ◊i

qold
j (◊j) (2.58)

Terms that correspond to other factors f̃j(◊j) will cancel between numerator
and denominator when we divide by qold(◊) in Eq. 2.57.

2.5.2 Learning from trajectory
We consider the joint probability distribution

P (x1:T , u1:T , y1:T , c1:T , w)

=
C

TŸ

t=1
P (xt | xt≠1, ut≠1, ct≠1, w) P (yt | xt)P (ct≠1)

D

P (x0)P (c0)P (w)

where ct is a discrete random variable and and the parameter w depends on
the context variable.

We seek an approximation q(x1:T , c1:T , w) that has the same factorization,
so that

q(x1:T , c1:T , w) =
TŸ

t=1
f̃t≠1(xt, xt≠1, ct≠1, w) (2.59)

Now we restrict attention to approximations in which the factors themselves
factorize with respect to the individual variables so that

q(x1:T , c1:T , w) =
TŸ

t=1
f̃t≠1(xt)f̃t≠1(xt≠1)f̃t≠1(ct≠1)

NŸ

i=1
f̃t≠1(wi) (2.60)
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which corresponds to the factor graph shown on the right in Figure 2.3(b).
Because the individual factors are factorized, the overall distribution is itself
fully factorized

q(x1:T , c1:T , w) =
NŸ

i=1
q(wi)

TŸ

t=1
qt(xt)qt(ct) (2.61)

Now we apply the EP algorithm using the fully factorized approximation.
Suppose that we have initialized all of the factors and that we choose to refine
factor f̃t≠1. We see that the only factors in q(x1:T , c1:T , w) that change when
we update f̃t≠1 are those that involve the variables in ft≠1. We remove this
factor from the approximating distribution to give

qold(xt, xt≠1, ct≠1, w) = qold(xt)qold(xt≠1)qold(ct≠1)
NŸ

i=1
qold(wi) (2.62)

where the partial approximation are defined as

qold(wi) = q(wi)
f̃t≠1(wi)

= N (w̄i, �i
w) qold(xt) = q(xt)

f̃t≠1(xt)
= N (x̄t, �xt)

qold(xt≠1) = q(xt≠1)
f̃t≠1(xt≠1)

= N (x̄t≠1, �xt≠1) qold(ct≠1) = q(ct≠1)
f̃t≠1(ct≠1)

= p̄i
t≠1

and we then multiply this by the exact factor to give

p̂(xt, xt≠1, ct≠1, w) = P (xt | xt≠1, ut≠1, ct≠1, w)qold(xt, xt≠1, ct≠1, w)

We now find qnew by minimizing the Kullback-Leibler divergence KL(p̂ | qnew).
This involves taking the marginal of p̂ for any of the variables involved in
ft≠1. We therefore evaluate the normalization constant Z as follows

Z =
Nÿ

i=1
qold(ct≠1)

⁄

xt,xt≠1,wi

P (xt | xt≠1, ut≠1, ct≠1, w)qold(xt)qold(xt≠1)qold(wi)

(2.63)

It’s easy to show that the result is a mixture of Gaussians distribution, where
p̄i

t≠1 are the weights of each mixture components and each Gaussian distri-
bution N (x̄t | x̄i,t, �i) is defined as

x̄i,t = f(x̂t≠1, ut≠1, ŵi) + Ji,x (x̄t≠1 ≠ x̂t≠1) + Ji,w (w̄i ≠ ŵi) (2.64)
�i = C + Ji,x�xt≠1JT

i,x + Ji,w�i
wJT

i,w + �xt (2.65)
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We compute the mean and covariance of qnew by finding the mean and covari-
ance of p̂. Here we show only the mean update equation. First we compute
the derivatives of Z for each factor in qold and than, using the equation 2.55,
we obtain the new approximation.

For example, we want to update the factor qold(xt). First we calculate
the derivative of Z for x̄t to obtain

�x̄ log Z = ≠ 1
Z

Nÿ

i=1
p̄i

t≠1N (x̄t | x̄i,t, �i) �i ≠1 (x̄t ≠ x̄i,t) (2.66)

To simplify the notation, we introduce the variable ⁄i, defined as

⁄i
t≠1 = p̄i

t≠1N (x̄t | x̄i,t, �i)
qN

i=1 p̄i
t≠1N (x̄t | x̄i,t, �i)

(2.67)

Using the equation 2.55, we get

xnew
t = x̄t ≠

Nÿ

i=1
⁄i

t≠1�xt �i ≠1 (x̄t ≠ x̄i,t) (2.68)

Below we list the updates for other factors

wnew
i = w̄i ≠ ⁄i

t≠1�i
wJT

i,w �i ≠1 (x̄t ≠ x̄i,t) (2.69)
pi

t≠1 = ⁄i
t≠1 (2.70)

Then we use the equation 2.57 to compute the refined factor f̃t≠1. This re-
finement process is repeated until a suitable termination criterion is satisfied,
for instance that the maximum change in parameter values resulting from a
complete pass through all factors is less than some threshold.

2.5.3 Controlling the system
For each behavior captured by a forward model we would wish to learn a
control strategy, i.e. an inverse model. Therefore, for each forward model
there would be a paired inverse model. Each inverse model would have
as input the desired next output yú

t and would produce a motor command
ui

t≠1 The aim is that each inverse model learns to provide suitable control
signals under the context for which its paired forward model provides good
predictions.

The Bayesian framework allows direct calculation of the control ut with-
out further assumptions. We don’t need to define parametric functions as-
sociated with the inverse models. Instead, we can directly calculate the
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individual contributions associated with each forward model and the entire
sequence of controls {ut}T

t=1.
We introduce a new factor to the equation 2.62

qold(ut≠1) = q(ut≠1)
f̃t≠1(ut≠1)

= N (ut≠1 | ūt≠1, �u) (2.71)

We use the linearization of f and g functions, as defined in the single-step
case. Equations 2.64 and 2.65 become

x̄i,t = f(x̂t≠1, ût≠1, wi) + Ji,x (x̄t≠1 ≠ x̂t≠1) + Ji,u (ūt≠1 ≠ ût≠1) (2.72)
�i = C + Ji,x�xt≠1JT

i,x + Ji,u�uJT
i,u + �xt (2.73)

The total motor command generated by the whole set of N forward models
is given

unew
t≠1 = ūt≠1 ≠

Nÿ

i=1
⁄i

t≠1�uJT
i,u �i ≠1 (x̄t ≠ x̄i,t) (2.74)

Again the variables ⁄i
t≠1 would be used to weight the prediction error x̄t ≠x̄i,t

of each forward model and to correct the current estimation of the control
ut≠1.

2.5.4 Discussion
In this section, we have proposed a Bayesian model which can solve the mo-
tor learning and selection problems in a computationally coherent manner.
We applied the distal learning principles to multiple model learning. The key
to this model is the variable ⁄i

t≠1 which reflect, at any given time, the degree
to which each pair of forward and inverse models should be responsible for
controlling the current behavior. If we look at equation 2.67, we notice that
p̄i

t≠1 acts as a prior, updated by the likelihood N (x̄t | x̄i,t, �i) that depends
on the prediction error of i-th forward model. Those forward models which
capture the current behavior, and therefore have low errors, will have high
responsibilities. In MOSAIC ([Haruno et al., 2001]), this variable is known as
responsibility signal. This responsibility signal both couples the inverse and
forward model pairs, guides learning in each pair of the inverse and forward
models, and gates the contribution of each inverse model’s output to the final
output. The variable ⁄i

t≠1 is the probabilistic equivalent of this signal.

As in MOSAIC, the variables ⁄i
t≠1 are used in three ways: (1) to gate the

learning of the forward models, (2) to gate the learning of the inverse models
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and (3) to gate the contribution of the inverse models to the final motor com-
mand. In summary, each forward model receives the total motor command,
and each models’ prediction is compared with the true outcome. Only those
forward models with small errors should adapt and those with large errors
should learn little. Conceptually speaking, if one forward model’s prediction
is good, its corresponding inverse model receives the major part of the mo-
tor error signal and its output contributes significantly to the final motor
command. On the other hand, if the forward model’s prediction is poor, its
corresponding inverse model does not receive the full error and its output
contributes less.

2.6 Experiments
2.6.1 Object dynamics
To examine motor learning and control, we simulated a task in which the
hand had to track a given trajectory {yú

t }T
t=1, while holding di�erent unknown

object. Each object had a particular mass, damping, and spring constant (M ,
B, K). We model the dynamics of each object as a next-state linear system,
defined as follows

C
xt

ẋt

D

=
C

1 �t
≠ K

M
�t 1 ≠ B

M
�t

D

+
C
xt≠1
ẋt≠1

D

+
C

0
�t
M

D

u (2.75)

and an output function C
yt

ẏt

D

=
C
1 0
0 1

D C
xt

ẋt

D

(2.76)

The experiment goals are: (1) to learn the motor commands to compensate
for the dynamics of the di�erent objects and (2) to learn the dynamics of
each objects. Forward models were implemented as a linear neural network.
The use of linear networks allowed M , B, and K to be estimated from the
forward model weights.

In the first simulation, we used the BP method to train forward-inverse model
pair. The learning rate matrix H≠1 was set to 0.01. The sampling rate was
100 Hz, and a trial was a 5 second run. The initial forward model is used to
generate the sequence of commands {ut}T

t=1. We used AICO framework to
generate the controls. These controls are then used to generate the training
set, consisting of pairs {yt, ut≠1}. The output signal yt was corrupted with
Gaussian noise (var = 0.1, 0.3, 0.5). Figure 2.5 shows an evolution of the
forward model estimates of M ,B, K during learning. The parameters started
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Figure 2.4: The belief over the ende�ector trajectory (approximate forward
model). Also the mean joint configurations for some time step are displayed.
The dotted lines represents the approximated trajectories and the solid line
represents the true trajectories.
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Figure 2.5: Learning single dynamic

from randomly selected initial condition and converged over 15 trials to very
good approximations. Figure 2.5(b) shows the performance of the model
during the learning phase. It is interesting to note that the method compen-
sates for the output noise and, at the same time, calculates with reasonable
accuracy the parameters of the forward model.

2.6.2 Planar arm kinematics
In the second simulation, we try to learn the forward and inverse kinematics
of a three-joint planar arm. As shown in Figure 2.4 the configuration of
the arm is characterized by the three joint angles q1, q2 and q3 and the
corrisponding pair of Cartesian variables x1 and x2. The function that relates
these variables is the forward kinematic function x = g(q). It is obtained in
closed form using elementary trigonometry:

C
x1
x2

D

=
C
l1 cos(q1) + l2 cos(q1 + q2) + l3 cos(q1 + q2 + q3)
l1 sin(q1) + l2 sin(q1 + q2) + l3 sin(q1 + q2 + q3)

D

(2.77)

where l1, l2 and l3 are the link lengths.
The forward kinematic function g is a many-to-one mapping: for every

Cartesian position that is inside the boundary of workspace, there are an
infinite nuber of joint angle configurations to achive that position. This
implies that the inverse kinematic relation g≠1 is not a function: rather, there
are an infinite number of inverse images of each of the Cartesian positions.

In the simulation, the joint angles of the arm were represented using the
vector (q1, q2, q3])T . The motion of the joints was restricted to the intervals
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[≠fi
2 , fi

2 ], [0, fi] and [0, fi]. The Cartesian variables x1 and x2 were represented
as real numbers. Forward kinematics was implemented as a feedforward
neural network with sigmoidal activation function. A single layer of 50 units
was used. No attempt was made to optimize the number of the hidden
units or their connections. These variables were represented directily as real-
valued activations of units in the network. Thus, three units were used to
represents joint-angle configurations and two units were used to represent
Cartesian positions.

Initially, the forward kinematics was trained. The simulation provided
input vectors to the network by sampling randomly from an uniform distri-
bution in joint space. Target vectors were obtained by mapping the input
vectors into Cartesian space according to Equation 2.77. Initial parameters
of the network were chosen randomly from an uniform distribution on the
interval [≠0.5, 0.5]. The initial value of the root-mean-square (RMS) Carte-
sian position error was 31.66. After 4 iterations of BP algorithm, the RMS
error reached asymptote at value of 0.01.

In Figure 2.4, we demonstrate that the Bayesian approach can find par-
ticular inverse kinematic mapping. A trajectory in Cartesian space was used
to provide targets during the second phase of the simulation. After 12 iter-
ations, the resulting joint-angle sequence was plotted.



Chapter 3

Action Understanding

3.1 Introduction
Action understanding, or the process of how understand actions performed
by others and their goals when we observe them, has recently received great
attention in cognitive psychology and social neuroscience.

Historically, two main theories have been proposed for explaining action
understanding (and, more broadly, mindreading abilities, which also include
the understanding of another’s distal intentions, beliefs, emotions, etc.). On
the one hand, followers of ‘theory theory’ argue that, to understand another’s
action, human rely on an explicit ‘theory of mind’, or a set of hypotheses
(possibly expressed in a propositional format) of what causes actions, or on
a rationality principle (i.e., what would be rational in a given situation) [Car-
ruthers, 1996, Csibra and Gergely, 2007]. On the other hand, followers of
‘simulation theory’ argue that, to understand another’s action, humans put
themselves into another’s shoes, and use their own action repertoire rather
than explicit (or propositional) knowledge [Gallese and Goldman, 1998, Gold-
man, 2006, Gordon, 1986].

The discovery of mirror neurons, or neurons in the F5 area of the macaque
brain, which are active both during (transitive) action and the perception of
the same action performed by others [Rizzolatti and Craighero, 2004], has
boosted a great deal of interest in the topic of action understanding in social
cognitive neuroscience, and, at the same time, has provided (prima facie)
support to the simulative view, at least for what concerns the understanding
of the immediate goals of observed actions.

Several years of research on neural substrate of action understanding and
intersubjectivity (which has focused on additional brain areas that form the
so-called ‘social brain’ [Grafton, 2009]) has revealed a number of interesting
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features of the (monkey and human) action recognition mechanism. First,
the motor resonance phenomenon of mirror neurons, which align one’s own
and another’s action representations, is an automatic process1, in which the
activation of motor representations is selective for specific intentional actions.
Numerous studies show that populations of mirror neurons in F5 fire only
when a specific action is executed (e.g., grasping but not reaching), and do
not fire when random patterns of movements (i.e., non intentional actions)
are observed [Rizzolatti and Craighero, 2004] (but note that the ‘motor vo-
cabulary’ of neurons in F5 code for actions at di�erent hierarchical levels, e.g.,
some of them are e�ector-specific, and some other e�ector-independent). Ad-
ditional evidence for specificity of action understanding comes from study of
expert performance, in which action understanding and prediction accuracy
depend on the similarity of the motor repertoire of of observed and observ-
ing agents [Aglioti et al., 2008, Calvo-Merino et al., 2006]. Second, action is
recognized at the goal rather than the movement level, as evidenced in stud-
ies that dissociate movements and goals in action observation [Csibra and
Gergely, 2007, Umiltà et al., 2008]. Third, automatic action understanding
mechanisms can explain the recognition of distal intentions rather than only
proximal action [Fogassi et al., 2005, Iacoboni et al., 2005].

3.1.1 Mirroring and action understanding at the com-
putational level

Despite a large deal of empirical research in physiology and cognitive neuro-
science, it is still unclear what are the cognitive processes and computations
in the mirror neurons system and the wider brain network devoted to social
understanding. One popular idea is that mirror neurons implement a direct
motor resonance mechanism, in which observed actions are directly mapped
into goal representations. A possible computational process behind direct
resonance is Hebbian learning [Keysers and Perrett, 2004].

Alternatively, it has been proposed that actions are recognized via pre-
dictive processes rather than via direct resonance (or other passive or recon-
structive processes). In this view, the motor system produce predictions in

1Automatic motor simulation has to be distinguished from deliberate processes, such
as for instance motor imagery [Crammond, 1997, Jeannerod, 1994, Jeannerod and De-
cety, 1995] or mechanisms of prospection [Schacter et al., 2007, Suddendorf and Corballis,
2007]. In addition, in the social cognition literature, it is believed that automatic processes
of action understanding are accompanied and augmented by more complex mindreading
mechanisms based on the intentional stance [Dennett, 1987, Gergely and Csibra, 2003],
which permit to explicitly attribute mental states to others, and to flexibly reason about
them [Keysers and Gazzola, 2007].
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the service of object and action perception, realizing what has been called
action simulation or motor simulation. This idea connects well with a large
body of theories of internal modeling in computational motor control [Jean-
nerod, 2006, Miall and Wolpert, 1996, Wolpert et al., 1995], according to
which the CNS uses internal forward models to predict the perceptual e�ects
of motor commands, being them really executed or only imagined. Internal
forward models can be used during action observation, too, and permit to
emulate what is observed so as to enhance on-line perception [Gallese and
Goldman, 1998, Grush, 2004, Wilson and Knoblich, 2005], understand of
the goal of the action [Wohlschlaeger et al., 2003], or both [Pezzulo, 2008,
Wolpert et al., 2003]. Importantly, this is done by reusing one’s own motor
repertoire, and this explains motor involvement during action perception.
Given this theoretical framework, in the last years many experiments have
been conducted with the aim to find evidence for predictive processes and
forward modeling during action observation. Direct evidence that the time
course of mirror-neuron activation anticipates motor observation comes from
a MEP (Motor-Evoked Potentials) study [Borroni et al., 2005]. Evidence that
action understanding is a predictive process comes from studies in which (the
final) part of an action is not visible [Umiltà et al., 2001] or in which mo-
tor activation precedes perception when the context is predictable [Kilner
et al., 2004]. In addition, a recent TMS study shows that motor facilitation
is higher during observation of ongoing action than in its last phase, suggest-
ing that an anticipatory simulation rather than a reconstructive process is
in play [Urgesi et al., 2010]. Motor involvement in perceptual processing is
not confined to the visual modality, but has been reported also in auditory
processing [Gazzola et al., 2006] and speech understanding [D’Ausilio et al.,
2009, Meister et al., 2007].

3.2 A Bayesian model of action understand-
ing

3.2.1 An inverse-forward modeling scheme for action
understanding

An authoritative view in computational motor control is that to act in a goal-
directed manner the brain employs internal models [Kawato, 1999, Wolpert
et al., 1995], which are fundamental for understanding a range of processes
such as state estimation, prediction and context recognition. Internal models
could explain the human’s ability to generate appropriate movement patterns
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under uncertain environmental conditions. For example, we can pick up an
object without knowing its dynamics. To solve this task, it has been proposed
that the CNS uses a modular approach in which multiple controllers coexist
and are selected based on the movement context or state, so that each inverse-
forward pair becomes an expert of a given motor action and context [Wolpert
and Kawato, 1998].

In computational motor control there are two types of internal models.
Internal models that predict the sensory consequences of a motor command
are known as forward models as they model the causal (forward) relation-
ship between actions and their consequences, xt = „(xt≠1, ut, ct). A forward
model, therefore, can be used to predict how the motor system’s state xt

changes in response to a given motor command ut. An inverse model per-
forms the opposite transformation to a forward model, determining the motor
command ut required to achieve some desired outcome xú. In engineering it
is also known as controller, ut = Â(xt≠1, xú). When a motor command is
generated, an e�erence copy of the motor command can be used to simulate
the sensory consequences under the possible contexts. These predictions are
compared with actual sensory feedback. Each predictor can, therefore, be
regarded as a hypothesis tester for the context that it models. The smaller
the error in prediction, the more likely the context. Moreover, each predictor
is paired with a corresponding controller forming a predictor-controller pair.
The sensory prediction error is used to weight the outputs of the paired con-
trollers: ” = xt ≠ x̂t = xt ≠ „(xt≠1, Â(xt≠1, xú), ct). We can therefore describe
a goal-directed action as: (a) a controller, or inverse model, which determines
the appropriate motor command to reach a certain goal, coupled with (b) a
predictor, or a direct model, which predicts the consequences of the action
in a given context.

It has been proposed that inverse and forward models used in motor
control can be reused for motor simulation in support of action prediction
and understanding [Wilson and Knoblich, 2005, Wolpert et al., 2003]. Given
the system’s ability to produce and predict actions via inverse and forward
models, action recognition can be described as an inverse inference process in
which the generative model is “inverted” so as to pass from the observation of
movements to the inference of which of the observer’s inverse model(s) could
have generated the observations [Wolpert et al., 2003]. Since inverse models
have associated goals, recognition of inverse models entails recognition of the
(more plausible) action goals. Note that action recognition is not a one-step
process, but can be as dynamic as action performance itself. This is why
motor simulation and prediction can help in the recognition process. Put in
simple terms, the same internal models that an organism uses for performing
goal-directed action can be re-enacted “in simulation” and used for inferring
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others’ goals (and possibly imitating them). Forward models, or predictors,
can be used as simulators of the consequences of an action, and when paired
with an inverse model, a controller, a degree of discrepancy between what I
observe and what I do (or just “imagine” of doing) can be produced which
helps finessing the initial hypotheses about the observed action goals (and
which inverse model could have produced it). Importantly, with this method
action are recognized in terms of the observer’s action repertoire; this is
the key insight to relate this recognition method to the activation of mirror
neuron system.

3.2.2 The role of priors and contextual information
One limitation of the aforementioned scheme is that when there are multiple
possible action goals associated with the same movement, or multiple distal
intentions associated with the same action, our inverse inference method for
action understanding is under-determined. For instance, how to know if
one clicks a button to turn a light on or o� (same movement but di�erent
action goal) or if one turns the light on to have light or to check if the
electrical system works well (same action but di�erent distal intention) by
simply observing the ongoing action? Our system solves this problem by (i)
casting it as a probabilistic inference process and (ii) by adding contextual
information to the generative architecture. First, in probabilistic terms, a
probability distribution of possible action goals is computed rather than a
single goal, and multiple hypotheses are maintained in parallel and updated
when novel evidence is accumulated. Second, our generative architecture
takes into account the context in which the action takes place to help the
(probabilistic) estimate. In the preceding example, the context (light is on or
of) disambiguates the proximal goal (turning light o� or on, respectively) and
distal intention (if the actor is an electrician, a checking intention becomes
more plausible).

Contextual information and prior knowledge has been manipulated in
many empirical studies, and plays a key role in mirroring and action (or in-
tention) recognition. For instance, in the study of Iacoboni et al. [2005], the
position of objects provides the necessary contextual information (beginning
or end of breakfast) to pick up the right distal intention. In the study of Kil-
ner et al. [2004], a color cue serves as context for the more plausible goal to
be executed, and in the study of Umiltà et al. [2001] the presence or absence
of food behind the screen (which is known by the monkey) disambiguates
between a goal-directed action and a simple movement. Our model accounts
for the role of multiple sources of contextual information: goal information
(i.e., prior information of the actor’s preferences over possible goals, or what
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goals are more plausible in the context), environmental information (e.g., be-
fore or after breakfast, like in the experiment of Iacoboni et al.), and object
a�ordances (e.g., orientation of handle of a co�ee cup, which makes some
approach movements more plausible than others). The role of a�ordances in
providing priors is compatible with the idea that canonical neurons [Murata
et al., 1997, Rizzolatti et al., 1988], which encode a�ordances [Tucker and
Ellis, 2004], can bias mirror neuron activation. Evidence that canonical re-
sponses can interfere with the mirror mechanism comes from a recent study,
in which action prediction accuracy decreased when the observed action was
incongruent with the action representation elicited in the observer [Craighero
et al., 2008].

3.2.3 Action understanding as approximate inference
using particle filters

In principle, modular approach based on internal models gracefully solves
the problem of action recognition and motor control. However, although the
prior information (i.e. context, goal, action preferences) could restrict the
number of models to consider, it is unlikely and impractical that all mod-
els are maintained in parallel for the entire period of recognition. For each
context, there might be hundreds or thousands of internal models (and their
number could easily grow in ambiguous situations where the environment
does not provide su�cient information for recognition) making the problem
of action recognition intractable with scarce resources. We must also consider
the inherent diversity during the execution of the same action among di�er-
ent individuals, and the diversity in action execution when performed by the
same individual during di�erent trials. Problems associated with the possi-
bly huge number of internal models to take into consideration during action
observation, and their inherent stochastic nature, hinder the development of
e�cient analytical solutions for the problem of action understanding. How-
ever, casting the problem of action understanding in a Bayesian framework
permits to adopt e�cient techniques for approximate probabilistic inference
under the constraint of limited resources. We adopt particle filters, a Monte
Carlo technique for sequential simulation [Doucet et al., 2000], where each
particle represents a weighted hypothesis of an internal model activation in
the action recognition task. The weight of each particle is computed ac-
cording to the divergence between the predicted state of the internal model
the particle belongs to and the observed state; intuitively, severe discrepan-
cies between predictions produced by coupled internal models and observed
percepts will lead to assigning low weights to internal models less involved
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in explaining the current action observation. The particle filter resampling
step (see section 3.3.2 below for technical details) will gradually exclude those
models as hypotheses testers, thus focusing computational resources on more
accurate models. Interestingly enough, neurological evidence for the revi-
sion of goal hypotheses during perception comes from a recent findings by
Gangitano et al. [2004], in which motor excitability was initially high but
suppressed once the course of the observed action was no longer compatible
with a biological movement.

3.3 Computational model
Action recognition, when described as a motor simulation process, is influ-
enced by three main factors: agent’s repertoire of actions (represented as
coupled forward-inverse models), contextual information, and observation of
the movements of the demonstrator (i.e., agent performing the action). Sup-
pose we can extract the noisy measurements of the true state of the demon-
strator, zt, through some predefined perceptual process. The objective of the
recognition is to determine the goal-directed action, it, that the demonstra-
tor is doing based on the observed state zt. The action i is associated with
a paired inverse-forward model, and it implicitly encodes the demonstrator’s
goal. The initial choice of which internal models to activate is biased by
the a priori given contextual information, ct, and the contextual induction
process described through the probability distribution p(it|ct). Each action
it is responsible of both generating a motor control ut, given the (hidden)
state xt≠1 (inverse model), and predicting the next (hidden) state xt, given
the motor control ut and the previous state xt≠1 (forward model).

The entire process of action understanding can be cast into a Dynamic
Bayesian Network (DBN) shown in Figure 3.1(a)2. As usual, shaded nodes
represent observed variables while others are hidden and need to be estimated
through the process of probabilistic inference. Details of our probabilistic
model are given in the Figure 3.1(b-c).

3.3.1 Probabilistic inference for action understanding
Let us denote with Xt the set of hidden variables at time t, and with Zt

the set of observed variables at the same time step. In general, we want
2DBNs are Bayesian networks representing temporal probability models [Murphy,

2002]. Directed arrows depict assumptions of conditional (in)dependence between vari-
ables.
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(a) Graphical
model

(b) Stochastic variables
ct context [0, ..., C]
i goal-directed action index [0, ..., I]
ut motor act vx, vy

xt state x, y
zt observed state xÕ, yÕ

(c) Probability densities
p(ct) contextual information
p(it|ct) contextual induction
p(ut|xt≠1, i) inverse model
p(xt|xt≠1, ut, i) forward model
p(zt|xt) observation model (prediction error)

Table 3.1: Graphical model (DBN) for action understanding based on cou-
pled forward-inverse models

to recursively estimate the posterior distribution p(Xt|Z1:t) from the corre-
sponding posterior one step earlier, p(Xt≠1|Z1:t≠1). The usual Markovian
assumptions lead to the following equation which, together with an a priori
distribution p(X0), provides the recursive formulation of the inference task
[Murphy, 2002].

The first step involves the application of Bayes rule on the target posterior
p(Xt|Z1:t):

÷p(Zt|Xt, Z1:t≠1) · p(Xt|Z1:t≠1) (3.1)
As clearly shown in the graph in the figure 3.1, the assumption of com-

pleteness of Xt allows us to simplify the equation above. If we knew Xt and
were interested in predicting the evolution of Zt, no past observed state or
contexts would provide us any additional information. Xt is su�cient to ex-
plain the observed variables Zt, so the above equation can then be further
simplified in:

÷p(Zt|Xt) · p(Xt|Z1:t≠1) (3.2)
We can now expand the probability distribution p(Xt|Z1:t≠1):

⁄
p(Xt|Xt≠1, Z1:t≠1) · p(Xt≠1|Z1:t≠1)dXt≠1 (3.3)

Once again, we exploit the assumption that our state is complete. If
we know Xt≠1, past actions and contexts provide no addition information
regarding Xt. The above equation can therefore be further simplified in:
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p(Xt|Z1:t) = ÷p(Zt|Xt) ·
⁄

p(Xt|Xt≠1) · p(Xt≠1|Z1:t≠1)dXt≠1 (3.4)

In our graphical model for action understanding (fig. 3.1) the task is to
recursively compute the posterior distribution over possible forward-inverse
action pairs, p(it|z1:t). This distribution can be obtained by marginalizing the
posterior distribution over all hidden variables in the model3. The following
equations describe the observation and transition models, together with the
a priori distribution over the set of hidden variables:

p(Zt|Xt) = p(zt|xt) (3.5)
p(Xt|Xt≠1) = p(xt|xt≠1, ut, i) · p(ut|xt≠1, i) (3.6)

p(X0) = p(x0) · p(c0) · p(i|c0) (3.7)
It is worth noting how the coupled forward-inverse models naturally appear
in the prediction model (equation 3.6 above).

However, in order to compute the most likely observed action, the recur-
sive propagation of the posterior density p(Xt|Z1:t) in equation 3.4 is only a
theoretical possibility, and in general it cannot be determined analytically.
Next section provides a brief technical overview of the particle filters which
allow to e�ciently perform approximate computation of the posterior density
with limited resources.

3.3.2 Particle filters
Functions that describe probability densities in real-world problems are typi-
cally nonlinear, and an analytical solution of the Bayesian inference problem
is intractable. The key idea of particle filters is to represent the required pos-
terior density function by a set of random samples with associated weights
and to compute estimates based on these samples and weights. Each random
sample is therefore a distinct hypothesis that the agent tracks during the ac-
tion recognition process. Let {xk

t , uk
t , ik, ck

t , wk
t }Ns

k=1 denote a random measure
that characterizes the target posterior. The importance weights wk

t represent
an approximation of the relative posterior probabilities of the particles. The
weights are normalized such that q

k wk
t = 1. A particle filtering algorithm

consists of three steps:
Initialization: drawn Ns samples from prior probability density p(X0):

3Marginalization can be e�ciently performed by Monte-Carlo integration methods.
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xk
0 ≥ p(x0); ck

0 ≥ p(c0); ik ≥ p(i|ck
0) (3.8)

Importance sampling: draw Ns samples from proposal probability den-
sity p(Xt|Xt≠1):

uk
t ≥ p(ut|xk

t≠1, ik); xk
t ≥ p(xt|xk

t≠1, uk
t , ik) (3.9)

Update importance weight: recursively update the importance weights
up to a normalizing constant:

ŵk
t = wk

t≠1 · p(zt|xk
t ) (3.10)

and than compute the normalized importance weights: wi
t = ŵi

tq
i

ŵi
t
.

Resampling: draw (with replacement) a set of particles according to
the weights ŵk

t . The resampling step, while not strictly necessary, is used
to avoid the particle impoverishment problem in which the majority of par-
ticles’ importance weights are close to zero. In addition, resampling allows
to focus computational e�ort on models providing plausible hypotheses (i.e.
hypotheses in accordance with the observations) by pruning out less probable
models.

3.4 Experimental setup and results
To verify the adequacy of our model to explain action understanding, and
assess the robustness of the proposed approximate inference method, we per-
formed a series of experiments. First, we compared the performance of our
system with human behavior during action observation in real world. Second,
we realized a series of simulations in a scenario that includes key characteris-
tics of experiments in social cognitive neuroscience (as outlined in sec. 3.1),
and permits to manipulate the amount of contextual information provided
to the system.

Each intentional action is represented as a coupled forward-inverse model,
described through the stochastic discrete variable it. Inverse models, p(ut|xt≠1, it),
are implemented as potential fields producing a velocity vector, ut, for a
given target position. Velocities produced by internal models are corrupted
by a Gaussian noise with fixed variance, ‡i. For every target object the sys-
tem automatically instantiate inverse models for approaching it. We have
also implemented the models for staying still (stop), and moving away to-
wards the initial position (down). Forward models predict the next 2D po-
sition of the observed agent by applying a velocity model p(xt|xt≠1, ut, it) =
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Figure 3.1: Experimental results: comparing human action recognition with
our system; The blue curve depicts the average uncertain (or wrong) user
response rate, the green one depicts the positive (e.g. correct) user response
rate, while the red curve is the posterior probability of the winning action as
computed by our system; Note that other two internal models, namely stop
and down, are not shown in the figure

N (xt≠1 + �t · ut, ‡f ). Predicted positions are therefore corrupted by a Gaus-
sian noise with the fixed variance, ‡f . Without the loss of generality we
assume that each inverse model is coupled with the identical forward model.
Finally, the observation model is given by p(zt|xt) = N (xt, ‡o), providing the
prediction error. For each experiment we compute the posterior distribution
p(it|z1:t) through Monte Carlo integration. In all but the simulation settings,
human data is provided by a low-cost commercial motion capture device.
The number of particles in all experiments was set to 500.

3.4.1 Comparison with human action recognition
To test whether the recognition ability of our system was correlated with
the similar ability of humans to predict the goal of a demonstrated action,
we performed a human experiment in demonstrator-observer scenario, with
participants (and our model) playing the role of observers.

We recorded 30 video clips at 25 frame-per-second (fps), showing the
demonstrator approaching one of several possible objects on a table (average
video length was 1,5 s). We have divided recordings into two groups depend-
ing on the number of possible target objects (each group contains the same
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number of recordings). The ‘simple’ group contains exacly two target objects,
while the ‘complex’ group can contain up to five target objects. At every
frame (40ms) the demonstration was interrupted and we asked participants
if they were able to recognize the target of the action corresponding to the
goal-directed action (reaching-object#1, reaching-object#2, . . . ) by pressing
a key on a computer keyboard corresponding to the recognized goal-directed
action or an uncertain ’I-dont-know’ response. In order to ease the recog-
nition task we numbered each object in the video. Individual participants
(n = 5) were randomly selected members of the student population unaware
of the purpose of the experiment. Upon the succesful completition of each
experiment users were given a reward (a candy).

We measured the performance of the computational model described in
sec. 3.3 on the same recordings. The goal of the system, which plays the
role of an “observer”, is to infer which of its internal models (it) provides
the best explanation of the perceived demonstration. The ‘response’ of the
system is measured as its current belief (posterior probability of the winning
action), and the model having the probability above a fixed threshold (in the
current experiment we set it to 0.7) for at least 200ms (5 frames) is elected
as the winning model. The contextual distribution p(ct) is uniform in all
experiments indicating that all objects are equally probable action targets.

We were interested in comparing the instant in which our computational
system makes the correct prediction to the instant in which the majority of
users recognizes the same goal-directed action. At each frame we measured
the average number of correct and wrong/uncertain responses provided by
partcipants. Fig. 3.1 is a plot of the results for a recording from the ’complex’
group; the blue curve depicts the average uncertain (or wrong) user response
rate, the green one depicts the positive (e.g. correct) user response rate, while
the red curve is the posterior probability of the winning action as computed
by our system. Results show that response time our system is qualitatively
comparable to that of human participants.

In order to quantify the results we have measured the di�erences in re-
sponse times between our system and human users. For each recording we
computed the di�erence between the instant in which the majority of users
recognized the correct action, and the instant in which the posterior proba-
bility of the correct internal model were above the recognition threshold for
five consecutive frames (200ms). Table 3.2 shows the results of the compar-
ison phase for two groups of recordings. The results indicate that response
time are quantitavely similar. However, it consistently turns out that humans
perform better in ’simple’ tasks, while being outperformed by the system in
’complex’ tasks. This can be explained by the absence of contextual infor-
mation: when all the goal-directed actions are equally probable a cluttered
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environment provides an additional source of uncertainity for humans which
prefer to wait until they are sure of guessing the right target object and earn
a reward.

Table 3.2: Comparison between user and system response time

Condition Avg. response time di�erence (ms) STD
Simple -70 150.9967

Complex 40 56.5685

To further investigate the e�ect of uncertainity on the motor simulation
process, we have performed the sensitivity analysis of our system with respect
to the action recognition threshold. Fig. 3.2 shows the results obtained
in both ’simple’ and ’complex’ experimental conditions. It is evident that,
by increasing the threshold, the behavior of the system tends to that of
human participants which prefer making complex decisions with little or no
uncertainity. We will provide a detailed discussion of this phenomena in the
next section.

Discussion

A central hypotheses of our model is the reuse of one’s own motor repertoire
during action perception. This hypotheses has been tested in several studies,
which revealed motor involvement during perception [Bosbach et al., 2005,
Kilner et al., 2003], and that action recognition is significantly modulated by
the observer’s motor repertoire and skills [Aglioti et al., 2008, Calvo-Merino
et al., 2005, 2006, Pezzulo et al., 2010].

Casting this hypothesis in Bayesian terms permits to study how uncer-
tainty in the internal models influences uncertainty in the action recognition.
Although there are many studies on how uncertainty influences motor plan-
ning and execution [Kording and Wolpert, 2006], the influence of uncertainty
on the confidence of action recognition has been less studied. According to
our view, the timing of action recognition depends significantly on uncer-
tainty of the internal models. In other words, it is only when one of the
“hypotheses” has low uncertainty that an human feel confident enough in its
recognition. Our set-up permits to test this hypothesis and to compare quan-
titatively the timing of human and system action recognition. Our results
suggest that uncertainty in the internal models significantly a�ects confidence
in the choice and thus response time.

Note that an assumption of this setup is that demonstrator and observer
have the same vocabulary of motor acts, whose performance is (near) optimal
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(a) Simple condition

(b) Complex condition

Figure 3.2: E�ects of system threshold on the recognition accuracy
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Figure 3.3: Setup used for the simulations. The
goal of the demonstrator (blue circle) is to ap-
proach one of the two target objects (co�ee cups)
through the repository of motor acts (internal
models). Each motor act is implemented as a
goal-directed motor schema. Demonstrator and
observer share the same vocabulary of motor acts,
currently set to: approach-from-left (1 or 4),
approach-straight (2 or 5), approach-from-right (3
or 6).

for achieving a given goal. The requisite of optimal control is plausible for
highly-trained human skills such as reaching and grasping, and is achieved.
An consequence of this assumption is that each action has a specific and
explicit goal, and thus inferring what internal model could have produced
the observed action counts as recognizing the demonstrator’s goal as well.

3.4.2 Assessing the role of prior contextual informa-
tion

As discussed in sec. 3.2.2, social neuroscience experiments have shown that
action recognition is significantly modulated by prior information, such as
probability of events (as dictated by their a�ordances Craighero et al., 2008)
and the context in which they take place (e.g., beginning or end of breakfast,
Iacoboni et al., 2005). To test the ability of our model to capture qualitatively
similar phenomena, we performed three action recognition tasks on simulated
data.

In all the simulations, the system is presented with a 2D experimental
setup (see fig. 3.4.2) consisting of two co�ee cups (cup-A and cup-B), and
a demonstrator, which approaches one of the two cups with one of three possi-
ble actions: approach-straight, approach-from-left or approach-from-right.
The simulations vary for the kind and amount of contextual information and
prior knowledge provided to the system.

The contextual variable, ct, represents every possible configuration of
target objects in the scene (e.g. cup-B-handle-left, . . . ). Agent’s a priori
knowledge is represented in the distribution over the contextual variable,
p(ct) which directly biases the choice of internal models through the process
of contextual induction p(it|ct). This distribution implicitly encodes the prior
knowledge on which actions are most likely to be observed in a given context
(e.g. if the co�ee cup has its handle oriented to the left, the most likely
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action to perform is approach-from-left)4. In order to simulate a variety
of approaching actions we have introduced an imaginary obstacle in front of
each object forcing the agent to turn either to left or to right.

For each experiment we provide the posterior distribution p(it|z1:t) over
time, and the distribution of particles representing both the state (2D posi-
tion of the demonstrator) and the internal model. A demonstration lasts 250
time steps.

Simulation 1: preferences over actions

In the first simulation, the observer can see that the handles of both cups
are oriented toward the right. Although it cannot predict which cup will
be grasped, it has strong prior information any cup will be taken from the
right side (i.e., that the demonstrator will perform approach-from-right,
corresponding to 3 or 6 in fig. 3.4.2).

In keeping with studies showing that canonical neurons can influence
mirror neuron activation [Craighero et al., 2008], this setup models the role of
object a�ordances in providing priors to the process of action recognition. In
our model, object a�ordances are modeled through the contextual induction
distribution, p(it|ct), providing an initial bias towards particular actions (e.g.
approach-from-right). The results shown in Fig. 3.4 show how, thanks
to contextual information, the correct action is recognized from the very
beginning of the demonstration. (It is worth mentioning that we performed
additional experiments in which we provided wrong contextual information
to the agent, and we successfully disambiguated the action based on the
stream of data from the observation.)

Simulation 2: ambiguous contextual information

In the second simulation, the observer knows that there are two cups, but
cannot see them (neither they know the orientation of their handles), so it
has not priors on which action will be executed5. This situation is analogous
to the experiment of Umilta’ et al. [Umiltà et al., 2001], in which the target
is not observable. Here, all available internal models equally compete for
explaining the observation from the beginning of the demonstration. During
the experiment, the demonstrator approaches cup-A from the right. Our
results (see fig. 3.5) show that after approximately 20 time steps models
relative to goal-directed actions towards the target B are not taken into

4This distribution could be easily learnt through a life-long supervised inductive mech-
anism.

5Technically speaking, this implies sampling from a uniform distribution p(c0).
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(a) Probability distribution
p(it)

(b) Particles at timestep #0 (c) Particles at timestep #15

Figure 3.4: Experimental results: contextual information provides a strong
prior over possible actions; in this context the two approach-from-right ac-
tions, one for each target, are prefered

(a) Probability distribution
p(it)

(b) Particles at timestep #0 (c) Particles at timestep #15

Figure 3.5: Experimental results: contextual information provides no prior
over actions or goals

consideration. Since the initial part of goal-directed actions towards the
target B is the same, there is an ambiguity until the time step #30 when
the demonstrator starts to turn to right in order to correctly approach the
object.

Simulation 3: preferences over goals

In the third simulation, the situation is the same as simulation 2, but the
observer has additional prior information: it knows that cup-A contains de-
ca�einated co�ee, while cup-B contains co�ee. Since it is evening, it has
reason to believe that the demonstrator will take cup-A, although it does
not know which action it will perform6. This situation resembles experimen-

6Technically speaking, this implies sampling from a uniform distribution p(it|ct =
cupA).
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(a) Probability distribution
p(it)

(b) Particles at timestep #0 (c) Particles at timestep #15

Figure 3.6: Experimental results: contextual information provides a strong
prior towards a goal (cup-A in this case); actions pertaining to that goal are
prefered over others

tal scenarios used in neuroscience studies, in which monkeys instructed to
recognize the action context showed preferences for certain action goals [Kil-
ner et al., 2004] (here, proximal goals). Our results show that (see fig. 3.6)
prior information biases the initial allocation of particles, too.

Discussion of simulation results

A qualitative comparison of the results in three simulation settings permits to
measure how contextual information a�ects the dynamics of action recogni-
tion. The results indicate that action recognition in our system is modulated
by the same contextual factors as those manipulated in social neuroscience
experiments, and the result is a qualitatively similar behavior (we discuss
the issue of comparing the performance of our model with neural data in the
Conclusions).

A second results of our simulations is that the recognition of the goal-
directed action (measured as the probability of the best model) is usually
achieved long before the action is terminated; this is consistent with neural
evidence indicating that action recognition and mirror neuron activation is
highly predictive [Borroni et al., 2005, Urgesi et al., 2010].

3.5 The problem of switching actions
A limitation of the model that we have presented is its poor performance
when the demonstrator changes its action abruptly (e.g., a “feint” in a soc-
cer game). The reason is that the resampling step of the particle filter usually
assigns a high probability to a unique model, and thus a whole set of par-
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ticles will follow a unique dynamics. Although theoretically admissible, in
many practical cases this behavior can induce misleading results. Consider
for example the case when several actions have distinguishable features in the
final stage of observation only. In such an ambiguous situation, the particle
filter could start tracking a wrong dynamics. Even if the observations will
at some point assign low weights to the predicted state, the system has no
means to recover the true belief. A similar problem arises with switching dy-
namics (i.e. when the demonstrator rapidly changes its proximal intention).
This problem is intimately connected to the particle impoverishment and the
resampling step, and clearly a more sophisticated solution is needed in order
to prevent the system from tracking an implausible dynamics.

A potential solution is to explicitly model the transition between di�erent
models (i.e. p(it|it≠1)). At every time step, several particles will jump from
one dynamics to another thus preventing the impoverishment by tracking a
huge number of hypotheses. However, this random walk in the action space
forces the recognition algorithm to process most of the actions at each time
step, even those that have a low probability of being observed in a given
context, thus making the algorithm computationally prohibitive and unsuit-
able to operate in real time with limited resources. A more sophisticated
approach to the “switching intention“ problem is to populate the space with
particles having di�erent dynamics as soon as the particle impoverishment is
detected. In this way, the computational burden of the overall algorithm is
constrained and the particle filter can recover the true belief.

In order to detect the particle impoverishment, we use the informational
theoretic measure based on Kullback-Leibler (KL) divergence [Bishop, 2006]
between the current belief, represented by the set of weighted particles, and
the probability distribution induced by the current observation. The algo-
rithm will inject random particles from the state space when the KL diver-
gence is larger than a given threshold. We represent the belief distribution,
Nx, with the first and the second moment (mean and variance), computed
as below:

µx
t =

ÿ

k

wk
t xk

t �x
t = 1

N

ÿ

k

wk
t (xk

t ≠ µx
t )(xk
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In the same way, we summarize the present observation distribution (zt = x̂t)
as:
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The impoverishment measure is KL divergence between these distribu-
tions:

DKL(NxÎNz) = 1
2

A

loge

A
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B
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B

(3.13)
When particle impoverishment is detected, the algorithm will inject a

preset percentage of random particles by sampling i from p(i|ct) and xt from
Nx. The injected particles, representing di�erent system dynamics, will thus
cover a subset of entire action repertoire conditioned on the current context
ct and present belief Nx, without making use of the observation distribution
Nz

7.

3.5.1 Comparison with human action recognition in
switching tasks

To test whether the recognition ability of our system was correlated with the
similar ability of humans to predict the goal of a demonstrated action even
in presence of changing actions we performed a similar set of experiments
as described in the sec. 3.4.1. We recorded 20 video clips at 25 frame-per-
second (fps), showing the demonstrator approaching one of several possible
objects on a table and then suddendly changing the target object of its action
(average video length was 2 s). At every frame (40ms) the demonstration was
interrupted and we asked participants (n = 5) if they were able to recognize
the target of the action corresponding to the goal-directed action by pressing
a key on a computer keyboard. As in the previous experiment, the goal of the
system, which plays the role of an “observer”, is to infer which of its internal
models (it) provides the best explanation of the perceived demonstration at
each time step in absence of any contextual information. At each frame
we measured the average number of correct and wrong/uncertain responses
provided by partcipants. For each recording we collected the di�erences
between the response time of the system and the instant in which the majority
of users provided the correct answer.

Fig. 3.7 is a plot of the results for a randomly selected recording. As in the
experiments where no switching occures our results show that response time
our system is qualitatively comparable to that of human participants. The
mean di�erence in response times (at 0.7 threshold) is 33.3ms with a standard
deviation of 99.33ms. we have also performed the sensitivity analysis of our

7Indeed, zt and xt can not be compared directly since their dependence is usually
modelled through a complex non-linear functional relation zt = „(xt).
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Figure 3.7: Experimental results: comparing human action recognition with
our system in the switching condition; The blue curve depicts the average
uncertain (or wrong) user response rate, the green one depicts the positive
(e.g. correct) user response rate, while the red curve is the posterior proba-
bility of the winning action as computed by our system; Note that other two
internal models, namely stop and down, are not shown in the figure
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Figure 3.8: E�ects of system threshold on the recognition accuracy in the
switching condition

system with respect to the action recognition threshold. Fig. 3.8 shows the
results obtained in the switching condition. The results, similar to those
obtained in the non-switching condition, indicate that the behavior of the
system tends to that of human participants which prefer making complex
decisions with little or no uncertainity.

3.5.2 Recognizing sequences of actions
The same system can be exploited for recognizing sequences of actions in
the same experimental setup8 (e.g., reach, stop and then retreat). In this
particular case, the goal of the observer is not to recognize a single goal-
directed action, but to infer which sequence of internal models explains best
the perceived demonstration. Thanks to the KL divergence, the system is
able to recognize sudden change in demonstrator’s behavior. Our results
show that the system was able to correctly recognize demonstrated actions.
Some results are shown in Fig. 3.9.

3.6 Conclusions
We have proposed that action understanding can be cast as an approximate
Bayesian inference, in which inverse-forward models are hypotheses that are

8Note that this is conceptually di�erent from recognizing distal intentions; see the
Conclusions for a discussion of this point.
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(a) Initial condition (b) Recognition of action
Reach Obj#2

(c) Recognition of action
Reach Obj#0 after the in-
tention switch

(d) Recognition of action
Reach Obj#1 after another
intention switch

(e) Recognition of action
Move-away

(f) Recognition of action
Stop

Figure 3.9: Recognizing a sequence of goal-directed actions. The most prob-
able action, as recognized by the system, is shown in foreground, while the
posterior probabilities of each action are shown at the top-right corner. Fig-
ures also show the evolution of particles for each internal model.
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tested in parallel, using bounded computational resources. The result is a
motor simulation process, which is initially biased by prior knowledge of plau-
sible goals and a�ordances and successively refined when novel information is
collected that is in agreement or disagreement with the ongoing predictions
of the inverse-forward models.

In this framework, motor simulation serves both for action prediction and
recognition at the goal level. Indeed, action goals are implicitly encoded in
the coupled inverse-forward models, since each pair maps to one goal, or
to a probability distribution over possible goals. This reconciles apparently
contrasting views, which emphasize on the one hand the benefits of prediction
and emulation during perceptual processing [Wilson and Knoblich, 2005], and
on the other hand the fact that actions are recognized and imitated at the
goal level rather than as movement patterns [Bekkering et al., 2000].

3.6.1 Main contributions
E�cient processing of multiple forward-inverse models

In computational motor control, the idea that the brain adopts multiple
forward-inverse models to control and recognize actions is quite popular (see
e.g., Demiris and Khadhouri, 2005, Oztop et al., 2005, Wolpert et al., 2003).
However, the huge computational complexity of this method prevents its use
in most real-world scenarios and risks to hinder its plausibility as a scientific
hypothesis as well.

Our model is able to e�ciently handle the problem of action recognition
via a simulative approach based on many internal models and using limited
computational resources. This is achieved by using prior information over
possible contexts and goal-directed actions, and by adopting an approximate
inference procedure (sequential Monte Carlo simulation) for tracking several
competing hypotheses. In particular, the particle filter framework permits
to easily embed a huge number of internal models by exploiting all the prior
knowledge available to the agent and to limit the activation of internal mod-
els.

Motor simulation as a suitable computational-level explanation of
action recognition

The fact that our model is e�cient and compares positively with human
performance is not only remarkable from a technological viewpoint, but it
also provides support for motor simulation as a suitable (computational-
level) candidate explanation of action recognition, complementing existing
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empirical evidence that we have reviewed in sec. 3.1.
As explained in the Introduction, there is a vivid debate on action recog-

nition in the psychological and neuroscience literature. This debate spans
on computational modeling as well, and indeed the explanation of action
recognition that we o�er is not certainly the only possible one.

In a series of computational studies, [Baker et al., 2006, 2009] describe
mindreading as a rational Bayesian process of inverse planning, which is
close to the ideas of “theory theory”. A drawback of this method is its com-
putational cost and its huge demands in terms of prior knowledge. To solve
these problems, [Ramirez and Ge�ner., 2010] propose a similar computational
method, but use (cheaper) classical planners rather than bayesian inference.

Di�erently from these studies, the method that we have proposed is based
on forward modeling (via the re-enactment of one’s own motor repertoire)
rather than on the calculation of what is rational. Besides the possibility that
simulative and rational methods are complementary for action recognition,
the adequacy of our proposal can be evaluated by considering its computa-
tional requirements and the specific empirical predictions that it entails.

From a computational viewpoint, what is required is that the observer
has a suitable repertoire of motor actions, not that it calculates what is ra-
tional. This assumption entails that the maturation of action performance
and recognition abilities should follow a similar trajectory, whilst the matu-
ration of a more sophisticated “theory of mind” about others should be less
relevant.

A second kind of prediction is related to motor involvement during ac-
tion perception. On the one hand, our model predicts that specific motor
programs in the motor apparatus of observers should be active during action
observation. In addition to that, in our model, action observation can be
influenced by the embodiment and skills of the observer, the actions it is
currently performing (since in that case the same action system is recruited
for both execution and performance at the same time) and more in general
from a variety of perceptual and motor phenomena that can potentially inter-
fere with the active motor processes. All these influences should have minor
e�ects on action recognition if it does not recruit motor processes.

Motor simulation as approximate Bayesian inference

The idea of using Bayesian models for explaining cognitive processing is not
novel, as many researchers have proposed formal theories (e.g., of vision and
speech processing) that make use of models belonging to the broad Bayesian
family and that have been extensively used in the engineering of visual and
speech analysis tasks, such as for instance analysis by synthesis, predictive
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coding, or their variants [Friston, 2005, Lee and Mumford, 2003, Rao and
Ballard, 1999]. In addition, the idea that cognitive processing is essentially
generative and predictive9 is being widely recognized, leading to the hypothe-
ses of predictive brains [Bar, 2009, Pezzulo and Castelfranchi, 2007, Pezzulo,
2008] and Bayesian brains [Doya et al., 2007].

A recent view in cognitive science is that the CNS uses approximate
Bayesian inference in vision, reasoning or other cognitive domains [Chater
et al., 2006, Lee and Mumford, 2003]. The emphasis on approximate meth-
ods explains how psychological processes come close to the optimal solutions
that are postulated by rational theories of cognition, using limited resources;
therefore, this method has implications at the cognitive processing level (or
Marr’s algorithmic level [Marr, 1982]) rather than only at the Marr’s com-
putational level, which is more common for rational models of cognition.

Recently several studies have investigated the psychological plausibility of
approximation algorithms. [Sanborn et al., in press] have compared multiple
methods of approximate inference (Gibbs sampling, multi-particle particle
filter, single-particle particle filter) in category learning, and found evidence
in favor of single-particle particle filter. A study of conditioning reported a
good match with a particle filtering method using a single particle [Daw and
Courville, 2007].

In a similar vein, we argue that action understanding is an inferential
mechanism, in which multiple hypotheses of plausible action goals are main-
tained and tested in parallel via a sampling method (although we cannot,
with our data, provide direct support for particle filtering). Initially, it is
the prior information that biases the allocation of particles. Motor sim-
ulation (and the reactivation of inverse-forward models) serves to generate
hypotheses-related predictions, whose (in)accuracy determines changes in the
hypotheses and the way they are tested (i.e., it changes the allocation of par-
ticles).

Not only approximate inference is a valid method from a computational
viewpoint, but it can be viewed as a mechanistic hypothesis and can explain
the response of populations of neurons Doya et al. [2007]; for instance, MCMC
methods are compatible with the presence of “broadly congruent” mirror
neurons (two-thirds of all MNs) that respond to a broad class of (related)
actions rather than a single action, in addition to mirror neurons that respond
specifically to a single action.

9Note that technically speaking generative and predictive models are not the same.
Generative models produce predictions relative to present, not future stimuli, in which
priors are propagated top-down. Predictive models produce predictions relative to future
stimuli (or rewards). Although important, this distinction is not crucial for the sake of
our analysis, since the graphical models that we use a�ord both kinds of predictions.
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The role of priors and contextual information

An additional contribution of our study is clarifying the (computational)
role of contextual information. As we have discussed in sec. 3.1, contextual
knowledge was manipulated in many social neuroscience experiments. Our
study indicates that the di�erent sources of information —a�ordances, con-
text and preferences— can be treated in a homogeneous way as Bayesian
priors (although they can have distinct neural underpinnings) that bias the
initial allocation of particles, and all modulate the dynamics of our system.

3.6.2 Future work
Extending the model to distal intention recognition

Experiments in which monkeys observe sequences of actions having some
elements in common but associated with di�erent distal intentions (e.g.,
grasping-to-eat vs. grasping-to-place) have emphasized that, first, the mir-
ror neuron mechanism supports the recognition of sequences of actions and
not only of individual acts, and second, that the recognition of distal inten-
tions entails the activation of di�erent neurons for the same basic actions,
thus revealing dedicated “action chains” in the monkey brain [Fogassi et al.,
2005].

The recognition of distal intentions is currently beyond the capability of
our model. Future work will include the extension of the model for the recog-
nition of distal intention through a hierarchy of inverse and forward models,
where higher-level pairs encode increasingly abstract actions [Wolpert et al.,
2003]. Within this architecture, distal intentions (when known) can serve as
priors to recognize proximal actions; conversely, the recognition of proximal
actions can serve as prior for inferring the demonstrator’s distal intention10.

Comparison with neural data and experimental predictions

Behind the obvious di�erences between the experimental and simulative set-
ups, comparing the results of our simulation results to neural data is prob-
lematic, given the di�culties in finding neural equivalents of the probability

10Note however that this process does not exactly address the monkey experiment that
we have described so far. The study was conducted by firstly training monkeys (for
several weeks) in the execution of the action sequences (also because one of the sequences,
grasping-to-place, does not belong to the standard action repertoire of monkeys). These
sequences can therefore be treated as highly routinized and habitual. On the contrary,
the extension of our model will address the execution of goal-directed movements (for a
distinction of habitual and goal-directed actions, see Balleine and Dickinson, 1998, Niv
et al., 2006.
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distributions p(it) and uncertainties as computed by our model. The first
aspect of this problem is what neural populations to consider in the compar-
ison. In our model, p(it) represents forward-inverse pairs; however, the neural
representation of forward-inverse models plausibly involves a wide neural net-
work that spans over several brain areas; for a discussion of this issue, see
[Kawato, 1999, Kilner et al., 2007, Imamizu et al., 2003]. Most social neu-
roscience experiments that we have mentioned measured activity of (single
cells of) the mirror neurons system, which are only a part of the brain circuit
realizing internal modeling. In other words, the encoding of our system is
more ‘abstract’ than a single neural population. A second, related aspect of
the problem is that it is still unclear if and how the critical variables of our
model, and namely probability distributions over actions/goals and uncer-
tainty, are represented at the neural level, (with plausible alternatives being
population coding, temporal population coding, etc.), and, in case, whether
they are coded together or separately [Doya et al., 2007].

Despite so, assuming that the mirror neurons system encodes the goals of
actions, which in a sense “summarize” an entire forward-inverse model, it is
plausible to assume that the probability distribution p(it) should be highly
correlated with neural activation in the mirror neurons system. Under the
assumption that populations of neurons in the mirror neurons system can
be tuned to specific actions, it is plausible to assume that wider populations
should be active when the observed movements are compatible with more
than one action or more in general when uncertainty is higher; or, in other
terms, that the total amount of activation of the mirror neurons system
represents uncertainty implicitly.



Chapter 4

Language Grounding

4.1 Introduction
Visually grounded human-robot interaction is recognized to be an essential
ingredient of socially intelligent robots and the integration of vision and lan-
guage increasingly attracts attention of researchers in diverse fields, from
robotics and artificial intelligence to computational linguistics and neuro-
science Dautenhahn [2007] .

We have investigated the lexical acquisition problem, particularly how a
robot can be bootstrapped into communication and what are the necessary
prerequisites for robots in order to learn a language. In particular, we focused
on grounded systems that learn to generate and understand contextualized
spoken descriptions of objects in visual scenes. Unlike other systems we did
not address word-boundaries learning in speech signal [Steels and Kaplan,
2001][Roy, 2005].

The process of lexical acquisition in infants seem to be innately driven
by the principle of reference: words refer to objects, actions, and attributes
of the environment. Observational learning may be used to deduce word
meanings from cross-situational experiences. The child is assumed to receive
as input a large number of example cases of specific situations and is able
to isolate through an inductive learning process what is essential of these
situations and learn the appropriate categories underlying language. A well-
known problem in observational learning, is the Quine’s paradox: an infinite
number of possible meanings can be inferred from a finite set of utterance-
context pairs. A likely solution to this problem is that all infants have certain
biases which constrain the set of possible meanings of words [Fisher et al.,
1994][Baldwin, 1995]. For example, the whole object assumption proposes
that children will assume a novel label refers to a whole object rather than
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its parts. The mutual exclusion assumption proposes that they prefer to
assign only one label to a concept. These assumptions are considered good
strategies for bootstrapping the inference process, but don’t solve completely
the referent’s problem. The disadvantages of this learning strategy are clear:
(a) the passive role of the language learner and (b) little feedback given by the
speaker. So in observational learning, the interaction between the learner and
the speaker plays no role and is cut o� from the learning process. The purpose
of language is precisely the communication between individuals. Learning is
not only grounded in reality through a sensori-motor apparatus but also
through interactions with others [Tomasello et al., 2005]. For example, joint
attention plays an important role in learning terms of reference. Infants
are more likely to connect words with their referents when engaged in joint
attention with their caregivers [Bloom, 1997]. In addition, caregivers can sets
constraints on the situation to make it more manageable (sca�olding) and
provides feedback upon the infant’s actions.

We have used these assumptions to bootstrap the lexical acquisition pro-
cess. We have partially addressed the problem of finding the referent in early
learning stage, endowing robot of the basic attention skills. Originally, the
system will acquire a minimal grounded language model without any prior
semantic and syntactic information. From this initial model, the system will
be able to acquire novel meanings and more complex language models (i.e.,
spatial clauses). Unfortunately, many words also refer to proprieties that can
not be directly observed through sensor, and can’t be clarified with pointing
gestures and gaze direction. For example, the presence or absence of “above-
ness” in the environment is weakly related to the presence and absence of
the word “above” [Gold et al., 2009]. Our approach uses the context of the
sentence in order to determine the reference of spatial terms.

Our ultimately goal is to take advantage of acquired concepts (repre-
senting physical properties and spatial relation of objects in a scene), and
language model (encoding all syntactic and semantic constraints) to engage
in simple verbal interaction with human partner. All concepts underlying
acquired language model are used to initialize dynamic fluents as predicate
calculus terms and update robot’s logic database representing the state of
the world from sensor data. Language acquisition therefore proceed in par-
allel with concept acquisition. Concepts acquired from lexical acquisition
are used to initialize a logic representation of several observable entity of
world. For example, the meaning of the word “red” is used to seed the logic
representation of the “red” concept. Concepts underlying acquired language
model can be considered as independent from language acquisition process
and can be reused for other cognitive tasks. We have used these concepts
for resolving perceptual ambiguities of description-context pairs. Fig. 4.1
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provides an overview of our system.

4.1.1 Learning visually-grounded meanings
Grounding can be considered as the process whereby internal representations
are connected to external percepts. This is based on the principle that cog-
nitive agents and robots learn to name entities, individuals and states in the
external (and internal) world at the same time as they interact with their en-
vironment and build sensorimotor representations of it [Harnad, 1990]. Our
approach addresses two interrelated question in lexical acquisition: how se-
mantic categories can be learned and how symbols/words can be associated
with appropriate semantic categories. These problems are known as seman-
tic categorization (or semantic clustering) and word-to-meaning mappings,
respectively. Categorization produces semantic categories which serve as ref-
erents of words. No a priori knowledge about innate semantic categories
is assumed by the model; instead, through repeated experience, appropri-
ate categories must be learned from positive examples and the model must
associate linguistic units with appropriate semantic categories (see Fig. 4.3).

4.1.2 Syntactic bootstrapping
Categories, such as adjective, verbs and nouns, form the basic units for learn-
ing the rules of grammar including grammatical relations, cases, and phrase
structure configurations. Without syntactic categories a learner will be un-
able to acquire the rules of the language. However, one-to-one mappings
between syntactic and semantic classes does not seem to exist.
Bootstrapping theories provide strategies for deriving syntactic categories
from perceptual input. Semantic bootstrapping [Pinker, 1984] proposes that
the language learner uses semantic categories to seed syntactic categories.
This theory assumes that the learner has already acquired words and their
semantics without the use of any syntax.

Basic syntactic categories will be acquired directly through words’ mean-
ing, and the words associated with similar perceptual categories will be in-
cluded in same syntactic category. However, complex adjectives, such as
“above” and “below”, can not be learnt in the same fashion. Instead, we
need to take words’ order into account. Treating sentences as unordered set
of words tends to lose syntactic contents and its semantic implications. We
have exploit word ordering constraint and semantic bootstrapping assump-
tion to acquire spatial terms and explore weak generalization mechanisms.
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4.1.3 Joint attention
Joint attention is the process by which one manipulate the attentional behav-
ior of another to attend to the same aspect of the environment via nonverbal
means, such as gazing or pointing. An intentional agents must be able to
detect attentional behaviour of other agents and influence it to environment
features which are relevant for his current activity. In literature, these skills
are named as attention detection and manipulation, respectively. Joint at-
tention seems to be necessary for functional speech and is a main prerequisite
for early language development. In our work, we stressed only detection ca-
pabilities and equipped the robot with some basic skills to detect declarative
pointing gestures.

4.1.4 Resolving ambiguities
Another problem we have addressed is how to resolve the ambiguities con-
tained in a description through simple verbal interactions. For example, sup-
pose that the robot hears the statement ”Take the red object!” while facing
a scene containing several red objects. In order to fulfill the task, the robot
must disambiguate the context and select one of the red objects. The process
of ambiguity resolution is based on a context-specific human-robot dialogue
through specific questions directly related to the properties and spatial re-
lationships of the objects in the observed scene. We have considered only
those ambiguities related to perceptual quality shared between objects of the
scene. The robot must be able to detect ambiguous statement and select the
least ambiguous question to be asked to. If all the red objects have di�erent
shape, the robot can resolve easily the ambiguities asking for the shape of a
specific object, i.e. ”Is the rectangle?”. However, if all items have the same
shape, the robot must solve the ambiguity by using relative spatial terms
between objects, that usually are more ambiguous than the previous. For
example, some objects may share particular spatial relationships with other
objects (i.e. more objects below the yellow rectangle), making the question
partially ambiguous, or even the phrase could not be fully understood (either
by a human or by the robot) because the landmark object is indistinguishable
from the target.

4.2 Related works
There has been a huge interest in grounded language acquisition in the past
years. Visual Translator system [Herzog and Wazinski, 1994] (VITRA) is a
natural language generation system which is grounded directly in perceptual
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Figure 4.1: General model overview.

input. From a sequence of digitized video frames low-level sensory processes
perform recognition and tracking of visible objects. Authors provide a geo-
metrical reconstruction of the perceived scene. Detailed domain knowledge
is used to categorize spatial relations between objects, and dynamic events.
Higher level propositions are formed from these representations which are
mapped to natural language using a rule-based text planner. In contrast to
other works, VITRA is not designed as a learning system. Roy implemented
a system, CELL [Roy, 2005] (Cross-channel Early Lexical Learning), able to
learn object names from a corpus of spontaneous infant-directed speech and
process single and two-word phrases which referred to the colour and shape of
objects. CELL is the first implemented model of language acquisition which
learns words and their semantics from raw sensory input without any human-
assisted preparation of data. In DESCRIBER [Roy, 2002], the same authors
address the problem syntactic structure acquisition within a grounded learn-
ing framework. Learning algorithms acquire probabilistic structures which
encode the visual semantics of phrase structure, word classes, and individ-
ual words. Using these structures, a planning algorithm integrates syntactic,
semantic, and contextual constraints to generate natural and unambiguous
descriptions of objects in novel scenes.
Another interesting system is TWIG [Gold et al., 2009], a word learning sys-
tem that allows a robot to learn compositional meanings for new words that
are grounded in its sensors. TWIG allows a robot (1) to learn the mean-
ings of deictic pronouns, (2) to contrast new word definitions with existing
ones, thereby creating more complex definition, and (3) to use word learned
in an unsupervised manner for production, comprehension, or referent in-
ference. The techniques that TWIG introduces are extension inference and
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word definition tree. Its technique are more generally applicable to other
word categories, including verbs, prepositions and nouns. Inamura et al.
[Inamura et al., 2004] focus on the communicative behavior on a humanoid
platform in which the robot narrows down the focus candidate against users’
vague instructions based on the certainty factor and degree of localization of
target object. The localization is defined as ’a situation in which the target
object is distinguished without any perceptual confusion’.

Our work while not making significant advances compared to the systems
presented, puts more emphasis on one fundamental problem in language
acquisition process: the search for the referent. We endow the system with a
real model of attention and formalize a multi-instance learning algorithm for
the acquisition of semantic categories. Our goal is to create robust learning
algorithms, able to build knowledge even in absence of important pragmatic
information.

4.3 System Overview
In our previous work we focused on the learning of grounded language models
from examples [Dindo and Zambuto, 2009]. In the experiment we proposed,
the demonstrator could chose one of the objects of the scene and provide its,
more or less detailed, description. In that case, the referent of a descriptive
phrase was directly given to the robot. This information, while on one hand
simplifies the learning process and allows the robot to discard the majority
of the incorrect associations, on the other reduces the applicability of the
technique to more complex environments and does not allow any level of
interaction with the demonstrator. In this work, we wanted to relax this
constraint by making the interaction between the demonstrator and a robot
more natural in the teaching phase.

Without knowing the referent of the sentence (e.g. the object being de-
scribed by the demonstrator), the language learning problem becomes more
di�cult. Indeed, the robot should maintain a huge number of assumptions,
many of which are incorrect, that would make the association of possible
meanings to available words computationally impossible. In the new experi-
mental setting, the teacher first tries to capture the attention of the robot by
pointing the object of interest, and once obtained the attention of the robot,
she describes the object. The robot is unable to determine with certainty
the object, but she may exploit the pointing direction of the demonstrator
to filter the possible referents, without other a priori given knowledge. We
equipped the robot with some basic skills to simulate the process of joint
attention. The robot is able to recognize the demonstrator (face, hand) and
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Figure 4.2: Positive and negative bags extraction.

to detect any activity (speech, hand movements, etc.). Moreover, it is able to
estimate the direction of the pointing actions. These information is merged
in order to determine the salience of each object in the scene. The robot
first tries to determine the area to the maximum salience on the work sur-
face, by following hand gestures, then observes and stores the objects that
correspond to this area. The robot can also indicate the area of interest for
further feedback from the demonstrator. When the demonstrator says some-
thing (presumably the object description), the robot stores the most salient
objects and the transcript of the statement that he heard, which will con-
stitute the training set for learning. The sample will be discarded when the
degree of salience is not high enough, and the robot was unable to identify
with certainty the most salient objects. Using a humanoid robot platform, the
demonstrator can guess the state of the robot by using the same mechanism
of joint attention and correct it, if necessary, so to minimize the ambiguity
in the training set.

Before describing the problems addressed in the present work we provide
operational definitions of several terms which are used throughout this article.
A semantic category (or semantic unit) specifies a range of sensory inputs
which can be grouped and associated with a word/symbol. For example,
a semantic category might specify a portion of the color spectrum. Such a
semantic category could be used to ground the semantics for a color term
such as “red”. A semantic class specifies a set of semantic categories grounded
in the same sensory channel. For example, a semantic class could be used
to associate acquired color terms (color class). A lexical item encodes the
association between a word and its corresponding semantic category.
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All semantic categories are derived from visual sensory signal. Feature
extractors computes visual features from the sensors (video). Each extracted
feature encodes relevant, non-redundant, information from the visual sensory
stream about observable proprieties of the world (semantic class). Potential
visual features include categories of shape, color, size, and spatial relation
(see Table 4.1). Any word may potentially be paired with any semantic
category which is derived from the same utterance-context pair. These pairs
are clustered to generate a set of lexical items.

The hand data are collected through low-price glove-like peripheral de-
vice, the P5 Virtual Reality Glove, suitable for gaming and 3D virtual envi-
ronments. The user moves their hand in front of a receptor ’tower’, which
contains two infrared sensors. They detect the visible LEDs on the glove
(there’s eight altogether), and convert them into an (x, y, z) position for the
glove, and an orientation in terms of pitch, yaw, and roll. The pointing
gesture recognition is achieved by simply projecting the hand position and
direction, represented by yaw angle, on 2D plane. The position of each object
in the scene is shifted to the same 2D plane. The salience of each object is
proportional to the angle formed between the direction of the hand and the
relative direction between object and hand position.

Each sample collected composed of a bag of words provided in the de-
scription, the sensory characteristics of multiple objects and a level of salience
associated with each object. The salience can be regarded as an a priori esti-
mate of the possible referent of the statement. Imagine that the robot should
determine the degree of associability between the word red and the color of
the object. If the estimated salience is correct in most cases, each example
containing the word red contain at least one instance of the color red (RGB
feature), but it will also contain instances of di�erent colors that are an ad-
ditional source of ambiguity. In order to correctly infer the meaning of the
word red, the robot must be able to isolate from each example the proper
instance, discarding all others. This problem in literature is known as multi-
instance learning. In multi-instances learning the labels are only assigned to
bags of instances (i.e. labels are not assigned to individual instances). In the
binary case, a bag is labeled positive if at least one instance in that bag is
positive, and the bag is labeled negative if all the instances in it are negative.

In our previous work [Dindo and Zambuto, 2009], a semantic distortion
metric was used to select appropriate semantic category from several hypo-
thetical ones. The meaning of each word (i.e. it’s semantic category) was
treated as a random variable and modeled with a multivariate Gaussian dis-
tributions. These distributions are estimated for each semantic class (shape,
color, size). Taking the example above, the algorithm estimates a seman-
tic category (Gaussian density) for each sensory channel (shape, color, size)
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from the set of positive examples associated with the word red. Each of
these categories represents a hypothesis about the possible meaning of the
word, and a hypothetical association between the semantic class and word.
Similarly, the algorithm estimates a probabilistic model from the negative
examples associated with the word red, i.e. those examples where the word
is not present. The semantic grounding is done with the semantic class (and
the associated semantic category) that maximizes the semantic distortion
measure between the two probabilistic models. The previous algorithm then
consists of two basic steps: (a) the estimation of semantic categories and
their negative models (background probability) for each acquired word and
(b) the association of meaning-word obtained by probabilistic measures on
the estimated probabilities.

In this work, we have maintained the same structure as the previous algo-
rithm. Again, we first estimate the semantic categories and negative models
and then use probabilistic methods to determine the correct association. The
first di�culty, as already mentioned, is precisely in the estimation of densi-
ties: treating them with bags of instances and not with individual instances
complicates the learning problem, which becomes multi-instance problem.
The estimation process must take into account a priori information obtained
from the attentional system (salience), and at the same time find the set of
redundant instances for each class.

We present a new algorithm for learning semantic categories, inspired by
some multi-instance learning techniques [Maron and Lozano-Pérez, 1998]. In
this work, we also present a new algorithm for semantic association that,
compared to the previous work, also integrates information related to the
learned syntax, as well as those related to sensory observations alone (se-
mantics). Words that belong to the same semantic class, must follow the
same syntactic rules, and thus should belong to the same syntactic class.
The system is schematically outlined in Fig. 4.1.

4.3.1 Semantic clustering as multi instances learning
The first phase of the algorithm deals with the estimation of semantic cat-
egories and negative models. For each word w recognized by the system,
there is a set of training data, consisting of positive and negative examples,
i.e. examples where the word is used or not used. Each sample consists
of a number of instances and the degree of salience associated with them.
For example, the word red, assuming we have three semantic classes, get
three sets of positive examples, and three sets of negative examples, one for
each class (Figure 4.2). We denote positive bags as xn, and the ith instance
in that bag as xni. Suppose each instance can be represented by a real-
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valued feature vector. Likewise, x≠
n denotes a negative bag and x≠

ni is the
ith instance in that bag. For each semantic class-word pair, we then esti-
mate two probability density: the distribution of feature values conditioned
on the presence of word p(x|c, w) (hypothetical semantic category) and the
distribution of feature values conditioned on the absence of word p(x|c, w)
(background distribution).

Learning background distribution

We want to estimate a parametric probability density p(x|c, w, ◊≠) from all
negative bags within each class. Unlike the classical paradigm of multi-
instance learning, we can not be sure that the bag contain only negative
instances of the concept to be learned. For example, if we want estimate the
negative model of the word red, we can use examples that describe green
objects, but we can not be sure that the bags do not also contain instances
of red object (that is, the process of attention may have estimated a high
degree of salience for one red object next to the object described). We must
carefully select the bags to be used for estimation of the negative model. A
simple procedure to minimize this type of error is to select examples where
the degree of salience is concentrated on few objects only.

We assume that the data points x≠
ni are drawn independently from the

distribution. The likelihood function is given by:

p(X≠|◊≠) =
Ÿ

n

Ÿ

i

p(x≠
ni|◊≠)

If we assume a unique Gaussian density, the Maximum Likelihood (ML)
solution [Bishop, 2006] is:

µ≠ = 1
N

ÿ

n

ÿ

i

(x≠
ni)

�≠ = 1
N

ÿ

n

ÿ

i

(x≠
ni ≠ µ≠)(x≠

ni ≠ µ≠)

Learning positive distribution

A more di�cult problem is to estimate a parametric model p(x|c, w, ◊+) from
positive bags. As we know, a bag is labeled positive if at least one instance
in that bag is positive. However, we do not know which instance is the
positive one. The knowledge of positive instance in each bag is modeled by
using a set of hidden variables, which are estimated using the Expectation
Maximization algorithm. We denote positive bags simply as x, and the ith
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Figure 4.3: Positive model learning.

instance in that bag as xi. We suppose that each bag have same number of
instances, I. We introduce a I-dimensional binary random variable z having
a 1-of-I representation. There are I possible states for the vector z. The
value of zi therefore satisfy q

i zi = 1. The hidden variable z models the
missing information: the learning process so try to estimate the semantic
category and at the same time, approximately what is the proper instance
for each bag. We can thus define the likelihood function:

p(x|z) =
IŸ

j=1
p(x|zj)zj =

IŸ

j=1
p(x1, ..., xI |zj)zj

The likelihood function depends only on one of the instances in the bag. We
can then rewrite the previous equation as follows:

p(x1, ..., xI |zj) =
IŸ

i=1
p(xi|zj) (4.1)

At this point, we must quantify the degree of “positivity” of the instance,
which depends on two main factors: the instance should not belong to the
negative model previously estimated and at the same time it must be like
to at least one instance of any other positive example. We can rewrite the
equation 4.1 as follows:

p(x|zj) = N (xj|◊+)(1 ≠ N (xj|◊≠))
Ÿ

i”=j

N (xi|◊≠) (4.2)

Like Maron’s Diverse Density, the equation 4.2 represents a measure of the
intersection of the positive bags minus the union of the negative bags [Maron
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and Lozano-Pérez, 1998]. By maximizing that measure, we can find the re-
dundant points distribution (the desired concept). The equation 4.2 quanti-
fies the possibility that a specific instance of the bag is positive and at the
same time depends on the degree of negativity of the other instances, seeking
instances farthest from the negative examples, but closer to other positive
instances.

p(z) = „(z) =
Ÿ

j

„(zj)zj

The „ function compute a prior estimate of “positivity” of each instance of
a bag. In this work, we do not model this probability (attention). For each
bag x of the training set, we know a I-dimensional real-value vector, „. The
value of „i satisfy q

i „i = 1. The posterior probability integrates the salience
of the individual instance, which depends on the attention process, with its
degree of positivity, which depends on the entire training set and is therefore
more generic. The posterior probability is defined as follows:

p(zj|x) = „jp(x|zj)
qI

i=1 „ip(x|zi)
¥ „jp(x|zj)

Now consider the problem of maximizing the likelihood for the complete data
set X, Z:

ln p(X, Z|◊+) =
ÿ

n

ÿ

i

zni ln N (xni|◊+)

During expectation step, we estimate the expected value of the variable zni.

p(Z|X, ◊+) ¥
Ÿ

n

Ÿ

j

[„njp(xn|znj)]znj

E [zni] = „nip(xn|zni)
qI

j=1 „jp(xn|znj)
= “(zni)

We can now proceed as follows.

µ+ = 1
N

ÿ

n

5
max

i
“(zni)

6
xni

�+ = 1
N

ÿ

n

5
max

i
“(zni)

6
(xni ≠ µ+)(xni ≠ µ+)

N =
ÿ

n

5
max

i
“(zni)

6

Instead of using all the instances of each positive bag for density estimation,
we use only the instance that maximizes the expected value on the hidden
variable. In this way, we consider the hypothesis made initially, namely that
each positive bag contains only one positive instance.
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4.3.2 Word-to-meaning association
In the previous section we presented the algorithm used for the estimation
of parametric distributions that describe the positive and negative instances
for each semantic class. We must now associate each word with an estimated
semantic category, and then force the system to make the more correct as-
sociation. We can apply our previous algorithm and evaluate the degree of
association between semantic class and word. We use a distortion measure
(Bhattacharyya distance) between the positive and negative distributions as
a measure of association between word and semantic categories. Once we
have determined the semantic category that maximizes the probability mea-
sure for each word (treated as the more correct association), we can estimate
a pseudo syntax that generalizes the results obtained. Exploiting only the
sensory information to determine the word-to-meaning association still leads
to partially correct results. Densities used are in fact estimated from ex-
tremely noisy data, and the association procedure will be successful only for
those words whose training set is less ambiguous. We must try to integrate
into the process other information that will enable us to correct those am-
biguous cases (Figure 4.4).
One possibility is to add more examples in those training sets which are cor-
rupted by more noise, and re-apply the learning algorithm. Another option
is to use the position of words in the sentence along with the semantic infor-
mation to improve the associations: words associated with similar perceptual
categories will be included in same syntactic category and will follow same
syntactic rules. But we must first solve the problem of the referent, which
remains unknown. Our previous learning algorithm allows us to approximate
partially correct language model that can be used together with the salience
to determine the object of interest in the description.

Bootstrap word-to-meaning association

In our previous work, we used a distortion between the word-conditioned
and background distributions as a measure of association between word and
semantic categories. The Bhattacharyya distance measures the similarity
of two probability distributions. The Bhattacharyya distance between two
Gaussian distributions is defined as follows:

dbhat = 1
8(µ2 ≠ µ1)

3�1 + �2
2

4≠1
(µ2 ≠ µ1)T + 1

2 ln

Q

a

---�1+�2
2

---
Ò

|�1| |�2|

R

b

The first term of equation gives the class separability due to the di�erence
between class means, while the second term gives the class separability due
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Figure 4.4: Two example of estimated positive and negative model. In the
first case, we obtain correct association exploiting only semantic informa-
tion. In the latter case, the semantic information don’t give any additional
information. and can lead to incorrect results.
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Figure 4.5: Word-to-meaning association: probabilistic model

to the di�erence of the class covariance matrices. Furthermore, the optimal
Bayes classification error between the two class is bounded by the following
expression: Á Æ

Ô
P1P2e≠dbhat . We refer to the upper bound of the error

probability as the Bhattacharyya error.
In our case, the Bhattacharyya error provides a measure of association

between words and individual semantic categories. A clustering algorithm
estimates hypothetical semantic categories of words from co-occurring con-
texts and associates each word with semantic categories that maximize the
classification error outlined above 1. Categories below a fixed threshold are
discarded, and the word is associated to a special ungrounded class. Un-
grounded class gathers all the words that can not be directly grounded in
sensory input. In our model, no semantic category (Gaussian density) is
associated with these words. We have then defined a fitting function which
measures the similarity of an utterance to an object based on Mahalanobis
distance and saliency, which will be explained later. The object of the scene
that minimizes this measure is selected as a possible referent of the sentence.
This process can be repeated each time the language model change. In some
cases, this process might fail by selecting the wrong referent.

Probabilistic model

Each example of the (positive) training set then consists of a sequence of
words w1:Tk

(utterance) and a set of features Fk = f1
k , . . . , fM

k describing the
alleged target object (M feature type or semantic class). C latent variable
models the relationship between word w and one of the feature classes fm,
and is time-dependent. We want to find the sequence of semantic classes
(hidden variable) that gave rise to a certain sequence of words and a given

1We force the clustering algorithm to associate only one semantic category, without
considering multi-class meanings (semantic categories that depend on several classes of
perception)
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set of features (observations). Figure 4.5 shows the graphical model that
summarizes the dependencies between random variables used. The probabil-
ity p(C1:Tk

|w1:Tk
, Fk) can be decomposed in a manner similar to HMMs, as

follows:
p(C0)

TkŸ

t=1
p(Ct|Ct≠1)p(wt|Ct)p(Fk|Ct, wt)

As in Hidden Markov Models (HMM), we recognize the transition probabil-
ities of semantic categories A, the emission probability of the word given a
particular semantic category B, and the probability of the features given the
semantic category and word. This last probability coincides with the seman-
tic category p(x|c, w, ◊+) estimated at the previous step for each class-word
pair.

p(Fk|Ct = m, wt = i) = N (fm
k |µ+

mi, �+
mi)

The discrete variable C can take M values, while w can take W values. We
want to estimate the parameter of the model ◊ = {AM◊M , BM◊W }. The
transition probability A encodes a pseudo-syntax that depends on the se-
mantic classes. The emission probability B measures the degree of belonging
of a word to a particular semantic class. We used a modified version of Baum-
Welch algorithm to learn the parameters of the model. In the expectation
step, we calculate first the transition from class j to class i given a word s
of the sentence and the set of features describing the target object Fk, as
follows:

‘t(i, j) = p(Ct = i, Ct+1 = j|wt = s, Fk) = (4.3)

=
–t(i)aijbjsN (f j

k |µ+
js, �+

js)—t(j)
q

i

q
j –t(i)aijbjsN (f j

k |µ+
js, �+

js)—t(j)
(4.4)

then the probability of being in state i, given the observations sequence and
the model:

⁄t(i) = p(Ct = i|wt = s, Fk) =
ÿ

j

‘t(i, j)

Maximization with respect to A and B is easily achieved by using appropriate
Lagrange multipliers with the following result:

aij =
q

t ‘t(i, j)
q

t ⁄t(i)

bjs =
q

t,wt=s ⁄t(j)
q

t ⁄t(j)
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The EM algorithm requires initial values for the parameters of the emission
distribution. We can initialize these probability as follows:

a0
ij = 1

M

b0
js = djs

bhatq
s djs

bhat

Note that the algorithm is not guaranteed to converge at the global maxi-
mum.

4.3.3 Syntactic Constraints
We also need to learn syntactic component that encodes word order con-
straints. Initially, we have described these constraints as a Markovian chain.
Lexical items generated in the previous phase clustered words into groups
that depend on the associated meaning. We use these groups, and associ-
ated probabilities, to construct a more general representation of syntactic
constraints in terms of a finite state automaton (FSA) based on semantic
classes. These FSA are used as the basis for a deterministic parser which
identifies object phrases embedded in complex utterances.

4.3.4 Grounding relative spatial terms
To learn the meaning of spatial terms, we need to find all the objects to
which the phrase refers. We consider only those phrases describing spatial
relationships between two objects (i.e., “the rectangle above the red circle”).
A deterministic parser based on previously acquired FSA, identifies object
phrases embedded in complex utterances. We must decide which of two
phrases refers to the target object, and which of the remaining objects in
the scene should be linked to the other phrase. We have defined a fitting
function which measures the similarity of an utterance to an object based on
Mahalanobis distance and object salience, which will be explained later. Once
the focal objects of the sentence has been determined, we can calculate the
features that describe the spatial relationship between these. We must also
encode the order of the phrases to learn the di�erence between spatial terms
(i.e., di�erence between “above” and “below”) and to calculate correctly the
spatial features. The parser replace the object phrases with (ungrounded)
labels to facilitate the task. The only information that really matters in our
case, is which of the two sentences refers to the target object. Finally, the
learning process that associate a meaning to the word describing a spatial
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(a) Semantic association measured from Gaussian density estimated with
multi-instance algorithm

(b) Semantic association obtained after having integrated the syntactic
information.

Figure 4.6: Results of the word-to-meaning association algorithm. Words as-
sociated with similar perceptual categories will be included in same syntactic
category and will follow same syntactic rules.
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feature continues as previously described. New lexical items are simply added
to the vocabulary of model, and the learnt FSAs are merged into a single
syntactic model.

4.3.5 Understanding and generating descriptions
Thanks to the Mahalanobis distance, we can measure the degree of associa-
tion (”semantic distance”) between a visual feature and a semantic category
previously acquired. For example, we consider the case of a sentence like
“the red rectangle”. The acquired lexical items allow the parser to assign a
semantic category (and hence a Gaussian density) to each word of the sen-
tence. Given the visual features of an object, we can calculate the degree of
association between sentence and object’s visual features as:

qT
i=1

Ò
(f ≠ µi)�≠1

i (f ≠ µi)
„

The object of the scene that minimizes this measure is selected as a possible
referent of the sentence. We have already used the fitting function to find
phrase-to-object matches. The same procedure can be used for understanding
spatial clauses. The deterministic parser guides the extraction of spatial
features which depends on the order of object phrases. The referent of the
sentence is searched among all possible pairs of objects.

One way to facilitate the understanding of descriptions and decrease the
computational burden is to use logical terms to represent the state of the
world (i.e., knowledge about the properties and spatial relationships of ob-
jects), and then use query in a logic programming language for inferring the
reference object. When the parser begins to analyse an utterance, it queries
the system for the state of the world described in the form of a list of all
atomic sentences that can be produced from available sensors at the time of
query. For each object in the scene, some logical terms are generated through
the acquired lexical items. In particular, the system generates a logical term
for each visual feature extracted from a object by selecting the lexical item
that minimizes the Mahalanobis distance for each semantic class. Deter-
ministic parser has been modified to generate logical query to be submitted
to the system. Some examples of possible queries are: “red(X)”, “rect(X),
above(X,Y), red(Y)”, etc.

The generation of the description of an object is quite simple. We can
generate a description as the most likely path of words (in the main FSA) that
produces a given observation. Given a set of visual features extracted from
an object we generate a description of object through a modified Viterbi-like
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Figure 4.7: Disambiguation tree reconstruct the robot’s decision process in
choosing a question to disambiguate a context.

algorithm. We seek the sequence of words that minimizes the fitting function
for that object, and follows the syntactic rules implicitly encoded in the FSA.
We need a method to determine the length of a description. The generation
algorithm include a stop criterion based on acquired ending probability.

4.4 Resolving perceptual ambiguities
Another problem we have addressed in this work is how to resolve the am-
biguities contained in a description through simple verbal interactions based
on yes/no questions. The robot does not use generic questions like ”What
is the colour of the object?”, but specific questions directly related to the
properties and spatial relationships of the objects in the observed scene. Ob-
viously the questions will change depending on the context. Some questions
would allow the robot to e�ectively clarify the ambiguities, while other might
be too specific and will not contribute to the disambiguation process.

Disambiguation tree reconstruct the robot’s decision process in choosing
a question to disambiguate a context. They are essentially decision trees: the
possible target objects are stored in the leaves, a disambiguation strategy is
given by the path from the root to the object’s leaf. The interior nodes can
be questions about referent’s proprieties itself, or relations to other objects.
When the robot finds a reference ambiguity, it builds a disambiguation tree
that resolves it. Figure 4.7 shows an example of disambiguation tree. Path
to the left after question indicate that the predicate is satisfied (yes answer),
while the right branch indicates that it is not (no answer). Each question
consists of attempting to satisfy a logical predicate, and appropriate subtree
is explored. This process continues until a leaf is reached and the ambiguities
is resolved.

Disambiguation tree are costructed using the output of an ambiguous
query (logic queries with more than one solution). The construction method
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minimizes an entropy-based disambiguation measure. At each decision node,
the algorithm chooses a possible question and splits the available objects
into two groups. This process then occurs recursively until all objects are
selected. Clearly, the algorithm must decide which of these question is most
informative. We have used a entropy-based disambiguation measure, charac-
terizing the average amount of uncertainty in a single question. This measure
is computed as:

N0
N1

H(X0) + N1
N0

H(X1) +
ÿ

i

Ci(Xk)

The first two members of the equation measures the uncertainty related to
possible questions in the children nodes (future scenarios). We have calcu-
lated the uncertainty linked to the set of possible questions Q in a node, as
the entropy calculated on a random variable X generated by this set. The
algorithm selects one of the possible questions associated with the current
node (represented by Xk) and split the set of objects into two groups. For
each group generates all the possible questions Qi (i = {0, 1}) that have
not been previously selected in other high level decision node. The discrete
random variable Xi encodes the information related to each question in set
Qi. We can compute a probalility mass function p(Xi) as follows:

p(Xi = j) = < j >
q

k p(Xi = k)

where the counter operator < ... > return the number of the objects that
respond positively to that question. Ni represents the number of the objects
of each group. We weight the first two terms with their ratio to ensure that
the tree is always well-balanced and the algorithm does not choose questions
that have a clear answer in first tree level.

The last term measures the uncertainty related to the question selected,
depending on the encoding of the question in natural language (i.e. the
number of words used) and its contextual ambiguity (i.e. ambiguity in the
understanding of the sentence by a listener). The greedy algorithm selects
the question that minimizes this measure based on entropy. The trees gen-
erated by the disambiguation algorithm, are well-balanced. Figure 4.8(b)
shows an example of disambiguation tree generated by the algorithm. In this
example, the first selected question is the term “blue(X)”. The question “Is
blue?” allows the system to divide the objects of the scene into two groups:
blue objects and not blue objects. The construction method consider future
scenarios, and hence possible question and ambiguities in future contexts,
to select appropriate question. The method does not select the questions
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Type Feature Description
Shape a, s, bx, by, t deformable superellipse
Color R, G, B RGB color space
Area A superellipse area %

Spatial Relation vx, vy relative orientation

Table 4.1: Features extracted from visual sensory stream

that have an immediate and obvious answer (i.e. “trapezium(X)”), but more
general questions that allow us to isolate and partially resolve the percep-
tual ambiguity and reduce the number of questions to ask. The subsequent
scenarios, as mentioned, are those with a lesser degree of ambiguity.

4.5 Evaluation
The experiments reported in this paper are based on the object description
task. The description task consists of generating phrases which best describe
target objects and must be context sensitive since often depend on the other
objects in the observed scene. The variation of objects is limited to shape,
color, size and position. Each training example is comprised of an utterance
and a context representing the semantics of the word sequence. Utterances
consist of phonetic transcripts of spoken sequences recorded by the auditory
sensor. Context consists of visual sensory input which co-occurs with the
utterance, and usually it contains instances of multiple semantic categories.
The system’s sensors consists of a color camera for color image processing
(Sony EVI-D3I, f=5.4-64.8 mm, 12X, 320x240) and a microphone for speech
dialogue. The experimental setting consists of a set of objects of di�erent
shape and color placed on a table. The camera is placed above the table
and ensures a comprehensive view of the scene. An example is shown in the
figure 4.8. The implementation of the system was tested on a PC with the
following specifications: Intel Core 2 Duo T8100 2.10 GHz with 2 GB ram.

4.5.1 Experiments: training phase
As previously mentioned, the system has been tested on the NAO robotic
platform. NAO is a humanoid robot equipped with Force Sensitive Resistors
(FSR) located on the feet, sonars, bumpers, tactile sensors, an IR emit-
ter/receiver, a stereo camera and a pair of microphones. The robot has a
number of built-in machine vision modules used in the experimental setup.
In addition, we have implemented a set of perceptual and motor schema for
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(a) A sample image from training corpus

(b) A disambiguation tree inferred from the scene

Figure 4.8: Disambiguation trees are used to resolve the ambiguities con-
tained in a description through simple Yes / No questions. A greedy algo-
rithm generate well-balanced trees by minimizing an entropy-based measure.
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(a) (b) (c)

Figure 4.9: An example of human-robot interaction via learned language
model. The demonstrator asked the NAO to take the object to the left
of a blue object. (a) NAO points the first object and says ”Is the yellow
rectangle?”; (b) NAO points the second object and says ”Is the blue circle”;
(c)NAO grasps the correct object.

basic behaviors such as pointing and grasping. A typical scene is provided in
the Fig. 4.9.

A training corpus from two participants unfamiliar with the project has
been collected. The acquisition process is, as already mentioned, interactive:
the demonstrator stimulates the attention of the robot on one or more ob-
jects of the scene and verbally describes them. Participant were asked to
generate simple utterances related to the observed scene such that a listener
could later select the same target from the identical scene. Simple utterances
contain reference to exactly one object (target object). The training corpus
was composed of 266 utterances of which 171 are simple and 95 complex.
In the first learning phase only simple utterance are used. The results of
the algorithm are promising. Semantic clustering algorithm is able to isolate
more than 80% of positive instances and then to estimate correctly the se-
mantic category associated with the word. Figure 4.6(a) shows the degree
of associability the word calculated in the first phase of the algorithm with
respect to semantic classes. In most cases we can still get partially corrected
results with our previous algorithm. However there are ambiguities, as in the
case of the word ”circle”, which can be minimized by considering syntactic
information. Figure 4.6(b) shows the final results obtained in the second
phase of the algorithm.

4.5.2 Experiments: Human-Robot interaction
All concepts underlying acquired language model are used to initialize dy-
namic fluents as predicate calculus terms and update robot’s knowledge base
representing the state of the world from sensor data. Only the actions of the
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robot can modify the values of the fluent associated with the objects. The
demostrator can’t modify the scene. For this reason, the knowledge base is
updated after every action of the robot. The only fluent to be updated are
those associated with spatial relationships between objects that change with
every action. Every time the robot completes the move or grasp actions,
updates the database with new spatial relationships. Obviously there will
be some of the logic terms that will not vary at all (eg, color). We have
tested the capabilities of the robot to understand the descriptions provided
by the users and to conduct a dialog in case of ambiguities. The robot was
given concrete instructions, such as “Point the green object!”, or “Grasp the
object to the left of the yellow circle!”2. The whole human-robot interaction
is driven by gestures and language. An example of dialogue is shown below,
while the robots actions are depicted in Fig. 4.9:

Robot: looks at the object 1.
Human: ”NAO, grasp the object to the left of the blue
one!”
Human: points the object 1 (50%), 2 (20%), 3 (50%).
Robot: looks at the object 3.
Robot: ”Is it the yellow rectangle?”
Robot: points the object 3 (Fig. 4.9 left).
Human: ”No!”
Robot: ”Is it the blue circle?”
Robot: points the object 2 (Fig. 4.9 center).
Human: ”Yes! That’s right!”
Robot: Grasps the blue circle (Fig. 4.9 right).

We used the disambiguation trees to solve some perceptual ambiguities present
in the scene [Dindo and Zambuto, 2009]. In this experiment have been
learned only the terms that refer to colors and shapes of objects in the scene.
For the spatial relationships were used categories learned in our previous
work [Dindo and Zambuto, 2009]. A set of external observers were judging
the goodness of the system with respect to the following factors:

• Naturalness of the robot’s linguistic and motor behavior;

• Di�erences between the expected behavior and that observed.
2In the present model, the meaning of verbs “to point” and “to grasp” is hand-coded,

and it is not learned by the system. Future releases will address the problem of grounding
dynamic terms through the same computational framework.



4. Language Grounding 82

Participants Generated by human Generated by system
A 87,3 % 82,6 %
B 85,5 % 80,1 %
C 88,3 % 79,3 %

Media 87,1 % 80,5 %

Table 4.2: Results of an evaluation of human and machine generated descrip-
tions.

About ten people were involved in a full-day evaluation session. The overall
score was positive in about 80% of collected forms. While these results
have no scientific foundation, they however show a positive impact of our
computational model in a human-robot interaction system.

4.5.3 Experiments: Model accuracy
The goal of the evaluation phase is both to measure the semantic and syn-
tactic accuracy of generated description, and to evaluate the performance of
the system in the referent search problem. Two human participants unfa-
miliar with the technical details of the generation system participated in the
evaluation. An evaluation program was written which presents images on
a computer screen and allows participants to select a target object and to
digit a description of a selected object. Di�erent experiment was performed
to measure the performance of the system.

In the first experiment participants were asked to describe an object of
the observed scene providing both generic and detailed descriptions. All
participants evaluated the same sets of images. Responses were evaluated
by comparing the selected object for each image to the actual target object
which was selected by the system. All perceptual information was integrated
to find the correct referent of a description.

Participants were then asked to select the object which best fit the de-
scription generated by the system. Responses were evaluated by comparing
the selected object for each image (the target object described by the system)
to the actual target object which was selected by participant as the referent
of the description. The collected data was used to measure the accuracy of
system generated description (showed in Table 4.2). Participants were also
asked to select a landmark object and to generate a detailed description of
the target object in the scene. Responses were evaluated by comparing the
selected objects for each image to the actual target object and landmark
object which were selected by the system. Table 4.3 shows the result of
evaluation of system understanding capabilities.
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Participants Training corpus Testing corpus
A 91,0 % 85,7 %
B 87,2 % 87,2 %
C 93,0 % 84,3 %

System 84,2 % 79,2 %

Table 4.3: Results of an evaluation of machine understanding capabilities.

The system was able to describe scenes it has not encountered during
training, and exhibit sequences of words which have never occurred in the
training data. The results presented in this section demonstrate the e�ec-
tiveness of the learning algorithms to acquire and apply grounded structures
for the visual description task.

4.6 Conclusion
The algorithms presented in this thesis extends our previous work on the
grounded language model learning. We focused on some limitations of the
previous technique while maintaining the same algorithmic structure. In
particular: (a) we endowed the system with a real model of attention and
formalized a multi-instance learning algorithm for the acquisition of semantic
categories, (b) we have improved the word-to-meaning association algorithm,
by linking the choice not only to semantic information but also to syntactic
constraints encountered, and (c) we have made demonstrator-robot interac-
tion more natural.

However, a set of important questions still remain to be solved. As pre-
sented, the system learns “simple” concepts involving a single perceptual
channel. Ongoing work is focused on learning complex concepts from the
interaction data. The same computational framework will be employed re-
cursively in order to assign meanings to words by hierarchically describing
complex concepts as composed of simpler ones in a Bayesian network. An-
other issue is related to the process of learning and understanding verbs as
words that usually involve an observable action. The work presented here
represents the first steps in this direction.



Chapter 5

Conclusions

We started the journey by exploring the potential of the Bayesian inference
for estimating the parameters of internal models. As opposed to classical
view, optimizazion constraints was explicitly formulated as conditional de-
pendencies in a joint distribution. This view provided the basis for the for-
mulation of an e�cient Belief Propagation (BP) algorithm for forward model
estimation. The method was demonstrated on linear and non-linear feedfor-
ward networks. A link between the presented framework and gradient-based
optimization methods was also established. Using the expectation propaga-
tion (EP) algorithm, a similar algorithm was derived for multiple internal
models scenario.

The thesis went on by proposing a Bayesian model to e�ciently han-
dle the problem of action recognition using limited computational resources.
This was achieved by using prior information over possible contexts and
goal-directed actions, and by adopting an approximate inference procedure
for tracking several competing hypotheses. In particular, the particle filter
framework permitted to easily embed a huge number of internal models by
exploiting all the prior knowledge available to the agent and to limit the
activation of internal models. The system was exploited for recognizing sin-
gle action and sequences of actions. Our experimental results showed that
the system was able to correctly recognize demonstrated actions. The recog-
nition of distal intentions is currently beyond the capability of our model.
Future work will include the extension of the model for the recognition of
distal intention through a hierarchy of inverse and forward models, where
higher-level pairs encode increasingly abstract actions.

Finally, the thesis investigated how the robot can learn a grounded lan-
guage model in order to be bootstrapped into communication. We presented
a system which generates and understands spoken descriptions of objects and
actions in visual scenes. We formalized a multi-instance learning algorithm
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for the acquisition of semantic categories and a word-to-meaning association
algorithm which intergates semantic information and syntactic constraints.
We also addressed the problem of ambiguity resolution contained in a verbal
description through simple interactions based on yes-no questions. However,
a set of important questions still remain to be solved. As presented, the
system learns “simple” concepts involving a single perceptual channel. Fu-
ture work will focus on learning complex concepts from the interaction data.
The same computational framework will be employed recursively in order to
assign meanings to words by hierarchically describing complex concepts as
composed of simpler ones in a Bayesian network.



Appendix A

Gaussian Identities

A.1 Gaussian identities
We define a Gaussian over x with mean a and covariance matrix A as the
function

N (x | a, A) = 1
|2fiA|1/2 exp{≠1

2(x ≠ a)A≠1(x ≠ a)T } (A.1)

with property N (x | a, A) = N (a | x, A). We also define the canonical repre-
sentation

N [x | a, A] =
exp{≠1

2aT A≠1a}
|2fiA≠1|1/2 exp{≠1

2xT Ax + xT a} (A.2)

with properties

N (x | a, A) = N [x | A≠1a, A≠1] (A.3)
N [x | a, A] = N (x | A≠1a, A≠1) (A.4)

The product of two Gaussians can be expressed as

N [x | a, A] N [x | b, B] = N [x | a + b, A + B]N (A≠1a | B≠1b, A≠1 + B≠1)
(A.5)

N (x | a, A) N (x | b, B) = N [x | A≠1a + B≠1b, A≠1 + B≠1]N (a | b, A + B)
(A.6)

N (x | a, A) N [x | b, B] = N [x | A≠1a + b, A≠1 + B]N (a | B≠1b, A + B≠1)
(A.7)
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Linear transformations in x imply the following identities

N (Fx + f | a, A) = 1
|F |N (x | F ≠1(a ≠ f), F ≠1AF ≠T ) (A.8)

= 1
|F |N [x | F T A≠1(a ≠ f), F T A≠1F ] (A.9)

N [Fx + f | a, A] = N [x | F T (a ≠ Af), F T AF ] (A.10)

The division of two Gaussians in canonical form can be expressed as

N [x | a, A]
N [x | b, B] = N [x | a ≠ b, A ≠ B] (A.11)

The derivative of a Gaussian distribution can be expressed as

ˆ◊N (x | a, A) = N (x | a, A)
5
≠hT ˆ◊x + hT ˆ◊a ≠ 1

2 tr(A≠1ˆ◊A) + 1
2hT (ˆ◊A)h

6
(A.12)
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O. Maron and T. Lozano-Pérez. A framework for multiple-instance learning.
In Proceedings of the 1997 Conference on Advances in Neural Informa-
tion Processing Systems, pages 570–576. MIT Press Cambridge, MA, USA,
1998.

David Marr. Vision: A Computational Investigation into the Human Repre-
sentation and Processing of Visual Information. Henry Holt and Co., Inc.,
New York, NY, USA, 1982. ISBN 0716715678. URL http://portal.acm.

org/citation.cfm?id=1096911.

Ingo G Meister, Stephen M Wilson, Choi Deblieck, Allan D Wu, and Marco
Iacoboni. The essential role of premotor cortex in speech perception. Curr
Biol, 17(19):1692–1696, Oct 2007. doi: 10.1016/j.cub.2007.08.064. URL
http://dx.doi.org/10.1016/j.cub.2007.08.064.

R. C. Miall and D. M. Wolpert. Forward models for physiological motor
control. Neural Networks, 9(8):1265–1279, 1996. ISSN 0893-6080. doi:
http://dx.doi.org/10.1016/S0893-6080(96)00035-4.

http://portal.acm.org/citation.cfm?id=1096911
http://portal.acm.org/citation.cfm?id=1096911
http://dx.doi.org/10.1016/j.cub.2007.08.064


BIBLIOGRAPHY 94

A. Murata, L. Fadiga, L. Fogassi, V. Gallese, V. Raos, and G. Rizzolatti. Ob-
ject representation in the ventral premotor cortex (area f5) of the monkey.
J Neurophysiol, 78(4):2226–2230, Oct 1997.

Kevin P. Murphy. Dynamic bayesian networks: representation, inference and
learning. PhD thesis, UC Berkeley, Computer Science Division, 2002. URL
http://www.worldcat.org/oclc/52827959.

Y. Niv, D. Joel, and P. Dayan. A normative perspective on motivation.
Trends in Cognitive Science, 8:375–381, 2006.

E. Oztop, D. Wolpert, and M. Kawato. Mental state inference using visual
control parameters. Cognitive Brain Research, 22:129–151, 2005.

Giovanni Pezzulo. Coordinating with the future: the anticipatory nature
of representation. Minds and Machines, 18(2):179–225, 2008. doi: http:
//dx.doi.org/10.1007/s11023-008-9095-5.

Giovanni Pezzulo and Cristiano Castelfranchi. The symbol detachment prob-
lem. Cognitive Processing, 8(2):115–131, 2007.

Giovanni Pezzulo, Laura Barca, Alessandro Lamberti Bocconi, and Anna M.
Borghi. When a�ordances climb into your mind: Advantages of motor
simulation in a memory task performed by novice and expert rock climbers.
Brain and Cognition, 73(1):68–73, 2010.

S. Pinker. Language learnability and language development. Harvard Univer-
sity Press Cambridge, Mass, 1984.

M. Ramirez and H. Ge�ner. Probabilistic plan recognition using o�-the-shelf
classical planners. In Proc. AAAI-10, Atlanta, USA., 2010.

Rajesh P. Rao and Dana H. Ballard. Predictive coding in the visual cortex:
a functional interpretation of some extra-classical receptive-field e�ects.
Nat Neurosci, 2(1):79–87, January 1999. doi: 10.1038/4580. URL http:

//dx.doi.org/10.1038/4580.

G. Rizzolatti and L. Craighero. The mirror-neuron system. Annual Review
of Neuroscience, 27:169–192, 2004.

G. Rizzolatti, R. Camarda, L. Fogassi, M. Gentilucci, G. Luppino, and
M. Matelli. Functional organization of inferior area 6 in the macaque
monkey. ii. area f5 and the control of distal movements. Experimen-
tal brain research., 71(3):491–507, 1988. ISSN 0014-4819. URL http:

//view.ncbi.nlm.nih.gov/pubmed/3416965.

http://www.worldcat.org/oclc/52827959
http://dx.doi.org/10.1038/4580
http://dx.doi.org/10.1038/4580
http://view.ncbi.nlm.nih.gov/pubmed/3416965
http://view.ncbi.nlm.nih.gov/pubmed/3416965


BIBLIOGRAPHY 95

D. Roy. Learning visually grounded words and syntax for a scene description
task. Computer Speech and Language, 16(3):353–385, 2002.

D. Roy. Grounding Words in Perception and Action: Insights from Compu-
tational Models. Trends in Cognitive Science, 9(8):389–396, 2005.

A. N. Sanborn, T. L. Gri�ths, and D. J. Navarro. Rational approximations
to rational models: Alternative algorithms for category learning. Psycho-
logical Review, in press.

Daniel L. Schacter, Donna R. Addis, and Randy L. Buckner. Remembering
the past to imagine the future: the prospective brain. Nat Rev Neurosci,
8(9):657–661, 2007. doi: 10.1038/nrn2213. URL http://dx.doi.org/10.

1038/nrn2213.

L. Steels and F. Kaplan. AIBO’s first words: The social learning of language
and meaning. Evolution of Communication, 4(1):3–32, 2001.

T. Suddendorf and M. C. Corballis. The evolution of foresight: What is
mental time travel and is it unique to humans? Behavioral and Brain
Sciences, 30(3):299–313, 2007.

M. Tomasello, M. Carpenter, J. Call, T. Behne, and H. Moll. Understanding
and sharing intentions: The origins of cultural cognition. Behavioral and
Brain Sciences, 28(05):675–691, 2005. ISSN 0140-525X.

M. Toussaint and C. Goerick. A bayesian view on motor control and planning.
From Motor Learning to Interaction Learning in Robots, pages 227–252,
2010.

M. Tucker and R. Ellis. Action priming by briefly presented objects. Acta
Psychol., 116:185–203, 2004.
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