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Introduction 

 

Drug design is an iterative process which begins when a chemist identifies a compound that 

displays an interesting biological profile and ends when both the activity profile and the 

chemical synthesis of the new chemical entity are optimized. One of the basic tenets of 

medicinal chemistry is that biological activity is dependent on the three-dimensional 

placement of specific functional groups. Computational chemistry/molecular modeling is the 

science of representing molecular structures numerically and simulating their behavior with 

the equations of quantum and classical physics. Computational chemistry programs allow 

scientists to generate and present molecular data including geometries (bond lengths, bond 

angles, torsion angles), energies (heat of formation, activation energy, etc.), electronic 

properties (moments, charges, ionization potential, electron affinity), spectroscopic 

properties (vibrational modes, chemical shifts) and bulk properties (volumes, surface areas, 

diffusion, viscosity, etc.). Comparison to experimental data, where available, is also 

important to guide both laboratory and computational work. 

Virtual screening is the application of computational models to select or prioritize 

compounds for experimental screening. There are two broad categories of virtual screening 

techniques: ligand-based design and structure-based design.  

Ligand-based design methods capitalize on the fact that ligands similar to an active ligand 

are more likely to be active than random ligands. Ligand-based approaches commonly 

consider two- or three-dimensional chemistry, shape, electrostatic, and interaction points 

(e.g., pharmacophore points) to assess similarity. Structure-based design attempts to use the 

3D protein structure to predict which ligands will bind to the target. The amount and quality 

of information required to apply these techniques varies. Ligand similarity approaches 

require only a single active molecule. Ligand-based Quantitative Structure-Activity 

Relationship (QSAR) approaches require a number of active molecules spanning a wide 

range of activity against the target receptor. The quality of the QSAR model depends to a 

large extent on the quality of the activity data, so that reliable QSAR models are usually built 

based on carefully acquired binding or inhibition data. Structure-based approaches, of which 

the best known is docking, require a protein structure or homology model as starting point. 

Pharmacophore models that include receptor information require an experimental structure 

of the complex between an active molecule and its target protein. 

 

Homology Modeling 

Homology modeling is an increasingly efficient way to obtain useful information about the 

proteins of interest. For example, in designing mutants it can be  helpful to test hypotheses 

about a protein function, identifying active and binding sites, identifying, designing and 

improving ligands for a given binding site, modeling substrate specificity, predicting antigenic 

epitopes, simulating protein–protein docking, refining models based on NMR constraints and 
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rationalizing known experimental observations. This computational approach is based on the 

notion that primary structure of proteins is conseved, through evolution, to a lesser extent 

than the higher level structures (secondary, tertiary and quaternary). The aim of homology 

protein structure modeling is to build a three-dimensional (3D) model for a protein of 

unknown structure (the target) on the basis of sequence similarity to proteins of known 

structure (the templates).1–5 Two conditions must be met to build an useful model. First, the 

similarity between the target sequence and the template structure must be detectable. 

Second, a substantially correct alignment between the target sequence and the template 

structures must be calculated. The obtained structure can be structurally refined with 

different protocols such as energy minimization. Comparative modeling is possible because 

small changes in the protein sequence usually result in small changes in its 3D structure.6 

Although considerable progress has been made in ab initio protein structure prediction,7 

comparative protein structure modeling remains the most accurate prediction method. 

 

Molecular Dynamics 

Molecular Dynamic simulations describe the time evolution of a molecular system, e.g., a 

protein, by numerically solving Newton’s equations of motion for all atoms in the system. 

Molecular dynamics combines energy calculations from force field methodology with the 

laws of Newtonian mechanics. Such simulations can accurately describe the dynamics of 

biological relevant systems by using three approximations; (a) the Born-Oppenheimer 

approximation, where nuclear and electronic motions are decoupled, (b) the approximation 

that nuclei can be treated as classical particles, and (c) the use of an empirical force field to 

describe the interaction between particles. The simulation of a protein or nucleic acid 

requires the explicit spatial coordinates and initial velocities of every atom in such a 

molecule. While the initial velocities can be obtained from a Maxwell-Boltzmann distribution 

at given temperature, the spatial coordinates were obtained from structures stored in the 

Protein Data Bank8 or from homology models. In molecular dynamics, successive 

configurations of the system are generated by integrating Newton’s laws of motion 

(Equation 1). The result is a trajectory that specifies how the positions and velocities vary 

with time. 

iii amF  

Equation 1: Newton’s law of motion 

where iF  is the force exerted on particle i , im  is the mass of particle i  and ia  is the 

acceleration of particle i . 

The force can also be expressed as the gradient of the potential energy (Equation 2). 

VF ii  

Equation 2 
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Combining these two equations yields Equation 3. 
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Equation 3 

where V is the potential energy of the system. 

Newton’s equation of motion can then relate the derivative of the potential energy to the 

changes in position as a function of time. 

Numerous numerical algorithms have been developed for integrating the equations of 

motion: 

- Verlet algorithm  

- Leap-frog algorithm 

- Velocity Verlet  

- Beeman’s algorithm 

 

All the integration algorithms assume the positions, velocities, and accelerations can be 

approximated by a Taylor series expansion (Equation 4). 
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Equation 4 

Where x is the position, v is the velocity (the first derivative with respect to time), a is the 

acceleration (the second derivative with respect to time). 

The Verlet algorithm uses positions and accelerations at time t and the positions from time  

t-δt to calculate new positions at time t+δt. The Verlet algorithm uses no explicit velocities. 

The advantages of the Verlet algorithm are simplicity, but the algorithm is of moderate 

precision.  

In the Leap-frog algorithm, the velocities are first calculated at time t+1/2δt; these are used 

to calculate the positions, x, at time t+δt. In this way, the velocities leap over the positions, 

then the positions leap over the velocities. The advantage of this algorithm is that the 

velocities are explicitly calculated; however, the disadvantage is that they are not calculated 

at the same time as the positions. 

The velocity-Verlet integrator algorithm yields positions, velocities, and accelerations at time 

t. There is no compromise on precision. 

The Beeman’s algorithm is closely related to the Verlet one. The advantage of this algorithm 

is that it provides a more accurate expression for the velocities and a better energy 
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conservation. The disadvantage is that the more complex expressions make the calculation 

more expensive. 

 

Molecular Docking 

Molecular Docking is a method that predicts structure of the intermolecular complex formed 

between two or more molecules. Frequently it is used to predict binding orientation of drug 

candidates to their protein targets in order to predict affinity and activity. Prediction of the 

binding affinity will be useful when compounds are being synthesed whereby it is possible to 

predict the affinity of the desired compound towards a certain target (say a protein or DNA; 

with particular interest to stop the function of the enzyme/protein or to block certain 

reaction). 

The orientation of the ligand (small molecule or substrate protein) will be “fitted” to the 

receptor of interest using either two approaches: matching technique, and simulation 

processes. 

Molecular docking can be divided into two separate sections: 

1) Search algorithm – The algorithm should create an optimum number of 

configurations that include the experimentally determined binding modes. So the 

search space consists of all possible orientations and conformations of the protein 

paired with the ligand. In practice it is impossible to exhaustively explore the search 

space because this would involve enumerating all possible distortions of each 

molecule and all possible rotational and translational orientations of the ligand. 

2) Scoring Function – Mathematical methods used to predict the strength of the 

non-covalent interaction, called as binding affinity, between two molecules after they 

have been docked. Scoring functions have also been developed to predict the 

strength of other types of intermolecular interactions, for example between two 

proteins or between protein and DNA or protein and drug. These configurations are 

evaluated using scoring functions to distinguish the experimental binding modes 

from all other modes explored through the searching algorithm. 

In standard virtual docking studies, ligands are docked into the binding site of a receptor 

where the receptor is held rigid and the ligand is free to move. However, the assumption 

of a rigid receptor can give misleading results, since in reality many proteins alter their 

binding site to conform to the shape and binding mode of the ligand. These changes 

allow the receptor to alter its binding site so that it more closely conforms to the shape 

and binding mode of the ligand. This is often referred to as “induced fit”. 
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1. Hypoxia and cancer 

 

Tumorigenesis in human is a multistep process that involves the sequential acquisition of a 

number of genetic, epigenetic, or somatic alterations as a result of increasing genomic 

instability caused by defects in cell cycle checkpoint controls.9 These alternations enable 

cancer cells to acquire characteristics different from normal cells: resistance to growth 

inhibitory factors, proliferation in the absence of exogenous growth factors, evasion of 

apoptosis, limitless replication potential via the reactivation of telomerase, abnormal 

angiogenesis, evasion of destruction by the immune system, invasion and metastasis.10 In 

addition to the genetic, epigenetic, or somatic changes that occur in cancer, the tumor 

microenvironment is considered to be a critical factor in malignancy progression and 

metastasis, and it influences the response to conventional anti-tumor therapies.11 

As one of the most pervasive microenvironmental stresses and common features of solid 

tumors, hypoxia has been recognized as playing a key role in several cellular physiological 

processes, from cell proliferation, to cell survival, angiogenesis, metabolism and tumor 

progression and metastasis (Fig. 1). 

 
Fig. 1: The role of hypoxia in the hallmarks of human cancer. 

To survive and grow in this hypoxic microenvironment, tumor cells co-opt adaptive 

mechanisms to switch to a glycolytic metabolism, promote proliferation, become resistant to 

apoptosis, obtain unlimited replication potential and genomic instability, evade immune 

attack, induce angiogenesis, and migrate to less hypoxic areas of the body. 

Hypoxia can be divided into acute and chronic hypoxia. The acute variant is usually caused 

by a temporary disruption to the blood flow and does not last long. On the other hand, 

chronic hypoxia is durable and can have lasting effects.12 
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Hypoxic cells have been shown to be more resistant to radiotherapy and chemotherapy, and 

they usually have been associated with increased risk of invasion and metastasis, and a poor 

clinical prognosis of solid tumors.13 Therefore, since HIF-1 is a key regulator of the response 

of cells to oxygen deprivation and plays critical roles in the adaptation of tumor cells to a 

hypoxic microenvironment, HIF-1 inhibition is an attractive anticancer target. Knowledge of 

the mechanisms of action of all the actors in the hypoxic pathway is thus becoming a priority 

in identifying new agents capable of specifically targeting HIF-1. 

 

Mdm2 and HIF-1α interaction in tumor cells during hypoxia 

The importance of the HIF-1 response pathway in human tumorigenesis is underscored by 

the finding that HIF-1α is overexpressed in multiple human cancers, because tumor cells, 

unlike normal cells from the same tissue, are often chronically hypoxic.14 

In normal unstressed cells, p53 is a very unstable protein with a short half-life, which is 

present at very low cellular levels owing to continuous degradation largely mediated by 

Mdm2. In contrast, the p53 protein is stabilized, and its level increases in response to various 

stresses such as DNA damage and hypoxia.15,16 Mdm2 an p53 are linked to each other 

through an autoregulatory negative feedback loop aimed at maintaining low cellular p53 

levels in the absence of stress. Mdm2 inhibits p53 activity because it stimulates its 

degradation in the nucleus and the cytoplasm, blocks its transcriptional activity interfering 

with the ability of p53 to contact transcriptional coactivators such as p300/CBP, and 

promotes its nuclear export to the cytoplasm, where p53 is then degraded by cytoplasmic 

proteasomes.17 

Evidence for interaction between HIF-1 and p53 network is substantial,18–21 the precise 

mechanism by which HIF-1α regulates p53-mediated function remains unknown (Fig. 2). 

 
Fig. 2 
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Mdm2 may act as a bridge and mediate the indirect interaction between HIF-1α and p53 in 

cells. HIF-1α protects p53 from degradation mediated by Mdm2 and can abrogate p53 

transcriptional repression by Mdm2. Also, HIF-1α interacts with the wild-type p53 protein 

but not the tumor-derived p53 mutant form in cells.18 Since wild-type p53 protein is capable 

of inducing Mdm2 expression in cells, in contrast, because the tumor-derived p53 mutant is 

completely inactive in transcriptional activation of endogenous Mdm2, HIF-1α fails to 

interact with p53 since there is no (or very low levels) Mdm2 in cells expressing mutated 

p53. 

 

A3 adenosine receptor induces HIF-1α protein accumulation in hypoxia 

Purine nucleosides, such as adenosine, are critical mediators of physiological responses to 

acute and chronic hypoxia. Adenosine is the final metabolite in the stepwise 

dephosphorylation of ATP and it is produced and released in response to ischemia and 

hypoxia in the central nervous system.22 

There is a strong link between adenosine and hypoxia-related signaling. The expression 

levels of adenosine and adenosine receptors are regulated in conditions of cellular stress, 

and signal transduction increases via one or more of the adenosine receptors. Hypoxia 

apparently induces a program that shifts the tissue phenotype toward an increase in 

extracellular adenosine. In turn, adenosine receptor activation tends to limit the potential 

damage incurred by hypoxia. 

Adenosine modulates a variety of cellular functions through occupancy of four cell surface 

G-protein–coupled receptors, named A1, A2A, A2B, and A3.23,24 In particular, adenosine was 

found to exert its effects on cell proliferation, clone formation ability, UV resistance, and cell 

death mainly through the A3 subtype,25–28 which is highly expressed in tumor cells.29–33 

These findings confirm recent data indicating that A3 receptor overexpression may be a 

good candidate as a tumor cell marker. 

Several reports demonstrate that adenosine is able to increase HIF-1α protein expression in 

response to hypoxia in a dose-dependent and time-dependent manner in human melanoma 

cells, whereas HIF-1β protein levels are not affected. A3 receptor subtype mediates the 

observed adenosine effects on HIF-1α regulation in this cell line. The effects of adenosine on 

HIF-1α protein accumulation are not mediated by A1, A2A, or A2B receptors but through A3 

receptors.34 

So given the ability of A3 adenosine receptor antagonists to block HIF-1α protein expression 

accumulation in hypoxia, this pathway could be a new approach for the treatment of cancer, 

based on the cooperation between hypoxic and adenosine signals, that ultimately may lead 

to the increase in HIF-1–mediated effects in cancer cells. 
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2. HIF-1α 

 

HIF-1 is a heterodimer composed of HIF-1α and HIF-1β subunits.35 Whereas HIF-1β is 

constitutively expressed, HIF-1α expression is induced in hypoxic cells with an exponential 

increase in expression as cells are exposed to O2 concentrations of less than 6%. Two other 

homologues of the α subunit have been cloned (HIF-2α or EPAS-1 and HIF-3α), but there 

appears to be little redundancy in the hypoxic response. The three related forms of human 

HIF-α (HIF-1α, HIF-2α, and HIF-3α) are encoded by a distinct genetic locus. HIF-1α and HIF-2α 

possess similar domain structures that are regulated in a related manner by oxygen, 

although each isoform has distinct and separate roles. The role of HIF-3α is not fully 

understood, although a truncated form of murine HIF-3α, known as inhibitory Per/Arnt/Sim 

(PAS) domain protein (IPAS), has been found to act as an inhibitor of HIF via dimerization 

with HIF-β. HIF-1α is the best characterized and forms a heterodimer with the HIF-1β 

subunit, initially identified as the Aryl hydrocarbon Receptor Nuclear Translocator (ARNT). 

HIF-2α and 3α compete for binding to ARNT. These proteins belong to the basic 

helix-loop-helix (bHLH)–PER-ARNT-SIM (PAS) protein family (Fig. 3). 

 

Fig. 3: Domain structure and structural location of the post-translational modifications of HIF-1α and β. 

 

The bHLH and PAS motifs are required for dimerization while the downstream basic region 

affords specific binding to the HRE DNA sequence 5′-ACGTG-3′. The stability and subsequent 

transactivational function of the α subunit of HIF-1 is regulated by its post-translational 

modification, in particular hydroxylation and phosphorylation. The Oxygen-Dependent 

Degradation Domain (ODDD) of HIF-1α regulates its stability through the hydroxylation of 

proline 402 and 564 by Prolyl Hydroxylase Domain (PHD) proteins and the acetylation of 

lysine 532 by ARrest Defective-1 protein (ARD1), which favour binding to and subsequent 
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ubiquitination by the von Hippel-Lindau (VHL) E3 ligase complex. The α subunit contains two 

transactivation domains, the N- and C-terminal activation domains, respectively N-TAD and 

C-TAD, while the β subunit contains only one TAD. A number of co-activators including 

CBP/p300 have been identified to interact with the C-TAD and to enhance transactivation. 

HIF-1α is phosphorylated, and phosphorylation has been shown to enhance transcriptional 

activity though possibly through modification of co-activators. The transcriptional activity is 

negatively regulated by hydroxylation of asparagine 803 by the Factor Inhibiting HIF-1 (FIH-1) 

in the C-TAD which abrogates binding of the co-activator CBP/p300. S-nitrosation of cysteine 

800 increases interaction with CBP/p300 and enhances transactivation, while the 

transcriptional activity of both subunits appears to be negatively regulated by 

SUMOylation.36 

In normoxia, HIF-1α constitutively transcribed and translated, but immediately directed for 

degradation. This is achieved by the hydroxylation of proline residues (P402 and P564) by 

the three PHDs, which depend on oxygen, 2-oxoglutarate, Fe+2, and ascorbate as substrates 

and cofactors for their activity. Prolyl hydroxylation permits the binding of the von 

Hippel-Lindau protein (pVHL), a recognition component of the E3 ligase complex37–42 

together with elongin B, elongin C, cullin-2, and ring-box 1. This complex ubiquinates HIF-1α 

subunits and targets them for proteosomal degradation.43 In addition, a conserved 

asparagine residue undergoes hydroxylation, by Factor Inhibiting HIF (FIH), which blocks 

activation of HIF target genes, as well as having other functions. 

In addition to ubiquitin, there exist a number of related polypeptides which are covalently 

attached to target proteins and regulate their function.44 The Small Ubiquitin-like MOdifier 

(SUMO) is one of these polypeptides, but in contrast to ubiquitin, SUMO does not signal 

protein destruction but instead may even protect proteins from ubiquitination and influence 

intracellular localization and protein–protein interactions.45 A growing number of 

transcription factors including p53, heat shock transcription factor, c-Myb, GRIP1, Sp3 and 

AP-2 are being reported to undergo SUMO post-translational modification. Often this 

modification negatively regulates the transcriptional activity and this has been 

demonstrated for the β subunit of HIF-1.46 Under hypoxic conditions, prolyl hydroxylation of 

HIF-1α is blocked and acetylation is down-regulated, permitting thus HIF-1α protein 

stabilization. HIF-1α protein accumulates and translocates to the nucleus where is then free 

to bind with HIF-1β to form the HIF-1 transcription complex. The heterodimer can then bind 

to hypoxic response elements (HREs) in the promoters of a host of genes and activate 

expression of these genes (Fig. 4). 
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Fig. 4 

The HIF-1α protein is an excellent example of multiple post-translational modifications as 

switches in function. Hydroxylation by PHD proteins and acetylation by ARD1 protein 

increase interaction of HIF-1α with the E3 ligase pVHL complex which earmarks HIF-1α with 

ubiquitin. Hydroxylation by FIH-1 decreases the transacriptional activity as does modification 

with SUMO. HIF-1α is phosphorylated by Mitogen Activated Protein Kinase (MAPK) and 

phosphorylation increases transactivation as does S-nitrosation. 

 

Regulation of HIF-1α protein stability under hypoxia 

Hypoxia-inducible factor can be activated by physiological or pathological activation of 

growth factor and cell adhesion pathways. Growth-factor-induced activation of receptor 

tyrosine kinases (RTKs) leads to HIF-1α stabilization and activation. Activated RTKs interact 

with p85, the regulatory subunit of Phosphatidyl Inositol 3-Kinase (PI3K), which leads to its 

activation. Activated PI3K triggers a phosphorylation cascade that results in the 

phosphorylation/activation of AKT, a serine/ threonine kinase that promotes antiapoptotic 

and pro-survival responses of a cell.47 Activation of AKT has been shown to lead to an 

increase in HIF-1 protein translation by the AKT/FRAP/mTOR pathway.48,49 Activated RTKs 

also signal through the MAPK pathway, and phosphorylated p38 and 

extracellular-signal-regulated kinase 1/2 (ERK1/2) can further phosphorylate and activate 

HIF-1.50 Inhibition of ERK activity leads to inhibition of HIF activity without affecting HIF 

stabilization.51 In addition to growth factor–mediated RTK activation, the PI3K/AKT pathway 

is also activated by extracellular matrix (ECM) adhesion mediated by integrins.52 Integrin 

ligation causes an activation of the integrin-linked kinase (ILK) leading to increased HIF-1, as 
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well as increased VEGF production by the PI3K/AKT/FRAP/mTOR pathway.53 Additionally, 

activation of PI3K/AKT also leads to an increase in steady-state concentrations of heat shock 

proteins (HSP) 90 and 70, both of which interact with and stabilize HIF-1.54
 p53 negatively 

modulates this process by inducing Mdm2, which can ubiquitinate and lead to HIF-1 

degradation by the proteasome pathway (Fig. 5). 

 

Fig. 5 

HIF-1 target genes 

Once activated by hypoxia, HIF-1 binds to the consensus HIF-1 DNA binding site (HBS) ACGTG 

present in the hypoxia-response elements (HREs) of many oxygen-regulated genes. Table 1 

shows a compilation of the HIF-1 target genes identified. These genes are involved in oxygen 

homeostasis at the cellular, local and systemic levels. Erythropoietin activates erythropoiesis 

to enhance the systemic oxygen transport capacity. Because iron is a limiting factor in haem 

formation, erythropoiesis is sustained by increased expression of transferrin and transferrin 

receptor to enhance iron supply to erythroid cells. At the local level, HIF-1 activates VEGF, as 

well as one of its receptors (Flt-1), which induce angiogenesis leading to an increase in the 

vascular density and hence a decrease in the diffusion distance for oxygen. Local blood 

circulation is also controlled by modulation of the vascular tone through the production of 

NO (nitric oxide synthase), CO (haem oxygenase 1), endothelin-1, adrenomedullin or 

activation of the α1B-adrenergic receptor. At the cellular level, loss of ATP production in 

mitochondria is compensated by anaerobic glycolysis. Therefore, glucose uptake (glucose 
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transporters) and glycolysis (glycolytic enzymes) are upregulated by HIF-1. Besides hypoxia, 

both insulin and insulin-like growth factors, (IGF)-1 and 2, induce HIF-1α expression.55 In 

addition to glucose transporters and glycolytic enzymes, HIF-1 activates IGF-2 and the 

IGF-binding proteins (IGFBPs) 1, 2 and 3 but not 4, 5 and 6.56,57 Other pleiotropic growth 

factors and cytokines capable of inducing HIF-1 include epidermal growth factor, fibroblast 

growth factor-2, interleukin-1β and tumour necrosis factor-α..58,59 

 

Hypoxia-inducible HIF-1 target gene 

Oxygen transport: erythropoiesis 

 Erythropoietin 

 Transferrin (iron transport)  

 Transferrin receptor (iron uptake) 

Oxygen transport: angiogenesis and vascular tone 

 Vascular endothelial growth factor (VEGF) 

 Flt-1 (VEGF receptor 1) 

 Plasminogen activator inhibitor-1  

 Endothelin-1 

 Inducible nitric oxide synthase (NO production) 

 Haem oxygenase 1 (CO production)  

 Adrenomedullin  

 α1B-adrenergic receptor 

Anaerobic energy: glycolysis and glucose uptake 

 Phosphofructokinase L 

 Aldolase A 

 Glyceraldehyde-3-phosphate dehydrogenase  

 Phosphoglycerate kinase 1  

 Enolase 1  

 Lactate dehydrogenase A  

 Glucose transporter-1  

Negative feedback regulation of HIF-1 function 

 p35srj (CBP/p300 antagonist)  

Others 

 Insulin-like growth factor binding protein-1 

  Retrotransposon VL30  
Table 1: Identified HIF-1 target genes. 
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3. Mdm2 and p53 

 

The protein p53 plays a key role in maintaining the genomic integrity of cells. In response to 

DNA damage and other types of stress stimuli, p53 causes cell-cycle arrest60 or activates 

apoptosis.61,62 In normal cells, p53 is held in check until needed by Mdm2 (the murine 

double-minute clone 2, more appropriately termed human double-minute clone 2, or Hdm2) 
63. Harmful mutations of p53 are common mechanisms for the loss of p53 wild-type activity 

in tumor cells.64 But another important mechanism is overexpression of Mdm2, which leads 

to constitutive inhibition of p53; this is commonly seen in cancerous cells containing wild-

type (WT) p53.65,66 Because of its importance in cancer development, the p53–Mdm2 

complex is a really interesting target for anticancer drug design. It has been shown that a 

p53 homologue is sufficient to induce p53-dependent cell death in cells overexpressing 

Mdm2,67 and that a peptide as short as six residues could bind to Mdm2 in the same 

manner.68 Medicinal chemistry modifications to the same 6-residue peptide dramatically 

increased its inhibitory activity.69 Small p53 mimics would be expected to disrupt the 

p53-Mdm2 complex, consequently liberating p53 to initiate cell-cycle arrest or apoptosis. 

The MDM2 gene was originally identified on double-minute chromosomes of spontaneously 

transformed mouse 3T3 fibroblasts (mouse double minute),70 and the Mdm2 protein was 

later found to be physically associated with p53.71 

Mdm2 is a member of the really interesting new gene 1 (RING) domain family of E3 ubiquitin 

ligases. The full-length transcript of the MDM2 gene encodes a protein of 491 amino acids 

with a predicted molecular weight of 56kDa. This protein contains several conserved 

structural domains including an N-terminal p53 interaction domain (Fig. 6). The Mdm2 

protein also contains a central acidic domain (residues 230-300). The phosphorylation of 

residues within this domain appears to be important for regulation of Mdm2 function. In 

addition, this region contains nuclear export and import signals that are essential for proper 

nuclear-cytoplasmic trafficking of Mdm2. Another conserved domain within the Mdm2 

protein is a Zinc finger domain. Mdm2 also contains a C-terminal RING domain (amino acid 

residues 430-480), which contains a consensus sequence that coordinates two molecules of 

zinc. 

 

 
Fig. 6 

Like other RING domain proteins, Mdm2 functions as an adaptor protein, as an E3 ubiquitin 

ligase responsible for the ubiquitination and degradation of p53.72–74 Ubiquitination of 

proteins occurs through a complex series of steps that involve E1, E2, and E3 proteins.75,76 

The E1 enzyme binds ubiquitin, a 76-amino acid protein, activating ubiquitin for further 
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processing. The E2 conjugating enzyme accepts the activated ubiquitin from E1 and transfers 

it to the E3 enzyme, a ligase that covalently binds the ubiquitin to the substrate. Mdm2 

functions as the E3 ligase to ubiquitinate p53 at several lysine residues.77,78 It also has the 

ability to ubiquitinate itself.79,80 Mdm2 together with the p300, transcriptional co-activator 

protein, mediates the ubiquitination and proteasome-dependent degradation of the p53 

tumor suppressor protein and other growth regulatory proteins.81–83 In addition to 

mediating degradation of p53, Mdm2 blocks the interaction of p53 with the transcriptional 

apparatus 71, mediates translocation of p53 to the cytoplasm,84 thereby removing it from its 

site of action, and recruits the histone deacetylase HDAC1 to deacetylate key residues of p53 

thus making them available for ubiquitination.85 

Mdm2 and p53 are linked to each other through an autoregulatory negative feedback loop 

aimed at maintaining low cellular p53 levels in the absence of stress. In normal cells, p53 

activity is kept low by Mdm2, p53 stimulates the expression of Mdm2; Mdm2, in turn, 

inhibits p53 activity because it stimulates its degradation in the nucleus and the cytoplasm, 

blocks its transcriptional activity, and promotes its nuclear export (Fig. 7). 

 

 
Fig. 7 

In response to DNA damage, p53 is activated by disrupting Mdm2 association and stabilized 

against Mdm2-dependent degradation. p53 activation and stabilization likely are achieved 

by post-translational modifications; known modifications to p53 include phosphorylation, 

acetylation, and ubiquitination. 

Crystallographic data showed that the N-terminal domain of Mdm2 forms a deep 

hydrophobic cleft into which the transactivation domain of p53 binds (amino acids 19-26), 

thereby concealing itself from interaction with the transcriptional machinery.86 This suggest 

that amino acids 16–24 of Mdm2 can form a “flexible lid” that folds over and stabilizes the 

Mdm2 structure.87 The key to the interface is a triad of hydrophobic and aromatic amino 
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acids of p53 — Phe19, Trp23, and Leu26 — which inserts deep into the Mdm2 cleft. The 

interface relies extensively on van der Waals contacts and the steric complementarity 

between the Mdm2 cleft and the hydrophobic face of the p53 helix as these interactions are 

augmented by only two intermolecular hydrogen bonds (Fig. 8). 

 

 
Fig. 8 

The Mdm2 cleft is lined with 11 hydrophobic and aromatic amino acids that make multiple 

van der Waals contacts to p53 (Leu54, Leu57, Ile61, and Met62 from the α2 helix, Tyr67, 

Val75, Phe91, and Val93 from the middle β sheet, and Ile99, and Ile103 from the α2′ helix).  

Because the hydrophobic p53-Mdm2 interaction is structurally and biologically well 

understood, the design of small lipophilic molecules that disrupt or prevent the interaction is 

currently a therapeutic strategy. Only the Mdm2 partner has structurally well-defined 

binding sites. This implies that inhibitors should mimic p53 rather than Mdm2. Another 

reason is that only the p53 interface is composed of a single short contiguous stretch of 

amino acids. All these features favor the possibility that a small inhibitory molecule might 

work. An increasing number of small-molecule p53-Mdm2 binding inhibitors have been 

discovered and published in recent years, but only few compounds have acceptable cellular 

potency and selectivity for their molecular target and might represent viable leads for 

development of therapeutic agents.88 In order to design an effective p53 mimic as inhibitor 

of human Mdm2, it is important to understand the p53-Mdm2 interaction at the atomic 

level. Recently, in different molecular dynamics (MD) studies, the p53-Mdm2 system was 

investigated to explore the binding interface, and the effect of mutating key residues in the 

human p53-Mdm2 complex. The first calculation was a 400 ps molecular dynamics 

simulations by Massova and Kollman.89 Other studies were published from 2005 to date, and 

they were always referred to Mdm2 and the endogen ligand.90–93 Carlson et al.90 have 

applied a 2ns MD simulation to examine the binding interface in the human p53-Mdm2 

complex in order to design a potent p53 mimic. This study suggested that an additional 

hydrofobic pocket interior of Mdm2 should possibly be used to design new inhibitors. 



16 

 

Recently Verma et al.94 have applied MD simulations to investigate the binding of p53 

peptide and nutlin to Mdm2 and MdmX. Simulations reveal that p53 has a higher affinity for 

Mdm2 than MdmX, driven by stronger electrostatic interactions. The differences are more 

pronounced for nutlin because it is a small molecule whose binding is driven by short range 

van der Waals interactions and lacks the long range electrostatics that mediate interactions 

with p53, supporting findings of how the Mdm2 surface (and MdmX) modulates and is 

modulated by ligands. In work carried out on the X-ray structure of MdmX bound to a 

single-domain antibody by Fersht et al.95, the authors studied structural changes to a 

common conformation on removal of the ligand. The binding pocket converged to a 

common conformation after removal of the ligands, indicating that the differences are due 

to induced fit. However, the residues that comprise the Mdm2 lid are not conserved in 

MdmX; and also crystal structure of nutlin complexed to Mdm2 (1RV1) used for the 

simulation does not contain information concerning the lid. 

Based on available structural data and computational studies, we can classify the 

conformational states of Mdm2 into the following three broad groups: open state, closed 

state and apo state.96 These broad changes in its conformation could be an important 

starting point for designing new inhibitors. 
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4. Adenosine receptor A3 

 

The adenosine class of heterotrimeric guanine nucleotide-binding protein (G-protein) 

coupled receptors (GPCRs) mediates the important role of extracellular adenosine in many 

physiological processes. Adenosine is an ubiquitous neuromodulator that acts by stimulating 

four cell surface receptors (A1, A2A, A2B, A3), all being part of the huge family of the GPCRs. 

These receptors are widely distributed throughout the tissues. A2A and A2B receptors are 

coupled to adenylate cyclase activity, and their stimulation increases the intracellular cyclic 

adenosine monophosphate (cAMP) concentration, while A1 and A3 receptor stimulation 

decreases cAMP concentration and raises intracellular Ca2+ levels by a pathway involving 

phospholipase C (PLC) activation (Fig. 9).97,98 

 

 

Fig. 9: Adenosine class of heterotrimeric guanine nucleotide-binding protein coupled receptors. 

The A3R is involved in the control of the cell cycle and inhibition of tumour growth both in 

vitro and in vivo.99 In fact adenosine A3 receptors have been demonstrated to be more 

highly expressed in tumours than in healthy cells, suggesting a role for A3R as a tumour 

marker.33 In accordance with this notion, A3R antagonists are potential therapeutic agent 

and provide an opportunity for the generation of novel compounds that can be used as 

antitumor drugs. 
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All adenosine receptors have in common a core domain consisting of seven transmembrane 

helices (TM1 to TM7), with each TM composed of 20–27 amino acids, connected by three 

intracellular (IL1 to IL3) and three extracellular loops (EL1 to EL3). The N-terminus is located 

at the extracellular side of the cell and often contains one or more glycosylation sites. The 

C-terminus is located intracellularly and contains phosphorylation and palmitoylation sites, 

which are involved in regulation of receptor desensitization and internalization.100 All 

adenosine receptors, with the exception of the A2AR, contain a palmitoylation site near the 

C-terminus. The A2AR is the only subtype with an extraordinary long C-terminus.101 All the 

adenosine receptors are glycosylated on the second extracellular loop, although 

glycosylation does not appear to influence ligand binding. The third intracellular loop and/or 

the C-terminus are involved in coupling the adenosine receptors to G-proteins. The A1, A2B, 

and A3 receptors are very similar in regard to the number of amino acids composing their 

primary structure, the human homologs consist of 326, 328, and 318 amino acid residues, 

respectively. Conversely, the human A2A is composed by 409 amino acids. The human A1R 

and human A3R display 46.5% overall sequence identity at the amino acid level, while the 

human A2AR and human A2BR are 46.6% identical (Table 2). 

 

 A2A A2B A3 

A1 38.3 44.0 46.5 

A2A  46.6 31.0 

A2B   35.7 

Table 2: Percentage of sequence identity. 

The A3 adenosine receptor has 318 amino acids and contains 7 TM helices connected by 

three intracellular and three extracellular loops (Fig. 10-11). 

 

Fig. 10: Secondary structure of A3R. 
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Fig. 11: Schematic representation of the human A3 adenosine receptor. 

For many years, rhodopsin had represented the only structural information available for 

GPCRs. The first resolved structure of rhodopsin was published in 2000 by Palczewski et al.102 

and it had been broadly used as template.103 In 2008 the crystal structure of the human A2A 

adenosine receptor in complex with a selective antagonist ZM241385 (PDB ID: 3EML) has 

been determined (Fig. 12).104 Crystallographic model reveals features different from 

previously reported GPCR structures (Table 3). 

Protein or complex PDB code Resolution Species 

 

Rhodopsin 

1F88, 1GZM, 1HZX, 1L9H, 

1U19, 2G87, 2HPY, 2I35, 

2I36, 2I37, 2J4Y, 2PED, 

2X72, 3C9L, 3CM9, 3CAP, 

3DQB, 3OAX, 3PQR, 3PXO 

2.2-4.15 Å bovine 

β1-Adrenergic receptor 2VT4, 2Y00, 2Y01, 2Y02, 

2Y03, 2Y04 

2.5-3.05 Å turkey 

β2-Adrenergic receptor 2R4H, 2R4S, 2RH1, 3D4S, 

3KJ6, 3NY8, 3NY9, 3NYA, 

3PDS 

2.4-3.5 Å human 

Adenosine A2A receptor 3EML, 3QAK 2.6-2.7 Å human 
Table 3: Reported GPCR structures. 
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Fig. 12: Crystal structure of the human A2A adenosine receptor in complex with ZM241385. 

 

Fig. 13: Superimposition of A2A adenosine receptor (green) with bovine rhodopsin (purple) (a), β1AR (orange) (b), β2AR 

(yellow) (c). 
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The organization of the extracellular loops is markedly different from β1AR, β2AR and bovine 

rhodopsin (Fig.13).105–107 

Furthermore ZM241385 binds A2A in conformation perpendicular to the plane of the 

membrane and co-linear with transmembrane helix VII, interacting with both EL2 and EL3. 

Finally, the binding pocket of the A2A adenosine receptor results closer to helices VI and VII 

and only limited interactions with helices III and V are allowed. 



22 

 

5. Aim of the work 

 

Tumor hypoxia can be found in almost every solid tumor and it is now widely recognized as a 

cause of treatment failure for a wide variety of adult malignancies.108,109 HIF-1 inhibition may 

represent a global strategy for targeting the hypoxic tumor microenvironment and there is 

an extensive effort involved in identifying new more potent and specific HIF-1 inhibitors. 

However, HIFs-independent pathways may bypass or overcome HIFs inhibition. Therefore, 

HIF-1 inhibitors may have to be combined with other targeted agents or conventional 

therapies to integrate hypoxia-targeting methods to get more reasonable results. Focusing 

research attention on these questions would thus not only be very beneficial for 

understanding the multifaceted roles of hypoxia on the hallmarks of human cancers but also 

facilitate the rational design of combination therapies to target hypoxia for cancer 

treatment.  

Dysregulation of HIF-1 appears to play a central role for cancer therapy. Selection of the 

most appropriate point of therapeutic intervention to modulate HIF activity is also an 

important factor in pharmaceutical development. In this respect, selective inhibition of the 

HRE appears to be an attractive target. Our interest is focused on designing compounds that 

can form stable complexes with DNA and therefore we carried out docking studies on 

molecules which show a planar moiety, with the aim of performing a fast in silico screening 

of new potential DNA-interactive drugs. Another strategy to achieve inhibition of the hypoxic 

response in tumours is to target the binding interaction between the CH1 domain of p300 

and the C-TAD of the HIF-1α subunit. The interaction of HIF-1α C-TAD and CBP/p300 CH1 

domain controls expression of over seventy hypoxia-inducible genes110 and inhibition of this 

complex should therefore downregulate multiple genes in a pathway-dependent manner.  

Finally, given the important role of Mdm2 overexpression, amplification, or activation in the 

development of many tumors, the ability to inactivate Mdm2 function in such tumors would 

provide a potentially significant approach for therapy. 

Also an interesting observation is the higher level of adenosine in hypoxia-related signaling. 

Adenosine is able to increase HIF-1α protein expression in response to hypoxia in a dose- 

and time-dependent manner. 

In particular adenosine modulates a variety of cellular functions through occupancy of A3 

receptor subtype, highly expressed in tumor cells. Therefore modulating A3 receptor 

overexpression may be a good target for the discovery of new candidates as tumor cell 

marker. 
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6. Results and discussion 

 

6.1 HIF-1α: homology modeling and docking studies 

 

The amino acid sequence (Q16665) of HIF-1α protein was obtained from SwissProt Protein 

Database.111,112 The complete protein sequence (826 amino acids) of HIF-1α was screened 

against the BLAST Database in order to identify a template structure appropriate for 

modeling. The accuracy of comparative modeling is highly dependent on the sequence 

identity between the target sequence of interest and the template sequence. High accuracy 

comparative modeling can be achieved when the target and template proteins have 

sequence identity of more than 50%, while the accuracy drops when the identity of target 

and template sequences is less than 30%.113 

The HIF-1α sequence have low identity percentage for all residues but ~73% identity in PAS 

domains. Therefore, automated homology modeling is likely to result in numerous errors. 

The major source of errors is from sequence misalignment,114–116 which can be expected in 

areas of low sequence identity. Due to template dependent limitations of homology 

modeling, another computational biology approach, known as de novo protein structure 

prediction, was undertaken. Ab initio or de novo protein modeling works on the principle 

that all the information for a protein structure lies in its amino acid sequence. This method 

builds a 3D structure based on physical principles rather than on previously solved 

structures. Several online servers, grid services and offline standalone software applications 

have been developed for de novo protein modeling.  

Amongst them, I-TASSER is one of the most widely used online servers for protein structure 

and function predictions. It works by using a combination of ab initio folding and threading 

methods. 

Models are built based on multiple-threading alignments by LOMETS117 and iterative 

I-TASSER simulations. Once the models were generated, they were subjected to structural 

assessment and validation using PROCHECK, DFIRE2 and the C-Score values from the 

I-TASSER. Ramachandran plots were generated by PROCHECK.  

Additionally, the stereochemical qualities were assessed for each predicted model. As a 

result, there were 5 predicted HIF-1α models. Software I-TASSER shows a C-score as a 

parameter that indicates the quality of the resulting protein structure (Table 4).  
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Model C-Score TM-Score RMSD 

1 -0.43 0.9051 1.67 

2 -2.46 0.7347 3.29 

3 -2.54 0.7311 3.89 

4 -2.58 0.6857 4.84 

5 -2.85 0.6135 5.05 
Table 4: C-score value in each model. 

 

A scoring function (C-score), based on the relative clustering structural density and the 

consensus significance score of multiple threading templates, is introduced to estimate the 

accuracy of the I-TASSER predictions. A large-scale benchmark test demonstrates a strong 

correlation between the C-score and the TM-score. However the correlation of RMSD with 

the C-score is not as strong as that of the TM-score. 

In addition, the formation of the topography of the five models can be used as a comparison, 

where the model is the best result in the topography better than the other model, it is seen 

from the shape folding produced in each model (Fig. 14). 

 

 

Fig. 14 
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On the basis of the obtained results, Model 2 structure gave a good C-score and the 

appearance of protein folding in tertiary structure showed typical PAS domains. Once 

generated, it was subjected to structural assessment and validation. Ramachandran plot was 

generated by RAMPAGE.118 The plot showed that Model 2 contained 0.6% of residues in the 

disallowed region, 11.7% of residues in the generously allowed region and more than 87% of 

residues were in the most favoured regions (Fig. 15). 

 

 

Fig. 15: Ramachandran Plot 

 

From the calculated structure it is clear that model has standard PAS domains fold, including 

a five-stranded antiparallel β-sheet flanked by several α-helices that lie on one face of the 

protein. The representative structure of this ensemble is very similar to those of other PAS 

domains as evidenced by the low RMSD obtained by optimized superposition of secondary 

structure elements from HIF-1α PAS and other PAS domain structures (Fig. 16). 
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Fig. 16: Superposition of secondary structure elements from HIF-1α PAS and other PAS domain structures. 

Some regions of protein (PAS domain) have been modeled with high accuracy, while others 

are more difficult to model especially when the sequence identity with templates is below 

40%. 

When stable, HIF-1α translocates to the nucleus, dimerises with HIF-1β and binds to hypoxia 

response elements in the regulatory regions of target genes. Dimerisation is an absolute 

prerequisite for DNA binding and is mediated by the bHLH and PAS domains of each subunit, 
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with the basic regions contiguous with the HLH motifs of both partners contacting the DNA 

(Fig. 17).119 

In fact it has been shown that while the isolated bHLH domains of ARNT, AHR and HIF-1α can 

form heterodimeric complexes and bind E-box-like enhancer elements in vitro; the inclusion 

of the adjacent PAS domains enhances the affinity and specificity of the protein/DNA 

interaction.120,121 

 
Fig. 17: Complex between HIF-1 and its consensus DNA sequence (PDB ID: 1D7G). 

 

A model for the complex between HIF-1 and its consensus DNA sequence (PDB ID: 1D7G) 

was downloaded from Binding DataBase,122 a public available database. This model, shown 

in Fig 17, predicted a pattern of interactions between amino acids and DNA bases which 

reflects for ARNT what is experimentally observed among different X-ray structures of other 

bHLH transcription factors possessing the H (His), E (Glu), R (Arg) triad, as ARNT does.123 

This structure was used to screen possible inhibitors against HRE, through virtual screening 

of NCI (National Cancer Institute) Database. HIF-1 was removed from the complex and the 

DNA sequence was utilized for subsequent docking experiments with Glide.124 

Structure-based virtual screening is most commonly implemented as the prediction of 

binding modes and binding affinities of each compound in the dataset, by means of 

high-throughput docking to an X-ray structure or model of the target receptor.125,126 Thus, 

from the entire NCI Database compounds which were docked, the best 10 docking solutions 

were selected (Fig. 18, Table 5). Complexes were further analyzed for their interaction. 
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Fig. 18 

 
 

Ligand 
Docking 

Score 

NSC273433  -11.587 

NSC165569  -11.460 

NSC69335  -11.260 

NSC357827  -11.233 

NSC179475  -11.205 

NSC186891  -11.204 

NSC186890  -11.152 

NSC273432  -11.118 

NSC177001  -11.064 

NSC113987  -11.061  
Table 5: Docking results 
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Many ligands having a planar structure can be effective pharmacophore moieties of 

DNA-interactive drugs because they can insert between the stacked base paired 

oligonucleotides. On the other hand, major groove-interacting drugs may act by directly 

blocking or inhibiting protein-DNA recognition. These ligands are mono- or 

bis-anthracyclines and exhibit frequently hydrogen bonding capabilities between the ligand 

groups and the base atoms situated in the DNA double helix. Examination of obtained 

complex conformations reveals common characteristics need to interact with DNA double 

helix (Fig. 19): 

- presence of -OH group is especially important for binding interactions; 

- also ligand size, with bulky ligands that form a higher number of interactions. 

 

 

Fig. 19: Mono- or bis- anthracycline ligands in complex with DNA. 
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Once HIF-1 is assembled on the HRE, it must recruit transcriptional coactivators to form an 

intact initiation complex, a process mediated by distinct transactivation domains. HIF-1α 

contain two transactivation domains, an oxygen-regulated C-terminal transactivation 

domain (C-TAD, residues 786–826) and a more centrally located designated N-terminal one 

(N-TAD, residues 531–575).127,128 

Both the N-TAD and C-TAD employ recruitment of the coactivators CBP/p300, SRC-1, and 

transcription intermediary factor 2 (TIF-2),129–131 although direct interactions have only been 

demonstrated between the C-TAD and p300 or Creb-binding protein (CBP).132 CBP and p300 

are paralogous transcriptional coactivators that are essential for linking HIF and other 

transcription factors with coactivator complexes and the basal transcriptional machinery, 

and are thus indispensable for robust transcriptional activation. 

NMR structure was available for the transactivation domain of HIF-1α (PDB ID: 1L3E). The 

p300 CH1 domain is composed of four α-helices and three Zn2+-coordination sites. The three 

longer helices (designated α1, α2, and α3) pack across each other to form a roughly 

triangular structure (Fig. 20). The three Zn2+ sites lie at the vertices of this triangle. The 

arrangement of helices α1, α2, and α3 exposes large areas of the hydrophobic core. These 

hydrophobic regions form the recognition surface for the bound HIF-1α C-TAD. The HIF-1α 

C-TAD includes four structural elements: an N-terminal extended region, two helices, αA and 

αB, and an intervening loop. 

 

Fig. 20: p300 CH1 domain (a) and HIF-1α C-TAD domain (b). 

In an effort to describe the interaction site and to explain conformational flexibility, a 20 ns 

molecular dynamics simulation was performed using the program DESMOND.133 The 

structural changes and dynamic behavior were analyzed by calculating the RMSD of the 

HIF-1α and p300 backbone in function of time (ns) (Fig. 21). 
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Fig. 21 

 

The time evolution of the RMSD with respect to the NMR structure provides a measurement 

of the convergence of the dynamical properties of the protein. The trajectory of two systems 

(HIF-1α and p300) maintains quite stable throughout the 20 ns of the simulation with 

fluctuation of about 1.5 Å. 

A series of snapshots from MD simulation was used to create an ensemble of protein 

configurations (Fig. 22). 

 
Fig. 22: HIF-1α (red) and p300 (green). 

Those configurations describe the inherent flexibility of two proteins. Each of the four 

components of the HIF-1α C-TAD domain makes significant hydrophobic interactions. The 

N-terminal extended region is anchored by Leu792 and Leu795, which pack into the 

hydrophobic core of CH1 domain. The intermolecular interactions in the N-terminal region 

seem to be primarily hydrophobic. Residues 792–795 adopt an extended conformation and 

make numerous contacts with the surface of the CH1 domain. Hydrophobic contacts are 



32 

 

made by Leu792, which fits into a shallow depression at the α1/α2 interface, and by Pro793. 

Additional the side chain of Leu795 projects into a deep hydrophobic cavity (Fig. 23). 

 
Fig. 23 

 

During the 20ns simulation, an extensive hydrogen-bond network links Leu795 with His392 

and Ser395 in the CH1 domain. Additional Pro793 in the HIF-1α C-TAD domain forms 

hydrogen bond with Gln341 (Fig. 24, Table 6). When analyzing the various complexes, the 

stabilization of the complexes was through hydrophobic interactions and reinforced by H 

bonds. 

 

Time 

AMINO ACIDS INVOLVED IN  

HYDROPHOBIC INTERACTIONS 
AMINO ACIDS INVOLVED IN H-BOND 

HIF-1α p300 HIF-1α p300 

0ns L792, P793, Q794, L795 
Q341, H368, T371, 

A391, H392, S395 

L792, P793,  

L795 

Q341, H392, 

S395 

5ns 
S790, G791, L792, P793, 

Q794, L795, T796 

Q341, P367, H368, 

T371, M372, V375, 

H392, S395 

S790, P793,  

L795 

Q341, H368, 

H392 

10ns 
G791, L792, P793,  

Q794, L795, T796 

Q341, L345, T371,  

H392, S395 
P793, L795 Q341, H392 

15ns 
L792, P793, Q794,  

L795, T796 

T371, M372, V375, 

V390, A391, H392, S395 
P793, L795 Q341, S395 

20ns 
S790, L792, P793,  

Q794, L795 

T371, V375, V390,  

A391, H392, S395 
L795 A391 

Table 6: Amino acids involved in hydrophobic and H-bond interactions for N-terminal extended region of HIF-1α C-TAD. 



33 

 

 

Fig. 24: Some of the important hydrophobic contacts that define the topology of the interaction during the simulation. 

 

The HIF-1α key amino acid residues in the N-terminal extended region, shown in Fig. 24f, 

were used to search in ZINC database134 small molecules that might be promising as 

potential inhibitors of the HIF-1α/p300 interaction. Identified structures (~40,000) were 

docked into the protein target, CH1 p300, using GLIDE Virtual Screening Workflow124. The 

chemical structures of ten compounds with the best XP-Docking score are presented in Fig. 

25. The conformations of these hits, when bound to CH1 p300, were also analyzed to 
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determine hydrogen-bonding and hydrophobic interactions. The docking results for the best 

XP-docking score molecules are given in Table 7, whereas the binding modes (structures and 

interacting residues) are shown in Fig. 26. 

ZINC ID XP GSCORE 
AMINO ACIDS INVOLVED IN 

HYDROPHOBIC INTERACTIONS 

AMINO ACIDS 

INVOLVED IN 

H-BOND 

8442279 -6.594 I338, I399 S395, H402, I399 

8442277 -6.096 I338, L344, M372, I399, V413 Q341 

8442281 -5.879 I338, I399, M372, P412, V413 Q341 

654240 -5.838 I338, L342, I399, P412, V413 D331 

8442211 -5.791 L337, I338, I399, P412, V413 Q398 

3901268 -5.539 I338, I399, V413 H392, S395 

8442187 -5.293 I338, A394, I399, P412, V413 Q398 

18141403 -4.642 I338, L342, I399, C406, V413 H402 

8442211 -4.449 L337, I338, I399, P412, V413 - 

8442285 -4.356 L337, I338, I399, V413 Q341, S395 

Table 7: Extra Precision (XP) Glide results for the ten lead molecules 

 

Ligands are associated to the target with hydrogen bonds and hydrophobic interactions. The 

top scored compounds showed that ligands form hydrogen interactions with Ser395, 

Gln398, Gln341, and His402. Additionally each of the ten molecules makes significant 

hydrophobic interactions with the p300 CH1 domain (Ile338, Ile399) that contribute to 

specific recognition. Also hydrophobic interactions contribute to the stability of the complex. 
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Fig. 25 
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Fig. 26 
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6.2 Mdm2: molecular dynamics studies 

 

The conformational evolution of apo-Mdm2 and bound Mdm2 was investigated by 35 ns MD 

simulations. Crystal structure of the complexed Mdm2 (PDB ID: 1T4E) was used as starting 

model. 1T4E, obtained by X-Ray crystallography, contains residues from 16 to 111, and is 

crystallized with the benzodiazepine derivative [BDZ], (4-chlorophenyl)[3-(4-chlorophenyl)-7-

iodo-2,5-dioxo-1,2,3,5-tetrahydro-4H-1,4-benzodiazepin-4-yl]acetic acid (Fig. 27). The protein 

comprises a minimal N-terminal p53 binding domain (16-25), referred to as the lid. While 

structures of Mdm2 bound to various inhibitors have been solved by X-Ray crystallography 

and NMR,135 no information is available concerning the lid behavior in apo-Mdm2. The 

limited amount of experimental data thereby precluded the accurate modeling of the lid and 

its precise binding mode to the cleft. In addition, it has been proposed that the binding event 

induces global conformational changes of Mdm2. 

 

Fig. 27: Structure of Mdm2 inhibitors. 

Here, we report the characterization of the behavior of human Mdm2 and of the lid in the 

apo state, and in complex with the inhibitors reported in Fig. 27. To study the apo state the 

ligand was removed from the protein and a 35 ns MD simulation of the free receptor was 

first carried out to extensively sample the protein conformations. Moreover a 35 ns MD 

simulation was carried out on the 1T4E. 

Further by using the obtained apo state at 0 ns, a different inhibitor IMZ, cis-[4,5-bis-

(4-bromophenyl)-2-(2-ethoxy-4-methoxyphenyl)-4,5-dihydroimidazol-1-yl]-4-(2-hydroxyethyl)

piperazin-1-yl]methanone, was docked (Fig. 27). Multiple poses of the complex were 

generated with Induced Fit Docking (IFD) by Schrödinger.136 Each complex was then ranked 

according to the IFD score which considers both the docking energy and solvation energy 

(IFDScore = GlideScore + 5% PrimeEnergy). The docking results are summarized in Table 8. 
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IMZ 
poses 

docking 
score 

Glide 
energy 

Prime 
Energy 

IFDScore RMSD 

1 -9.27 -46.87 -4613.58 -239.95 0.81093 

2 -7.36 -43.55 -4612.39 -237.98 0.81018 

3 -6.49  -47.74  -4613.70  -237.17  0.80996  

4 -1.10 -42.54 -4618.49 -232.03 0.81063 

5 0.50 -45.13 -4617.13 -230.35 0.81249 
Table 8: Induced Fit Docking results. 

Visual inspection of the top-ranked poses showed that the IFD-generated model 3 can 

reproduce a conformation that is almost identical to the native pose of the crystal structure 

of the Mdm2 bound to IMZ as found in 1RV1 in which however the lid, residues 16-25, were 

not solved (Fig. 28). So the IFD protocol led to a receptor structure able to bind IMZ that can 

be used in 35 ns MD simulation. 

 

Fig. 28: Superimposition of Mdm2 bound to IMZ (green) and IFD model (purple) 

 

We started our analysis by monitoring the structural changes occurring throughout the 

simulation of Mdm2. The structural changes resulting from the 35 ns simulation can be 

evaluated in terms of RMS Deviation. So the RMSD of the Cα atoms of the bound (1T4E+BDZ, 

1T4E+IMZ) and unbound (1T4E) systems was computed and plotted (Fig. 29). 

The trajectory of unbound system maintains quite stable up to about 10 ns and then 

increases by about 2 Å. After 20 ns increases again, then it remains stable throughout the 15 

ns of the simulation, with fluctuation of about 0.5 Å. When the RMSD of the apo form is 

compared to that of the Mdm2 bound to IMZ, it was observed that during the first 3.3 ns 

RMSD was similar and comparable. After 3.3 ns it showed a significant increase, so this trend 

clearly showed major structural deviations in the 3.3–11.3 ns range. During the rest of the 

simulation dynamics of Mdm2 bound to IMZ remains very stable and was very similar to 

apo-Mdm2. The RMSD of the Mdm2 bound to BDZ appears different from the previous one, 

and showed a significant increase during the first 6 ns of simulation. After that point the 

dynamics of the protein remained relatively stable, with fluctuation of ≈ 0.5-0.6 Å. In this 

range, RMSD was comparable with that observed in the Mdm2 bound to IMZ. During the 

rest of the simulation it showed a substantial increase on the calculated RMSD, therefore 

major conformational changes on the protein take place. Analysis of evolution in dynamics 
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of RMSD for Cα atoms showed that the structures have important variation, but the 

Mdm2-BDZ is stabilized in the last 15 ns of simulation. In contrast to Mdm2-BDZ, a small 

fluctuation of RMSD values is observed for other two simulations. Similar behavior of 

apo-Mdm2 was found in simulations carried out by Carlson137 and Pellicciari138. The 

trajectory of the p53-Mdm2 complex was very similar to that observed for Mdm2 bound to 

IMZ. p53-Mdm2 complexes were highly flexible in simulation, and IMZ and BDZ complexes 

appear to follow this trend. 

 

 
Fig. 29: RMSD of 1T4E apo and bound forms (BDZ and IMZ) 

 

The RMSD of backbone atoms in the binding pocket (Leu54, Leu57, Ile61, Met62, Tyr67, 

Val75, Phe86, Phe91, Val93, Ile99, and Ile103) is presented in Fig. 30. In apo-Mdm2, the 

binding pocket was stable throughout the trajectory with fluctuation <0.5. Binding pocket 

dynamics of Mdm2 bound to IMZ was very similar to apo-Mdm2. Instead in presence of BDZ, 

the RMSD gradually increases. When the RMSD of the lid is compared for apo and bound 

Mdm2 (Fig. 31), it was observed that IMZ induced conformational changes in the lid. The 

trajectory of lid in the apo Mdm2 is quite stable over the timescale of simulation. As seen in 

the figure, the RMSD of Mdm2-IMZ lid was ≈ 2 Å during the first 5 ns, but a rise in RMSD of 

about 2 Å was observed in subsequent ns. A rise in RMSD was observed for Mdm2-BDZ lid 

between 1 and 24 ns. During the rest of the simulation RMSD showed a significant decrease: 

this suggest the probable interaction between BDZ and the lid that helps to stabilize lid 

conformation. 
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Fig. 30: RMSD of binding pocket for 1T4E apo and bound forms. 

 

Fig. 31: RMSD of lid for 1T4E apo and bound forms. 

The simulation findings indicate the structural stability of apo protein, while the RMSDs of 

bound systems showed structural mobility. The inhibitors in the binding pocket caused the 

displacement of the lid located above the binding cleft. Also the movement of binding cleft is 

adaptive, the inhibitors allow the binding cleft to be more flexible and to better adapt itself. 

We used PCA as a guide to identify significant dynamic processes from this very large data 

set. The first step in PCA is the construction of the covariance matrix, which captures the 

degree of collinearity of atomic motions for each pair of atoms. The covariance matrix is 

subsequently diagonalized, yielding a matrix of eigenvectors and a diagonal matrix of 

eigenvalues. Each of the eigenvectors describes a collective motion of particles, where the 
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values of the vector indicate how much the corresponding atom participates in the motion. 

The sum of the eigenvalues is a measure of the total motility in the system. Compared to 

bound proteins (7.07 nm2 for 1T4E-BDZ, 4.25 nm2 for 1T4E-IMZ) the total sum of eigenvalues 

of apo system was relatively small (3.53 nm2), indicating a more rigid structure. 

 
Fig. 32: Principal components analysis computed for Mdm2 in various states: apo (green), complex with IMZ (red) and 
complex with BDZ (blue). 
 

PCA technique decomposes the intrinsic flexibility of a protein into motions of different 

frequencies of vibrations. These are then ordered such that the first component (PC1) 

characterizes the motion with the largest amplitude and lowest frequency. Principal 

components were computed for Mdm2 in various states: apo, complex with IMZ and 

complex with BDZ (Fig. 32).  

 
Fig. 33: Contributions of first ten principal components. 
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PC1 dominates the motions of Mdm2 bound to BDZ (covering 56% of overall motion). The 

motion is more distributed across PC1 and PC2 in Mdm2 bound to IMZ (21.5% PC1, 12.2% 

PC2) and apo-Mdm2 (11.7% PC1, 6% PC2). Histogram in Fig. 33 refers to the contributions of 

first ten individual principal component to the overall fluctuations. 

The distribution of the structures in the phase space defined by principal components 1 

(PC1) and 2 (PC2) shows that the BDZ and IMZ bound states are more flexible than apo one. 

The evolution of the secondary structure of the three systems was also analyzed in order to 

determine if the dynamics of Mdm2 involves changes in the secondary structure pattern. In 

order to quantitatively measure the mean backbone mobility for each residue, the root 

mean square fluctuations (RMSF) relative the average structure of apo-Mdm2 were 

calculated (Fig. 34). It was observed that the mobility of the unbound system was relatively 

low for the regions including residues 26–76, excluding the N-terminus. In this region the 

RMSF was < 1 Å. 

 

 

Fig. 34: RMSF of 1T4E apo and bound forms (BDZ and IMZ). 

Few residues (42-44 and 69-71) displayed a mobility higher than 1 Å. Specifically, residues 

69-71 form a hinge that connects helix α2 with the region formed by sheets β1’. There were 

a few residues that showed larger degree of flexibility throughout the 35 ns simulation 

(RMSF > 1.3 Å) in the region including amino acids 78-81. When comparing the mobility of 

apo-Mdm2 to that observed for Mdm2 bound to IMZ, a very similar trend of RMSF was 

observed. The mobility of Mdm2 bound to IMZ is lower than apo-Mdm2, except for residues 

between 61-74, in proximity of the amino acids which constitute the hydrophobic binding 

cleft (Met62, Tyr67, Val75). Excluding the N and C-terminus, few residues displayed a 

mobility higher than 1 Å. The residues that showed the highest flexibility were Lys70, Ser78, 

and Asn79 (RMSF ≈ 1.5 Å), located around the binding cleft. Residues which constitute 
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binding cleft showed larger degree of flexibility. The highest RMSFs highlight the ability to 

better adapt itself to ligand (BDZ, IMZ). 

To qualitatively analyze the conformational changes experienced by the protein, the 

superimposition of three clusters of structures was analyzed (Fig. 35-37). 

 

 

Fig. 35: Superimpositions of 1T4E clusters apo forms. The backbone of apo-Mdm2 at 0 ns (blue), 10 ns (red), 20 ns 
(yellow) and 35 ns (green) are showed in square. 

 

 

Fig. 36: Superimpositions of 1T4E clusters bound to IMZ. The backbone of Mdm2-IMZ at 0 ns (blue), 10 ns (red), 20 ns 
(green) and 35 ns (turquoise) are showed in square. 
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Fig. 37: Superimpositions of 1T4E clusters bound to BDZ. The backbone of apo-Mdm2 at 0 ns (blue), 10 ns (red), 20 ns 
(green) and 35 ns (turquoise) are showed in square. 

 

Considering apo-Mdm2 superimpositions, we observed that the lid of the cleft was located 

just above the binding cleft in the first 13 ns. So residues 19–24 form a flexible lid burying a 

hydrophobic active site. Between 13 and 19 ns the lid displayed a movement outwards the 

cleft, opening the binding site. In Mdm2-IMZ system we observed that the lid of the cleft 

displayed a high degree of flexibility and a wide movement outwards the cleft. The helix α2 

experienced an inward movement toward the center of the cleft. Furthermore, sheets 

β1’-β2’ showed a movement toward the center of the binding cleft leading to a more closed 

conformation of the binding pocket. Similarly, in the case of Mdm2-BDZ superimposition, the 

helix α2’ experienced an inward movement toward the center of mass of the cleft and the 

hinge that connected helix α2’ with sheets β2’, the floor of the cleft, showed a wide 

movement towards the center of the binding cleft. This inward movement was facilitated by 

the twisting motion of the hinge formed by sheets β1’ and β2’. The movement of helices and 

hinges, which constitute the cleft, contributes to the global rearrangement of the cleft, as 

observed in our simulations. The shape of the binding cleft changes and the cleft’s 

movement is influenced by the movement of hinges and helices located around. Also the 

binding site shape and size are defined by the ligand. 

The superimposition of the backbones of apo-Mdm2 and bound Mdm2 was complemented 

with the quantitative measurement of the changes in the accessible area (Fig. 38). 
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Fig. 38: SASA of 1T4E apo and bound forms (BDZ and IMZ). 

Thus, the solvent-accessible surface area (SASA) was calculated for all atoms in Mdm2, using 

a probe radius of 1.4 Å. In the apo-Mdm2 simulations the value of SASA decreased in the 

first 13 ns to a minimum value of ≈ 2930 Å2 and then increased between 13 and 19 ns, 

indicating that the structure assumes a less closed conformation as confirmed by RMSF. 

Between 19 and 23 ns the value of SASA decreased again, whereas in following ns the SASA 

value fluctuates around the average value of 2970 Å2. It was observed that, in our 

Mdm2-IMZ simulations, the value of SASA decreased in the first 4 ns to a minimum value of 

≈ 2946 Å2 and then increased during the successive ns of simulation. Between 5 and 10 ns, 

the SASA value fluctuates around the average value of 3004 Å2. After 15 ns the value of SASA 

decreased to a minimum value ≈ 2930 Å2, then dramatically increased (≈ 3072 Å2), indicating 

that the structure assumes a less closed conformation. For Mdm2-BDZ system, the value of 

SASA decreases until a minimum value of ≈ 2977 Å2 in the first ns of simulation. In following 

ns the SASA value fluctuates around the average value of 3005 Å2. After 22.5 ns the SASA 

value drastically decreases by about ≈ 100 Å2 indicating that again the structure assumes a 

less closed conformation. After that point, it remained fairly stable during the rest of 

simulation, around the value of 2993 Å2. A decrease of the SASA on the apo Mdm2 structure 

was observed, supporting the fact that the simulation converged to a closer structure 

compared to that obtained for bound systems. In fact the presence of the ligands influenced 

the cleft shape that assumes a less closed conformation. For the apo system the lid situated 

above the binding cleft displayed a lower degree of flexibility forming a less exposed cavity. 

Another interesting feature observed in our simulations was the dynamics of the side chains 

of key residues at the binding pocket (χ angle), Leu54, Leu57, Ile61, Met62, Tyr67, Val75, 

Phe86, Phe91, Val93, Ile99, and Ile103. Leu57 of Mdm2 interacts with p53 via the formation 

of a hydrogen bond between the Trp23 ε-nitrogen of p53. 
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Fig. 39: Side-chain motions of 1T4E apo forms at 10 ns (yellow), 20 ns (orange), 30 ns (purple). 

 

When Mdm2 is unbound (Fig. 39), Leu57 displayed rapid transitions going from -170° to 

+170°. No significant differences were observed in the type of motions displayed by Met62, 

Tyr67, Val75, Phe86, and Leu54. Also for Phe91 and Val93 no substantial differences in the 

type of motions were observed for the first 23 ns. After that point they displayed rapid 

transitions. 

 

 

Fig. 40: Side-chain motions of 1T4E bound to BDZ at 10 ns (yellow), 20 ns (green), 30 ns (red). 
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Fig. 41: Side-chain motions of 1T4E bound to IMZ at 10 ns (yellow), 20 ns (orange), 30 ns (green). 

In the case of Mdmd2 bound to BDZ (Fig. 40), few differences were observed in the type of 

motions displayed by Leu54, except rapid transitions going from -60˚ to +164˚ and from 

-145˚ to +178˚ after 16 and 26 ns respectively. A similar situation was noticed for Leu57, 

which displayed transition movements in the range from -160˚ to +170˚, and for Met62. Also 

few differences were observed in the type of motions displayed by Tyr67 and Phe86. Val75 

displayed rapid transitions going from -170˚ to +177˚ and a similar situation was noticed for 

Phe91 and Val93. Comparing the Mdm2-IMZ librational motions to the Mdm2-BDZ 

librational motions (Fig. 41), a slight different behaviour was observed. A similar situation 

was noticed for Leu54, Leu57, Val75 and Val93, which displayed transition movements in the 

range from -180˚ to +170˚. Similarly few differences were observed in the type of motions 

displayed by Tyr67, Phe86 and Phe91. The binding of two different ligands (IMZ and BDZ) to 

the cleft requires specific side-chain movements and local arrangements of the cleft. 

Side-chain fluctuations of the amino acids located at the binding cleft allow the binding cleft 

to be more flexible and to adapt itself to incoming ligand. The compounds studied herein 

tried to mimic the domain of p53 that binds to Mdm2. 

To investigate the binding mode of these compounds, we analyzed the structure of the last 

snapshot of Mdm2 bound to the two different inhibitors (IMZ and BDZ) obtained after 35 ns 

simulations. 

When the Mdm2–IMZ at 0 ns was analyzed, the structure verified that the inhibitor binds to 

the p53 binding site on Mdm2. The inhibitor mimics the interactions of the p53 peptide to a 

high degree, with one bromophenyl moiety sitting in the Trp pocket, the other bromophenyl 

group occupying the Leu pocket, and the ethyl ether side chain directed toward the Phe 

pocket.139 In essence, the imidazoline scaffold replaces the helical backbone of the peptide 

and is able to direct, in a fairly rigid fashion, the projection of three groups into the pockets 
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normally occupied by Phe19, Trp23, and Leu26 of p53.86 As shown in Fig. 42, the bound 

conformation of IMZ was similar to the p53 peptide; for the p53-bound Mdm2, we used the 

X-ray structure 1YCR. 

 

Fig. 42: IMZ superimposed to bound p53 (PDB ID: 1YCR). 

IMZ interacts with Gln72 through the hydroxyethyl group of the IMZ, which donates a 

hydrogen bond to the side-chain oxygen of Gln72. We observed that one bromophenyl 

group established non polar interaction with Leu54, the other bromophenyl group with 

Leu57, Phe86, Phe91, Ile99 and Ile103. In addition the ethyl ether side chain of the IMZ 

established non polar interaction with Tyr67 and Ile61. When the protein-ihibitor complex, 

as obtained after the simulation, was analyzed, we found that bromophenyl groups 

established non polar interaction with Leu57, Gly58, Ile61, Val93 and His96. The 

hydroxyethyl group of the IMZ formed non polar interaction with Gln72, the piperazine 

group with Tyr67, and 2-ethoxy- 4-methoxyphenyl group with His73 and Ala43.  

In the other investigated complex, 1T4E-BDZ, the inhibitor occupies the same pockets of the 

peptide p53 side chains Phe19, Trp23, and Leu26 (Fig. 43). 

 

 

Fig. 43: BDZ superimposed to bound p53 (PDB ID: 1YCR). 
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As in the case of bound peptides, the Mdm2 interactions with the inhibitor were largely 

nonspecific van der Waals contacts. The BDZ pendant groups orient themselves to mimic the 

position of the hydrophobic side chains on one face of the helical p53 peptide ligand and 

thus act as an α-helix mimetic, with one chlorophenyl moiety sitting in the Leu pocket, the 

other occupying the Trp pocket, and the dioxo-tetrahydro-benzodiazepine moiety in the Phe 

pocket. When the protein-inhibitor complex, as obtained after 35 ns MD, was analyzed, we 

found that chlorophenyl groups established non polar interaction with Val93, Lys94, His96, 

Tyr100 and Ile103, the core benzodiazepine ring formed non polar interaction with Ile61, 

Tyr67, Lys94 and Gln72.  

These findings are in partial agreement with the data reported in the paper by Pellicciari et 

al.138 in which the authors performed a linear discriminant analysis (LDA) with the aim of 

identifying specific residues whose conformational changes are the marker of the apo and 

p53-bound states of Mdm2 and MdmX.138 In IMZ-Mdm2 it was possible to identify two 

residues that are involved in the shape arrangement of the p53 binding site: Gln72 and 

His73. Gln72 and Tyr100 are identified in BDZ-Mdm2. Other residues, identified as involved 

in the shape arrangement of the binding site, were Ala43, Leu57, Gly58, Ile61, Tyr67, His73, 

Val93, Lys94, His96, and Ile103. 

Therefore ligands make extensive van der Waals contacts with residues in the peptide 

binding cleft comprised of the structural elements α2, β1’, and α2’. These residues are: 

Leu54, Leu57, Ile61 and Met62 in helix α2; Tyr67, Phe91, and Val93 in β1’ sheet; and His96 

and Tyr100 in helix α2’. These interactions support the observed changes in the backbone 

residues known to be in direct contact with the ligands. Both ligands caused similar changes 

in the peptide binding cleft. It was observed that, in our Mdm2-IMZ simulation, Leu57, Ile61 

and Met62 (in helix α2) showed an inward movement toward the center of the binding cleft. 

On the contrary Phe91 showed an outward movement of about 1.5 Å. The larger difference 

was in Phe86, that showed an inward movement of about 3 Å. In Mdm2-BDZ simulation 

Ile61, Met62, Tyr67 and Phe91 showed an inward movement toward the center of the 

binding cleft. The larger differences were in His96 and Val93, that showed an inward 

movement of about 2 Å. The main conformational changes were found in linker turn regions 

or in the β sheets. These conformational changes seem to be sufficient to accommodate 

ligands that differ in their length: the changes alter the size of the cleft and indirectly affect 

the angle of the bottom α helices with respect to the cleft. The analysis of the results 

obtained by molecular dynamics of apo system showed a stable and less flexible structure, 

with the lid closing the binding cleft of the protein and leading to a closed conformation of 

the cleft (Fig. 44). 

These findings are confirmed by SASA mean values that highlight the importance of the 

ligand affecting the binding cleft by assuming a different conformation in Mdm2 with 

respect to the apo form. Mdm2 shows an high solvent exposition in the bound form with 

respect to the apo form, with this behavior being ascribed to changes in the size of the cleft 

and to a high degree of flexibility of the lid in bound systems. 
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Fig. 44: apo-Mdm2 snapshots; binding pocket highlighted in the box. 

On the contrary in the bound systems the lid displayed a high degree of flexibility and a wide 

movement outwards the cleft, forming a wider and more exposed cavity (Fig. 45-46). 

 

Fig. 45: Mdm2-IMZ snapshots; binding pocket highlighted in the box. 

 

Figura 46: Mdm2-BDZ snapshots; binding pocket highlighted in the box. 

In summary, in this study, the influence on Mdm2 structure upon binding of different ligands 

was analyzed. A rearrangement and an outward expansion of the Mdm2 helices, 

surrounding the binding cleft in bound systems, was observed. Ligand IMZ caused the most 

prominent changes in the β-sheets surrounding the binding cleft (β2′), whereas BDZ 

produced its most significant changes in the antiparallel β-sheets, the linker regions between 

the β-sheets and the α-helices that form the bottom and side walls of the cleft. It seems that 

the Mdm2 domain has an intrinsic flexibility that enables it to adapt its conformation to 
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ligands. The conformational changes alter the size of the cleft and were mainly in the linker 

regions suggesting that the overall dynamic nature of Mdm2 is related to dynamic 

movements in these regions. NMR spectroscopy studies96 confirm the observation that 

changes in chemical shift were mainly in the linker regions between the secondary structure 

elements and suggests that the overall dynamic nature of Mdm2 is related to dynamic 

movements in these regions, which can occur without any loss of the secondary structure 

scaffold. Also the MD studies based on 1T4E X-ray structure showed that in the apo-state the 

lid exists in a dominant closed form, whereas in bound system exists in a open form in which 

the lid extends away from the binding cleft, allowing a full access of ligands to the binding 

pocket. This study concluded that the binding cleft is very adaptable and that different 

ligands might induce global conformational changes. The opening up of a ligand-binding 

pocket suggests that compounds inserted at this position might raise further conformational 

change and hence increase the pocket plasticity. 

 

6.3 A3 receptor: homology modeling and 3D-QSAR studies 

The A3 protein sequence was collected from the Swiss-Prot Protein Database (P33765).140,141 

The A2A adenosine receptor can be considered the best template for homology modeling 

according to the percentage identity of the aligned sequence. Identity increases from a 

comparison of bovine rhodopsin to hA2A adenosine receptor. The increase is even higher 

when comparing only TM regions and if N- and C-terminus are not taken into consideration 

(Table 9). 

    Rhodopsin hA2A 

All 

hA1 15.3 38.3 

hA2A 14.5 100 

hA2B 19.5 46.6 

hA3 14.4 31 

TM regions 

hA1 15.7 60.8 

hA2A 23.2 100 

hA2B 22 68.6 

hA3 19.3 50.3 

All except 

N and C-terminus  

hA1 16.4 51.7 

hA2A 21.2 100 

hA2B 22.9 61.6 

hA3 16 41.9 
Table 9: Percentage identity of aligned sequences. 
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Two different models of hA3R were generated by LOMETS117 using the bovine rhodopsin 

(PDB ID: 1U19) and the hA2A adenosine receptor (PDB ID: 3EML) as templates (Fig. 47). 

 

Fig. 47: Superposition of hA3 models built using rhodopsin (green) and hA2A (purple) as templates. 

As it is seen from the RMSD of the aligned models, the main differences among the two 

models are found within EL2 and IL3 loops (Table 10). In particular EL2 belongs to the 

binding pocket and interacts with ligand. In the model built using hA2A as template, the 

binding pocket is open to extracellular side and closer to TM6 and TM7. 

 RMSD 

Backbone 7.08 

IL1 1.18 

IL2 3.01 

IL3 6.26 

EL1 3.47 

EL2 6.74 

EL3 1.36 

TM1 0.70 

TM2 1.37 

TM3 0.98 

TM4 1.39 

TM5 1.03 

TM6 0.75 

TM7 0.93 

Table 10: RMSD of the aligned hA3 adenosine receptor models built using A2A and rhodopsin. 

Then new structure of hA2A adenosine receptor improved modelization of A3 adenosine 

receptor. Obtained model was refined using MoodLoop,142 and was ranked on QMEAN 
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server.143 The model created using template 3EML had Qmean score = 0.47, indicating good 

quality of model produced, while the one generated using template 1U19 had Qmean score 

= 0.40. The overall stereochemical quality of the model was assessed by PROCHECK144 and 

the validation of the structure was performed by inspecting the psi/phi Ramachandran plot 

(Fig. 48). 

 

Plot Statistics 
Residues in most favoured regions [A,B,L] 279 94.3% 

Residue in additional allowed regions [a,b,l,p] 16 5.4% 

Residue in generously allowed regions [~a,~b,~l,~p] 1 0.3% 

Residue in disallowed regions 0 0.0% 

Number of non-glycine and non-proline residues 296 100.0% 

Number of end-residues (excl. Gly and Pro) 2  

Number of glycine residues (shown as triangles) 11  

Number of Proline residues 9  

Total number of residues 318  

Fig. 48: Ramachandran plot of obtained model. 

 

The Ramachandran plot showed 94.3% of the residues in the most favorable region, 5.4% in 

the allowed region, 0.3% in the generously allowed region. This result revealed that the 

obtained model is reliable and of good quality. 

Homology models represent a rigid conformation of a protein, but proteins are dynamic and 

show rapid, small-scale structural fluctuation.145 Obtained model supposed to be antagonist-

like state of A3 receptor and it can exist in more than one conformational state. Therefore a 

20 ns molecular dynamics simulation in a lipid bilayer was performed to explain 

conformational flexibility and structural stability, using the program DESMOND.133 
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The structural changes and dynamic behavior were analyzed by calculating the RMSD of the 

TMs (Fig. 49) and loops (Fig. 50) backbone in function of time (ns). 

 

 
Fig. 49: RMSD of the TMs backbone in function of time. 

 

 
Fig. 50: RMSD of the loops backbone in function of time. 

 

Very short loop, such as IL1, EL1, and EL3, have low values of RMSD, together with bigger 

loop like IL2. N-term and C-term are very flexible, probably due to the fact that are more 

exposed. Bigger loop like IL3 and EL2 are more flexible (Fig. 51). TMs show that the 

conformation is more stable through 20 ns of simulation. The RMSD values of the backbone 

atoms in the system tend to converge after 7 ns, showing fluctuations of around 1 Ǻ. The low 
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RMSD value during the simulation time indicated that the 3D structural model represents a 

stable folding conformation. 

 

 

Fig. 51: EL2 of the hA3 adenosine receptor before (purple) and after (green) 20ns of molecular dynamics. 

A number of activity data for A3 adenosine receptor inhibitors, that belong to diverse 

chemical classes, are currently avalaible. Biological activity data of 121 hA3R antagonists, 

represented as pKi, were collected from different literature papers.146–152 All antagonist 

structures were docked into TM binding site of the hA3 model using GLIDE124 (Fig. 52). 

 

Fig. 52: Antagonists structures docked into TM binding site of hA3. 

The resulting docked complexes were imported in PHASE module153 for the development of 

3D Quantitative Structure–Activity Relationship (QSAR) Pharmacophore model. All reported 
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A3 receptor antagonists have been clustered into four groups: triazolo-quinoxaline, (Group 

1) (Fig. 53a); pyrazolo-quinoline, (Group 2) (Fig. 53b,c); annelated triazolo-pyrazine, (Group 

3) (Fig. 53d-g); other heterocyclic derivatives, (Group 4) (Fig. 53h-n). The prepared ligands 

were then used to generate common feature pharmacophore models, which, in turn, were 

utilized to generate 3D-QSAR models. 

 

Fig. 53: A3 adenosine receptor inhibitors: triazolo-quinoxaline derivatives (a), pyrazolo-quinoline derivatives (b-c), 

annelated triazolo-pyrazine derivatives (d-g), heterocyclic derivatives (h-n). 

The datasets of compounds were divided into training and test sets. Two different 

approaches for splitting the datasets were used. In the first one, training sets were 

constructed by choosing a percentage (80%) of the total number of compounds in each bin 
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randomly. The other approach is based on Kohonen map-artificial neural network, now more 

widely called self organizing maps (SOM).154,155 Descriptors calculation, and autoscaling of 

descriptors matrix were the starting point to perform Kohonen clustering approach. The 

selected test set members are characterized by the minimal distance from the centroid of 

each cell in the top map. Common pharmacophore features were identified and scored. The 

generated pharmacophore hypotheses for these groups consisted of four features: one 

acceptor site (A), and three aromatic ring sites (R). The alignments of all the ligands to the 

top-ranked pharmacophores were used to generate QSAR models, setting the number of 

partial least square (PLS) factors from 1 to 6 (Fig. 54). 

 

Fig. 54: Pharmacophore mapping of the most active compounds (left); superimposition of active compounds with the 

pharmacophore. 
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Predicted activity of test set compounds was plotted against their experimental activity, and 

the relevant statistics were computed. Phase statistical analysis for the four groups, labelled 

as Groups 1-4, for each of test set selection method is shown in Tables 11 and 12. 

 

Group 1 

Factors SD R
2
 RMSE R

2
pred R-Pearson RMSE/SD Δ 

Opt. 

Model 

1 0.62 0.66 0.52 0.19 0.61 0.84  - 

2 0.46 0.82 0.65 0.64 0.85 1.15 0.30 - 

3 0.31 0.92 0.38 0.57 0.76 1.21 0.06 √ 

4 0.20 0.97 0.44 0.42 0.70 2.17 0.96 - 

5 0.13 0.99 0.38 0.57 0.79 2.97 0.80 - 

6 0.08 0.99 0.38 0.57 0.78 4.52 1.55 - 

 
Group 2 

Factors SD R
2
 RMSE R

2
pred R-Pearson RMSE/SD Δ 

Opt. 

Model 

1 0.56 0.41 0.32 0.69 0.91 0.57  - 

2 0.33 0.80 0.34 0.65 0.85 1.01 0.44 - 

3 0.26 0.88 0.32 0.69 0.89 1.22 0.21 - 

4 0.21 0.93 0.33 0.67 0.88 1.58 0.36 √ 

5 0.15 0.96 0.29 0.75 0.95 1.87 0.29 - 

 
Group 3 

Factors SD R
2
 RMSE R

2
pred R-Pearson RMSE/SD Δ 

Opt. 

Model 

1 0.61 0.48 0.74 0.10 0.64 1.21  - 

2 0.46 0.72 0.58 0.45 0.83 1.26 0.04 - 

3 0.35 0.84 0.46 0.65 0.88 1.31 0.05 - 

4 0.29 0.90 0.45 0.67 0.91 1.56 0.25 √ 

 
Group 4 

Factors SD R
2
 RMSE R

2
pred R-Pearson RMSE/SD Δ 

Opt. 

Model 

1 0.44 0.69 1.03 0.31 0.96 2.34  - 

2 0.26 0.90 0.00 0.34 0.96 0.01 -2.33 √ 

3 0.16 0.96 0.98 0.37 0.97 6.01 6.00 - 

Table 11: 3D-QSAR Results Summary for random selection of test set (Factors =number of factors in the partial 

least squares regression model; SD = standard deviation; RMSE = root-mean-square error; R
2

pred = value of the 

predicted activities for test set; R-Pearson = Pearson R value for the correlation between the predicted and 

observed activity for the test set; Δ = difference from preceding). 
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Group 1 

Factors SD R
2
 RMSE R

2
pred R-Pearson RMSE/SD Δ 

Opt. 

Model 

1 0.55 0.71 0.99 -0.85 -0.08 1.80 - - 

2 0.38 0.86 1.08 -1.24 -0.20 2.83 1.02 - 

3 0.25 0.94 1.02 -1.00 -0.18 4.10 1.27 √ 

4 0.13 0.99 1.12 -1.37 -0.23 8.70 4.60 - 

5 0.08 0.99 1.09 -1.28 -0.19 14.24 5.54 - 

6 0.06 1.00 1.09 -1.27 -0.20 18.36 4.12 - 

 
Group 2 

Factors SD R
2
 RMSE R

2
pred R-Pearson RMSE/SD Δ 

Opt. 

Model 

1 0.56 0.42 0.47 0.33 0.60 0.83 - - 

2 0.38 0.75 0.44 0.40 0.70 1.16 0.33 - 

3 0.28 0.87 0.28 0.75 0.89 1.02 -0.14 - 

4 0.23 0.91 0.27 0.77 0.89 1.17 0.15 √ 

5 0.18 0.95 0.25 0.81 0.90 1.39 0.22 - 

 
Group 3 

Factors SD R
2
 RMSE R

2
pred R-Pearson RMSE/SD Δ 

Opt. 

Model 

1 0.63 0.46 0.94 -0.19 -0.26 1.48 - - 

2 0.40 0.80 0.83 -0.18 -0.07 2.10 0.62 - 

3 0.29 0.90 0.75 0.03 0.25 2.57 0.47 - 

4 0.19 0.96 0.84 -0.20 0.08 4.51 1.94 √ 

 
Group 4 

Factors SD R
2
 RMSE R

2
pred R-Pearson RMSE/SD Δ 

Opt. 

Model 

1 0.40 0.82 0.62 0.09 0.59 1.55 - - 

2 0.21 0.95 0.69 -0.12 0.54 3.27 1.72 √ 

Table 12: 3D-QSAR Results Summary for SOM selection of test set (Factors =number of factors in the partial least squares 

regression model; SD = standard deviation; RMSE = root-mean-square error; R
2

pred = value of the predicted activities for 

test set; R-Pearson = Pearson R value for the correlation between the predicted and observed activity for the test set; Δ = 

difference from preceding). 

 

A statistical analysis which included the R2 versus RMSE/SD plot was employed to choose the 

best PLS model for the different set selection methods. The best model was chosen on the 

basis of PLS factor model minimum observed in RMSE/SD value, with R2 value still higher 

than 0.9. Only models with good statistical parameters for the training set and exhibiting 

good predictive ability against a test set were chosen. Group 4 did not exhibit excellent 

statistical prediction in both of test set selection method was not taken into account. 
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Group 2 exhibited comparatively better PLS statistical qualities and excellent prediction of 

the external test set compounds in both of test set selection method; it showed correlation 

coefficient (R2) of 0.96 for random selection of test set, test set prediction (R2
pred) of 0.75 and 

R-Pearson of 0.95. The low standard deviation (SD) and root-mean-squared error (RMSE) 

contributes significantly to the model. 

For Groups 1-3, the most significant models were obtained with Random selection approach, 

because R2
pred for SOM resulted as negative value. Visualizing the hypotheses and various 

ligands in the context of the 3D-QSAR models, the Fig. 55 illustrates the most significant 

favorable and unfavorable interactions that arise when the 3D-QSAR model is applied to the 

reference ligand, chosen as the most active compound in the training set. In these 

representations, the blue cubes indicate favorable regions while red cubes indicate 

unfavorable ones for biological activity. The blue regions in the vicinity of 3′-position of the 

4’-methyl-phenyl ring of Group 2 suggested that the substitution in this area may enhance 

the activity, whereas red regions surround the para-position. 

 

 

Fig. 55: Most significant favorable and unfavorable interactions in QSAR models. 

 

The scatter plot for the training (a) and test set (b) indicates a reasonably good correlation 

between the predicted and experimental activities (Fig.56). 

The best obtained pharmacophore models were used to retrieve new potential inhibitors 

from “lead like” ZINC database (3,027,619 compounds) using virtual parallel screening. 
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Fig. 56: Scatter plots for the hA3R QSAR models applied to the training set (a) and the test set (b). Line indicates the 

hypothetical “best fit” line between the predicted and experimental values. 

 

Screening molecules were required to match all the hypotheses features. Database hits were 

ranked in order of their Fitness score, a measure of how well the aligned ligand conformer 

matches the hypothesis based on site matching, vector alignments and volume terms. As a 

result, 18189 potential ligand hits, that match with all the hypotheses, were identified. Here, 

we report the ten compounds with the best Fitness score (Table 13); the chemical structures 

of these hit molecules are presented in Fig. 57. 
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 Model Group 1 Model Group 2 Model Group 3 

ZINC ID FITNESS PRED pKi FITNESS PRED pKi FITNESS PRED pKi 

978790 2.268 7.75 1.439 7.09 1.495 6.89 

3192107 2.455 7.59 1.802 7.44 2.514 7.25 

6624316 2.458 7.80 1.695 8.00 2.536 7.37 

6624541 2.459 7.77 1.696 8.04 2.540 7.53 

8578947 2.460 7.63 1.719 7.25 2.463 7.07 

13363145 2.473 7.67 1.705 7.37 2.423 7.29 

20085946 2.493 7.60 1.696 7.41 2.577 7.03 

21774670 2.463 8.24 1.574 7.51 2.476 7.42 

21774675 2.447 7.84 1.540 7.73 2.507 7.47 

21774724 2.468 7.66 1.551 7.48 2.515 7.33 

Table 13: Fitness score of the identified lead 

 

 

Fig. 57: Chemical structures of ten compounds with the best Fitness score. 
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Therefore, these selected compounds were docked into the binding site of the modeled 

protein. The conformations of these hits bound to the modeled A3R were also analyzed to 

determine hydrogen-bonding and hydrophobic interactions. The docking results for the final 

hit molecules are given in Table 14, whereas the binding modes (structures and interacting 

residues) are shown in Fig. 58. 

 

ZINC ID FITNESS XP GSCORE 
AMINO ACIDS INVOLVED IN HYDROPHOBIC 

INTERACTIONS 

AMINO ACIDS 

INVOLVED IN H-BOND 

978790 2.518 -6.549 V72, F168, M177, L264, I268 M86 

3192107 2.455 -6.606 
V72, M86, F168, I253, V263,  

L264, I268 
 

6624316 2.458 -7.434 
V72, L89, L90, L91, M177, L246,  

I253, V259, I263, L264, I268 
T94 

6624541 2.459 -7.39 
V72, M86, F168, M177, L246, 

 I253, V263, L264 
D250 

8578947 2.46 -7.298 V72, M86, F168, I253, V263, L264 S73 

13363145 2.473 -6.927 
V72, L90, L91, M177, L246,  

I253, V259, L264, I268 
M86, L90 

20085946 2.493 -7.415 
V72, M86, L90, F168, M177,  

V259, L264, I268 
M86 

21774670 2.463 -8.427 
V72, M86, L90, L91, P168,  

M177, L246, I268 
M86, D250 

21774675 2.447 -8.461 
V72, M86, L90, L91, F168,  

M177, L246, I268 
M86 

21774724 2.468 -8.983 
V72, M86, L89, L90, L91, C166,  

F168, M177, L246, I268 
M86 

Table 14: Extra Precision (XP) Glide results for the ten lead molecules. 

 

The docked models indicate that the ligands maintain key interactions with the TM2, TM3, 

TM6 and TM7. Another important interaction with EL2 seems to be fundamental. 
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Fig. 58: Binding poses of the ten lead molecules. Hydrogen bonds are shown as dotted yellow lines. 
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The drug-like character of the lead compounds was assessed by evaluating their 

physicochemical properties using QikProp.156 Their molecular weights were <500 Da; they 

had <5 hydrogen bond donors and <10 hydrogen bond acceptors, and logP values of <5 

(Table 15). These properties are all well within the acceptable range of Lipinski’s rule of five. 

The pharmacokinetic parameters of the molecules (ADMET) showed that the partition 

coefficient (QPlogPo/w) and water solubility (QPlogS) values, which are crucial for estimating 

the absorption and distribution of drugs within the body, ranged approximately from 1.80 to 

3.32 and −5.08 to −3.56, respectively. 

 

ZINC ID MW HBD HBA QPlogPo/w QPlogS 
Percent Human 

Oral Absorption 

QPP 

Caco 

QPP 

MDCK 

978790 292.29 1 6.00 1.80 -3.62 85.55 483.06 225.31 

3192107 325.32 0 6.50 2.07 -4.25 89.99 697.98 335.40 

6624316 346.34 1 6.25 2.56 -3.58 96.61 1128.89 563.97 

6624541 348.33 0 5.50 3.32 -3.89 100.00 3874.95 3860.24 

8578947 347.37 3 5.00 2.80 -4.51 90.16 412.81 190.12 

13363145 306.32 1 6.00 2.16 -3.56 87.81 493.54 230.60 

20085946 343.34 1 7.50 2.00 -3.81 90.84 822.44 400.49 

21774670 333.34 1 6.50 2.68 -4.54 94.12 751.26 363.16 

21774675 347.37 1 6.50 3.06 -5.08 96.97 814.51 396.31 

21774724 347.37 1 6.50 2.99 -4.83 95.97 754.89 365.05 

Table 15: QikProp properties of the identified hits (MW = Molecular weight; HBD = Hydrogen bond donors by solute to 

water molecule; HBA = Hydrogen bond acceptors by solute from water molecule; QPlogPo/w = Predicted octanol/water 

partition coefficient logP; QPlogS = Predicted aqueous solubility S in mol/L; QPPCaco = Predicted apparent Caco-2 cell 

permeability in nm/sec; QPPMDC = Predicted apparent MDCK cell permeability in nm/sec) 

Thus, the pharmacokinetic parameters are well within the acceptable range defined for 

human use, thereby indicating the potential drug-likeness of these molecules. The structure 

selected by our proposed screening procedure could serve as potential specific inhibitors 

against the A3 human receptor and therefore can be proposed for therapeutic treatments of 

cancer. 
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7. Conclusions 

 

In conclusion hypoxia plays an important role in tumor progression and metastasis. Tumor 

growth leads to hypoxia, which in turn results in decreased therapeutic efficacy, stimulation 

of angiogenesis, and tumor progression. Overexpression of HIF-1α has been observed in 

many common human cancers.  

Currently, no empirical (X-ray, crystallographic) 3D structure for HIF-1α is available. In view 

of this, a protein model was constructed using homology modeling. Because the sequence 

identity between templates and the target is very low there may be significant errors. 

Regions of the model that were constructed without a template, by loop modeling, are 

generally much less accurate than the rest of the model.  

Several approaches have been used to inhibit HIF-1α expression or activity: inhibition of 

proteins that modulate HIF-1 activity, signal transduction pathways involved in HIF-1α 

activation. Selective inhibitors target protein-protein interaction, protein-DNA binding, and 

transcriptional activity, whereas non-selective ones affect downstream signaling and other 

indirect pathways. Several domains of HIF-1 might be suitable targets for the development 

of selective HIF-1 inhibitors: domains involved in the recruitment of coactivators, which are 

required for maximal transcriptional activity, or binding to DNA, which is dependent on 

sequence specificity. 

Domains of HIF-1α that mediate specific functions, such as DNA binding as well as 

transcriptional activity (C-TAD) might lead to the identification of more “selective” inhibitors. 

The identification of small molecules that inhibit the sequence-specific binding of 

transcription factors to DNA is an attractive approach for modulating HIF-1-dependent gene 

expression. The docking studies reported herein provided reliable information on the 

capability of new ligands to interact with DNA sequence.  

Another approach has been to interfere with the interaction between the C-TAD of HIF-1α 

and the CH1 domain of p300.  

The structure of the complex of the HIF-1α C-TAD with the CH1 domain of p300 is of interest 

as a potential target for design of antitumor agents. A docking study was performed on CH1 

domain with the purpose of identifing new potential inhibitors for this protein. 

Furthermore HIF-1α has been implicated to be involved in p53 stabilization. Mdm2 may act 

as a bridge and mediate the indirect interaction between HIF-1α and p53 in cells. 

Protein flexibility is an essential property of biomolecules. Thus, knowledge about flexibility 

is important for the rational design of new drugs. Although there is an abundance of 

literature available for Mdm2, no information is available concerning the lid behavior in 

apo-Mdm2. In this study, we used 35 ns MD simulations in order to analyze the different 

conformational aspects that regulate apo form and the binding of ligands in Mdm2. Starting 

from a X-ray structure of human Mdm2 presenting the lid residue, we simulated the 

behaviour in the presence of different inhibitors. To study the influence of ligands binding on 
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the Mdm2 dynamics, backbone and librational variations for bound and apo-Mdm2 were 

analyzed. Our findings suggest that the structure of the binding domain of Mdm2 adapts 

itself to the ligands. Also the N-terminal lid of Mdm2 slowly interconverts between a closed 

state and an open state which is highly flexible. While apo-Mdm2 predominantly populates 

the closed state, the binding with inhibitors shifts the equilibrium toward the open state. 

As expected different ligands could elicit different changes in structure and thus mediate a 

variety of biological functions. The in silico tools are probably able to simulate the behaviour 

of Mdm2 in the presence of any kind of ligand. A better understanding of these complex 

effects was achieved by using these computational techniques, which revealed the dynamic 

behavior of the protein-ligand complexes and the contribution of N-terminal domain 

flexibility, that has to be taken into account during the design of new inhibitors. 

Levels of both HIF-1 and adenosine are elevated within the hypoxic environment of solid 

tumors. In fact under hypoxic conditions, adenosine upregulates HIF-1α protein expression 

exclusively through the A3 receptor subtype. The new structure of hA2A solved in 2008 

provided a new starting point for homology modeling and was used as template to built 

homology model of hA3 adenosine receptor. The inclusion of an explicitly lipid bilayer into 

the energy minimisation simulation may have helped in optimising the quality of the 

structure. Our theoretical model of hA3 adenosine receptor has been used to evaluate and 

quantify the structure-activity relationship of known antagonists. Finally, the 3D-QSAR 

model has been used with the purpose of identifying new potential inhibitors for A3R. The 

identified hits seem to be both potent and specific for the desired target receptor. 
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8. Methods 

 

I-TASSER 

I-TASSER157 is an automated pipeline for protein tertiary structure prediction using multiple 

threading alignments and iterative structure assembly simulations. The target sequences are 

first threaded through a representative PDB structure library (with a pair-wise sequence 

identity cut-off of 70%) to search for the possible folds by four simple variants of Profile-

Profile threading Alignment (PPA) methods. The continuous fragments are then excised from 

the threading aligned regions which are used to reassemble full-length models while the 

threading unaligned regions (mainly loops) are built by ab initio modeling.158 

The conformational space is searched by replica-exchange Monte Carlo simulations.159 The 

structure trajectories are clustered by SPICKER160 and the cluster centroids are obtained by 

averaging the coordinates of all clustered structures. To rule out the steric clashes on the 

centroid structures and to refine the models further, we implement the fragment assembly 

simulation again, which starts from the cluster centroid of the first round simulation. Spatial 

restraints are extracted from the centroids and the PDB structures searched by the structure 

alignment program TM-align,161 which are used to guide the second round simulation. 

Finally, the structure decoys are clustered and the lowest energy structure in each cluster is 

selected, which has the Cα atoms and the side-chain centers of mass specified. Pulchra162 is 

used to add backbone atoms (N, C, O) and Scwrl_3.0163 to build side-chain rotamers. If any 

region with >80 residues has no aligned residues in at least two strong PPA alignments of 

Z-score > Z0, the target will be judged as a multiple domain protein and domain boundaries 

are automatically assigned based on the borders of the large gaps. The final full-length 

models are generated by docking the model of domains together (Fig. 59). The domain 

docking is performed by a quick Metropolis Monte Carlo simulation where the energy is 

defined as the RMSD of domain models to the full-chain model plus the reciprocal of the 

number of steric clashes between domains. The goal of the docking is to find the domain 

orientation that is closest to the I-TASSER full-chain model but has the minimum steric 

clashes. This procedure does not influence the multiple domain proteins which have all 

domains completely aligned by the PPAs. 
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Fig. 59: I-TASSER protocol for protein structure and function prediction. 

 

GROMACS 

The GROMACS 3.1.2 package164,165 was used to perform molecular dynamics simulations, 

using the force-field parameter set 43A1. This package is a collection of programs and 

libraries for the MD simulations and subsequent analysis of trajectory data. The ligand was 

removed from the protein and 35 ns MD simulations of the free receptor were first 

performed, then 35 ns MD simulations of the Mdm2 complexed with the inhibitors were 

carried out. The systems were embedded in a water box, the simple point charge (SPC) 

water model, with margin of 9 Å between the protein and the boundaries of the periodic 

box. Chlorine counterions are added to produce a neutral charge on the system, and the 

simulations were performed in constant NPT ensemble. Lennard–Jones potentials were used 

to model the guest–host and guest–guest interactions, force calculations were truncated at 

a distance of 1.4 nm. For the calculation of long-range electrostatic forces, the particle-mesh 

Ewald (PME) method was used, with coulomb cut-off set to 0.9 nm. The temperature was 

fixed at 300 K using the Berendsen thermostat and the Berendsen pressure coupling 

algorithm was used to keep the pressure constant at 300 bar. A steepest-descent energy 

minimization of the systems was first performed to relax the solute-solvent contacts and in 

order to remove bad van der Waals contacts. The second step consisted in 

position-restrained MD, restraining the atom positions of the macromolecule while letting 

the solvent move in the simulation, to soak the water molecule into the protein. Finally, the 

third step consisted of the MD simulation. The trajectory files were analysed by using 

GROMACS utilities. Moreover VEGA166 and VMD167 programs were employed for trajectory 

analysis and to manipulate the simulation snapshot structures. 
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PRINCIPLE COMPONENT ANALYSIS 

For Principle Component Analysis (PCA) a covariance matrix was constructed using the 

coordinates of all atoms from each of the 35 ns trajectories. The diagonalization of the 

covariance matrix generates a diagonal matrix of eigenvalues and a transformation matrix 

comprising eigenmodes. The modules g_covar and g_anaeig in GROMACS were used for the 

PCA calculation. The covariance matrix of the backbone atoms to a reference structure is 

diagonalized and the eigenvalues and eigenvectors are calculated. The eigenvectors of the 

covariance matrix represent the movements that have the largest impact on the overall 

movement (therefore principle components). The trajectories of the three systems were 

then projected on the first two eigenvectors, to give 2-D projections of the phase space. The 

eigenvalues revealed most of the structural changes. 

 

DESMOND 

Desmond133 is a suite of computer programs for carrying out molecular dynamics 

simulations. Such simulations model the motion of a collection of atoms — a chemical 

system — over time, according to the laws of classical physics. The chemical system exists in 

a thermodynamic environment, which represents the conditions under which the simulation 

is carried out. This environment mimics the experimental conditions: whether the 

temperature or pressure is regulated, for example, or whether the system is isolated so that 

it can not exchange energy with its environment. The chemical system occupies a 

three‐dimensional volume of space of a specified size, and each atom is generally 

represented by a particle at a specific position in that space. Motion is simulated in discrete 

time steps. From one step to the next, a tiny slice of time goes by, and atom positions 

update accordingly. The volume of space in which the simulation takes place is called the 

global cell. Desmond employs a technique known as periodic boundary conditions to wrap 

each face of the global cell to its opposite face. That is, particles that move leftwards out of 

the global cell appear to be moving in at a corresponding spot on the right‐hand face, and 

vice-versa; particles that move out the top appear to enter at the bottom, and vice‐versa; 

and finally, particles that move out the front appear at the back, and vice‐versa. 

A force field is a model of the potential energy of a chemical system. It is a set of functions 

and parameters used to model the potential energy of the system, and thereby to calculate 

the forces on each particle. To accurately simulate different kinds of systems, Desmond 

supports several variants of the Amber, CHARMM, and OPLS‐AA force field models. The 

action of the force field on the particles is described by a differential equation that Desmond 

integrates — numerically solves— at every timestep, thus computing a new position and 

velocity for every particle in the system. The differential equation is based on the laws of 

Newtonian mechanics applied to particles in the system. 
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GLIDE 

Glide124 searches for favorable interactions between one or more ligand molecules and a 

receptor molecule, usually a protein. Each ligand must be a single molecule, while the 

receptor may include more than one molecule. Glide uses a hierarchical series of filters to 

search for possible locations of the ligand in the active-site region of the receptor. The shape 

and properties of the receptor are represented on a grid by several different sets of fields 

that provide progressively more accurate scoring of the ligand poses. Conformational 

flexibility is handled in Glide by an extensive conformational search, augmented by a 

heuristic screen that rapidly eliminates unsuitable conformations, such as conformations 

that have long-range internal hydrogen bonds. Each ligand is divided into a core region and 

some number of rotamer groups. Each rotamer group is attached to the core by a rotatable 

bond, but does not contain additional rotatable bonds. During conformation generation, 

each core region is represented by a set of core conformations, the number of which 

depends on the number of rotatable bonds. For each core conformation an exhaustive 

search of possible locations and orientations is performed over the active site of the protein. 

The search begins with the selection of “site points” on an equally spaced 2 Å grid that 

covers the active site region (Fig. 60). 

 

Fig. 60: The Glide docking hierarchy. 

The second stage of the hierarchy begins by examining the placement of atoms that lie 

within a specified distance of the line drawn between the most widely separated atoms (the 

ligand diameter). Next rotation about the ligand diameter is considered, and the interactions 

of a subset consisting of all atoms capable of making hydrogen bonds or ligand-metal 

interactions with the receptor are scored (subset test). If this score is good enough, all 
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interactions with the receptor are scored. This stage is called “greedy scoring,” because the 

actual score for each atom depends not only on its position relative to the receptor but also 

on the best possible score it could get by moving ±1 Å in x, y, or z. The final step in Stage 2 is 

to re-score the top greedy-scoring poses via a “refinement” procedure, in which the ligand 

as a whole is allowed to move rigidly by ±1 Å in the Cartesian directions. Only a small 

number of the best refined poses is passed on to the third stage in the hierarchy-energy 

minimization on the pre-computed OPLS-AA van der Waals and electrostatic grids for the 

receptor. This energy minimization consists only of rigid-body translations and rotations 

when external conformations are docked. Finally, the minimized poses are re-scored using 

Schrödinger’s proprietary GlideScore scoring function. GlideScore is based on ChemScore, 

but includes a steric-clash term, adds buried polar terms devised by Schrödinger to penalize 

electrostatic mismatches, and has modifications to other terms: 

GScore = 0.065*vdW + 0.130*Coul + Lipo + Hbond + Metal + BuryP + RotB + Site 

Component Description 

vdW van der Waals energy. This term is calculated with reduced net ionic 
charges on groups with formal charges, such as metals, carboxylates, and 
guanidiniums. 

Coul Coulomb energy. This term is calculated with reduced net ionic charges on 
groups with formal charges, such as metals, carboxylates, and 
guanidiniums. 

Lipo Lipophilic contact term. Rewards favorable hydrophobic interactions. 
HBond Hydrogen-bonding term. This term is separated into differently weighted 

components that depend on whether the donor and acceptor are neutral, 
one is neutral and the other is charged, or both are charged. 

Metal Metal-binding term. Only the interactions with anionic acceptor atoms are 
included. If the net metal charge in the apo protein is positive, the 
preference for anionic ligands is included; if the net charge is zero, the 
preference is suppressed. 

BuryP Penalty for buried polar groups. 
RotB Penalty for freezing rotatable bonds. 
Site Polar interactions in the active site. Polar but non-hydrogen-bonding atoms 

in a hydrophobic region are rewarded. 

 

The choice of best-docked structure for each ligand is made using a model energy score 

(Emodel) that combines the energy grid score, the binding affinity predicted by GlideScore, 

and (for flexible docking) the internal strain energy for the model potential used to direct the 

conformational-search algorithm. This hierarchical search gives Glide exceptionally high 

accuracy in predicting the binding mode of the ligand. 

The virtual screening workflow in the Maestro graphical user interface offers the user a 

unified interface for compound database processing and the submission of a series of 

large-scale docking runs using a hierarchy of Glide docking protocols. While this is a 

straightforward example of automation, other Maestro workflows offer more novel 
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functionality: for example, induced fit docking iterates between Glide docking and Prime 

homology modelling functionality in order to incorporate some degree of protein backbone 

and sidechain refinement;168 quantum-polarised ligand docking iterates between Glide 

docking and Jaguar quantum chemical calculations in order to derive partial atomic charges 

that reflect polarisation of the ligand by the protein.169 

 

INDUCED FIT DOCKING 

The Induced Fit Protocol developed by Schrödinger, is a method for modeling the 

conformational changes induced by ligand binding. This protocol models induced fit docking 

of one or more ligands using the following steps: 

1. Constrained minimization of the receptor (Glide protein preparation, refinement 

only) with an RMSD cut off of 0.18 Å. 

2. Initial Glide docking of each ligand using a softened potential (van der Waals radii 

scaling). 

3. One round of Prime side-chain prediction for each protein/ligand complex, on 

residues within a given distance of any ligand pose (default 5 Å). 

4. Prime minimization of the same set of residues and the ligand for each protein/ligand 

complex pose. The receptor structure in each pose now reflects an induced fit to the 

ligand structure and conformation. 

5. Glide redocking of each protein/ligand complex structure within a specified energy of 

the lowest-energy structure. The ligand is now rigorously docked, using XP Glide, into 

the induced-fit receptor structure 

6. Estimation of the binding energy (IFDScore) for each output pose. 

Each complex is then ranked according to the IFD score. 

 

PHASE 

Phase153 is a versatile product for pharmacophore perception, structure alignment, activity 

prediction, and 3D database searching. Given a set of molecules with high affinity for a 

particular protein target, Phase uses fine-grained conformational sampling and a range of 

scoring techniques to identify common pharmacophore hypotheses, which convey 

characteristics of 3D chemical structures that are purported to be critical for binding. 

Pharmacophores from all conformations of the ligands in the active set are examined, and 

those pharmacophores that contain identical sets of features, with very similar spatial 

arrangements, are grouped together. If a given group is found to contain at least one 

pharmacophore from each ligand, then this group gives rise to a common pharmacophore. 

Then common pharmacophores are examined, and a scoring procedure is applied to identify 

the pharmacophore from each surviving n-dimensional box that yields the best alignment of 
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the chosen actives. This pharmacophore provides a hypothesis to explain how the active 

molecules bind to the receptor. The scoring procedure provides a ranking of the different 

hypotheses, allowing to make rational choices about which hypotheses are most appropriate 

for further investigation. If the pharmacophore is an adequate hypothesis, it should 

discriminate between active and inactive molecules. Each hypothesis is accompanied by a 

set of aligned conformations that suggest the relative manner in which the molecules are 

likely to bind. The quality of alignment is measured in three ways: (1) the alignment score, 

which is the root-mean-squared deviation in the site-point positions; (2) the vector score, 

which is the average cosine of the angles formed by corresponding pairs of vector features 

(acceptors, donors, and aromatic rings) in the aligned structures; and (3) a volume score 

based on the overlap of van der Waals models of the non-hydrogen atoms in each pair of 

structures. 
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where )(iVcommon  is the common or overlapping volume between ligand i and the reference 

ligand, while )(iVtotal  is the total volume occupied by both ligands. 

The site score, the vector score, and the volume score are combined with separate weights 

to yield a combined alignment score for each non-reference pharmacophore that has been 

aligned to the reference. Once the hypotheses have been scored on the basis of the 

alignment of the chosen actives, the score is adjusted by subtracting a multiple of the 

survival score of the inactives from the survival score of the actives.  

Finally, hypothesis may be combined with known activity data to create a 3D QSAR model 

that identifies overall aspects of molecular structure that govern activity. This model may be 

used in conjunction with the hypothesis to mine a 3D database for molecules that are most 

likely to exhibit strong activity toward the target. 



75 

 

References 

 

1. J. Bajorath, R. Stenkamp, A. Aruffo, Knowledge-based model building of proteins: 
concepts and examples., Protein Sci. 2, 1798-1810 (1993). 

2. T. L. Blundell, B. L. Sibanda, M. J. E. Sternberg, J. M. Thornton, Knowledge-based 
prediction of protein structures and the design of novel molecules, Nature 326, 347-
352 (1987). 

3. M. S. Johnson, N. Srinivasan, R. Sowdhamini, T. L. Blundell, Knowledge-based protein 
modeling, Crit. Rev. Biochem. Mol. Biol. 29, 1-68 (1994). 

4. Š. Andrej, Modelling mutations and homologous proteins, Curr. Opin. Biotechnol. 6, 
437-451 (1995). 

5. R. Sánchez, A. Šali, Advances in comparative protein-structure modelling, Curr. Opin. 
Struct. Biol. 7, 206-214 (1997). 

6. C. Chothia, A. M. Lesk, The relation between the divergence of sequence and 
structure in proteins, EMBO J. 5, 823-826 (1986). 

7. P. Koehl, M. Levitt, A brighter future for protein structure prediction, Nat. Struct. Biol. 
6, 108-111 (1999). 

8. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. 
Shindyalov, P. E. Bourne, The Protein Data Bank, Nucleic Acids Res. 28, 235-242 
(2000). 

9. D. Hanahan, R. A. Weinberg, The hallmarks of cancer, Cell 100, 57-70 (2000). 

10. S. Bao, G. Ouyang, X. Bai, Z. Huang, C. Ma, M. Liu, R. Shao, R. M. Anderson, J. N. Rich, 
X. F. Wang, Periostin potently promotes metastatic growth of colon cancer by 
augmenting cell survival via the Akt/PKB pathway, Cancer Cell 5, 329-339 (2004). 

11. C. D. Roskelley, M. J. Bissell, The dominance of the microenvironment in breast and 
ovarian cancer, Semin. Cancer Biol. 12, 97-104 (2002). 

12. M. W. Dewhirst, Concepts of oxygen transport at the microcirculatory level, Semin. 
Radiat. Oncol. 8, 143-150 (1998). 

13. S. E. Rademakers, P. N. Span, J. H. Kaanders, F. C. Sweep, A. J. van der Kogel, J. 
Bussink, Molecular aspects of tumour hypoxia, Mol. Oncol. 2, 41-53 (2008). 

14. A. L. Harris, Hypoxia-a key regulatory factor in tumour growth, Nat. Rev. Cancer 2, 38-
47 (2002). 

15. A. J. Giaccia, M. B. Kastan, The complexity of p53 modulation: emerging patterns 
from divergent signals, Gene Dev. 12, 2973-2983 (1998). 



76 

 

16. C. Koumenis, R. Alarcon, E. Hammond, P. Sutphin, W. Hoffman, M. Murphy, J. Derr, Y. 
Taya, S. W. Lowe, M. Kastan, A. Giaccia, Regulation of p53 by hypoxia: dissociation of 
transcriptional repression and apoptosis from p53-dependent transactivation, Mol. 
Cell. Biol. 21, 1297-1310 (2001). 

17. K. M. Ryan, A. C. Phillips, K. H. Vousden, Regulation and function of the p53 tumor 
suppressor protein, Curr. Opin. Cell Biol. 13, 332-337 (2001). 

18. W. G. An, M. Kanekal, M. C. Simon, E. Maltepe, M. V. Blagosklonny, L. M. Neckers, 
Stabilization of wild-type p53 by hypoxia-inducible factor 1α, Nature 392, 405-408 
(1998). 

19. M. V. Blagosklonny, W. G. An, L. Y. Romanova, J. Trepel, T. Fojo, L. Neckers, p53 
Inhibits Hypoxia-inducible Factor-stimulated Transcription, J. Biol. Chem. 273, 11995-
11998 (1998). 

20. R. Ravi, B. Mookerjee B, Z. M. Bhujwalla, C. H. Sutter, D. Artemov, Q. Zeng, L. E. 
Dillehay, A. Madan, G. L. Semenza, A. Bedi, Regulation of tumor angiogenesis by p53-
induced degradation of hypoxia-inducible factor 1α, Genes Dev. 14, 34-44 (2000). 

21. D. Chen, M. Li, J. Luo, W. Gu, Direct Interactions between HIF-1α and Mdm2 
Modulate p53 Function, J. Biol. Chem. 278, 13595-13598 (2003). 

22. S. Latini, F. Pedata, Adenosine in the central nervous system: release mechanisms 
and extracellular concentrations, J. Neurochem. 79, 463-484 (2001). 

23. V. Ralevic, G. Burnstock, Receptors for purines and pyrimidines, Pharmacol. Rev. 50, 
413-492 (1998). 

24. B. B. Fredholm, A. P. IJzerman, K. A. Jacobson, K. N. Klotz, J. Linden, International 
Union of Pharmacology. XXV. Nomenclature and classification of adenosine 
receptors, Pharmacol. Rev. 53, 527-552 (2001). 

25. S. Merighi, P. Mirandola, D. Milani, K. Varani, S. Gessi, K. N. Klotz, E. Leung, P. G. 
Baraldi, P. A. Borea, Adenosine receptors as mediators of both cell proliferation and 
cell death of cultured human melanoma cells, J. Invest. Dermatol. 119, 923-933 
(2002). 

26. S. Merighi, P. G. Baraldi, S. Gessi, V. Iannotta, K. N. Klotz, E. Leung, P. Mirandola, M. A. 
Tabrizi, K. Varani, P. A. Borea, Adenosine receptors and human melanoma, Drug Dev. 
Res. 58, 377-385 (2003). 

27. Z. Gao, B. S. Li, Y. J. Day, J. Linden, A3 adenosine receptor activation triggers 
phosphorylation of protein kinase B and protects rat basophilic leukemia 2H3 mast 
cells from apoptosis, Mol. Pharmacol. 59, 76-82 (2001). 

28. L. Madi, S. Bar-Yehuda, F. Barer, E. Ardon, A. Ochaion, P. Fishman, A3 Adenosine 
receptor activation in melanoma cells, J. Biol. Chem. 278, 42121-42130 (2003). 

 



77 

 

29. S. Gessi, K. Varani, S. Merighi, A. Morelli, D. Ferrari, E. Leung, P. G. Baraldi, G. 
Spalluto, P. A. Borea, Pharmacological and biochemical characterization of A3 
adenosine receptors in Jurkat T cells, Br. J. Pharmacol. 134, 116-126 (2001). 

30. S. Merighi, K. Varani, S. Gessi, E. Cattabriga, V. Iannotta, C. Ulouglu, E. Leung, P. A. 
Borea, Pharmacological and biochemical characterization of adenosine receptors in 
the human malignant melanoma A375 cell line, Br. J. Pharmacol. 134, 1215-1226 
(2001). 

31. B. Suh, T. Kim, J. Lee, J. Seong, K. Kim, Pharmacological characterization of adenosine 
receptors in PGT‐β mouse pineal gland tumour cells, Br. J. Pharmacol. 134, 132-142 
(2001). 

32. S. Gessi, K. Varani, S. Merighi, E. Cattabriga, V. Iannotta, E. Leung, P. G. Baraldi, P. A. 
Borea, A(3) adenosine receptors in human neutrophils and promyelocytic HL60 cells: 
a pharmacological and biochemical study, Mol. Pharmacol. 61, 415-424 (2002). 

33. S. Gessi, E. Cattabriga, A. Avitabile, R. Gafa', G. Lanza, L. Cavazzini, N. Bianchi, R. 
Gambari, C. Feo, A. Liboni, S. Gullini, E. Leung, S. Mac-Lennan, P. A. Borea, Elevated 
expression of A3 adenosine receptors in human colorectal cancer is reflected in 
peripheral blood cells, Clin. Cancer Res. 10, 5895-5901 (2004). 

34. S. Merighi, A. Benini, P. Mirandola, S. Gessi, K. Varani, E. Leung, S. Mac-Lennan, P. G. 
Baraldi, P. A. Borea, A3 adenosine receptors modulate hypoxia-inducible factor-1α 
expression in human A375 melanoma cells, Neoplasia 7, 894-903 (2005). 

35. G. L. Wang, B. H. Jiang, E. A. Rue, G. L. Semenza, Hypoxia-inducible factor 1 is a 
basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension, Proc. Natl. 
Acad. Sci. U.S.A. 92, 5510-5514 (1995). 

36. P. C. Mahon, K. Hirota, G. L. Semenza, FIH-1: a novel protein that interacts with 
HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity, Genes Dev. 15, 
2675-2686 (2001). 

37. P. Maxwell, M. S. Wiesener, G. W. Chang, S. C. Clifford, E. C. Vaux, M. E. Cockman, C. 
C. Wykoff, C. W. Pugh, E. R. Maher, P. J. Ratcliffe, The tumour suppressor protein VHL 
targets hypoxia-inducible factors for oxygen-dependent proteolysis, Nature 399, 
271-275 (1999). 

38. P. Jaakkola, D. R. Mole, Y. M. Tian, M. I. Wilson, J. Gielbert, S. J. Gaskell, A. 
Kriegsheim, H. F. Hebestreit, M. Mukherji, C. J. Schofield, P. H. Maxwell, C. W. Pugh, 
P. J. Ratcliffe, Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by 
O2-regulated prolyl hydroxylation, Science 292, 468-472 (2001). 

39. M. Ivan, K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J. M. Asara, W. S. 
Lane, W. G. Jr Kaelin, HIF-α targeted for VHL-mediated destruction by proline 
hydroxylation: implications for O2 sensing, Science 292, 464-468 (2001). 

 



78 

 

40. M. E. Cockman, N. Masson, D. R. Mole, P. Jaakkola, G. W. Chang, S. C. Clifford, E. R. 
Maher, C. W. Pugh, P. J. Ratcliffe, P. H. Maxwell, Hypoxia inducible factor-α binding 
and ubiquitylation by the von Hippel-Lindau tumor suppressor protein, J. Biol. Chem. 
275, 25733-25741 (2000). 

41. R. K. Bruick, S. L. McKnight, A conserved family of prolyl-4-hydroxylases that modify 
HIF, Science 294, 1337-1340 (2001). 

42. A. C. Epstein, J. M. Gleadle, L. A. McNeill, K. S. Hewitson, J. O'Rourke, D. R. Mole, M. 
Mukherji, E. Metzen, M. I. Wilson, A. Dhanda,Y. M. Tian, N. Masson, D. L. Hamilton, P. 
Jaakkola, R. Barstead, J. Hodgkin, P. H. Maxwell, C. W. Pugh, C. J. Schofield, P. J. 
Ratcliffe, C. elegans EGL-9 and mammalian homologs define a family of dioxygenases 
that regulate HIF by prolyl hydroxylation, Cell 107, 43-54 (2001). 

43. V. Nizet, R. S. Johnson, Interdependence of hypoxic and innate immune responses, 
Nat. Rev. Immunol. 9, 609-617 (2009). 

44. D. C. Schwartz, M. Hochstrasser, A superfamily of protein tags: ubiquitin, SUMO and 
related modifiers, Trends Biochem. Sci. 28, 321-328 (2003). 

45. F. Melchior, M. Schergaut, A. Pichler, SUMO: ligases, isopeptidases and nuclear pores, 
Trends Biochem. Sci. 28, 612-618 (2003). 

46. M. Tojo, K. Matsuzaki, T. Minami, Y. Honda, H. Yasuda, T. Chiba, H. Saya, Y. Fujii-
Kuriyama, M. Nakao, The aryl hydrocarbon receptor nuclear transporter is modulated 
by the SUMO-1 conjugation system, J. Biol. Chem. 277, 46576-46585 (2002). 

47. H. B. Newton, Molecular neuro-oncology and development of targeted therapeutic 
strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH and 
angiogenesis, Expert Rev. Anticancer Ther. 4, 105-128 (2004). 

48. E. Laughner, P. Taghavi, K. Chiles, P. C. Mahon, G. L. Semenza, HER2 (neu) signaling 
increases the rate of hypoxia-inducible factor 1α (HIF-1α) synthesis: novel mechanism 
for HIF-1-mediated vascular endothelial growth factor expression, Mol. Cell. Biol. 21, 
3995-4004 (2001). 

49. H. Zhong, K. Chiles, D. Feldser, E. Laughner, C. Hanrahan, M. M. Georgescu, J. W. 
Simons, G. S. Semenza, Modulation of hypoxia-inducible factor 1α expression by the 
epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in 
human prostate cancer cells: implications for tumor angiogenesis and therapeutics, 
Cancer Res. 60, 1541-1545 (2000). 

50. F. S. Wang, C. J. Wang, Y. J. Chen, P. R. Chang, Y. T. Huang, Y. C. Sun, H. C. Huang, Y. J. 
Yang, K. D. Yang, Ras induction of superoxide activates ERK-dependent angiogenic 
transcription factor HIF-1α and VEGF-A expression in shock wave-stimulated 
osteoblasts, J. Biol. Chem. 279, 10331-10337 (2004). 

51. E. Hur, K. Y. Chang, E. Lee, S. K. Lee, H. Park, Mitogen-activated protein kinase kinase 
inhibitor PD98059 blocks the trans-activation but not the stabilization or DNA binding 
ability of hypoxia-inducible factor-1α, Mol. Pharmacol. 59, 1216-1224 (2001). 



79 

 

52. E. B. Friedrich, E. Liu, S. Sinha, S. Cook, D. S. Milstone, C. A. MacRae, M. Mariotti, P. J. 
Kuhlencordt, T. Force, A. Rosenzweig, R. St-Arnaud, S. Dedhar, R. E. Gerszten, 
Integrin-linked kinase regulates endothelial cell survival and vascular development, 
Mol. Cell. Biol. 24, 8134-8144 (2004). 

53. C. Tan, S. Cruet-Hennequart, A. Troussard, L. Fazli, P. Costello, K. Sutton, J. Wheeler, 
M. Gleave, J. Sanghera, S. Dedhar, Regulation of tumor angiogenesis by 
integrin-linked kinase (ILK), Cancer Cell 5, 79-90 (2004). 

54. J. Zhou, T. Schmid, R. Frank, B. Brüne, PI3K/Akt Is Required for Heat Shock Proteins to 
Protect Hypoxia-inducible Factor 1α from pVHL-independent Degradation, J. Biol. 
Chem. 279, 13506-13513 (2004). 

55. P. Büchler, H. A. Reber, M. Büchler, S. Shrinkante, M. W. Büchler, H. Friess, G. L. 
Semenza, O. J. Hines, Hypoxia-inducible factor 1 regulates vascular endothelial 
growth factor expression in human pancreatic cancer, Pancreas 26, 56-64 (2003). 

56. D. Feldser, F. Agani, N. V. Iyer, B. Pak, G. Ferreira, G. L. Semenza, Reciprocal positive 
regulation of hypoxia-inducible factor 1α and insulin-like growth factor 2, Cancer Res. 
59, 3915-3918 (1999). 

57. S. Kajimura, K. Aida, C. Duan, Insulin-like growth factor-binding protein-1 (IGFBP-1) 
mediates hypoxia-induced embryonic growth and developmental retardation, Proc. 
Natl. Acad. Sci. 102, 1240-1245 (2005). 

58. N. Ferrara, T. Davis-Smyth, The biology of vascular endothelial growth factor, Endocr. 
Rev. 18, 4 -25 (1997). 

59. T. Hellwig-Bürgel, K. Rutkowski, E. Metzen, J. Fandrey, W. Jelkmann, Interleukin-1β 
and tumor necrosis factor-α stimulate DNA binding of hypoxia-inducible factor-1, 
Blood 94, 1561-1567 (1999). 

60. M. B. Kastan, O. Onyekwere, D. Sidransky, B. Vogelstein, R. W. Craig, Participation of 
p53 protein in the cellular response to DNA damage, Cancer Res. 51, 6304-6311 
(1991). 

61. X. Wu, A. J. Levine, p53 and E2F-1 cooperate to mediate apoptosis, Proc. Natl. Acad. 
Sci. U S A 91, 3602-3606 (1994). 

62. H. Hermeking, D. Eick, Mediation of c-Myc-induced apoptosis by p53, Science 265, 
2091-2093 (1994). 

63. J. D. Oliner, J. A. Pietenpol, S. Thiagalingam, J. Gyuris, K. W. Kinzler, B. Vogelstein, 
Oncoprotein Mdm2 conceals the activation domain of tumour suppressor p53, 
Nature 362, 857-860 (1993). 

64. M. S. Greenblatt, W. P. Bennett, M. Hollstein, C. C. Harris, Mutations in the p53 
tumor suppressor gene: clues to cancer etiology and molecular pathogenesis, Cancer 
Res. 54, 4855-4878 (1994). 



80 

 

65. J. D. Oliner, K. W. Kinzler, P. S. Meltzer, D. L. George, B. Vogelstein, Amplification of a 
gene encoding a p53-associated protein in human sarcomas, Nature 358, 80-83 
(1992). 

66. C. Bueso-Ramos, Y. Yang, E. deLeon, P. McCown, S. A. Stass, M. Albitar, The human 
mdm2 oncogene is overexpressed in leukemias, Blood 82, 2617 -2623 (1993). 

67. C. Wasylyk, R. Salvi, M. Argentini, C. Dureuil, I. Delumeau, J. Abecassis, L. Debussche, 
B. Wasylyk, p53 mediated death of cells overexpressing Mdm2 by an inhibitor of 
Mdm2 interaction with p53, Oncogene 18, 1921-1934 (1999). 

68. A. Böttger, V. Böttger, C. Garcia-Echeverria, P. Chène, H. K. Hochkeppel, W. Sampson, 
K. Ang, S. F.Howard, S. M. Picksley, D. P. Lane, Molecular characterization of the 
hdm2-p53 interaction, J. Mol. Biol. 269, 744-756 (1997). 

69. C. García-Echeverría, P. Chène, M. J. Blommers, P. Furet, Discovery of potent 
antagonists of the interaction between human double minute 2 and tumor 
suppressor p53, J. Med. Chem. 43, 3205-3208 (2000). 

70. L. Cahilly-Snyder, T. Yang-Feng, U. Francke, D. L. George, Molecular analysis and 
chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 
cell line, Somatic Cell Mol. Genet. 13, 235-244 (1987). 

71. J. Momand, G. P. Zambetti, D. C. Olson, D. George, A. J. Levine, The mdm2 oncogene 
product forms a complex with the p53 protein and inhibits p53-mediated 
transactivation, Cell 69, 1237-1245 (1992). 

72. Y. Haupt, R. Maya, A. Kazaz, M. Oren, Mdm2 promotes the rapid degradation of p53, 
Nature 387, 296-299 (1997). 

73. R. Honda, H. Tanaka, H. Yasuda, Oncoprotein Mdm2 is a ubiquitin ligase E3 for tumor 
suppressor p53, FEBS Letters 420, 25-27 (1997). 

74. M. H. Kubbutat, S. N. Jones, K. H. Vousden, Regulation of p53 stability by Mdm2, 
Nature 387, 299-303 (1997). 

75. J. C. Lee, M. E. Peter, Regulation of apoptosis by ubiquitination, Immunol. Rev. 193, 
39-47 (2003). 

76. Y. Yang, X. Yu, Regulation of apoptosis: the ubiquitous way, FASEB J. 17, 790-799 
(2003). 

77. S. Nakamura, J. A. Roth, T. Mukhopadhyay, Multiple Lysine Mutations in the 
C-terminal domain of p53 interfere with Mdm2-dependent protein degradation and 
ubiquitination, Mol. Cell. Biol. 20, 9391-9398 (2000). 

78. M. S. Rodriguez, J. M. P. Desterro, S. Lain, D. P. Lane, R. T. Hay, Multiple C-terminal 
lysine residues target p53 for ubiquitin-proteasome-mediated degradation, Mol. Cell. 
Biol. 20, 8458-8467 (2000). 

 



81 

 

79. S. Fang, J. P. Jensen, R. L. Ludwig, K. H. Vousden, A. M. Weissman, Mdm2 is a RING 
finger-dependent ubiquitin protein ligase for itself and p53, J. Biol. Chem. 275, 8945-
8951 (2000). 

80. Honda, H. Yasuda, Activity of Mdm2, a ubiquitin ligase, toward p53 or itself is 
dependent on the RING finger domain of the ligase., Oncogene 19, 1473-1476 (2000). 

81. D. Michael, M. Oren, The p53-Mdm2 module and the ubiquitin system, Semin. Cancer 
Biol. 13, 49-58 (2003). 

82. S. R. Grossman, M. Perez, A. L. Kung, M. Joseph, C. Mansur, Z. X. Xiao, S. Kumar, P. M 
Howley, D. M. Livingston, p300/Mdm2 complexes participate in Mdm2-mediated p53 
degradation, Molecular Cell 2, 405-415 (1998). 

83. S. R. Grossman, M. E. Deato, C. Brignone, H. M. Chan, A. L. Kung, H. Tagami, Y. 
Nakatani, D. M. Livingston, Polyubiquitination of p53 by a ubiquitin ligase activity of 
p300, Science 300, 342-344 (2003). 

84. J. Roth, M. Dobbelstein, D. A. Freedman, T. Shenk, A. J. Levine, Nucleo-cytoplasmic 
shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a 
pathway used by the human immunodeficiency virus rev protein., EMBO J. 17, 
554-564 (1998). 

85. A. Ito, Y. Kawaguchi, C. H. Lai, J. J. Kovacs, Y. Higashimoto, E. Appella, T. P. Yao, 
Mdm2-HDAC1-mediated deacetylation of p53 is required for its degradation, EMBO J. 
21, 6236-6245 (2002). 

86. P. H. Kussie, S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A. J. Levine, N. P. 
Pavletich, Structure of the Mdm2 oncoprotein bound to the p53 tumor suppressor 
transactivation domain, Science 274, 948-953 (1996). 

87. M. A. McCoy, J. J. Gesell, M. M. Senior, D. F. Wyss, Flexible lid to the p53-binding 
domain of human Mdm2: Implications for p53 regulation, PNAS 100, 1645-1648 
(2003). 

88. L. T. Vassilev, Mdm2 inhibitors for cancer therapy, Trends Mol. Med. 13, 23-31 (2007). 

89. I. Massova, P. A. Kollman, Computational alanine scanning to probe protein−protein 

interactions:   a novel approach to evaluate binding free energies, J. Am. Chem. Soc. 

121, 8133-8143 (1999). 

90. H. Zhong, H. A. Carlson, Computational studies and peptidomimetic design for the 
human p53–Mdm2 complex, Proteins Struct. Funct. Bioinf. 58, 222-234 (2005). 

91. L. M. Espinoza-Fonseca, J. G. Trujillo-Ferrara, Conformational changes of the p53-
binding cleft of Mdm2 revealed by molecular dynamics simulations, Biopolymers 83, 
365-373 (2006). 

 



82 

 

92. A. Macchiarulo, N. Giacche, A. Carotti, M. Baroni, G. Cruciani, R. Pellicciari, Targeting 
the conformational transitions of Mdm2 and MdmX: insights into dissimilarities and 
similarities of p53 recognition, J. Chem. Inf. Mod. 48, 1999-2009 (2008). 

93. S. A. Showalter, L. Bruschweiler-Li, E. Johnson, F. Zhang, R. Brüschweiler, Quantitative 
lid dynamics of Mdm2 reveals differential ligand binding modes of the p53-binding 
cleft, J. Am. Chem. Soc. 130, 6472-6478 (2008). 

94. T. L. Joseph, A. Madhumalar, C. J. Brown, D. P. Lane, C. S. Verma, Differential binding 
of p53 and nutlin to Mdm2 and MdmX: computational studies, Cell Cycle 9, 
1167-1181 (2010). 

95. G. W. Yu, M. Vaysburd, M. D. Allen, G. Settanni, A. R. Fersht, Structure of human 
Mdm4 N-terminal domain bound to a single-domain antibody, J. Mol. Biol. 385, 
1578-1589 (2009). 

96. S. G. Dastidar, A. Madhumalar, G. Fuentes, D. P. Lane, C. S. Verma, Forces mediating 
protein–protein interactions: a computational study of p53 “approaching” Mdm2, 
Theor. Chem. Acc. 125, 621-635 (2009). 

97. M. P. Abbracchio, R. Brambilla, S. Ceruti, H. O. Kim, D. K. von Lubitz, K. A. Jacobson, F. 
Cattabeni, G protein-dependent activation of phospholipase C by adenosine A3 
receptors in rat brain, Mol. Pharmacol. 48, 1038-1045 (1995). 

98. B. B. Fredholm, A. P. IJzerman, K. A. Jacobson, K. N. Klotz, J. Linden, International 
Union of Pharmacology. XXV. Nomenclature and classification of adenosine 
receptors, Pharmacol. Rev. 53, 527-552 (2001). 

99. R. Yaar, M. R. Jones, J.-F. Chen, K. Ravid, Animal models for the study of adenosine 
receptor function, J. Cell. Physiol. 202, 9-20 (2005). 

100. D. M. Perez, S. S. Karnik, Multiple signaling states of G-protein-coupled receptors, 
Pharmacol. Rev. 57, 147-161 (2005). 

101. M. Klinger, M. Freissmuth, C. Nanoff, Adenosine receptors: G protein-mediated 
signalling and the role of accessory proteins, Cell. Signal. 14, 99-108 (2002). 

102. K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. Le Trong, 
D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto, M. Miyano, Crystal structure of 
rhodopsin: A G protein-coupled receptor, Science 289, 739-745 (2000). 

103. F. Fanelli, P. G. De Benedetti, Inactive and active states and supramolecular 
organization of GPCRs: insights from computational modeling, J. Comput. Aided Mol. 
Des. 20, 449-461 (2006). 

104. V.-P. Jaakola, M. T. Griffith, M. A. Hanson, V. Cherezov, E. Y. Chien, J. R. Lane, A. P. 
Ijzerman, R. C. Stevens, The 2.6 angstrom crystal structure of a human A2A adenosine 
receptor bound to an antagonist, Science 322, 1211-1217 (2008). 

 



83 

 

105. D. M. Rosenbaum, V. Cherezov, M. A. Hanson, S. G. Rasmussen, F. S. Thian, T. S. 
Kobilka, H. J. Choi, X. J. Yao, W. I. Weis, R. C. Stevens, B. K. Kobilka, GPCR engineering 
yields high-resolution structural insights into β2-adrenergic receptor function, Science 
318, 1266-1273 (2007). 

106. T. Warne, M. J. Serrano-Vega, J. G. Baker, R. Moukhametzianov, P. C. Edwards, R. 
Henderson, A. G. Leslie, C. G. Tate, G. F. Schertler, Structure of a β1-adrenergic 
G-protein-coupled receptor, Nature 454, 486-491 (2008). 

107. T. Okada, M. Sugihara, A. N. Bondar, M. Elstner, P. Entel, V. Buss, The retinal 
conformation and its environment in rhodopsin in light of a new 2.2 A crystal 
structure, J. Mol. Biol. 342, 571-583 (2004). 

108. K. Lundgren, C. Holm, G. Landberg, Hypoxia and breast cancer: prognostic and 
therapeutic implications, Cell. Mol. Life Sci. 64, 3233-3247 (2007). 

109. Q.-T. Le, D. Courter, Clinical biomarkers for hypoxia targeting, Cancer and Metastasis 
Rev. 27, 351-362 (2008). 

110. G. L. Semenza, Targeting HIF-1 for cancer therapy, Nat. Rev. Cancer 3, 721-732 
(2003). 

111. A. Bairoch, R. Apweiler, The SWISS-PROT protein sequence database and its 
supplement TrEMBL in 2000, Nucleic Acids Res. 28, 45-48 (2000). 

112. N. V. Iyer, S. W. Leung, G. L. Semenza, The human hypoxia-inducible factor 1α gene: 
HIF-1α structure and evolutionary conservation, Genomics 52, 159-165 (1998). 

113. D. Baker, A. Sali, Protein Structure Prediction and Structural Genomics, Science 294, 
93-96 (2001). 

114. S. Shacham, M. Topf, N. Avisar, F. Glaser, Y. Marantz, S. Bar-Haim, S. Noiman, Z. Naor, 
O. M. Becker, Modeling the 3D structure of GPCRs from sequence, Med. Res. Rev. 21, 
472-483 (2001). 

115. N. Eswar, B. Webb, M. A. Marti‐Renom, M. S. Madhusudhan, D. Eramian, M. Shen, U. 
Pieper, A. Sali, Comparative protein structure modeling using Modeller, Curr. 
Protocols in Bioinformatics, 15, 5.6.1–5.6.30 (2006). 

116. B. John, A. Sali, Comparative protein structure modeling by iterative alignment, 
model building and model assessment, Nucleic Acids Res. 31, 3982-3992 (2003). 

117. S. Wu, Y. Zhang, LOMETS: a local meta-threading-server for protein structure 
prediction, Nucleic Acids Res. 35, 3375-3382 (2007). 

118. S. C. Lovell, I. W. Davis, W. B. Arendall, P. I. de Bakker, J. M. Word, M. G. Prisant, J. S. 
Richardson, D. C. Richardson, Structure validation by C-α geometry: phi, psi and C-β 
deviation, Proteins 50, 437-450 (2003). 

 



84 

 

119. A. Chapman-Smith, M. L. Whitelaw, Novel DNA Binding by a Basic Helix-Loop-Helix 
Protein: The role of the dioxin receptor PAS domain, J. Biol. Chem. 281, 12535-12545 
(2006). 

120. A. Chapman-Smith, J. K. Lutwyche, M. L. Whitelaw, Contribution of the Per/Arnt/Sim 
(PAS) domains to DNA binding by the basic helix-loop-helix PAS transcriptional 
regulators, J. Biol. Chem. 279, 5353-5362 (2004). 

121. B. H. Jiang, E. Rue, G. L. Wang, R. Roe, G. L. Semenza, Dimerization, DNA binding, and 
transactivation properties of hypoxia-inducible factor 1, J. Biol. Chem. 271, 
17771-17778 (1996). 

122. T. Liu, Y. Lin, X. Wen, R. N. Jorissen, M. K. Gilson, BindingDB: a web-accessible 
database of experimentally determined protein-ligand binding affinities, Nucleic Acids 
Res. 35, D198-201 (2007). 

123. G. Michel, E. Minet, I. Ernest, I. Roland, F. Durant, J. Remacle, C. Michiels, A model for 
the complex between the hypoxia-inducible factor-1 (HIF-1) and its consensus DNA 
sequence, J. Biomol. Struct. Dyn. 18, 169-179 (2000). 

124. Glide, version 5.5, Schrödinger, LLC, New York, NY, 2009. 

125. G. Klebe, Virtual ligand screening: strategies, perspectives and limitations, Drug 
Discov. Today 11, 580-594 (2006). 

126. M. H. J. Seifert, J. Kraus, B. Kramer, Virtual high-throughput screening of molecular 
databases, Curr. Opin.Drug Discov. Devel. 10, 298-307 (2007). 

127. B. H. Jiang, J. Z. Zheng, S. W. Leung, R. Roe, G. L. Semenza, Transactivation and 
inhibitory domains of hypoxia-inducible factor 1α. Modulation of transcriptional 
activity by oxygen tension, J. Biol. Chem. 272, 19253-19260 (1997). 

128. C. W. Pugh, J. F. O’Rourke, M. Nagao, J. M. Gleadle, P. J. Ratcliffe, Activation of 
hypoxia-inducible factor-1; definition of regulatory domains within the α subunit, J. 
Biol. Chem. 272, 11205-11214 (1997). 

129. Z. Arany, L. E. Huang, R. Eckner, S. Bhattacharya, C. Jiang, M. A. Goldberg, H. F. Bunn, 
D. M. Livingston, An essential role for p300/CBP in the cellular response to hypoxia, 
Proc. Natl. Acad. Sci. U.S.A. 93, 12969-12973 (1996). 

130. M. Ema, K. Hirota, J. Mimura, H. Abe, J. Yodoi, K. Sogawa, L. Poellinger, Y. Fujii-
Kuriyama, Molecular mechanisms of transcription activation by HLF and HIF-1α in 
response to hypoxia: their stabilization and redox signal-induced interaction with 
CBP/p300, EMBO J. 18, 1905-1914 (1999). 

131. P. Carrero, P. Carrero, K. Okamoto, P. Coumailleau, S. O'Brien, H. Tanaka, L. 
Poellinger, Redox-regulated recruitment of the transcriptional coactivators 
CREB-binding protein and SRC-1 to hypoxia-inducible factor 1α, Mol. Cell. Biol. 20, 
402-415 (2000). 



85 

 

132. D. Lando, D. J. Peet, D. A. Whelan, J. J. Gorman, M. L. Whitelaw, Asparagine 
hydroxylation of the HIF transactivation domain a hypoxic switch, Science 295, 
858-861 (2002). 

133. Desmond Molecular Dynamics System, version 2.2, D. E. Shaw Research, New York, 
NY,2009. Maestro-Desmond interoperability tools, version 2.2, Schrödinger, New 
York, NY,2009. 

134. J. J. Irwin, B. K. Shoichet, ZINC--a free database of commercially available compounds 
for virtual screening, J. Chem. Inf. Model. 45, 177-182 (2005). 

135. D. C. Fry, S. D. Emerson, S. Palme, B. T. Vu, C. M. Liu, F. Podlaski, NMR structure of a 
complex between Mdm2 and a small molecule inhibitor, J. Biomol. NMR 30, 163-173 
(2004). 

136. Schrödinger Suite 2009 Induced Fit Docking protocol; Glide version 5.5, Schrödinger, 
LLC,New York, NY, 2009; Prime version 2.1, Schrödinger, LLC, New York, NY, 2009. 

137. H. Zhong, H. A. Carlson, Computational studies and peptidomimetic design for the 
human p53–Mdm2 complex, Proteins 58, 222-234 (2005). 

138. A. Carotti, A. Macchiarulo, N. Giacchè, R. Pellicciari, Targeting the conformational 
transitions of Mdm2 and MdmX: insights into key residues affecting p53 recognition, 
Proteins 77, 524-535 (2009). 

139. L. T. Vassilev, B. T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic, N. Kong, U. 
Kammlott, C. Lukacs, C. Klein, N. Fotouhi, E. A. Liu, In vivo activation of the p53 
pathway by small-molecule antagonists of Mdm2, Science 303, 844-848 (2004). 

140. F. G. Sajjadi, G. S. Firestein, cDNA cloning and sequence analysis of the human A3 
adenosine receptor, Biochim. Biophys. Acta 1179, 105-107 (1993). 

141. C. A. Salvatore, M. A. Jacobson, H. E. Taylor, J. Linden, R. G. Johnson, Molecular 
cloning and characterization of the human A3 adenosine receptor, Proc. Natl. Acad. 
Sci. U.S.A. 90, 10365-10369 (1993). 

142. A. Fiser, A. Sali, ModLoop: automated modeling of loops in protein structures, 
Bioinformatics 19, 2500-2501 (2003). 

143. P. Benkert, M. Künzli, T. Schwede, QMEAN server for protein model quality 
estimation, Nucleic Acids Res. 37, W510-514 (2009). 

144. R. A. Laskowski, M. W. MacArthur, D. S. Moss, J. M. Thornton, PROCHECK: a program 
to check the stereochemical quality of protein structures, J. Appl. Crystallogr. 26, 283-
291 (1993). 

145. H. Frauenfelder, S. G. Sligar, P. G. Wolynes, The energy landscapes and motions of 
proteins, Science 254, 1598-1603 (1991). 

 



86 

 

146. V. Colotta, D. Catarzi, F. Varano, F. R. Calabri, O. Lenzi, G. Filacchioni, C. Martini, L. 
Trincavelli, F. Deflorian, S. Moro, 1,2,4-Triazolo[4,3-a]quinoxalin-1-one moiety as an 
attractive scaffold to develop new potent and selective human A3 adenosine 
receptor antagonists: synthesis, pharmacological, and ligand-receptor modeling 
studies, J. Med. Chem. 47, 3580-3590 (2004). 

147. O. Lenzi, V. Colotta, D. Catarzi, F. Varano, G. Filacchioni, C. Martini, L. Trincavelli, O. 
Ciampi, K. Varani, F. Marighetti, E. Morizzo, S. Moro, 4-Amido-2-aryl-1,2,4-
triazolo[4,3-a]quinoxalin-1-ones as new potent and selective human A3 adenosine 
receptor antagonists. synthesis, pharmacological evaluation, and ligand-receptor 
modeling studies, J. Med. Chem. 49, 3916-3925 (2006). 

148. V. Colotta, D. Catarzi, F. Varano, O. Lenzi, G. Filacchioni, C. Martini, L. Trincavelli, O. 
Ciampi, C. Traini, A. M. Pugliese, F. Pedata, E. Morizzo, S. Moro, Synthesis, 
ligand-receptor modeling studies and pharmacological evaluation of novel 4-
modified-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent and 
selective human A3 adenosine receptor antagonists, Bioorg. Med. Chem. 16, 6086-
6102 (2008). 

149. V. Colotta, D. Catarzi, F. Varano, F. Capelli, O. Lenzi, G. Filacchioni, C. Martini, L. 
Trincavelli, O. Ciampi, A. M. Pugliese, F. Pedata, A. Schiesaro, E. Morizzo, S. Moro, 
New 2-arylpyrazolo[3,4-c]quinoline derivatives as potent and selective human A3 
adenosine receptor antagonists. Synthesis, pharmacological evaluation, and 
ligand-receptor modeling studies, J. Med. Chem. 50, 4061-4074 (2007). 

150. E. Morizzo, F. Capelli, O. Lenzi, D. Catarzi, F. Varano, G. Filacchioni, F. Vincenzi, K. 
Varani, P. A. Borea, V. Colotta, S. Moro, Scouting human A3 adenosine receptor 
antagonist binding mode using a molecular simplification approach: from 
triazoloquinoxaline to a pyrimidine skeleton as a key study, J. Med. Chem. 50, 
6596-6606 (2007). 

151. C. Bolcato, C. Cusan, G. Pastorin, G. Spalluto, B. Cacciari, K. N. Klotz, E. Morizzo, S. 
Moro, Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: Effect of the 
N-5 bond type on the affinity and selectivity at the four adenosine receptor subtypes, 
Purinergic Signal. 4, 39-46 (2008). 

152. Y. C. Kim, X. D. Ji, K. A. Jacobson, Derivatives of the triazoloquinazoline adenosine 
antagonist (CGS15943) are selective for the human A3 receptor subtype, J. Med. 
Chem. 39, 4142-4148 (1996). 

153. Phase, version 3.1, Schrödinger, LLC, New York, NY, 2009. 

154. J. Zupan, M. Novič, I. Ruisánchez, Kohonen and counterpropagation artificial neural 
networks in analytical chemistry, Chemometr. Intell. Lab. 38, 1-23 (1997). 

155. J. Gasteiger, J. Zupan, Neural networks in chemistry, Angew. Chem. Int. Edit. 32, 
503-527 (1993). 

156. QikProp, version 3.2, Schrödinger, LLC, New York, NY, 2009. 



87 

 

157. S. Wu, J. Skolnick, Y. Zhang, Ab initio modeling of small proteins by iterative TASSER 
simulations, BMC Biology 5, 17 (2007). 

158. Y. Zhang, A. Kolinski, J. Skolnick, TOUCHSTONE II: a new approach to ab initio protein 
structure prediction, Biophys. J. 85, 1145-1164 (2003). 

159. Y. Zhang, D. Kihara, J. Skolnick, Local energy landscape flattening: parallel hyperbolic 
Monte Carlo sampling of protein folding, Proteins 48, 192-201 (2002). 

160. Y. Zhang, J. Skolnick, SPICKER: A clustering approach to identify near‐native protein 
folds, J. Comput. Chem. 25, 865-871 (2004). 

161. Y. Zhang, J. Skolnick, TM-align: a protein structure alignment algorithm based on the 
TM-score, Nucleic Acids Res. 33, 2302 -2309. 

162. M. Feig, P. Rotkiewicz, A. Kolinski, J. Skolnick, C. L. Brooks III, Accurate reconstruction 
of all‐atom protein representations from side‐chain‐based low‐resolution models, 
Proteins 41, 86-97 (2000). 

163. A. A. Canutescu, A. A. Shelenkov, R. L. Dunbrack Jr, A graph-theory algorithm for rapid 
protein side-chain prediction, Protein Sci. 12, 2001-2014 (2003). 

164. H. J. C. Berendsen, D. van der Spoel, R. van Drunen, GROMACS: A message-passing 
parallel molecular dynamics implementation, Comput. Phys. Commun. 91, 43-56 
(1995). 

165. E. Lindahl, B. Hess, D. V. D. Spoel, GROMACS 3.0: a package for molecular simulation 
and trajectory analysis, J. Mol. Model. 7, 306-317 (2001). 

166. A. Pedretti, L. Villa, G. Vistoli, VEGA: a versatile program to convert, handle and 
visualize molecular structure on Windows-based PCs, J. Mol. Graph. Model. 21, 47-49 
(2002). 

167. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, J. Mol. Graph. 
14, 33-38, 27-28 (1996). 

168. W. Sherman, T. Day, M. P. Jacobson, R. A. Friesner, R. Farid, Novel Procedure for 
Modeling Ligand/Receptor Induced Fit Effects, J. Med. Chem. 49, 534-553 (2005). 

169. A. E. Cho, V. Guallar, B. J. Berne, R. Friesner, Importance of accurate charges in 
molecular docking: Quantum Mechanical/Molecular Mechanical (QM/MM) approach, 
J. Comput. Chem. 26, 915-931 (2005). 



88 

 

APPENDIX 

Group 1: triazolo-quinoxaline derivatives 
 

 

 
 

Ligand R1 R2 R3 pKi 

1 NHCOCH3 H H 8,70 

2 NHCOCH3 OMe H 7,45 

3 NHCOCH3 H NH2 7,32 

4 NHCOCH3 OMe NH2 8,26 

5 NHCOPh H H 8,83 

6 NHCOPh OMe H 8,54 

7 NHCOPh NO2 H 7,00 

8 NHCOPh H NO2 7,66 

9 NHCOPh OMe NO2 6,66 

10 NHCOPh H NH2 7,66 

11 NHCOPh OMe NH2 9,00 

12 NHCOCHPh2 OMe H 7,36 

13 NHCOCHPh2 H H 9,09 

14 NHCOCHPh2 H NO2 7,83 

15 NHCOCHPh2 OMe NO2 9,10 

16 NHCOCHPh2 H NH2 8,06 

17 NHCOCHPh2 OMe NH2 8,59 

18 N(COPh)2 H H 8,28 

19 N(COPh)2 OMe H 8,48 

20 N(COPh)2 OMe NO2 6,46 

21 N(COPh)2 H NH2 5,91 

22 NHCOPh H H 8,83 

23 NHCOC6H4-4-COOMe OMe H 5,86 

24 NHCO-4-Pyridyl H H 8,21 

25 NHCO-4-Pyridyl OMe H 7,17 

26 NHSO2Ph H H 7,49 

27 NHSO2Ph OMe H 8,66 

28 NHSO2Ph H NO2 7,00 

29 NHSO2CH3 H H 5,85 

30 NHSO2CH3 OMe H 6,31 
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31 N(SO2CH3)2 H H 8,26 

32 N(SO2CH3)2 OMe H 6,41 

33 NHCONHCH2Ph H H 7,08 

34 NHCONHCH2Ph OMe H 7,19 

35 NHCONHCH2Ph H NO2 7,20 

36 NHCONHCOPh H H 5,89 

37 NHCONH-C6H4-3I H H 6,02 

38 OCH2Ph H H 7,68 

39 OCH2Ph OMe H 8,19 

40 OH NO2 H 9,22 

 
 
 
 
 
 
 

Group 2: pyrazolo-quinoline derivatives 
 

 
 

Ligand R pKi 

41 Ph 7,51 

42 C6H4-3-Me 8,30 

43 C6H4-4-Me 8,49 

44 C6H4-4-OMe 8,49 

45 C6H4-3-OMe 8,89 

46 C6H4-4-NO2 7,07 

47 CH2Ph 7,13 
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Ligand R1 R2 pKi 

48 NH2 H 6,26 

49 NH2 3-Me 7,00 

50 NH2 4-Me 6,73 

51 NH2 4-OMe 7,04 

52 NH2 3-OMe 6,64 

53 NHCOMe H 7,32 

54 NHCOMe 3-Me 7,51 

55 NHCOMe 4-Me 6,91 

56 NHCOMe 4-OMe 6,99 

57 NHCOPh H 8,68 

58 NHCOPh 3-Me 8,37 

59 NHCOPh 4-Me 8,36 

60 NHCOPh 4-OMe 8,47 

61 NHCOCH2Ph H 8,00 

62 NHCOCH2Ph 3-Me 8,41 

63 NHCOCH2Ph 4-Me 8,25 

64 NHCOCH2Ph 4-OMe 8,35 

65 NHCOCHPh2 H 8,00 

66 NHCOCHPh2 3-Me 8,41 

67 NHCOCHPh2 4-Me 8,25 

68 NHCOCHPh2 4-OMe 8,35 

69 NHCONHCH2Ph H 8,08 

70 NHCONHCH2Ph 3-Me 8,47 

71 NHCONHCH2Ph 4-Me 6,59 

72 N(COPh)2 H 8,21 

73 N(COPh)2 3-Me 7,63 

74 N(COPh)2 4-Me 7,52 

75 N(COPh)2 4-OMe 7,76 
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Group 3: annelated triazolo-pyrazine derivatives 
 

 
 

Ligand R pKi 

76 H 6,60 

77 OMe 8,48 

78 F 6,23 

 

 

 

Ligand R1 R2 pKi 

79 NH2 H 8,51 

80 NH2 OMe 6,80 

81 NH2 OH 5,87 

82 NH2 F 6,31 

83 NHC6H11 H 7,81 

84 NHC5H9 H 8,08 

85 NHCOMe H 6,86 

86 NHCOPh H 7,15 

87 NHCOCH2Ph H 7,93 

88 NHCOMe OMe 7,39 

89 NHCOPh OMe 8,34 

90 N(COPh)2 H 6,47 

91 N(COPh)2 OMe 8,11 

92 H H 6,18 

93 H OMe 7,24 
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Ligand R pKi 

94 H 6,55 

95 OMe 8,33 

 

 

 

 

 

 

Ligand R1 R2 pKi 

96 H H 8,32 

97 H OMe 7,33 

98 NHC6H11 H 6,55 

99 NHC5H9 H 6,94 

100 NHCOPh H 7,66 

101 NHCOPh OMe 6,66 

102 N(COPh)2 OMe 6,46 
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Group 4: heterocyclic derivatives  
 

 

Ligand R pKi 

103 CONHPh 8,74 

104 COCH-Ph2 9,04 

105 COPh 7,80 

106 SO2-Ph 6,13 

 

 

 

Ligand pKi 

107 7,74 

 

 

 

Ligand pKi 

108 6,20 
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Ligand R pKi 

109 NH2 7,85 

110 NHCOCH2Ph 9,19 

 

 

 

Ligand R1 R2 pKi 

111 H C6H4-4-OMe 7,06 

112 H C6H5 6,46 

113 H C6H4-4-Me 7,01 

114 H C6H4-4-Br 6,26 

115 COCH3 Ph 7,60 

116 COPh Ph 6,74 

 

 

 

Ligand R pKi 

117 C6H4-4-OMe 7,71 

118 C6H5 7,30 

119 C6H4-4-Me 7,57 

120 C6H4-4-Br 7,57 
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Ligand pKi 

121 7,27 

 


