
Università degli Studi di Palermo

Dipartimento di Matematica e Applicazioni

Dottorato di Ricerca in Matematica e Informatica

XXIII◦ Ciclo - S.S.D. Inf/01

Université Paris-Est

École doctorale MSTIC

Thése de doctorat en Informatique

Optimal Parsing for Dictionary

Text Compression

Author: LANGIU Alessio

Ph.D. Thesis in Computer Science

April 3, 2012

PhD Commission:

Thesis Directors: Prof. CROCHEMORE Maxime University of Paris-Est

Prof. RESTIVO Antonio University of Palermo

Examiners: Prof. ILIOPOULOS Costas King’s College London

Prof. LECROQ Thierry University of Rouen

Prof. MIGNOSI Filippo University of L’Aquila

Referees: Prof. GROSSI Roberto University of Pisa

Prof. ILIOPOULOS Costas King’s College London

Prof. LECROQ Thierry University of Rouen

Summary

Dictionary-based compression algorithms include a parsing strategy to

transform the input text into a sequence of dictionary phrases. Given a text,

such process usually is not unique and, for compression purpose, it makes

sense to find one of the possible parsing that minimize the final compression

ratio. This is the parsing problem. An optimal parsing is a parsing strategy

or a parsing algorithm that solve the parsing problem taking account of

all the constraints of a compression algorithm or of a class of homogeneous

compression algorithms. Compression algorithm constrains are, for instance,

the dictionary itself, i.e. the dynamic set of available phrases, and how much

a phrase weights on the compressed text, i.e. the number of bits of which

the codeword representing such phrase is composed, also denoted as the

encoding cost of a dictionary pointer.

In more than 30th years of history of dictionary based text compression,

while plenty of algorithms, variants and extensions appeared and while dic-

tionary approach to text compression became one of the most appreciated

and utilized in almost all the storage and communication processes, only few

optimal parsing algorithms were presented. Many compression algorithms

still leaks optimality of their parsing or, at least, proof of optimality. This

happens because there is not a general model of the parsing problem that in-

cludes all the dictionary based algorithms and because the existing optimal

parsing algorithms work under too restrictive hypothesis.

This work focus on the parsing problem and presents both a general

model for dictionary based text compression called Dictionary-Symbolwise

Text Compression theory and a general parsing algorithm that is proved

to be optimal under some realistic hypothesis. This algorithm is called

iii

Dictionary-Symbolwise Flexible Parsing and it covers almost all of the known

cases of dictionary based text compression algorithms together with the large

class of their variants where the text is decomposed in a sequence of symbols

and dictionary phrases.

In this work we further consider the case of a free mixture of a dictio-

nary compressor and a symbolwise compressor. Our Dictionary-Symbolwise

Flexible Parsing covers also this case. We have indeed an optimal parsing

algorithm in the case of dictionary-symbolwise compression where the dictio-

nary is prefix closed and the cost of encoding dictionary pointer is variable.

The symbolwise compressor is any classical one that works in linear time, as

many common variable-length encoders do. Our algorithm works under the

assumption that a special graph that will be described in the following, is

well defined. Even if this condition is not satisfied, it is possible to use the

same method to obtain almost optimal parses. In detail, when the dictio-

nary is LZ78-like, we show how to implement our algorithm in linear time.

When the dictionary is LZ77-like our algorithm can be implemented in time

O(n log n). Both have O(n) space complexity.

Even if the main aim of this work is of theoretical nature, some ex-

perimental results will be introduced to underline some practical effects of

the parsing optimality in terms of compression performance and to show

how to improve the compression ratio by building extensions Dictionary-

Symbolwise of known algorithms. Finally, some more detailed experiments

are hosted in a devoted appendix.

iv

Resume

Les algorithmes de compression de données basés sur les dictionnaires

incluent une stratégie de parsing pour transformer le texte d’entrée en une

séquence de phrases du dictionnaire. Etant donné un texte, un tel processus

n’est généralement pas unique et, pour comprimer, il est logique de trouver,

parmi les parsing possibles, celui qui minimise le plus le taux de compression

finale.

C’est ce qu’on appelle le problème du parsing. Un parsing optimal est

une stratégie de parsing ou un algorithme de parsing qui résout ce problème

en tenant compte de toutes les contraintes d’un algorithme de compression

ou d’une classe d’algorithmes de compression homogène.

Les contraintes de l’algorithme de compression sont, par exemple, le dic-

tionnaire lui-même, c’est-à-dire l’ensemble dynamique de phrases disponibles,

et combien une phrase pèse sur le texte comprimé, c’est-à-dire quelle est la

longueur du mot de code qui représente la phrase, appelée aussi le coût du

codage d’un pointeur de dictionnaire.

En plus de 30 ans d’histoire de la compression de texte par dictionnaire,

une grande quantité d’algorithmes, de variantes et d’extensions sont ap-

parus. Cependant, alors qu’une telle approche de la compression du texte

est devenue l’une des plus appréciées et utilisées dans presque tous les proces-

sus de stockage et de communication, seuls quelques algorithmes de parsing

optimaux ont été présentés.

Beaucoup d’algorithmes de compression manquent encore d’optimalité

pour leur parsing, ou du moins de la preuve de l’optimalité. Cela se produit

parce qu’il n’y a pas un modèle général pour le problème de parsing qui

inclut tous les algorithmes par dictionnaire et parce que les parsing optimaux

v

existants travaillent sous des hypothèses trop restrictives.

Ce travail focalise sur le problème de parsing et présente à la fois un

modèle général pour la compression des textes basée sur les dictionnaires

appelé la théorie Dictionary-Symbolwise et un algorithme général de pars-

ing qui a été prouvé être optimal sous certaines hypothèses réalistes. Cet

algorithme est appelé Dictionary-Symbolwise Flexible Parsing et couvre pra-

tiquement tous les cas des algorithmes de compression de texte basés sur

dictionnaire ainsi que la grande classe de leurs variantes où le texte est

décomposé en une séquence de symboles et de phrases du dictionnaire.

Dans ce travail, nous avons aussi considéré le cas d’un mélange libre

d’un compresseur par dictionnaire et d’un compresseur symbolwise. Notre

Dictionary-Symbolwise Flexible Parsing couvre également ce cas-ci. Nous

avons bien un algorithme de parsing optimal dans le cas de compression

Dictionary-Symbolwise où le dictionnaire est fermé par préfixe et le coût

d’encodage des pointeurs du dictionnaire est variable. Le compresseur sym-

bolwise est un compresseur symbolwise classique qui fonctionne en temps

linéaire, comme le sont de nombreux codeurs communs à longueur variable.

Notre algorithme fonctionne sous l’hypothèse qu’un graphe spécial, qui

sera décrit par la suite, soit bien défini. Même si cette condition n’est

pas remplie, il est possible d’utiliser la même méthode pour obtenir des

parsing presque optimaux. Dans le détail, lorsque le dictionnaire est comme

LZ78, nous montrons comment mettre en œuvre notre algorithme en temps

linéaire. Lorsque le dictionnaire est comme LZ77 notre algorithme peut être

mis en œuvre en temps O(n log n) où n est le longueur du texte. Dans les

deux cas, la complexité en espace est O(n). Même si l’objectif principal

de ce travail est de nature théorique, des résultats expérimentaux seront

présentés pour souligner certains effets pratiques de l’optimalité du parsing

sur les performances de compression et quelques résultats expérimentaux

plus détaillés sont mis dans une annexe appropriée.

vi

Contents

Introduction 1

1 Background 5

1.1 Self-Information and Entropy 5

1.2 Entropy Encoding . 7

1.3 Encoding of Numbers and Commas 9

1.4 Dictionary Methods . 9

2 Dictionary-Simbolwise Text Compression 11

2.1 Dictionary Compression . 11

2.2 Dictionary-Symbolwise Compression 14

2.3 The Graph Based Model . 19

2.4 On Parsing Optimality . 22

2.5 Dictionary-Symbolwise Can Have Better Ratio 25

3 History of the Parsing Problem 33

3.1 Static Dictionaries and Uniform Costs 33

3.1.1 Suffix-closed Dictionary Optimal Parsing 34

3.2 Flexible Parsing . 36

3.3 The Optimal Parsing Problem 36

4 Dictionary-Symbolwise Flexible Parsing 39

4.1 The c-supermaximal Edges 40

4.2 The Subgraph G′
A,T . 47

4.3 The Dictionary-Symbolwise Flexible Parsing Algorithm . . . 50

4.4 Time and Space Analyses . 53

vii

5 The Multilayer Suffix Tree 59

5.1 Background and Definitions 59

5.2 The Idea . 61

5.3 The Data Structure . 63

6 Conclusion 65

A Experiments 71

viii

Introduction

Data compression concerns with transformations thought a more concise

data representation. When such transformation is perfectly invertible we

have a lossless data compression, otherwise, a lossy compression. Since data

preservation is usually required for textual data, lossless data compression

is often called text compression. On the opposite, usually working on visual

data, such as the images or video, on sound data and on many other data

domains, a certain degree of approximation is allowed to the compression

- decompression process in favour of a stronger compression, i.e. a smaller

compression ratio.

Roughly speaking, compression ratios greater than a certain threshold,

given by the percentage of information contained in the data, are reachable

by text compression techniques as they strip just redundancy in the text.

Stronger compressions imply data approximation because part of their infor-

mation is lost along the compression process. The quantity of information

in a certain data or, more precisely, the average information inside the data

provided by a certain source is called entropy. The entropy ratio is then a

limit for text compression, i.e. it is a lower bound for the compression ratio.

Entropy, data complexity and data compression are therefore bidden all

together. Indeed, fundamental and seminal methods for dictionary based

compression, such as the Lempel’ and Ziv’s methods, were firstly introduced

as text complexity measures.

Lempel’ and Ziv’s methods are still the basis of almost all recent dic-

tionary compression algorithms. More in detail they are the LZ77 and the

LZ78 compression methods, i.e. the Lempel and Ziv compression methods

presented in 1977 and 1978 years. They are the firsts relevant dictionary

1

methods that use dynamic dictionaries. Static dictionary compression was

already known as it is a side effect of some code and transducer theories.

Static dictionary compression was the topics of many works around ’70, as

the text substitution methods in Schuegraf’ and Heaps’s work (1974) or in

the Wagner’s work (1973).

Dictionary-based compression include, more or less explicitly, a parsing

strategy that transform the input text into a sequence of dictionary phrases.

Since that usually the parsing of a text is not unique, for compression pur-

pose it makes sense to find one of the possible parsing that minimizes the

final compression ratio. This is the parsing problem.

In the foundational methods (such as the work of Lempel and Ziv), the

parsing problem was not immediately clear as it was confused with the dictio-

nary building strategy. The overall compression algorithms strictly imposed

the parsing of the text. As soon as many variant of such methods appeared

along the sequent years, like the Storer’ and Szymanski’s variant (1982) or

the Welch’s variant (1984), the maintenance of the dynamic dictionary was

clearly divided from the text parsing strategy and, in the meantime, the

importance of coupling a kind of compression on the symbols different from

the compression for the dictionary phrases taken place. This last feature was

initially undervalued in the theoretical model of the compression processes.

The first parsing problem model by graphs is due to Schuegraf et al.

(see [33]). They associated a graph with as much nodes as many characters

constituting the text string and one edge for each dictionary phrase. In this

model, the optimal parsing is obtained by using shortest path algorithms on

the associated graph. But this approach was not recommended for practical

purpose as it was considered too time consuming. Indeed, the graph can

have quadratic size with respect to the text length.

A classic formalization of a general dictionary compression algorithm

was proposed by Bell et al. in the late 1990, focusing on just three points.

The dictionary definition, the dictionary phrases encoding method and the

parsing strategy. This model does not acquire all the richness of many ad-

vanced dictionary based compression algorithms as it does not take account

of the symbolwise compression.

Recently, in chronological order, [12], [25], [9] and [5] revised both a more

2

general dictionary compression algorithms definition and the graph based

parsing problem model, and they also presented optimal solutions. A similar

optimal parsing result for the LZ77-like dictionary case, were independently

obtained in [17] where the symbolwise feature is anyhow not considered.

The study of free mixtures of two compressors is quite involved and it

represents a new theoretical challenge. Free mixture has been implicitly or

explicitly used for a long time in many fast and effective compressors such

as the gzip compression utility (see [30, Sect. 3.23]), the PkZip Archiving

Tool (see [30, Sect. 3.23]), the Rolz Compressor1, and the MsZip cabi-

net archiving software (see [30, Sect. 3.7]), also known as CabArc. In

order to glance at compression performances see the web page of Mahoney’s

challenge2 about large text compression. In detail, there are two famous

compression methods that can work together: the dictionary encoding and

the statistical encoding, which are also called parsing (or macro) encoding

and symbolwise encoding, respectively. The fact that these methods can

work together is commonly accepted in practice even if the first theory of

Dictionary-Symbolwise methods started in [12].

This work focus on the parsing problem and introduce a twofold result;

a general model for dictionary based text compression called Dictionary-

Symbolwise theory and a general parsing algorithm that is proved to be

optimal under some realistic hypothesis. The Dictionary-Symbolwise model

extend both the Bell dictionary compression formalization and the Schuegraf

parsing model based on graphs to better fit to the wide class of common

compression algorithms.

The parsing algorithm we present is called Dictionary-Symbolwise Flex-

ible Parsing and it covers almost all the cases of the dictionary based text

compression algorithms together with the large class of their variants where

the text is parsed as a sequence of symbols and dictionary phrases. It ex-

ploits the prefix closed property of common dictionaries, i.e. both the LZ77

and LZ78-like dictionaries. It works for dynamic dictionaries and variable

1For an example see the RZM Order-1 ROLZ Compressor by Christian Martelock

(2008) web site: http://encode.ru/threads/1036. Last verified on December 2011
2Matt Mahoney’s Large Text Compression Benchmark web page:

http://mattmahoney.net/dc/text.html. Last verified on December 2011

3

costs either for dictionary phrases and symbols. His main part concerns

with the construction of a smallest subgraph that guarantees parsing op-

timality preservation and then a shortest path is found by using a classic

single source shortest path approach.

The symbolwise encoding can be any classical one that works in linear

time, as many common variable-length encoders do. Our algorithm works

under the assumption that a special graph that will be described in the fol-

lowing, is well defined. Even if this condition is not satisfied it is possible to

use the same method to obtain almost optimal parses. In detail, when the

dictionary is LZ78-like, we show that our algorithm has O(n) complexity,

where n is the size of the text. When the dictionary is LZ77-like our algo-

rithm can be implemented in time O(n log n). Both above solutions have

O(n) space complexity.

The advantages of using Dictionary-Symbolwise methods are both the-

oretical and practical. The theoretical advantage with respect to the pure

dictionary compression is described in Section 2.5.

Even if the main aim of this work is of theoretical nature, some ex-

perimental results will be introduced to underline some practical effects of

the parsing optimality in compression performance and some more detailed

experiments are hosted in a devoted appendix.

4

Chapter 1

Background

This chapter concerns with some well known concepts from the field of

the Information Theory, that are fundamental to deal with data compres-

sion. Information Theory literature is quite large by now. We remand to

[30], [31] and [32] books for a comprehensive look on background notions

and standard techniques of data compression. We report here just few pre-

requisites to make readers comfortable with notation and concepts we will

use in the rest of this thesis.

1.1 Self-Information and Entropy

A foundational concept for Information Theory is the Shannon’s self-

information definition. It is a quantitative measure of information. Let

A be a probabilistic event, i.e. A is the set of outcomes of some random

experiment. If P (A) is the probability that the event A will occur, then the

self-information associated with A is given by: i(A) = −log2P (A) bits.

If we have a set of independent events Ai, which are sets of outcomes of

some experiment S, which sample space is S = ∪Ai, then the average self-

information associated with the random experiment S is given by H(S) =
∑

P (Ai)i(Ai) = −
∑

P (Ai) log2P (Ai) bits. This quantity is called the

entropy associated with the experiment.

Now, if the experiment is a source S that emits a string S of symbols

over the alphabet Σ = {1, ...,m}, i.e. S = s1s2s3... with si ∈ Σ, then the

5

sample space is the set of all the strings the source can produce, i.e. the set

of all the possible sequences of alphabet symbols of any length. The entropy

of the source S is given by

H(S) = lim
n→∞

1

n
Gn

with

Gn = −
m
∑

i1=1

...
m
∑

in=1

P (s1 = i1, ..., sn = in)logP (s1 = i1, ..., sn = in).

If each symbol in the string is independent and identically distributed (iid),

then we have that

Gn = −n
m
∑

i=1

P (i)logP (i) and H(S) = −
m
∑

i=1

P (i)logP (i).

When the symbol probabilities are not independent from each other, the

distribution follow an intrinsic model of probability of the source. In this

case, the above two entropy equations are not equal and we distinguish them

calling the latter first order entropy.

The probability distribution over the symbols of a source is not usually

a priori known and the best we can do is to infer the distribution looking

inside some sample string. Obviously, the underlay assumption is that the

source is a ergodic source, i.e. its output at any time has the same statistical

properties.

The Markov process is the common way to model the source distribution

when symbols are not independent each other. In this case we have that

each new outcome depends on all the previous one. A discrete time Markov

chain is a special type of Markov model for those experiments where each

observation depends on just the k previous one, i.e.

P (sn|sn−1, sn−2, ...) = P (sn|sn−1, sn−2, ..., sn−k)

where the set {sn−1, sn−2, ..., sn−k} is the state of the k-order Markov pro-

cess. The entropy of a Markov process is defined as the average value of the

entropy at each state, i.e.

H(Mk) = −
∑

sn−k

P (sn−k)
∑

sn−k+1

P (sn−k+1|sn−k)
∑

sn−2

P (sn−2|sn−3, ..., sn−k)...

6

...
∑

sn−1

P (sn−1|sn−2, ..., sn−k)
∑

sn

P (sn|sn−1, ..., sn−k)logP (sn|sn−1, ..., sn−k)

where si ∈ Σ. In the data compression field is common to refer to the state

{sn−1, ..., sn−k} of previous symbols by using the string sn−k...sn−1 called

the context of length k of sn.

Empirical Entropy

The k-order empirical entropy (see [16]) is the measure of information

of a text T based on the number of repetitions in T of any substring w of

length k. Let be

Hk(T) = −
1

n

∑

w∈Σk

nw

[

∑

σ∈Σ

nwσ

nw
log

(

nwσ

nw

)

]

where n = |T |, Σ is the alphabet, w ∈ Σk is a string over Σ of length k, wσ is

the string w followed by the symbol σ and nw is the number of occurrences

of w in T .

This quantity does not refer to a source or to a probabilistic model, but it

only depends from the text T . The empirical entropy is used to measure the

performance of compression algorithms as a function of the string structure,

without any assumption on the input source.

1.2 Entropy Encoding

Entropy encoding, statistical codes or simbolwise codes, as they are also

called, are those compression methods that use the expectation value to

reduce the symbol representation. There are static model as well as adaptive

or dynamic models. They are usually coupled with a probabilistic model

that is in charge of providing symbol probability to the encoder. Common

models use symbol frequencies or the symbol context to predict the next

symbol.

The simplest statistical encoder is the 0th order arithmetic encoding.

It considers all the symbols as if they are independent each other. The

adaptive version use to estimate symbol probability with the frequency of

occurrence of any symbol in the already seen text.

7

Huffman coding keep count of the symbol frequencies while read the text

or by preprocessing it, and then assign shorter codewords of a prefix-free

codes to the most occurring symbols accordingly with the Huffman tree.

Arithmetic coding

The basic idea of arithmetic coding is to represent the entire input with

an interval of real numbers between 0 and 1. The initial interval is [0, 1)

and then it is divided in slots accordingly to the symbol probability. Once

that a symbol is encoded, the corresponding slot of the interval is divided

again accordingly with the adapted symbol distribution. While the active

slots becomes finer and finer, its internal points bit representation grows.

As soon as the extremal points of the slot have an equal upper part in

their bit representation, these bits are outputted and the slot is scaled to

be maintained under the finite precision of the representation of real values

inside the machine. As any point of a slot represents an infinite set of infinite

strings, all having the same prefix, one of them is chosen when the input

string terminate to be outputted. The termination ambiguity is usually

handled by using a special terminal symbol.

The output in length of arithmetic codes can be accurately estimated

by using the Markov process entropy or the empirical entropy. Moreover, it

is proved that their compression ratio tends asymptotically to the entropy

of the source. Obviously, better results are obtained when higher order

model are used, because the model gets closer to the real source model and

the compression ratio tends more quickly to the source entropy. On the

other side, higher order models need more time and space to be handled.

Furthermore, since that all the models of order equal or greater than the

source model are asymptotically the same and since that they perform about

the same even in practical cases, it is a crucial point for a data compressor to

estimate the order of the source and balancing the practical implementation

constrains.

8

1.3 Encoding of Numbers and Commas

Encoding is a fundamental stage of many compression algorithms which

consists of uniquely representing a sequence of integers as a binary sequence.

In the simplest case the encoder makes use of a code, that is a mapping of

the positive integers onto binary strings (codewords), in order to replace

each value in input with its corresponding codeword. Codewords can be

of variable-lengths as long as the resulting code is uniquely decodable, e.g.

the prefix-free codes. Prefix-free property requires that no codeword can be

equal to a prefix of another codeword. Several codes have been proposed

that achieve small average codeword-length whenever the frequencies of the

input integers are monotonically distributed, such that smaller values occur

more frequently than larger values.

The unary encoding of an integer n is simply a sequence of n 1s followed

by a 0. Unary encoding is rarely used as stand-alone tool and is often

component of more complex codes. It achieves optimality when integer

frequencies decrease exponentially as p(i+ 1) ≤ p(i)/2.

The Elias codes are a recursively defined family of encoders. Each mem-

ber is defined using the previous one starting from unary encoding as base

element. The representation of an integer x consists of a first part, where

the bit-length of the codeword is specified. Then, the standard binary rep-

resentation of x, without the most significant bit, follows. The first useful

Elias encoder is the well-known γ-code, which stores the prefix-part in unary.

Elias δ-code differs from γ-code also with a γ-code for first-part of the code-

words, rather than using unary code.

1.4 Dictionary Methods

Dictionary compression methods are based on the substitution of phrases

in the text with references to dictionary entries. A dictionary is an ordered

collection of phrases and a reference to a dictionary phrase is usually called

dictionary pointer. The idea is that if encoder and decoder share the same

dictionary and, for most of the dictionary phrases, the size of the represen-

tation in output of a dictionary pointer is less that the size of the phase

9

itself, then a shorter representation of the input text is obtained replacing

phrases with pointers. In order to proceed to phrase substitution, the text

has to be divided into a sequence of dictionary phrases. Such decomposi-

tion is called parsing and is not usually unique. For compression purpose

it makes sense to find one of the possible parsing that minimizes the final

compression ratio. This is the parsing problem.

The foundational methods in dictionary compression class are Lempel’

and Ziv’s LZ77 and LZ78 algorithms that will be extensively considered

along this thesis. Lempel’ and Ziv’s methods are the basis of almost all the

dictionary compression algorithms. They are the firsts relevant dictionary

methods that use dynamic dictionaries.

The LZ77 method consider the already seen text as the dictionary, i.e.

it uses a dynamic dictionary that is the set of all the substrings of the up

to the current position. The dictionary pointers refers to the occurrence of

the phrase in the text by using the couple (length, offset) corresponding to

an occurrence of the phrase. As phrase are usually repeated more then once

in the text and since that pointer with smaller offset are usually smaller,

occurrence close to the current position are preferred. Notice that this dic-

tionary is both prefix and suffix closed. The parsing strategy use the greedy

approach to find the longest phrase in the dictionary equal to a prefix of the

rest of the text.

The LZ78 dictionary is a subset of the LZ77 one. It is prefix-closed but

it is not suffix-closed. Each dictionary phrases is equal to another dictionary

phrase with a symbol appended at the end. Exploiting this property, dic-

tionary is implemented as a ordered collection of couple (dictionary pointer,

symbol), where the dictionary pointer refers to a previous dictionary phrase

and the dictionary contains the empty string. As long as the input text is

analyzed, the longest match between the dictionary and the text is selected

to form a new dictionary phrase. Indeed, a new couple is formed by this

selected dictionary phrase and the symbol in the text that follow the occur-

rence of this phrase. This new dictionary phrase is added to the dynamic

dictionary and it is chosen also to be part of the parsing of the text.

More detail about these method will be reported in next chapters.

10

Chapter 2

Dictionary-Simbolwise Text

Compression

Many dictionary based compression algorithms and their practical vari-

ants use to parse the text as a sequence of both dictionary phrases and

symbols. Different encoding are used for those two kinds of parse segments.

Indeed, many variants of the classic Lempel and Ziv algorithms allows to

parse the text as a free mixture of dictionary phrases and symbols. This

twofold nature of the parsing segments was not caught in classic formula-

tion of the dictionary based compression theory. In this chapter we recall

the classical dictionary compression algorithm formulation and the classic

model of the parsing problem before to present the more general frame-

work for Dictionary-Symbolwise compression that better fit to almost all

the dictionary based algorithms.

2.1 Dictionary Compression

In [4] it is possible to find a survey on Dictionary methods and of Sym-

bolwise methods and a description of the deep relationship among them (see

also [3, 11, 30, 31]).

Definition 2.1. A dictionary compression algorithm, as noticed in [4], can

be fully described by:

1. The dictionary description, i.e. a static collection of phrases or a

11

complete algorithmic description on how the dynamic dictionary is

built and updated.

2. The encoding of dictionary pointers in the compressed data.

3. The parsing method, i.e. the algorithm that splits the uncompressed

data in dictionary phrases.

We notice that any of the above three points can depend on each other,

i.e. they can be mutually interdependent.

As reader can notice, above three points are general enough to describe

both static and dynamic dictionary and both static and variable costs for

the dictionary phrase representation in the output data. We want now to

focus on its third point where the parsing is defined as just a sequence of

dictionary pointers. The drawback of this constrain is to bring to an overuse

of formalism as it is not easy to describe the role played by symbols. Let us

show this effect by examples. The characterization of the classic LZ77 and

LZ78 algorithms according to the above Definition 2.1 are stated in what

follows.

LZ77 characterization

Given a text T ∈ Σ∗ and processing it left to right, at time i the text up

to the ith character has been read.

1. Let be Di = {wa, such that w ∈ Fact(T [i − P : i]) and |wa| ≤ Q},
where P is the maximum offset for text factors, Q is the maximum

length for dictionary phrases and a ∈ Σ. T [i − P : i] is called the

search buffer and T [i : i+Q] is called the look-ahead buffer.

2. The dictionary phrase wa = T [i− p : i− p+ q]a is represented by the

vector (p, q, a) where p is the backward offset in the search buffer at

which the phrase wa appears. The threefold vector (p, q, a) is coded

by three fixed length sequence of bits where p has length log2(P), q

has length log2(Q) and a is represented with 8 bits by using the ascii

code for symbols.

12

3. The parsing follows a simple rule. At any time i, if the i is the po-

sition in the text at which the already chosen parsing ends up, the

match between the longest prefix of the look-ahead buffer T [i : i+Q]

and a dictionary phrase wa ∈ Di is chosen to be the last phrase of

the parsing of the text up to the position i + |wa| (i.e. up to the

position i + q, for wa represented by (p, q, a)). Otherwise, the al-

ready chosen parsing overpass position i in the text and nothing has

to be addicted to the current parsing. For instance if the parsing of

the text up to the position i is the ordered set of dictionary phrases

{(p1, q1, a1), (p2, q2, a2), ..., (pj , qj, aj)}, then the parsing up to the po-

sition i+q is {(p1, q1, a1), (p2, q2, a2), ..., (pj , qj, aj), (pj+1, qj+1, aj+1) =

(p, q, a)}.

LZ78 characterization

Given a text T ∈ Σ∗ and processing it left to right, at time i the text

up to the ith character has been read. The algorithm maintain a table of

phrases Ti initialized with the empty word at row 0, i.e. T0 = [ε, ...].

1. The dictionary Di is defined as Di = {wa such that w ∈ Ti and

a ∈ Σ}. Let j ≥ i be the position over the text at which the already

chosen parsing ends up. If j > i, then the dictionary doesn’t change,

i.e Ti = Ti+1 and therefore Di = Di+1. Otherwise, for j = i, a

dictionary phrase wa ∈ Di is chosen to be part of the parsing and to

be included in the set of phrases Ti+1. Let wa1 be this phrase. wa1 is

inserted in the table T at the first empty row, therefore Ti+1 becomes

Ti ∪ wa1 and Di+1 = Di ∪ wa1Σ. Di is prefix closed at any time by

construction. When the table Ti becomes full, some deletion strategy

has to take place in order to allow dictionary adaptation to the input

text. Typically, some long entry are removed, preserving the prefix

closed property.

2. The dictionary phrase wa ∈ Di is represented by the couple (x, a)

where x is the row number of w in Ti. The couple (x, a) is encoded by

using a fixed length encodings for the integer x followed by the ascii

value of a.

13

3. At any time i, if the i is the position in the text at which the already

chosen parsing ends up, the match between the longest prefix of the un-

compressed text T [i : n] and a dictionary phrase wa ∈ Di is chosen to

be the last phrase of the parsing of the text up to the position i+ |wa|.
Otherwise, the already chosen parsing overpass position i in the text

and nothing has to be addicted to the current parsing. For instance if

the parsing of the text up to the position i is the ordered set of dictio-

nary phrases {(x1, a1), (x2, a2), ..., (xj , aj)}, then the parsing up to the

position i+ |wa| is {(x1, a1), (x2, a2), ..., (xj , aj), (xj+1, aj+1) = (x, a)}.

2.2 Dictionary-Symbolwise Compression

We propose a new definition for the class of dictionary based compression

algorithms that takes account of the presence of single characters beside

to dictionary phrases. For this reason we chose to call them dictionary-

symbolwise algorithms. The following definition is an extension of the above

Definition 2.1 due to Bell et al. (see [4]) and it refines what was presented

in [9, 12, 25].

Definition 2.2. A dictionary-symbolwise compression algorithm is specified

by:

1. The dictionary description.

2. The encoding of dictionary pointers.

3. The symbolwise encoding method.

4. The encoding of the flag information.

5. The parsing method.

A dictionary-symbolwise algorithm is a compression algorithm that uses

both dictionary and symbolwise compression methods. Such compressors

may parse the text as a free mixture of dictionary phrases and literal char-

acters, which are substituted by the corresponding pointers or literal codes,

respectively. Therefore, the description of a dictionary-symbolwise algo-

rithm also includes the so called flag information, that is the technique used

14

to distinguish the actual compression method (dictionary or symbolwise)

used for each segment or factor of the parsed text. Often, as in the case of

LZSS (see [36]), an extra bit is added either to each pointer or encoded char-

acter to distinguish between them. Encoded information flag can require less

space than one bit according to the encoding used.

For instance, a dictionary-symbolwise compression algorithm with a fixed

dictionary D = {ab, cbb, ca, bcb, abc} and the static symbolwise codeword as-

signment [a = 1, b = 2, c = 3] could compress the text abccacbbabbcbcbb as

Fd1Fs3Fd3Fd2Fd1Fd4Fd2, where Fd is the flag information for dictionary

pointers and Fs is the flag information for the symbolwise code.

More formally, a parsing of a text T in a dictionary-symbolwise algorithm

is a pair (parse , F l) where parse is a sequence (u1, · · · , us) of words such

that T = u1 · · · us and where Fl is a boolean function that, for i = 1, . . . , s

indicates whether the word ui has to be encoded as a dictionary pointer

or as a symbol. See Table 2.1 for an example of dictionary-symbolwise

compression.

LZ77 characterization

Given a text T ∈ Σ∗ and processing it left to right, at time i the text up

to the ith character has been read.

1. Let be Di = {w, such that w ∈ Fact(T [i−P : i]) and |w| < Q}, where
P is the maximum offset for text factors, Q is the maximum length

for dictionary phrases. Let T [i−P : i] be called the search buffer and

T [i : i+Q] be called the look-ahead buffer.

Input ab c ca cbb ab bcb cbb

Output Fd1 Fs3 Fd3 Fd2 Fd1 Fd4 Fd2

Table 2.1: Example of compression for the text abccacbbabbcbcbb by a sim-

ple Dictionary-Symbolwise algorithm that use D = {ab, cbb, ca, bcb, abc}
as static dictionary, the identity as dictionary encoding and the mapping

[a = 1, b = 2, c = 3] as symbolwise encoding.

15

2. The dictionary phrase w = T [i − p : i − p + q] is represented by the

vector (p, q) where p is the backward offset in the search buffer at

which the phrase w appears. The vector (p, q), also called dictionary

pointer, is coded by two fixed length sequence of bits where p has

length log2(P) and q has length log2(Q).

3. Any symbol a ∈ Σ is represented with 8 bits by using the ascii code

for symbols.

4. The flag information is not explicitly encoded as it is completely pre-

dictable. Indeed, after a dictionary pointer there is a symbol and after

a symbol there is a dictionary pointer.

5. The parsing impose a strictly alternation between dictionary pointers

and symbols. At any time i, if the i is the position in the text at

which the already chosen parsing ends up, the match between the

longest prefix of the look-ahead buffer T [i : i + Q] and a dictionary

phrase w ∈ Di is chosen to be outputted followed by the mismatch

symbol. For instance, if w is the longest match between the dictionary

and the look-ahead buffer, with w represented by the couple (p, q),

then Fd p q Fs Ti+|w| are concatenated to the parsing. Otherwise, the

already chosen parsing overpass position i in the text and nothing has

to be addicted to the current parsing.

This new formalization allows to describe dictionary algorithms in a

more natural way. Moreover, it allows to easily describe those variants

where just a single point of the algorithm is different. For instance, let us

focus on LZSS, the LZ77 based algorithm due to Storer and Szymanski of

the ’82 (see [36]). The main idea of this algorithm is to relax the parsing

constrain about dictionary pointers and symbols alternation, allowing their

us as needed.

LZSS characterization

Given a text T ∈ Σ∗ and processing it left to right, at time i the text up

to the ith character has been read.

16

1. Let be Di = {w, such that w ∈ Fact(T [i−P : i]) and |w| < Q}, where
P is the maximum offset for text factors, Q is the maximum length

for dictionary phrases. Let T [i−P : i] be called the search buffer and

T [i : i+Q] be called the look-ahead buffer.

2. The dictionary phrase w = T [i − p : i − p + q] is represented by the

vector (p, q) where p is the backward offset in the search buffer at

which the phrase w appears. The vector (p, q), also called dictionary

pointer, is coded by two fixed length sequence of bits where p has

length log2(P) and q has length log2(Q).

3. Any symbol a ∈ Σ is represented with 8 bits by using the ascii code

for symbols.

4. The flag information is explicitly encoded by using 1 bit conventional

value. For instance, Fd = 0 and Fs = 1.

5. At any time i, if the i is the position in the text at which the already

chosen parsing ends up, the match between the longest prefix of the

look-ahead buffer T [i : i+Q] and a dictionary phrase w ∈ Di is chosen

to be outputted. For instance, if w is the longest match between

the dictionary and the look-ahead buffer, with w represented by the

couple (p, q), then Fd p q } are concatenated to the parsing. If there

is no match between dictionary and look-ahead buffer, then a single

symbol is emitted as Fs T [i+1]. Otherwise, the already chosen parsing

overpass position i in the text and nothing has to be added to the

current parsing.

Dictionry-Symbolwise Schemes

Let now focus on the parsing point. Some dictionary compression algo-

rithm, as LZ77 and LZ78, imposes strictly a parsing strategy while some

other don’t. For any dictionary compression algorithm we can build a class

of variants taking fixed the first four points and changing the parsing strat-

egy or, if it is needed, arranging a bit the first four points to allow using

of another parsing. Usually the variants of the same class maintains de-

coder compliant, i.e. their can be decoded by the same decoding algorithm.

17

Algorithms of the same class can be compared looking for the the optimal

parsing, i.e. the parsing that minimize compression ratio. We call scheme

such class of algorithms.

Definition 2.3. Let a dictionary-symbolwise scheme be a nonempty set

of dictionary-symbolwise algorithms having in common the same first four

specifics, i.e. they differ from each other by the parsing methods only.

A scheme does not need to contain all the algorithms having the same

first four specifics. Let us notice that any of the specifics from 1 to 5 above

can depend on all the others, i.e. they can be mutually interdependent.

The word scheme has been used by other authors with other meaning, e.g.

scheme is sometimes used as synonymous of algorithm or method. In this

thesis scheme always refers to the above Definition 2.3.

Remark 1. For any dictionary-symbolwise scheme S and for any parsing

method P , a dictionary-symbolwise compression algorithm AS,P is com-

pletely described by the first four specifics of any of the algorithms belonging

to S together with the description of the parsing method P .

Let us here briefly analyze some LZ-like compression algorithms. The

LZ78 algorithm is, following the above definitions, a dictionary-symbolwise

algorithm. It is easy to naturally arrange its original description to a

dictionary-symbolwise complaint definition. Indeed, its dictionary build-

ing description, its dictionary pointer encoding, its symbolwise encoding,

its parsing strategy and the null encoding of the flag information are, all

together, a complete dictionary-symbolwise algorithm definition. The flag

information in this case is not necessary, because there is not ambiguity

about the nature of the encoding to use for any of the parse segments of

the text as the parsing strategy impose a rigid alternation between dictio-

nary pointers and symbols. Similar arguments apply for LZ77. Later on

we refer to these or similar dictionary-symbolwise algorithms that have null

flag information as “pure” dictionary algorithms and to scheme having only

“pure” dictionary algorithms in it as “pure” scheme.

LZW (see [30, Section 3.12]) naturally fits Definition 2.1 of dictionary

algorithms and, conversely, LZSS naturally fits Definition 2.2 on dictionary-

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(ab)
(c) (c) (c)

(ab)
(c) (c)

(bcb)

(abc) (ca) (cbb) (bcb) (cbb)

Figure 2.1: Graph GD,T for the text T = abccacbbabbcbcbb and for the

static dictionary D = {ab, cbb, ca, bcb, abc, c}. The dictionary phrase

associated with an edge is reported near the edge label within parentheses.

symbolwise algorithms as well as the LZMA algorithm (see [30, Section

3.24]).

Let us notice that sometimes the flag information may be implicitly

represented. For instance, in the Deflate compression method, characters

and part of the dictionary pointers (i.e. the length part of the couples

(length,distance) that represent the dictionary pointers) are firstly mapped

into a single codeword space (together with few control characters), and

then encoded via Huffman codes belonging to just a single Huffman tree.

This mapping hides the flag information that has to be considered implicitly

represented, but still existing. It is easy to show how in this case the flag

information is involved in the compression process. Indeed the frequency of

any character related code is equal to the frequency of the character on the

character space, times the frequency of the flag information for the character

encoding. The same argument applies to the length-codeword frequencies.

In this way, the compressed stream is a sequence of character codewords and

dictionary pointer codewords bringing implicitly the flag informations.

2.3 The Graph Based Model

Extending the approach introduced for static dictionaries in [33] to the

dynamic dictionary case, similarly to what it is already done in [12, 25, 9, 5],

we show how to associate a directed weighted graph GA,T = (V,E,L) with

any dictionary compression algorithm A, any text T = a1a2a3 · · · an and

any cost function C : E → R+ in the following way.

The set of vertices is V = {0, 1, . . . , n}, where vertex i corresponds to ai,

19

i.e. the i-th character in the text T , for 1 ≤ i ≤ n and vertex 0 corresponds

to the position at the beginning of the text, before any characters. The

empty word ε is associated with vertex 0, that is also called the origin of

the graph. The set of directed edges is

E = {(p, q) ⊂ (V × V) | p < q and ∃ wp,q = T [p+ 1 : q] ∈ Dp}

where T [p + 1 : q] = ap+1ap+2 · · · aq and Dp is the dictionary relative to

the p-th processing step, i.e. the step in which the algorithm either has

processed the input text up to character ap, for p > 0, or it has begun, for

p = 0. For each edge (p, q) in E, we say that (p, q) is associated with the

dictionary phrase wp,q = T [p+1 : q] ∈ Dp. In the case of a static dictionary,

Di is constant along all the algorithm steps, i.e. Di = Dj ,∀i, j = 0 · · · n.
Let L be the set of edge labels Lp,q for every edge (p, q) ∈ E, where Lp,q is

defined as the cost (weight) of the edge (p, q) when the dictionary Dp is in

use, i.e. Lp,q = C((p, q)).

Let us consider for instance the case where the cost function C associates

the length in bit of the encoded dictionary pointer of the dictionary phrase

wp,q to the edge (p, q), i.e. C((p, q)) = length(encode(pointer(wp,q))), with

wp,q ∈ Dp. In this case the weight of a path P from the origin to the node

n = |T | on the graph GA,T corresponds to the size of the output obtained

by using the parsing induced by P. The path of minimal weight on such

graph corresponds to the parsing that achieves the best compression. The

relation between path and parsing will be investigated in Section 2.4.

If the cost function is a total function, then Lp,q is defined for each edge

of the graph.

Remark 2. Let us say that GA,T is well defined iff Lp,q is defined for each

edge (p, q) of the graph GA,T .

For instance, the use of common variable-length codes for dictionary

pointers, as Elias or Fibonacci codes or static Huffman codes, leads to a

well defined graph. Sometimes the cost function is a partial function, i.e.

Lp,q is not defined for some p and q, and GA,T in such cases is not well

defined. For instance, encoding the dictionary pointers via statistical codes,

like Huffman codes or arithmetic codes, leads to partial cost functions. In-

deed the encoding of pointers and, accordingly, the length of the encoded

20

dictionary pointers may depend on how many times a code is used (i.e. in

variable length codes, the codeword lengths depend either on how frequently

they are used in the past for adaptive codes or on how frequently their are

used in the overall compression process for offline codes like the semi static

Huffman codes). In these cases the cost function depends on the parsing (it

depends on the parsing chosen up to a certain position of the text or on the

parsing of the whole text, respectively). Moreover, the cost function may

be undefined for edges that represent phrases never used by the parsing.

The latter case is still an open problem, i.e. it is not known how to find

an optimal parsing strategy when the encoding costs depend on the parsing

itself.

Remark 3. We call GA,T the “Schuegraf’s graph” in honour of the first

author of [33] where a simpler version was considered in the case of static-

dictionary compression method.

We can naturally extend the definition of the graph associated with an

algorithm to the dictionary-symbolwise case. Given a text T = a1 . . . an,

a dictionary-symbolwise algorithm A, and a cost function C defined on

edges, the graph GA,T = (V,E,L) is defined as follows. The vertices set is

V = {0 · · · n}, with n = |T |. The set of directed edges E = Ed

⋃

Es, where

Ed = {(p, q) ⊂ (V × V) | p < q − 1, and ∃w = T [p+ 1 : q] ∈ Dp}

is the set of dictionary edges and

Es = {(q − 1, q) | 0 < q ≤ n}

is the set of symbolwise edges. L is the set of edge labels Lp,q for every edge

(p, q) ∈ E, where the label Lp,q = C((p, q)). Let us notice that the cost

function C hereby used has to include the cost of the flag information to

each edge, i.e. C((p, q)) is equal to the cost of the encoding of Fd (Fs, resp.)

plus the cost of the encoded dictionary phrase w ∈ Dp (symbolwise aq, resp.)

associated with the edge (p, q) where (p, q) ∈ Ed (Es, resp.). Moreover, since

Ed does not contain edges of length one by definition, GA,T = (V,E,L) is

not a multigraph. Since this graph approach can be extended to multigraph,

with a overhead of formalism, one can relax the p < q − 1 constrain in the

21

definition of Ed to p ≤ q − 1. All the results we will state in this thesis,

naturally extend to the multigraph case.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

8 (ab)
12 (abc)

8 (ca)
8 (ca)

8 (ab)
12 (bcb) 12 (bcb)

14 (cbb)

5 (a) 4 (b) 5 (c) 3 (c) 4 (a) 3 (c) 4 (a) 5 (b) 4 (b) 6 (c) 3 (b) 4 (c) 5 (b) 4 (b)

Figure 2.2: Graph GA,T for the text T = abccacabbcbcbb, for

the dictionary-symbolwise algorithm A with static dictionary D =

{ab, abc, bcb, ca, cbb} and cost function C as defined in the graph. The

dictionary phrase or the symbol associated with an edge is reported near

the edge label within parenthesis.

2.4 On Parsing Optimality

In this section we assume that the reader is well acquainted with LZ-like

dictionary encoding and with some simple statistical encodings such as the

Huffman encoding.

Definition 2.4. Fixed a dictionary description, a cost function C and a

text T , a dictionary (dictionary-symbolwise) algorithm is optimal within a

set of algorithms if the cost of the encoded text is minimal with respect to

all others algorithms in the same set. The parsing of an optimal algorithm

is called optimal within the same set.

When the bit length of the encoded dictionary pointers is used as cost

function, the previous definition of optimality is equivalent to the classical

well known definition of bit-optimality for dictionary algorithm. Notice that

the above definition of optimality strictly depends on the text T and on a

set of algorithms. A parsing can be optimal for a certain text but not for

an another one. Obviously, we are mainly interested on parsings that are

optimal either for all texts over an alphabet or for classes of texts. Whenever

it is not explicitly written, from now on when we talk about optimal parsing

22

we mean optimal parsing for all texts. About the set of algorithm it makes

sense to find sets as large as possible.

Classically, there is a bijective correspondence between parsings and

paths in GA,T from vertex 0 to vertex n, where optimal parses correspond to

minimal paths and vice-versa. We say that a parse (path, resp.) induces a

path (parse, resp.) to denote this correspondence. This correspondence was

firstly stated in [33] only in the case of sets of algorithms sharing the same

static dictionary and where the encoding of pointers has constant cost.

For example the path along vertices (0, 3, 4, 5, 6, 8, 11, 12, 13, 14) is the

shortest path for the graph in Fig. 2.2. Authors of [12] were the first

to formally extend the Shortest Path approach to dynamically changing

dictionaries and variable costs.

Definition 2.5. A scheme S has the Schuegraf property if, for any text T

and for any pair of algorithms A,A′ ∈ S, the graph GA,T = GA′,T with

GA,T well defined.

This property of schemes is called property of Schuegraf in honor of the

first of the authors in [33]. In this case we define GS,T = GA,T as the graph

of (any algorithm of) the scheme. The proof of the following proposition is

straightforward.

Proposition 2.4.1. There is a bijective correspondence between optimal

parsings and shortest paths in GS,T from vertex 0 to vertex n.

Definition 2.6. Let us consider an algorithm A and a text T and suppose

that graph GA,T is well defined. We say that A is graph optimal (with

respect to T) if its parsing induces a shortest path in GA,T from the origin

(i.e. vertex 0) to vertex n, with n = |T |. In this case we say that its parsing

is graph optimal.

Let A be an algorithm such that for any text T the graph GA,T is well

defined. We want to associate a scheme SCA with it in the following way.

Let S be the set of all algorithms A such that for any text T GA,T exists

(i.e. it is well defined). Let B and C two algorithms in S. We say that B
and C are equivalent or B ≡ C if, for any text T , GB,T = GC,T .

23

We define the scheme SCA to be the equivalence class that has A as a

representative. It is easy to prove that SCA has the Schuegraf property.

We can connect the definition of graph optimal parsing with the previous

definition of SCA to obtain the next proposition, which proof is a easy conse-

quence of the Proposition 2.4.1 and the Schuegraf property of SCA. Roughly

speaking, the graph optimality within the scheme SCA implies scheme (or

global) optimality.

Proposition 2.4.2. Let us consider an algorithm A such that for any text T

the graph GA,T is well defined. Suppose further that for a text T the parsing

of A is graph optimal. Then the parsing of A of the text T is (globally)

optimal within the scheme SCA.

Figure 2.3: Locally but not globally optimal parsing

We have simple examples (see Figure 2.3), where a parsing of a text is

graph optimal and the corresponding algorithm belongs to a scheme that has

not the Schuegraf property and it is not optimal within the same scheme.

For instance, let us define a dictionary scheme where the dictionary is

composed by 〈a, ab〉 if the parsing of processed text has reached an even

position (starting from position 0) with costs 10 and 20 respectively. The

dictionary is 〈a, b〉 if the parsing of processed text has reached an odd po-

sition with costs 5 each. Notice that now the dictionary phrase “a” has a

different cost than before. The dictionary and the costs are changing as a

function of the reached position, depending if this position is even or odd,

and, in turn, it depends on the parsing. Therefore this scheme has not the

Schuegraf property because there is not an unique Shuegraf graph GA,T for

all the algorithms in the scheme. Indeed, given a text T and A, A′ in the

scheme, with GA,T , GA′,T well defined, GA,T is different from GA′,T as A
has a different parse from A′.

24

Let us now consider the text T = ab. As first parsing let us choose

the greedy parsing, that at any reached position chooses the longest match

between text and dictionary. The graph GA,T for this greedy algorithm has

three nodes, 0, 1, 2, and only two edges, both outgoing 0, one to node 1 and

cost 10 and another to node 2 and cost 20. The greedy parsing reaches the

end of the text with this second arc which has global cost 20 and then it

is graph optimal. As second parsing we choose the anti-greedy that at any

reached position chooses the shortest match between text and dictionary.

The graph GA′,T for this anti-greedy algorithm has three nodes, 0, 1, 2, and

three edges, two outgoing 0, one to node 1 and cost 10 and another to node

2 and cost 20 and a third outgoing 1 to node 2 and cost 5. The parsing of

the anti-greedy algorithm is (a)(b) with cost 15. Therefore both the greedy

and the anti-greedy parsing are graph optimal but the greedy one is not

(globally) optimal.

2.5 Dictionary-Symbolwise Can Have Better Ra-

tio

So, why should we use dictionary-symbolwise compressors?

From a practical point of view, coupling a fast symbolwise compres-

sor to a dictionary compressor gives one more degrees of freedom to pars-

ing, increasing compression ratio without slowing up the entire compres-

sion process. Or, at the other extreme, a dictionary compressor coupled

with a powerful symbolwise compressor can speed up the decompression

process without decreasing the compression ratio. This approach that mix

together dictionary compression and symbolwise compression methods is

already widely used in practical compression software solutions, even if it

scientific basis were not clearly defined and it was treated just as a practical

trick to enhance compression ratio and to take under control and improve the

decompression speed. Several viable algorithms and most of the commercial

data compression programs, such as gzip, zip or cabarc, are, following our

definition, dictionary-symbolwise. Still from a practical point of view, some

experimental results are showed and discussed in next section.

25

In this section instead we study some theoretical reasons for using dictionary-

symbolwise compression algorithms.

First of all, it is not difficult to give some “artificial” and trivial example

where coupling a dictionary and a symbolwise compressor give rise to a

better optimal solution. Indeed let us consider the static dictionary D =

{a, b, ba, bb, abb} together a cost function C that could represents the number

of bits of a possible code: {C(a) = 8, C(b) = 12, C(ba) = 16, C(bb) =

16, C(abb) = 4}.

A greedy parsing of the text babb is (ba)(bb) and the cost of this parsing

is 32. An optimal parsing for this dictionary is (b)(abb) that has cost 16.

This example shows, as also the one of Figure 2.3, that a greedy parsing is

not always an optimal parsing in dictionary compressors.

Let us consider further the following static symbolwise compressor that

associate with the letter a a code of cost 8 and associate with the letter b

a code of cost 4 that could represents the number of bits of this code. The

cost of coding babb following this symbolwise compressor is 20.

If we connect them in a dictionary-symbolwise compressor then an opti-

mal parsing is S(b)D(abb) where the flag information is represented by the

letter S for symbolwise of next parse phrase or D that stands for dictionary.

The cost of the trivially encoded flag information is one bit for each letter

or phrase. Therefore the cost of this parsing is 10.

In this subsection, however, we will prove something more profound than

artificial examples such the one above. Indeed, from a theoretical point of

view Ferragina et al. (cf. [17]) proved that the compression ratio of the

classic greedy-parsing of a LZ77 pure dictionary compressor may be far

from the bit-optimal pure dictionary compressor by a multiplicative factor

Ω(log n/ log log n), which is indeed unbounded asymptotically. The family

of strings that is used in [17] to prove this result, is a variation of a family

that was used in [24].

We show in next two subsections a similar result between the bit-optimal

dictionary compressor and a dictionary-symbolwise compressor. Therefore a

bit optimal dictionary-symbolwise compressor can use, in some pathological

situation, the symbolwise compressor to avoid them and be provably better

26

than a simple bit optimal dictionary compressor.

LZ77 Case

Let us define these two compressors. The first is a LZ77 based compres-

sor that allows overlaps with unbounded windows as dictionary and with a

Huffman encoding on the lengths and an optimal parser. The encoding of

pointers can be any of the classical intelligent encoding. We just impose an

Huffman coding on the lengths.

We further denote by OPT-LZH(s) the bit length of the output of this

compressor on the string s.

The same LZ77 is used as dictionary compressor in the dictionary-

symbolwise compressor. Clearly we do not include the parser in the dictionary-

symbolwise compressor, but, analogously as above, we suppose we have an

optimal parser for the dictionary-symbolwise compressor, no matter about

the description. The flag information {D,S} is coded by a run-length en-

coder. The cost of a run is subdivided over all symbolwise arcs of the run,

i.e. if there is a sequence of n consecutive symbolwise arcs in the optimal

parsing then the cost of these n flag information S (for Symbolwise) will be

in total O(log n) and the cost of each single flag information in this run will

be O(lognn).

It remains to define a symbolwise compression method.

In the next result we could have used a PPM* compressor but, for sim-

plicity, we use a longest match symbolwise. That is, the symbolwise at

position k of the text searches for the closest longest block of consecutive

letters in the text up to position k−1 that is equal to a suffix ending in posi-

tion k. This compressor predicts the k+1-th character of the text to be the

character that follows the block. It writes a symbol “y” (that is supposed

not to be in the text) if this is the case. For otherwise it uses an escape

character n (that is supposed not to be in the text) and then write down

the correct character plainly. A temporary output alphabet has therefore

two characters more than the characters in the text. This temporary output

will be subsequently encoded by a run-length encoder (see [15]).

This is not a very smart symbolwise compressor but it fits our purposes,

27

and it is simple to analyze.

We further denote by OPT-DS(s) the bit length of the output of this

dictionary-symbolwise compressor on the string s.

Theorem 2.5.1. There exists a constant c > 0 such that for every n′ > 1

there exists a string s of length |s| ≥ n′ satisfying

OPT-LZH(s)

|s| ≥ c
log |s|

log log |s|OPT-DS(s).

Proof. For every n′ let us pick a binary word w of length 2n, n ≥ n′, w =

a1a2 · · · a3n that has the following properties.

1. For any i, 1 = 1, 2 · · · n compressor OPT-LZH(s) cannot compress the

word aiai+1 · · · a2i+n−1 of length n+i with a compression ratio greater

than 2.

2. every factor (i.e. every block of consecutive letters) of w having length

3 log 3n of w is unique, i.e. it appears in at most one position inside

w.

Even if it could be hard to explicitly show such a word, it is relatively

easy to show that such a word exists. Indeed, following the very beginning

of the Kolmogorov’s theory, the vast majority of words are not compressible.

A simple analogous counting argument can be used to prove that property

1) is satisfied by the vast majority of strings of length 2n, where, for vast

majority we mean that the percentage of strings not satisfying 1) decreases

exponentially in n. Here, to be safer, we allowed a compression “two to

one”.all the n considered factors.

A less known result (see [2, 37, 13, 19, 14, 8]) says that for random strings

and for any ε > 0 the percentage of strings of length n having each factor

of length 2 log n+ ε unique grows exponentially to 1 (i.e. the percentage of

strings not having this property decreases exponentially). Here we took as

ε the number 1. Therefore such a string a1 · · · a3n having both properties

surely exists for some n ≥ n′.

Let us now define the word s over the alphabet {0, 1, c} in the following

way.

28

s = a1a2 · · · an+1c
2na2a3 · · · an+3c

2n · · · aiai+1 · · · a2i+n−1c
2n · · · an+1an+2.

Let us now evaluate OPT-LZH(s). By property 1) each binary word that

is to the left or to the right of a block of 2n c’s cannot be compressed in less

than 1
2n bits in a “stand-alone” manner. If one such a string is compressed

by a pointer to a previous string then the offset of this pointer will be greater

than 2n and, so, its cost in bit is O(n). We defined the string s in such a

manner that all “meaningful” offsets are different, so that even a Huffman

encoding on offsets (that we do not use, because we use Huffman codes

only for lengths) cannot help. Therefore there exists a constant c′ such that

OPT-LZH(s) ≥ c′n2.

Let us now evaluate OPT-DS(s). We plan to show a parse that will give

a string of cost P-DS(s) ≤ ĉn log n as output. Since OPT-DS(s) ≤ P-DS(s)

then also OPT-DS(s) ≤ ĉn log n.

The blocks of 2n c’s have all the same length. We parse them with the

dictionary compressor as (c)(c2
n−1). The dictionary compressor is not used

in other positions in the parse P of the string s. The Huffman encoding on

lengths of the dictionary compressor would pay n bits for the table and a

constant number of bits for each occurrence of a block of 2n c’s. Hence the

overall cost in the parse P of all blocks of letters c is O(n). And this includes

the flag information that consists into two bits n times.

Parse P uses the symbolwise compressor to parse all the binary strings.

The first one a1a2 · · · an+1 costs O(n) bits. Starting from the second a2a3 · · ·
· · · an+3 till the last one, the symbolwise will pay O(log n) bits for the first

3 log 3n letters and then, by property 1), there is a long run of y that will

cover the whole string up to the last two letters. This run will be coded by

the run-length code of the symbolwise. The overall cost is O(log n) and this

includes the flag information that is a long run of S coded by the run-length

of the flag information. The cost of the symbolwise compressor included the

flag information over the whole string is then O(n log n), that dominates the

cost of the dictionary-symbolwise parse P.

The length of the string s is O(n2n+n2) and therefore log |s| = n+ o(n)

and the thesis follows.

29

Remark 4. In the theorem above it is possible to improve the constants in

the statement. This can be done simply using for instance a word a1 · · · an2

instead of a1 · · · a3n. It is possible to optimize this value, even if, from a

conceptual point of view, it is not important.

We want to underline that the Huffman coding on the lengths is essential

in this statement. At the moment we were not able to find a sequence of

strings s where the dictionary-symbolwise compressor is provably better

than the optimal dictionary version without using Huffman codes. It is an

open question whether this is possible.

We finally notice that if the dictionary is coupled with a ROLZ technique

then the optimal solution of the pure dictionary compressor reaches the same

level of the dictionary symbolwise compressor. This is not surprising because

the ROLZ technique is sensible to context and do not ”pay” for changing

the source of the text.

LZ78 Case

Matias and Sahinalp in [28] already shown that Flexible Parsing is op-

timal with respect to all the prefix-closed dictionary algorithms, included

LZ78, where optimality stand for phrase optimality. Flexible Parsing is also

optimal in the suffix-close dictionary algorithms class. Phrase optimality is

equal to bit optimality under the fixed codeword length assumption, so we

say just optimality. From now on we assume FP or its extension as optimal

parsing and the bit length of the compressed text as coding cost function.

In this subsection we prove that there exists a family of strings such that

the ratio between the compressed version of the strings obtained by using

an optimal LZ78 parsing (with constant cost encoding of pointers) and the

compressed version of the strings obtained by using an optimal dictionary-

symbolwise parsing is unbounded. The dictionary, in the dictionary-symbolwise

compressor is still the LZ78 dictionary, while the symbolwise is a simple Last

Longest Match Predictor that will be described later. We want to notice

here that similar results were proved in [28] between flexible parsing and the

classical LZ78 and in [17] between a compressor that uses optimal parsing

over a LZ77 dictionary and the standard LZ77 compressor (see also [24]).

30

Last but not least we notice that in this example, analogously as done in [28],

we use an unbounded alphabet just to make the example clearer. An anal-

ogous result can be obtained with a binary alphabet with a more complex

example.

Let us define a Dictionary-Symbolwise compressor that uses LZ78 as dic-

tionary method, the Last Longest Match Predictor as symbolwise method,

Run Length Encoder to represent the flag information and one optimal pars-

ing method. Let us call it OptDS-LZ78. We could have used a PPM* as

symbolwise compressor but Last Longest Match Predictor (LLM) fits our

purposes and it is simple to analyze. LLM Predictor is just a simple sym-

bolwise compression method that uses the last longest seen match to predict

next char.

The symbolwise searches, for any position k of the text, the closest

longest block of consecutive letters up to position k − 1 that is equal to

a suffix ending in position k. This compressor predicts the (k + 1)-th char-

acter of the text to be the character that follows the block. It writes a

symbol ‘y´ (that is supposed not to be in the text) if this is the case. Oth-

erwise it uses an escape character ’n’ (that is supposed not to be in the

text) and then writes down the correct character plainly. A temporary out-

put alphabet has therefore two characters more than the characters in the

text. This temporary output will be subsequently encoded by a run-length

encoder. This method is like the Yes?No version of Symbol Ranking by P.

Fenwick (see [15]).

It costs log n to represent a substring of n chars that appear after the

match. For each position i in the uncompressed text if mi is the length of

the longest match in the already seen text it produces n that cost O(log n)

bits as output, i.e. C(T [i+ 1..i+ n]) = n and Cost(n) = O(log n) where

∀m, j mi = Maxm(T [i−m..i] = T [j −m..j] with j < i and

T [i−m− 1] .= T [j −m− 1])

Let us consider a string S

S =
∑k

z=1 1 + ...+ z = [1 + 12 + 123 + ...+ 1..z + ...+ 1..k]

31

that is the concatenation of all the prefixes of 1..k in increasing order. Let

consider the string T ′ that is the concatenation of the first
√
k suffixes of

2..k, i.e. T ′ = 2..k ·3..k · . . . ·
√
k..k and a string T = S ·T ′. We use S to build

a dictionary formed by just the string 1..k and its prefixes and no more. We

assume that both the dictionary and the symbolwise methods work the same

up to the end of the S string, so they produce an output that is very similar

in terms of space. It is not difficult to prove that an optimal LZ78 compressor

would produce on T a parse having cost at least O(k+ k log k) = O(k log k)

while the optimal dictionary-symbolwise compressor (under the constant

cost assumption on encoding pointers) has a cost that is O(k +
√
k log k) =

O(k).

Proof. (Sketch) An optimal constant cost LZ78 compressor must uses k

phrases to code S. Then each phrase used to code the subword 2 . . . k of T ′

has length at most 2 and therefore the number of phrases that it must use

to code 2 . . . k is at least (k−1)/2 ≥ 1
2k/2. Analogously, each phrase used to

code the subword 3 . . . k of T ′ has length at most 3 and therefore the number

of phrases that it must use to code 3 . . . k is at least (k − 2)/3 ≥ 1
3k/2. We

keep on going up to conclude that number of phrases that it must use to

code
√
k . . . k is at least (k −

√
k + 1)/

√
k ≥ 1√

(k)
k/2. Adding all these

numbers we get that the total number of phrases is smaller than or equal to

O(k + log
√
k × k/2) = O(k log k).

Let us now prove that an optimal dictionary-symbolwise compressor has

a cost that is O(k) by showing that there exists at least one parse that has

cost O(k).

The parse that we analyze parses S with the LZ78 dictionary and spend

for this part of the string O(k). Then it uses the LLM Predictor to compress

the subword 2 . . . k of T ′. Firstly it outputs a symbol ’n’ followed by the

symbol 2 because it is unable to predict the symbol 2 and then it outputs

k − 2 symbols ’y’ that, in turn, are coded by the run length encoder with

a cost that is O(log k). The whole cost of subword 2 . . . k is then O(log k).

Then the LLM Predictor compresses sequentially the subword i . . . k of T ′ ,

with 3 ≤ i ≤
√
k and any time it spends at most O(log k). The total cost of

this parse is then O(k +
√
k log k) = O(k).

32

Chapter 3

History of the Parsing

Problem

In this chapter we survey some of the milestone results about the pars-

ing problem, starting for those concerning static dictionaries through the

dynamic case. In the last section we present a small new contribution that

complete the picture of fixed costs case. It is the generalization of the greedy

parsing of Cohn for static dictionary to the dynamic dictionary case.

3.1 Static Dictionaries and Uniform Costs

The problem of optimal parsing in the case of static dictionaries and

uniform costs is equal to find the minimal number of substrings that covers

a given text. In ’73, the Wagner’s paper (see [38]) shows that a dynamic

programming solution can be found in O(n2), where a text T of length

|T | = n is provided at ones.

in ’74 Schuegraf (see [33]) showed that the O(n2) complexity is also

achieved by a graph based approach to the problem (see 2.3 for the details

of this approach).

In ’77 and ’78 years the foundational dynamic dictionary based com-

pression methods LZ77 and LZ78 have been introduced. They both use an

online linear time greedy approach to the parsing problem without proof

of optimality in favour of the algorithm simplicity and execution speed.

33

Those compression methods use both an uniform cost model for the dic-

tionary pointers. The online greedy approach is realized by choosing the

longest dictionary phrase that matches with the forwarding text to extend

the previous parsing, moving on the text left to right, until the whole text

is covered.

In ’82, LZSS compression method, based on the LZ77 one, was presented

(see [36]). It improves the compression rate and the execution time without

changing the original parsing approach. The main difference is that a symbol

is used only when there is no match between dictionary and text. But when

there is any match, the longest one is always chosen.

In ’84, LZW variant of LZ78 was introduced by Welch (see [39]). This

is, to our best knowledge, the first compression methods that use a dynamic

dictionary and variable costs of pointers.

In ’85, Hartman et al. (see [20]) showed that for the prefix-closed LZ-like

dictionaries an offline optimal parsing solution has O(n
3
2) complexity.

In ’96 the greedy parsing was ultimately proved by Cohn et al. (see

[6]) to be optimal for fixed suffix-closed dictionary under the uniform cost

model. They also proved that the right to left greedy parsing is optimal for

prefix-closed dictionaries. Unfortunately the dynamic dictionary case, like

the LZ-like one, was not fully solved.

In [36] the greedy parsing was showed to be optimal and linear for LZ77-

like dictionaries under a constant cost for encoding dictionary pointers as-

sumption. The optimality of greedy parsing for static suffix closed dictio-

naries and constant cost dictionary pointers was proved in [6] and it was

later used also in [23].

3.1.1 Suffix-closed Dictionary Optimal Parsing

We want here extend the elegant proof of Cohn et al. (see [6]) to the

case of dynamic dictionaries under the assumption that the dictionary in

position i + 1 contains all strict suffixes of all phrases of the dictionary in

position i. In this way the proof of Cohn at al. hold also for LZ77-like

algorithms for sliding windows or unbounded window. This is an original

small contribution.

34

The classic Cohn’s theorem states that if D is a static suffix-closed dictio-

nary, then the greedy parsing is optimal on all the texts. The proof exploits

the suffix property of the dictionary, that is that if a phrase w is in D, then

all the suffixes of w are in the dictionary too, i.e. suff(w) ⊂ D, where suff(w)

is the set of all the suffixes of w.

Let us focus on the effect of the dictionary suffix-closed property on the

Schuegraf graph GA,T . Given a text T and an algorithm A which use the

dictionary D, we have that if D is suffix-closed, then for any edge (i, j) of

GA,T associated to the phrase w ∈ D, with |w| = j − i and w = T [i : j], all

the edges (k, j), i < k < j belong to GA,T .

To generalize the suffix-close property of dictionaries to the dynamic

dictionary framework, let us consider a dictionary phrase w ∈ Di, with

|w| = n. The set of all the suffixes of w is suff(w) = {wj} with 0 ≤ j ≤ n

where for j < n wj = w[j : n− 1] is the jth suffix of w of length n− j and

wn = ε is the empty word for j = n. If the dynamic dictionary D have the

suffix-close property, then ∀i, w if w ∈ Di, then wj ∈ Di+j , for any suffix

wj of w. On the graph model, if D is a dynamic suffix-closed dictionary, for

any i, j if the edge (i, j) is in GA,T , then (k, j) ∈ GA,T for any k ∈ [i..j).

Exploiting the dynamics of the dictionary D, previous statements may

be simplified by highlighting the dependence by consecutive dictionaries in

the following way.

Proposition 3.1.1. If the dynamic dictionary D have the suffix-close prop-

erty, then ∀i, w if w ∈ Di, then w1 ∈ Di+1. On the graph model, if the

dynamic dictionary D have the suffix-close property, then ∀i, j if the edge

(i, j) is in GA,T , then (i+ 1, j) ∈ GA,T .

Notice that LZ77-like dictionaries satisfy the above property, either in

the unbounded version and sliding window variants.

We want here to generalize this result of the classic Cohn’s theorem to

the dynamic dictionary case.

35

3.2 Flexible Parsing

In [28] Matias and Sahinalp gave a linear-time optimal parsing algorithm

in the case of dictionary compression where the dictionary is prefix closed

and the cost of encoding dictionary pointer is constant, i.e. all the codewords

have equal length. In this thesis we eliminate the latter constraint and we

further extend this result to the dictionary-symbolwise case. Matias and

Sahinalp called their parsing algorithm Flexible Parsing. Hence, we called

our parsing algorithm Dictionary-Symbolwise Flexible Parsing.

The basic idea of one-step-lookahead parsing, that is the basis of flexible

parsing, was firstly used to our best knowledge in [20] in the case of dictio-

nary compression where the dictionary is static and prefix closed and the

cost of encoding dictionary pointer is constant. A first intuition, not fully

exploited, that this idea could be successfully used in the case of dynamic

dictionaries, was given in [21] and also in [23], where it was called maximum

two-phrase-length (MTPL) parsing. It is also called a semi-greedy parsing.

3.3 The Optimal Parsing Problem

Optimal with respect to what? Obviously in data compression we are

mainly interested to achieve the best compression ratio, that correspond

to minimizing the size of the compressed data. This notion of optimality is

sometimes called bit-optimality. But our question has a deeper sense. When

can we say that a parsing strategy is an optimal parsing algorithm? When is

it optimal with respect to the input data? When is it optimal with respect

to the compression algorithms in which it is involved?

We have chosen this last option.

Therefore, given a dictionary based compression algorithm, we will de-

fine a compression scheme as the set of all the algorithms that use the same

dictionary description and the same encodings. They differ for just the pars-

ing method. We also will define an equivalence relation between algorithms

where all the similar algorithms belong to the same equivalence class. The

optimal parsing will be the parsing that minimize the compression ration

within a compression scheme and, for extension, the compression algorithm

36

that include the optimal parsing will be an optimal compression algorithm.

37

38

Chapter 4

Dictionary-Symbolwise

Flexible Parsing

In this chapter we consider the case of dictionary-symbolwise algorithms

where the parsing is a free mixture of dictionary phrases and symbols.

We present the dictionary-symbolwise flexible parsing that is a dictionary-

symbolwise optimal parsing algorithm for prefix-closed dictionaries and vari-

able costs. This is a generalization of the Matias’ and Sahinalp’s flexible

parsing algorithm (see [28]) to variable costs.

The algorithm is quite different from the original Flexible Parsing but it

has some analogies with it. Indeed, in the case of LZ78-like dictionaries, it

makes use of one of the main data structures used for the original flexible

parsing in order to be implemented in linear time.

In next sections we will show some properties of the graph GA,T when the

dictionary of A is prefix-closed and the encoding of the dictionary pointers

leads to a nondecreasing cost function. We will call c-supermaximal some

significant edges of GA,T and we will use the c-supermaximal edges to build

the graph G′
A,T that is a subgraph of GA,T . Then, we will show that any

minimal path form the origin of G′
A,T is a minimal path in GA,T . We will

introduce the dictionary-symblwise flexible parsing algorithm that build the

graph G′
A,T and then find a minimal weight path on it in order to parse the

text. We will prove that this parsing is optimal within any scheme having the

Schuegraf Property. We will show that G′
A,T , and the dictionary-symblwise

39

flexible parsing consequently, has linear space and time complexity w.r.t.

the text size in the LZ78-like dictionary cases. In the case of LZ77-like

dictionaries, G′
A,T has linear space and O(n log n) time complexities. In

the last two sections we will report some implementation details.

4.1 The c-supermaximal Edges

We suppose that a text T of length n and a dictionary-symbolwise algo-

rithm A are given. We assume here that the dictionary is prefix closed at

any moment.

Concerning the costs of the dictionary pointer encodings, we recall that

costs are variable, costs assume positive values and they must include the

cost of flag information. Concerning the symbolwise encodings, the costs of

symbols must be positive, including the flag information cost. They can vary

depending on the position of the character in the text and on the symbol

itself. Furthermore, we assume that the graph GA,T is well defined under

our assumption.

We denote by d the function that represents the distance of the vertices

of GA,T from the origin of the graph. Such a distance d(i) is classically

defined as the minimal cost of all possible weighted paths from the origin to

the vertex i, where d(0) = 0. This distance obviously depends on the cost

function. We say that cost function C is prefix-nondecreasing at any moment

if for any u, v ∈ Dp phrases associated with edges (p, i), (p, q), with p < i < q

(that implies that u is prefix of v), one has that C((p, i)) ≤ C((p, q)).

Lemma 4.1.1. Let A be a dictionary-symbolwise algorithm such that for any

text T the graph GA,T is well defined. If the dictionary is always prefix-closed

and if the cost function is always prefix-nondecreasing then the function d is

nondecreasing monotone.

Proof. It is sufficient to prove that for any i, 0 ≤ i < n one has that

d(i) ≤ d(i + 1). Let j ≤ i be a vertex such that (j, i + 1) is an edge

of the graph and d(i + 1) = d(j) + C((j, i + 1)). If j is equal to i then

d(i + 1) = d(i) + C((i, i + 1)) and the thesis follows. If j is smaller than i

then, since the dictionary Dj is prefix closed, (j, i) is still an edge in Dj and

40

d(i) ≤ d(j)+C((j, i)) ≤ d(j)+C((j, i+1)) = d(i+1) and the thesis follows.

The last inequality in previous equation comes from the prefix-nondecreasing

property of the cost function.

Let us call vertex j a predecessor of vertex i ⇐⇒ ∃(j, i) ∈ E such

that d(i) = d(j) + C((j, i)). Let us define pre(i) to be the smallest of the

predecessors of vertex i, 0 < i ≤ n, that is pre(i) = min{j | d(i) = d(j) +

C((j, i))}. In other words pre(i) is the smallest vertex j that contributes

to the definition of d(i). Clearly pre(i) has distance smaller than d(i). We

notice that a vertex can be a predecessor either via a dictionary edge or via

a symbol edge. It is also possible to extend previous definition to pointers

having a cost smaller than or equal to a fixed c as follows.

Definition 4.1. For any cost c we define prec(i) = min{j | d(i) = d(j) +

C((j, i)) and C((j, i)) ≤ c}. If none of the predecessor j of i is such that

C((j, i)) ≤ c then prec(i) is undefined.

If all the costs of pointers are smaller than or equal to c then for any i

one has that prec(i) is equal to pre(i).

Analogously to the notation of [27], we want to define two boolean op-

erations Weighted-Extend and Weighted-Exist.

Definition 4.2. (Weighted-Extend) Given an edge (i, j) in GA,T and a

cost value c, the operation Weighted-Extend((i, j), c) finds out whether the

edge (i, j + 1) is in GA,Thaving cost smaller than or equal to c.

More formally, let (i, j) in GA,Tbe such that w = T [i + 1 : j] ∈ Di.

Operation Weighted-Extend((i, j), c) = “yes” ⇐⇒ waj+1 = T [i + 1 :

j + 1] ∈ Di with j < n such that (i, j + 1) is in GA,T and C((i, j + 1)) ≤ c,

where C is the cost function associated with the algorithm A. Otherwise

Weighted-Extend((i, j), c) = “no”.

Let us notice that Weighted-Extend always fails to extend any edge end-

ing at node n.

Definition 4.3. (Weighted-Exist) Given 0 ≤ i < j ≤ n and a cost value

c, the operation Weighted-Exist(i, j, c) finds out whether or not the phrase

w = T [i+ 1 : j] is in Di such that the corresponding edge (i, j) in GA,T and

the cost of (i, j) is smaller than or equal to c.

41

Let us notice that doing successfully the operation Weighted-Extend on

((i, j), c) means that waj+1 ∈ Di is the weighted extension of w and the

encoding of (i, j+1) has cost less or equal to c. Similarly, doing a Weighted-

Exist operation on (i, j, c) means that an edge (i, j) exists in GA,Thaving

cost less or equal to c.

Definition 4.4. (c-supermaximal) Let Ec be the subset of all edges of the

graph having cost smaller than or equal to c. Let us define, for any cost c,

the set Mc ⊆ Ec be the set of c-supermaximal edges, where (i, j) ∈Mc ⇐⇒
(i, j) ∈ Ec and ∀p, q ∈ V , with p < i and j < q, the arcs (p, j), (i, q) are not

in Ec. For any (i, j) ∈ Mc let us call i a c-starting point and j a c-ending

point.

Proposition 4.1.2. Suppose that (i, j) and (i′, j′) are in Mc. One has that

i < i′ if and only if j < j′.

Proof. Suppose that i < i′ and that j ≥ j′. Since the dictionary Di is

prefix closed we have that (i, j′) is still in Di and therefore it is an edge

of GA,T . By the prefix-nondecreasing property of function C we have that

C((i, j′)) ≤ C((i, j)) = c, i.e. (i, j′) ∈ Ec. This contradicts the fact that

(i′, j′) is in Mc and this proves that if i < i′ then j < j′. Conversely suppose

that j < j′ and that i ≥ i′. If i > i′ by previous part of the proof we must

have that j > j′ that is a contradiction. Therefore i = i′. Hence (i, j) and

(i, j′) both belongs to Mc and they have both cost smaller than or equal to

c. This contradicts the fact that (i, j) is in Mc and this proves that if j < j′

then i < i′.

By previous proposition, if (i, j) ∈ Mc we can think j as a function

of i and conversely. Therefore it is possible to represent Mc by using an

array Mc[] such that if (i, j) is in Mc then Mc[j] = i otherwise Mc[j] =

Nil. Moreover the non-Nil values of this array are strictly increasing. The

positions j having value different from Nil are the ending positions.

We want to describe a simple algorithm that outputs all c-supermaximal

edges scanning the text left-to-right. We call it Find Supermaximal(c). It

uses the operations Weighted-Extend and Weighted-Exist. The algorithm

starts with i = 0, j = 0 and w = ε, the empty word. The word w is indeed

42

implicitly defined by the arc (i, j) when i < j or it is the empty word when

i = j. Therefore w will not appear explicitly in the algorithm. Since the

values of i and j are only increased by one and i is always less or equal than

j, the word w can be seen as a sliding window of variable size that scan

the text left-to-right. w is moved along the text either by extensions or by

contractions to its suffixes.

At each algorithm’s step, j is firstly increased by one. This extends w

concatenating it to T [j]. The algorithm executes then a series of Weighted-

Exist increasing i by one, i.e. it contracts many times w. This series of

Weighted-Exist ends when w is the empty word or an edge (i, j) ∈ Ec is

found such that (i, j) is not contained in any already found c-supermaximal

edge (see 4.1.4). Indeed, since the increment on j at line 3, if such edge (i, j)

exists then we have that ∀ (p, q) ∈ Mc with p < i, (i, j) ∈ Ec. Moreover,

if such edge (i, j) exists, i is a c-starting point and a series of Weighted-

Extend is executed looking for the corresponding c-ending point. After

each Weighted-Extend positive answer, j is incremented by one. Once that

Weighted-Extend outputs “no”, i.e. once that (i, j) cannot be weighted-

extended any more, (i, j) is a c-supermaximal and it is inserted into Mc to

be outputted later. The algorithm’s step ends when a c-supermaximal is

found or when w is equal to the empty word. The algorithm runs as long

as there are unseen characters, i.e. until j reaches n.

The algorithm is stated more formally in Table 4.1.

Proposition 4.1.3. Given a cost value c, the Find Supermaximal algorithm

correctly computes Mc.

Proof. First of all let us prove that if (̂i, ĵ) is inserted by the algorithm in

Mc then (̂i, ĵ) is c-supermaximal.

If (̂i, ĵ) is inserted into Mc at line 11, then an edge (̂i, j′) at line 4 was

previously proved to exist and to have cost C((̂i, j′)) ≤ c. It caused the

termination of the loop at lines 4 − 6. For the line 7 we know that î < j′

and by the loop 8 − 10 we know that all the edges (̂i, q) with j′ ≤ q ≤ ĵ

exist and they all are such that C((̂i, q)) ≤ c. Therefore (̂i, ĵ) costs at most

c and then the first part of the definition is verified. Since the Weighted-

Extend((̂i, ĵ), c) = “no” at line 8, that was the exit condition of that loop,

43

Find Supermaximal (c)

01. i← 0, j ← 0,Mc ← ∅
02. WHILE j < n DO

03. j ← j + 1

04. WHILE i < j AND Weighted-Exist(i, j, c) = “no” DO

05. i← i+ 1

06. ENDWHILE

07. IF i < j THEN

08. WHILE Weighted-Extend ((i, j), c) = “yes” DO

09. j ← j + 1

10. ENDWHILE

11. INSERT ((i, j),Mc)

12. ENDIF

13. ENDWHILE

14. RETURN MC

Table 4.1: The pseudocode of the Find Supermaximal algorithm. The func-

tion INSERT simply insert the edge (i, j) in the dynamical set Mc.

then (̂i, ĵ + 1) /∈ Ec. Since Di is prefix closed and the function cost C

is prefix-nondecreasing ∀q ∈ V with ĵ < q the arc (̂i, q) is not in Ec for

otherwise (̂i, ĵ + 1) would be in Ec.

It remains to prove that ∀p ∈ V with p < î the arc (p, ĵ) is not in Ec.

Suppose by contradiction that there exists one such arc (p, ĵ) in Ec. Since

the variables i, j never decrease along algorithm steps, the variable i reach

the value p before that (̂i, ĵ) is inserted in Mc. Let jp be the value of j when

i reached the value p. Since the variable i is increased only inside the loop

at lines 4 − 6, we have that p ≤ jp. If p = jp the algorithm terminates the

current step by the conditions at lines 4 and 7 and it enter the next step with

j = jp + 1 due to line 3. Therefore j will reaches the value jp + 1 for p = jp

otherwise j will be equal to jp. In both cases, since i < j, the condition at

line 7 is satisfied and the loop 8 − 10 is reached. Since Dp is prefix closed

and the function cost is prefix-nondecreasing then ∀q such that j ≤ q < ĵ,

Weighted-Extend((p, q)) = “yes”. Then, the loop 8 − 10 increases the j up

44

to at least the value ĵ, i.e. the algorithm reaches the line 11 with ĵ ≤ j. At

this point, an edge (p, j) is inserted in Mc and the algorithm moves on the

next step. Since the increment of the variable j at line 3, we have that in the

rest of the algorithm only edges where j is greater than ĵ may be considered

and then (̂i, ĵ) will not be inserted. That is a contradiction. Therefore, if

(̂i, ĵ) is inserted by the algorithm in Mc then (̂i, ĵ) is c-supermaximal.

We have now to prove that if (̂i, ĵ) is c-supermaximal then it is inserted

by the algorithm in Mc.

Suppose that variable i never assumes the value î. The algorithm ends

when variable j is equal to n. Let in be the value of variable i when j becomes

n, then we have that in < î < ĵ < n = j. If the variable j reaches the value

n inside the loop 8− 10 then the operation Weighted-Extend((in, n − 1), c)

has outputted “yes” just before. At line 11 the edge (in, n) is inserted

into Mc and then (in, n) is c-supermaximal. This contradict that (̂i, ĵ) is

c-supermaximal. Otherwise, if the variable j reaches the value n at line 3,

then we have two cases. In the first one, Weighted-Exist(in, n, c) outputs

“yes”, i.e. the edge (in, n) is in Ec. Since i = in < n = j line 7 condition

is satisfied, Weighted-Extend((in, n), c) outputs “no” by definition and then

(in, n) is in Mc, i.e. it is a c-supermaximal. That is again a contradiction.

In the second case, Weighted-Exist(in, n, c) outputs “no” one or multiple

times while i grows up to a value i′n < î by hypothesis. Using the same

argumentation as before, (i′n, n) in Mc leads to a contradiction.

Therefore at a certain moment variable i assumes the value î. Let ĵi be

the value of variable j in that moment.

We suppose that ĵi ≤ ĵ. Since the dictionary Dî is prefix closed and the

cost function is prefix nondecreasing, Weighted-Exist (̂i, ĵi, c) outputs “yes”

causing the exit from the loop at lines 4− 6. At this point, inside the loop

8 − 10, the variable j reaches the value ĵ since Weighted-Extend((̂i, j), c)

outputs “yes” for any j less than ĵ, while Weighted-Extend((̂i, ĵ), c) outputs

“no”. Finally, (̂i, ĵ) is inserted into Mc at line 11.

Suppose by contradiction that ĵi > ĵ when i assumes the value î at line

5. This may happens only if the edge (̂i− 1, ĵi) has been inserted in Mc in

the previous step of the algorithm. Since î − 1 < î < ĵ < ĵi this contradict

45

the hypothesis that (̂i, ĵ) is c-supermaximal.

Proposition 4.1.4. For any edge (i, j) ∈ Ec there exists a c-supermaximal

edge (̂i, ĵ) containing it, i.e. such that î ≤ i and j ≤ ĵ.

Proof. We build (̂i, ĵ) in algorithmic fashion. The algorithm is described

in what follows in an informal but rigorous way. If edge (i, j) is not c-

supermaximal then we proceed with a round of Weighted-Extend((i, j), c)

analogously as described in algorithm Find Supermaximal and we increase

j of one unit until Weighted-Extend outputs “no”. Let j′ be the value of j

for which Weighted-Extend output “no”. Clearly (i, j′) ∈ Ec and (i, j′ + 1)

is not. If (i, j′) is not c-supermaximal the only possibility is that there exists

at least one i′ < i such that (i′, j′) ∈ Ec. At this point we keep iterating

previous two steps starting from (i − 1, j′) instead of (i, j) and we stops

whenever we get a c-supermaximal edge, that we call (̂i, ĵ).

By previous proposition for any node v ∈ GA,T if there exists a node

i < v such that C((i, v)) = c and d(v) = d(i) + c then there exists a

c-supermaximal edge (̂i, ĵ) containing (i, v) and such that ĵ is the closest

arrival point greater than v. Let us call this c-supermaximal edge (̂iv, ĵv).

We use îv in next proposition.

Proposition 4.1.5. Suppose that v ∈ GA,T is such that there exists a pre-

vious node i such that C((i, v)) = c and d(v) = d(i) + c. Then îv is a

predecessor of v, i.e. d(v) = d(̂iv) + C((̂iv, v)) and, moreover, d(̂iv) = d(i)

and C((̂iv, v)) = c.

Proof. Since (̂iv , ĵv) contains (i, v) and the dictionary at position îv is prefix

closed then (̂iv , v) is an edge of GA,T . Since (̂iv, ĵv) has cost smaller than

or equal to c then, by the suffix-nondecreasing property, also (̂iv , v) has

cost smaller than or equal to c. Since the distance d is nondecreasing we

know that d(̂iv) ≤ d(i). By very definition of the distance d we know that

d(v) ≤ d(̂iv) + C((̂iv, v)).

Putting all together we have that d(v) ≤ d(̂iv) + C((̂iv , v)) ≤ d(i) + c =

d(v). Hence the inequalities in previous equation must be equalities and,

further, d(̂iv) = d(i) and C((̂iv , v)) = c.

46

Corollary 4.1.6. For any vertex v, the edge (̂iv , v) is the last edge of a path

of minimal cost from the origin to vertex v.

Proof. Any edge x in GA,T such that d(v) = d(x)+C((x, v)) is the last edge

of a path of minimal cost from the origin to vertex v.

Remark 5. Let us notice that the variable i is increased only at line 05 along

the Find Supermaximal algorithm.

4.2 The Subgraph G′A,T

In what follows we describe a graph G′
A,T that is a subgraph of GA,T

and that is such that for any node v ∈ GA,T there exists a minimal path

from the origin to v in G′
A,T that is also a minimal path from the origin to

v in GA,T . The proof of this property, that will be stated in the subsequent

proposition, is a consequence of Proposition 4.1.5 and Corollary 4.1.6.

We describe the building of G′
A,T in an algorithmic way.

The set of nodes of G′
A,T is the same of GA,T . First of all we insert all

the symbolwise edges of GA,T in G′
A,T . Let now C be the set of all possible

costs that any dictionary edge has. This set can be build starting from GA,T ,

but, in all known meaningful situations, the set C is usually well known and

can be ordered and stored in an array in a time that is linear in the size of

the text.

For any c ∈ C we use algorithm Find Supermaximal to obtain the set

Mc. Then, for any (i, j) ∈Mc, we insert in GA,T all the prefix of (i, j) except

those which are contained in another c-supermaximal edge (i′, j′) ∈Mc. In

detail, for any c-supermaximal edge (i, j) ∈ Mc, let (i′, j′) ∈ Mc be the

previous c-supermaximal edge overlapping (i, j), i.e. j′ = maxh{(s, h) ∈
Mc|i < h < j}. Notice that this j′ could not exist but, if it exists then by

Proposition 4.1.2 there exists a unique i′ such that (i′, j′) ∈ Mc. If (i′, j′)

exists, then we add in G′
A,T all the edges of the form (i, x), where j′ < x ≤ j,

with label L(i,x) = c. If (i′, j′) does not exist, then we add in G′
A,T all the

edges of the form (i, x), where i < x ≤ j, with label L(i,x) = c. In both

cases, If such an edge (i, x) is already in G′
A,T , we just set the label L(i,x)

to min{L(i,x), c}. This concludes the construction of G′
A,T .

47

The algorithm Build G′
A,T is formally stated in the Tabel 4.2.

Build G′
A,T

01. CREATE node 0

02. FOR v = 1 TO |T |
03. CREATE node v

04. CREATE symbolwise edge (v − 1, v)

05. L(v − 1, v)← C((v − 1, v))

06. ENDFOR

07. FOR ANY increasing c ∈ C
08. Mc ← Find Supermaximal (c)

09. j′ ← 0

10. FOR ANY (i, j) ∈Mc left-to-right

11. FOR ANY x | max{j′, i} < x ≤ j

12. IF (i, x) /∈ G′
A,T THEN

13. CREATE edge (i, x)

14. L(i, x)← c

15. ELSE

16. L(i, x)← min{L(i, x), c}
17. ENDIF

18. ENDFOR

19. j′ ← j

20. ENDFOR

21. ENDFOR

Table 4.2: The pseudocode of the Build G′
A,T algorithm.

Remark 6. Notice that for any cost c the above algorithm add in G′
A,T at

most a linear number of edges.

Let us notice that the graph G′
A,T is a subgraph of GA,T . Nodes and

smbolwise edges are the same in both graphs by definition of G′
A,T . The

edges (i, x) we add to G′
A,T , are the prefix of a c-supermaximal edge (i, j)

of GA,T . Since that the dictionary Di is prefix closed, then all the edges

(i, x) are also edges of GA,T .

48

Proposition 4.2.1. For any node v ∈ GA,T , any minimal path from the

origin to v in G′
A,T is also a minimal path from the origin to v in GA,T .

Proof. The proof is by induction on v. If v is the origin there is nothing to

prove. Suppose now that v is greater than the origin and let (i, v) the last

edge of a minimal path in GA,T from the origin to v. By inductive hypothesis

there exists a minimal path P from the origin to i in G′
A,T that is also a

minimal path from the origin to i in GA,T . Since (i, v) is a symbolwise arc

then it is also in G′
A,T and the concatenation of above minimal path P with

(i, v) is a minimal path from the origin to v in G′
A,T that is also a minimal

path from the origin to v in GA,T .

Suppose now that (i, v) is a dictionary arc and that its cost is c. Since

it is the last edge of a minimal path we have that d(v) = d(i) + c. By

Proposition 4.1.5 d(v) = d(̂iv) + C((̂iv , v)) and, moreover, d(̂iv) = d(i) and

C((̂iv, v)) = c. By Corollary 4.1.6, the edge (̂iv, v) is the last edge of a

path of minimal cost from the origin to vertex v. By inductive hypothesis

there exists a minimal path P from the origin to îv in G′
A,T that is also

a minimal path from the origin to i in GA,T . Since (̂iv, v) has been added

by construction in G′
A,T , the concatenation of above minimal path P with

(̂iv , v) is a minimal path from the origin to v in G′
A,T that is also a minimal

path from the origin to v in GA,T .

Let us notice that it is possible to create the dictionary edges of G′
A,T

without an explicit representation in memory of all the Mc arrays. This is

just an implementation detail that enhance speed and memory usage of the

Build G′
A,T algorithm in practice, without changing its order of complexity.

The point is that we can insert the c-supermaximal edges and their prefix

directly in the graph as soon as they are found along a Find Supermaximal

execution. The correctness of this approach is a direct consequence of the

following Remark 7.

Remark 7. Given a cost c, the edges (i, x) used by the Build G′
A,T algorithm

inside the block at lines 10 − 20 are those for which the Weighted-Extend

and the Weighted-Exist operations of the Find Supermaximal(c) algorithm

report a positive answer.

49

4.3 The Dictionary-Symbolwise Flexible Parsing

Algorithm

We can now finally describe the Dictionary-symbolwise flexible parsing.

The Dictionary-symbolwise flexible parsing firstly uses algorithm Build

G′
A,T and then uses the classical Single Source Shortest Path (SSSP)

algorithm (see [7, Ch. 24.2]) to recover a minimal path from the origin to

the end of graph GA,T . The correctness of the above algorithm is stated in

the following theorem and it follows from the above description and from

Prop. 4.2.1.

Theorem 4.3.1. Dictionary-symbolwise flexible parsing is graph optimal.

Notice that graphs GA,T and G′
A,T are directed acyclic graphs (DAG)

and their nodes from 1 to n, where 1 is the origin or the unique source of the

graph and n = |T | is the last node, are topologically ordered and linked by

simbolwise edges. Recall that, given a node v in a weighted DAG, the classic

solution to the SSSP is composed by two steps. The first one computes the

distance and a predecessor of any node in the graph. It is accomplished

by performing a visit on all the nodes in topological order and making a

relax on any outgoing edge. Therefore, for any node v from 1 to n and for

any edge (v, v′) in the graph, the relax of (v, v′) sets the distance and the

predecessor of v′ to v if d(v)+C((v, v′)) < d(v′). The classic algorithm uses

two arrays, π[] and p[], to store distance and predecessor of nodes.

The second step recovers the shortest path by following backward the pre-

decessors chain from the last node to the origin of the graph and reverting

it. From this simple analysis follows that if we know all the outgoing edges

of any node in topological order then we can do directly the relax operation

on them without having an explicit representation of the graph.

Let us suppose to have an online version of the Build G′
A,T algorithm,

where for any i from 1 to |T |, only edges (i, j) are created on the graph. We

want now to merge the online Build G′
A,T algorithm to the relax step of

the SSSP algorithm. We maintain the two arrays π[] and p[] of linear size

w.r.t. the text size, containing the distance and the predecessor of any node

and we replace any edge creation or label updating with the relax operation.

50

About the online version of the Build G′
A,T , we can use the Remark

5 to make a kind of parallel run of the Find Supermaximal algorithm

for any cost c, maintaining the variables i synchronized on the same value.

Moreover, we use the Remark 7 to handle directly the edge creation as soon

as they are found. We address all of these variations to the Build G′
A,T ,

the Find Supermaximal as well as the merge with the SSSP algorithm in or-

der to obtain the Dictionary-Symbolwise Flexible Parsing algorithm.

The pseudo code of the Dictionary-Symbolwise Flexible Parsing al-

gorithm is reported in Table 4.3.

Let us notice that above algorithm uses only one dictionary at one time

and never needs to use previous version of the dynamic dictionary. Recall

that the dictionary is used by the Weighted-Exist and the Weighted-Extend

operations. This is a direct consequence of the fact that any edge (i, j) refers

to the dictionary Di and that after edge (i, j) creation, only edge (p, q) with

p ≥ i can be created.

Proposition 4.3.2. Any practical implementations of the Dictionary-symbol-

wise flexible parsing does not require to explicitly represent the graph G′
A,T

regardless of its size. Since G′
A,T nodes are visited in topological order by

classic SSSP solutions, the algorithm needs to maintain just two linear size

arrays, i.e. the array of node distances and the array of node predecessors,

in order to correctly compute an optimal parsing.

Let us summarize the Dictionary-Symbolwise Flexible Parsing algorithm

requirements. Given a text T of size n the Dictionary-Symbolwise Flexible

Parsing algorithm uses

• O(n) space for the π[] and p[] arrays, regardless of the graph G′
A,T

size that is not really built, plus the dictionary structure.

• O(|E|) time to analyze all the edges of the graph G′
A,T .

• it is not online because the backward recover of the parsing from the

p[] array.

With respect to the original Flexible Parsing algorithm we gain the fact

that it can work with variable costs of pointers and that it is extended to

51

Dictionary-Symbolwise Flexible Parsing

01. FOR i FROM 0 TO |T |− 1

02. Relax (i, i+ 1, C((i, i + 1)))

03. FOR ANY c ∈ C
04. IF i = jc THEN

05. jc ← 1 + jc

06. ENDIF

07. IF jc ≤ |T | AND Weighted-Exist (i, jc, c) = “yes” THEN

08. Relax (i, jc, C((i, jc)))

09. WHILE Weighted-Extend ((i, j), c) = “yes” DO

10. jc ← 1 + jc

11. Relax (i, jc, C((i, jc)))

12. ENDWHILE

13. jc ← 1 + jc

14. ENDIF

15. ENDFOR

16. ENDFOR

17. RETURN Reverse (v)

Relax (u, v, c)

01. IF π[u] + c < π[v] THEN

02. π[v]← π[u] + c

03. p[v]← u

04. ENDIF

Reverse (v)

01. IF v > 0 THEN

02. Reverse (p[v])

03. ENDIF

04. RETURN v

Table 4.3: The pseudocode of Dictionary-Symbolwise Flexible Pars-

ing algorithm, the Relax and the Reverse procedures. The distance

array π[] and the predecessor array p[] are initialized to 0. Notice that the

algorithm uses a different jc variable for any c value.
52

the dictionary-symbolwise case. This cover for instance the LZW-like and

the LZ77-like cases. But we lose the fact that the original one was “on-

line”. A minimal path has to be recovered, starting from the end of the

graph backward. But this is an intrinsic problem that cannot be eliminated.

Even if the dictionary edges have just one possible cost, in the dictionary-

symbolwise case it is possible that any minimal path for a text T is totally

different from any minimal path for the text Ta, that is the previous text T

concatenated to the symbol a. The same can happen when we have a (pure)

dictionary case with variable costs of dictionary pointers. In both cases, for

this reason, there cannot exists any “on-line” optimal parsing algorithms,

and, indeed, the original flexible parsing fails being optimal in the dictionary

case when costs are variable.

On the other hand our algorithm is suitable when the text is divided in

several contiguous blocks and, therefore, in practice there is not the need to

process the whole text but it suffices to end the current block in order to

have the optimal parsing (relative to that block).

4.4 Time and Space Analyses

In this section we analyze the Dictionary-symbolwise flexible parsing in

both LZ78 and LZ77-like algorithm versions.

LZ78 Case

Concerning LZ78-like algorithms, the dictionary is prefix closed and it

is implemented by using the LZW variant. We do not enter into the details

of this technique. We just recall that the cost of pointers increases by one

unit whenever the dictionary size is “close” to a power of 2. The moment

when the cost of pointers increases is clear to both encoder and decoder. In

our dictionary-symbolwise setting, we suppose that the flag information has

constant cost. We assume therefore that it takes O(1) time to determine

the cost of a dictionary edge.

The maximal cost that a pointer can assume is smaller than log2(n)

where n is the text size. Therefore the set C of all possible costs of dictionary

edges has logarithmic size and it is cheap to calculate.

53

In [27] the operations Extend and Contract are presented. It is also

presented a linear size data structure called trie-reverse-trie-pair that allows

to execute both those operations in O(1) time. The operation Extend(w, a)

says whether the phrase wa is in the currently used dictionary. The op-

eration Contract(w) says whether the phrase w[2 : |w|] is in the current

dictionary.

Since at any position we can calculate in O(1) time the cost of an

edge, we can use the same data structure to perform our operations of

Weighted-Extend and of Weighted-Exist in constant time as follow. In or-

der to perform a Weighted-Extend((i, j), c) we simply execute the operation

Extend(w, aj+1) with w = T [i + 1 : j], i.e. the phrase associated to the

edge (i, j), and then, if the answer is “yes”, we perform a further check in

O(1) time on the cost of the found edge (i, j + 1). Therefore, Weighted-

Extend((i, j), c) is equal to Extend(T [i+1 : j], aj+1) AND C((i, j +1)) ≤ c.

In order to perform a Weighted-Exist((i, j), c) we simply use the contract

on the phrase aiw, where w = T [i + 1 : j], and, if the answer is “yes” we

perform a further check in O(1) time on the cost of the found edge (i, j).

Therefore, Weighted-Exist(i, j, c) is equal to Contract(aiT [i + 1 : j]) AND

C((i, j)) ≤ c.

At a first look, the algorithm Build G′
A,T would take O(n log n) time.

But, since there is only one active cost at any position in any LZW-like algo-

rithms, then if c < c′ then Mc ⊆Mc′ , as stated in the following proposition.

Definition 4.5. We say that a cost function C is LZW-like if for any i

the cost of all dictionary pointers in Di is a constant ci and that for any i,

0 ≤ i < n one has that ci ≤ ci+1.

Proposition 4.4.1. If the cost function C is LZW-like, one has that if

c < c′ then Mc ⊆Mc′.

Proof. We have to prove that for any (i, j) ∈ Mc then (i, j) ∈ Mc′ . Clearly

if (i, j) ∈ Mc then its cost is smaller than or equal to c < c′. It remains

to prove that (i, j) is c′-supermaximal, e.g. that ∀p, q ∈ V , with p < i and

j < q, the arcs (p, j), (i, q) are not in Ec′ . Since (i, j) ∈Mc and since the cost

of (i, j) is by hypothesis equal to ci, we have that ci ≤ c. If arc (p, j) is in

Ec′ then its cost is cp ≤ ci ≤ c and therefore it is also in Ec contradicting the

54

c-supermaximality of (i, j). If arc (i, q) is in Ec′ then its cost is ci ≤ c and

therefore it is also in Ec contradicting the c-supermaximality of (i, j).

At this point, in order to build G′
A,T we proceed in an incremental way.

We build Mc for the smallest cost. Then, we start from the last built Mc to

build Mc′ , where c′ is the smallest cost grater than c. And so on until all the

costs are examined. We insert any edge (i, j) only in the set Mc where c is

the real cost of the (i, j) edge. In this way, we avoid to insert the same edge

(i, j) in more than one Mc since that the algorithm will insert eventually

the edge (i, j) from the set Mc with the minimal cost c = C((i, j)).

A direct consequence of above approach, we have that only a linear size

of edge are inserted in the graph G′
A,T .

The overall time for building G′
A,T is therefore linear, as well as its

size. The Single Source Shortest Path over G′
A,T , that is a DAG

topologically ordered, takes linear time (see [7, Ch. 24.2]).

In conclusion we state the following proposition.

Proposition 4.4.2. Suppose that we have a dictionary-symbolwise scheme,

where the dictionary is LZ78-like and the cost function is LZW-like. The

symbolwise compressor is supposed to be, as usual, linear time. Using the

trie-reverse-trie-pair data structure, Dictionary-Symbolwise flexible parsing

is linear.

LZ77 Case

Concerning LZ77, since the dictionary is prefix closed, we have that the

Dictionary-Symbolwise Flexible Parsing is an optimal parsing. We exploit

the discreteness of the cost function C when it is associated to the length of

the codewords of a variable length code, like Elias codes or Huffman codes,

to bound the cardinality of the set C to O(log n). Indeed let us call ĉ the

maximum cost of any dictionary pointer, e.g. the longest and the most far

one under the length-distance paradigm. Even if the cost actually depends

on the text T , it usually has an upper bound that depends on the encoding

and on the dictionary constrains and we can assume it to be ĉ = O(log n),

with |T | = n.

55

Operations Weighted-Exist and Weighted-Extend can be implemented

in linear space and constant time by using classical suffix tree or other

solutions when the dictionary is a LZ77-like one. For instance, in [10] it is

shown how to compute the Longest Previous Factor (LPF) array in liner

time. Recall that T [i, LPF [i]] is the longest factor already seen in the text

at some position i′ < i. It is easy to see that following relations hold. The

operation Weighted-Exist (i, j, c) outputs “yes” ⇐⇒ j ≤ i+ LPF [i] AND

C((i, j)) ≤ c and the operation Weighted-Extend ((i, j), c) outputs “yes”

⇐⇒ j < i + LPF [i] AND C((i, j + 1)) ≤ c. We recall that we are also

assuming that it is possible to compute the cost of a given edge in constant

time. Therefore, we use linear time and space to build the LPF array and

then any operation Weighted-Exist or Weighted-Extend take just constant

time.

Suppose to have a dictionary-symbolwise scheme, where the dictionary

is LZ77-like and the dictionary pointer encoding, the symbolwise encoding

and the flag information encoding are any variable-length encoding one. The

use of the codeword length as cost function leads to a function that assumes

integer values. Given ĉ the maximum cost of any dictionary pointer with

ĉ ≤ log(n), the Dictionary-Symbolwise Flexible Parsing runs in O(n log n)

time and space.

Let us notice that in most of the common LZ77 dictionary implemen-

tation, as it is in the Deflate compression tool, our assumption about the

computation of edge cost in O(1) time is not trivial to obtain.

Obviously, we are interested, for compression purpose, to the smallest

cost between all the possible encoding of a phrase. For instance, the use of

the length-distance pair as dictionary pointer leads to multiple representa-

tion of the same (dictionary) phrase since this phrase can occur more then

once in the (already seen) text.

Since the closest occurrence uses the smallest distance to be represented,

the cost of encoding the phrase using this distance is usually the smallest

one, accordingly to the used encoding method.

A practical approach that looks for the above smallest distance makes

use of hash tables, built on fixed length phrases.

56

A new data structure able to answer to the edge cost query in constant

time and able to support the Weighted-Exist and the Weighted-Extend op-

eration in the case of LZ-77 dictionaries, will be introduced in next chapter.

57

58

Chapter 5

The Multilayer Suffix Tree

We introduce here an online full-text index data structure that is able to

find the rightmost occurrence of any factor or an occurrence which bit repre-

sentation has equal length (Query 1). It has linear space complexity and it is

built in O(n log n) amortized time, where n is the size of the text. It is able to

answer to the Query 1, given a pattern w, in O(|pattern| loglog n). Further-

more, we will show how to use this structure to support the Weighted-Exist

and the Weighted-Extend operations used by the Dictionary-Symbolwise

Flexible Parsing algorithm in O(1) time.

5.1 Background and Definitions

Let Pos(w) ⊂ N the set of all the occurrences of w ∈ Fact(T) in the text

T ∈ Σ∗, where Fact(T) is the set of the factors of T . Let Offset(w) ⊂ N

the set of all the occurrence offsets of w ∈ Fact(T) in the text T , i.e.

x ∈ Offset(w) iff x is the distance between the position of an occurrence of

w and the end of the text T . For instance, given the text T = babcabbababb

of length |T | = 12 and the factor w = abb of length |w| = 3, the set of

positions of w over T is Pos(w) = {4, 9}. The set of the offsets of w over T

is Offset(w) = {7, 2}. Notice that x ∈ Offset(w) iff exists y ∈ Pos(w) such

that x = |T |− y − 1. Since the offsets are function of occurrence positions,

there is a bijection between Pos(w) and Offset(w), for any factor w.

Given a number encoding method, let Bitlen : N → N a function that

59

to a number x associates the length in bit of the encoding of x. Let

us consider the equivalence relation having equal code bit-length on the

set Offset(w). The numbers x, y ∈ Offset(w) are bit-length equivalent iff

Bitlen(x) = Bitlen(y). Let us notice that the having equal code bit-length

relation induces a partition on Offset(w).

Definition 5.1. The rightmost occurrence of w over T is the offset of the

occurrence of w that appears closest to the end of the text, if w appears at

least once over T , otherwise it is not defined.

Notice that for any factor w ∈ Fact(T), the rightmost offset of w is

defined as follows.

rightmost(w) =

{

min{x | x ∈ Offset(w)} if Offset(w) .= ∅
not defined if Offset(w) = ∅

Let us notice that referring to the rightmost occurrence of a factor in an

online algorithmic fashion, where the input text is processed left to right,

corresponds to referring to the rightmost occurrence over the text already

processed. Indeed, if at a certain algorithm step we have processed the first

i symbols of the text, the rightmost occurrence of w is the occurrence of w

closest to the position i of the text reading left to right.

Definition 5.2. Let rightmosti(w) be the rightmost occurrence of w over

Ti, where Ti is the prefix of the text T ending at the position i in T . Obvi-

ously, rightmostn(w) = rightmost(w) for |T | = n.

In many practical algorithms, like in the data compression field, the text

we are able to refer to is just a portion of the whole text. Let T [j : i] be the

factor of the text T starting from the position j and ending to the position

i. We generalize the definition of rightmost(w) over a factor T [j : i] of T as

follows.

Definition 5.3. Let rightmostj,i(w) be the rightmost occurrence of w over

T [j : i], where T [j : i] is the factor of the text T starting at the position j

and ending at the position i of length i−j+1. Obviously, rightmost1,n(w) =

rightmost(w) for |T | = n.

60

The online full-text index we are going to introduce is able to answer to

the rightmost equivalent length query in constant time, also referred hereby

as Query 1. The Query 1 is more formally stated as below.

Definition 5.4. (Query 1) Given a text T ∈ Σ∗, a pattern w ∈ Σ∗

and a point i in time at which the prefix of the text Ti has been pro-

cessed, the query rightmost equivalent length provides an occurrence offset

x ∈ [rightmosti(w)] of w, where [rightmosti(w)] is the equivalence class in-

duced by the relation having equal code bit-length containing rightmosti(w),

i.e. the rightmost occurrence of w in Ti.

5.2 The Idea

There are many classic full text index data structures able to represent

the set Fact(T [1 : i]), like the suffix tree, the suffix array, the suffix automata

and others. Many of them can easily be preprocessed in the offline fashion

to make they able to find the rightmost occurrence of any factor over the

whole text efficiently, but none of them can answer to the above Query 1.

The main idea of this new data structure, is based on a twofold observa-

tion. The fist observation is that the equivalence relation having equal code

bit-length that induces a partition on Offset(w), for any w, also induces a

partition on the set of all the possible offsets over a text T independently

of a specific factor, i.e. on the set [1..|T |]. The second one is that for the

encoding methods for which the Bitlen function is a monotonic function,

any equivalence class in [1..|T |] is composed by contiguous points in [1..|T |].
Indeed, given a point p ∈ [1..|T |], the equivalence class [p] is equal to the set

[j..i], with j ≤ p ≤ i, j = min{x ∈ [p]} and i = max{x ∈ [p]}.
Putting these observations all together suggests that the Query 1 can

be addressed by a set of classic full text indexes, each of whom is devoted

to some classes of the equivalence relation having equal code bit-length. We

assume that we know the set of all the maximum element of any equivalence

class and we call it M = {m1,m2, ...,ms}, with m1 < m2 < ... < ms.

Suppose to have at time i, one suffix tree SWα for each α ∈ M , to

represent all the factor of T [i − α : i], i.e. one suffix tree for the sliding

61

window of length α. Obviously, if a phrase w is in SWα then w is in SWβ

where α ≤ β and α,β ∈M .

Proposition 5.2.1. If a pattern w is in SWα and is not in SWβ, where α

is the maximum of the values mx ∈ M smaller than β, the code bit length

of the rightmost occurrence of w in Ti, is equal to the code bit length of any

occurrence of w in SWα.

Using above proposition, we are able to answer to the Query 1 once

we find the smallest suffix tree containing the rightmost occurrence of the

pattern. What follows is the trivial search of the suffix tree with the smallest

sliding window, that contains an occurrence of the given pattern.

Given a pattern w, we look for w in SWm1
. If w is in SWm1

, then all

the occurrences of w in T [i − m1 : i] belong to the class of the rightmost

occurrence of w over T . If w is not in SWm1
, then we look for any occurrence

of w is in SWm2
. If w is in SWm2

, since it is not in SWm1
, any occurrence

of w in SWm2
belong to the rightmost occurrence of w over T . Continuing

in this way, once we found an occurrence of w in SWmx
, this occurrence

correctly answer to the Query 1.

In the following proposition we exploit the discreteness of the bit length

function of common variable-length codewords. We consider to have a set

of text indexes for sliding window, where the sliding window sizes are one

for any value of the bit length function.

Proposition 5.2.2. Given a variable-length code for the offsets and a pat-

tern w, if the codewords bit length function is a monotone function, then all

the occurrence offsets of w in the text index for the smallest sliding window

where w appears at least once, belong to the [rightmost] class.

Using the online suffix tree for sliding window data structure, introduced

by Larson in [26] and later refined by Senft in [34], to represent SWmx
, we

are able to find an occurrence of a given pattern in time proportional to the

pattern, the following proposition holds.

Proposition 5.2.3. The simple data structure showed below, is able to an-

swer to the Query 1 in time proportional to the pattern size times the car-

dinality of the set M .

62

Let us now focusing on the set M . Since that many of the classic variable

length codes for integers, like the Elias’s γ-codes, produce codewords of

length proportional to the logarithm of the represented value, we can assume

that the cardinality of M is O(log |T |). Since that |Ti| = i, in the online

fashion, we have that latter proposition becomes as follows.

Proposition 5.2.4. Using any classic variable length code method, the

above data structure is able to answer to the Query 1 in O(|pattern| log i)

time.

A similar result is due to Amir et al. (see [1]) that use O(n) time,

but it does not support Weighted-Exist and Weighted-Extend operations in

constant time.

Based on the idea that using a binary search on the indexes SWx,

the query time can be reduced to O(|pattern| loglog i), in the next sec-

tion we introduce an online data structure able to answer to the Query 1

in O(|pattern| loglog i) time and support Weighted-Exist and Weighted-

Extend operations in constant time. This data structure uses O(n) space

and O(n log n) amortized building time.

5.3 The Data Structure

Let us now introduce the Multilayer Suffix Tree data structure. It is

based on the data structure presented above, where the SWmx
suffix trees

are organized in layers and their nodes are equipped with extra links and

some extra nodes.

For each SWmx
we use a classic suffix tree for sliding windows (see for

instance the suffix tree base data structure presented in [18, 26, 34]). It

allows to know one occurrence of a phrase w in constant time, but it cannot

be directly used to find the rightmost occurrence. We think that it is possible

to adapt our data structure to work with other index for sliding window (see

for instance [22, 29, 35]).

Let call SWmax the first layer, wheremax is the maximum allowed offset.

Each suffix tree SWmx
lies on a layer and layers are ordered from the larger

to the smallest sliding window. From now on we will refer to suffix trees

63

or layers indifferently. Let think to the first layer as the top layer and the

smallest one as the deeper layer.

Since that edges in suffix trees may have labels longer of one character,

the ending point of a pattern may be either a node or a point in middle

of an edge. A classic notation to refer to a general point in suffix tree is a

threefold vector composed by a locus, a symbol and an offset. The locus is

the node closest to the point on the path from the root, the symbol is the

discriminant between the edges outgoing from the locus, and the offset tell

how many characters of the edge are before the referred point.

More formally, given a pattern w ∈ Fact(T), let ST be the suffix tree

for the text T . Let be w = uv, with u, v ∈ Fact(T), where u is the longest

prefix of w ending at a node p in ST and v is the prefix of the edge where

the pattern w ends out. Let call p the locus of w, |v| the offset and v[1]

the discriminant character representing the point of w in ST . If w ends to

a node in ST , then w = uε, this node is the locus, the length is equal to 0

and the discriminant character is any c ∈ Σ.

As direct consequence of the increasing size of the sliding windows, we

have that if a pattern exists in a layer, it is in all the layers above it. Gener-

ally, if a pattern ends up to an internal node in some layer, there are internal

nodes corresponding to the same pattern in all the above layers.

We address Query 1 using the binary search to find the deeper layer

containing the given pattern.

64

Chapter 6

Conclusion

In this thesis we present some advancement on dictionary-symbolwise

theory. We describe the Dictionary-Symbolwise Flexible Parsing, a parsing

algorithm that extends the Flexible Parsing (see [28]) to variable costs and

to the dictionary-symbolwise domain. We prove its optimality for prefix-

closed dynamic dictionaries under some reasonable assumption. Dictionary-

Symbolwise Flexible Parsing is linear for LZ78-like dictionaries and even if

it is not able to run online it allows to easily make a block programming

implementation. In the case of LZ77-like dictionary, we have obtained the

O(n log n) complexity as authors of [17] recently did by using a completely

different subgraph.

Last but not least, our algorithm allows to couple classical LZ-like com-

pressors with several symbolwise methods to obtain dictionary-symbolwise

algorithms with a proof of parsing optimality.

We have also proved in Section 2.5 that dictionary-symbolwise compres-

sors can be asymptotically better than optimal pure dictionary compression

algorithms in compression ratio terms.

We conclude this thesis with two open problems.

1. Theoretically, LZ78 is better on memoryless sources than LZ77. Ex-

perimental results say that when optimal parsing is in use it happens the

opposite. Prove this fact both in pure dictionary case and in dictionary-

symbolwise case.

2. Common symbolwise compressors are based on the arithmetic coding

65

approach. When these compressors are used, the costs in the graph are al-

most surely noninteger and, moreover, the graph is usually not well defined.

The standard workaround is to use an approximation strategy. A big goal

should be finding an optimal solution for these important cases.

66

Bibliography

[1] Amihood Amir, Gad M. Landau, and Esko Ukkonen. Online time

stamped text indexing.

[2] R. Arratia and M. Waterman. The Erd“os-Rényi strong law for pattern

matching with given proportion of mismatches. Annals of Probability,

4:200–225, 1989.

[3] Timothy C. Bell, John G. Cleary, and Ian H. Witten. Text compression.

Prentice Hall, 1990.

[4] Timothy C. Bell and Ian H. Witten. The relationship between greedy

parsing and symbolwise text compression. J. ACM, 41(4):708–724,

1994.

[5] Maxime Chochemore, Laura Giambruno, Alessio Langiu, Filippo

Mignosi, and Antonio Restivo. Dictionary-symbolwise flexible parsing.

[6] Martin Cohn and Roger Khazan. Parsing with prefix and suffix dictio-

naries. In Data Compression Conference, pages 180–189, 1996.

[7] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford

Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, second

edition, 2001.

[8] Maxime Crochemore, Chiara Epifanio, Alessandra Gabriele, and Fil-

ippo Mignosi. On the suffix automaton with mismatches. In Jan Holub

and Jan Zdárek, editors, CIAA, volume 4783 of Lecture Notes in Com-

puter Science, pages 144–156. Springer, 2007.

67

[9] Maxime Crochemore, Laura Giambruno, Alessio Langiu, Filippo

Mignosi, and Antonio Restivo. Dictionary-symbolwise flexible parsing.

In Costas S. Iliopoulos and William F. Smyth, editors, IWOCA, volume

6460 of Lecture Notes in Computer Science, pages 390–403. Springer,

2010.

[10] Maxime Crochemore and Lucian Ilie. Computing longest previous fac-

tor in linear time and applications. Inf. Process. Lett., 106(2):75–80,

2008.

[11] Maxime Crochemore and Thierry Lecroq. Pattern-matching and text-

compression algorithms. ACM Comput. Surv., 28(1):39–41, 1996.

[12] Giuseppe Della Penna, Alessio Langiu, Filippo Mignosi, and Andrea

Ulisse. Optimal parsing in dictionary-symbolwise data compression

schemes. http://math.unipa.it/~alangiu/OptimalParsing.pdf,

2006, unpublished manuscript.

[13] C. Epifanio, A. Gabriele, and F. Mignosi. Languages with mismatches

and an application to approximate indexing. In Proceedings of the 9th

International Conference Developments in Language Theory (DLT05),

LNCS 3572, pages 224–235, 2005.

[14] C. Epifanio, A. Gabriele, F. Mignosi, A. Restivo, and M. Sciortino.

Languages with mismatches. Theor. Comput. Sci., 385(1-3):152–166,

2007.

[15] P. Fenwick. Symbol ranking text compression with shannon recodings.

Journal of Universal Computer Science, 3(2):70–85, 1997.

[16] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J.

ACM, 52(4):552–581, 2005.

[17] Paolo Ferragina, Igor Nitto, and Rossano Venturini. On the bit-

complexity of lempel-ziv compression. In SODA ’09: Proceedings of the

Nineteenth Annual ACM -SIAM Symposium on Discrete Algorithms,

pages 768–777, Philadelphia, PA, USA, 2009. Society for Industrial and

Applied Mathematics.

68

[18] E. R. Fiala and D. H. Greene. Data compression with finite windows.

Commun. ACM, 32:490–505, April 1989.

[19] A. Gabriele, F. Mignosi, A. Restivo, and M. Sciortino. Indexing struc-

ture for approximate string matching. In Proc. of CIAC’03, volume

2653 of LNCS, pages 140–151, 2003.

[20] Alan Hartman and Michael Rodeh. Optimal parsing of strings, pages

155–167. Springer - Verlag, 1985.

[21] R. Nigel Horspool. The effect of non-greedy parsing in ziv-lempel com-

pression methods. In Data Compression Conference, pages 302–311,

1995.

[22] Shunsuke Inenaga, Ayumi Shinohara, Masayuki Takeda, and Setsuo

Arikawa. Compact directed acyclic word graphs for a sliding window.

In SPIRE, pages 310–324, 2002.

[23] Tae Young Kim and Taejeong Kim. On-line optimal parsing in

dictionary-based coding adaptive. Electronic Letters, 34(11):1071–1072,

1998.

[24] S. Rao Kosaraju and Giovanni Manzini. Compression of low entropy

strings with lempel–ziv algorithms. SIAM J. Comput., 29(3):893–911,

2000.

[25] Alessio Langiu. Optimal parsing in dictionary-symbolwise com-

pression algorithms. Master’s thesis, University of Palermo, 2008.

http://math.unipa.it/~alangiu/Tesi_Alessio_Langiu_MAc.pdf.

[26] N. Jesper Larsson. Extended application of suffix trees to data com-

pression. In Data Compression Conference, pages 190–199, 1996.

[27] Yossi Matias, Nasir Rajpoot, and S“uleyman Cenk Sahinalp. The effect

of flexible parsing for dynamic dictionary-based data compression. ACM

Journal of Experimental Algorithms, 6:10, 2001.

[28] Yossi Matias and S“uleyman Cenk Sahinalp. On the optimality of

parsing in dynamic dictionary based data compression. In SODA, pages

943–944, 1999.

69

[29] Joong Chae Na, Alberto Apostolico, Costas S. Iliopoulos, and Kunsoo

Park. Truncated suffix trees and their application to data compression.

Theor. Comput. Sci., 304:87–101, July 2003.

[30] David Salomon. Data compression - The Complete Reference, 4th Edi-

tion. Springer, 2007.

[31] David Salomon. Variable-length Codes for Data Compression. Spring-

er-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK /

etc., 2007.

[32] Khalid Sayood. Introduction to Data Compression. Morgan Kaufmann,

1996.

[33] Ernst J. Schuegraf and H. S. Heaps. A comparison of algorithms for data

base compression by use of fragments as language elements. Information

Storage and Retrieval, 10(9-10):309–319, 1974.

[34] M. Senft. Suffix tree for a sliding window: An overview. In Proceedings

of WDS’05, Part 1, pages 41–46, 2005.

[35] Martin Senft and Tomáš Dvořák. Sliding cdawg perfection. In Pro-

ceedings of the 15th International Symposium on String Processing and

Information Retrieval, SPIRE ’08, pages 109–120, Berlin, Heidelberg,

2009. Springer-Verlag.

[36] James A. Storer and Thomas G. Szymanski. Data compression via

textural substitution. J. ACM, 29(4):928–951, 1982.

[37] W. Szpankowski. Average Case Analysis of Algorithms on Sequences.

Wiley, 2001.

[38] Robert A. Wagner. Common phrases and minimum-space text storage.

Commun. ACM, 16(3):148–152, 1973.

[39] T. A. Welch. A technique for high-performance data compression. IEEE

Computer, january:8–19, 1984.

70

Appendix A

Experiments

We now discuss about some experiments. Readers must keep into ac-

count that the results of this paper are mainly theoretical and that they

apply to a very large class of compression algorithms. Due to this, the use

of different methods of encoding for dictionary pointers as well as for sym-

bolwise encoding and for the flag information encoding together with the

dictionary constrains leads to different performances. Performances about

time and space are strongly dependent on the programming language in use

and on the programmers abilities. Therefore we decided to focus only on

compression ratio.

We here discuss two particular cases that allow to compare our results

with some well know commercial compressors. The first one is related to

LZ78-like dictionary and Huffman codes. The second one concerns LZ77-like

dictionaries with several window sizes and Huffman codes. We compare the

obtained compression ratio with the gzip, zip and cabarc compression tools.

The encoding method in use is a semi static Huffman codes.

In the first experiment, using a simple semi static Huffman coding as

symbolwise compressor, we improved the compression ratio of the Flexible

Parsing with LZW-dictionary by 3 to 5 percent on texts such as the bible.txt

file or the prefixes of English Wikipedia data base (see Table A.1). We obtain

that the smaller is the file the greater is the gain.

We have experimental evidence that many of the most relevant LZ77-like

commercial compressors are, following our definition, dictionary-symbolwise

71

File (size) bible.txt (4047392 Byte) enwik (100 MB)

gzip -9 29.07% 36.45%

lzwfp 30.09% 35.06%

lzwhds 25.84% 31.79%

Table A.1: Compression ratio comparison of some LZW-like compressors

and the gzip tool. (gzip -9 is the gzip compression tool with the -9 pa-

rameter for maximum compression. lzwfp is the Flexible Parsing algo-

rithm of Matias-Rajpoot-Sahinalp with a LZW-like dictionary. lzwhds is

our Dictionary-Symbolwise Flexible Parsing algorithm with LZW-like dic-

tionary and Huffman codes.)

File (size) bible.txt (4047392 Byte) enwik (100 MB)

gzip -9 29.07% 36.45%

gzip by 7zip 27.44% 35.06%

zip by 7zip 25.99% 33.72%

cabarc 22.13% 28.46%

lzhds-32KB 27.47% 35.02%

lzhds-64KB 26.20% 33.77%

lzhds-2MB 22.59% 28.82%

lzhds-16MB 22.51% 26.59%

Table A.2: Compression ratio comparison of some LZ77-like compressors.

(gzip -9 is the gzip compression tool with the -9 parameter for maximum

compression. gzip by 7zip is the gzip compression tool implemented in the

7-Zip compression suite. zip by 7zip is the 7-Zip implementation of the zip

compression tool. cabarc is the MsZip cabinet archiving tool also known as

cabarc (version 5.1.26 with -m lzx:21 option used). lzhds-x is our Dictionary-

Symbolwise Flexible Parsing with LZ77-like dictionary of different dictionary

sizes, as stated in the suffix of the name, and Huffman codes.)

72

File (size) bible.txt (4047392 Byte) enwik (100 MB)

gzip -9 / lzhds-32KB 105.82% 104.08%

gzip by 7zip / lzhds-32KB 99.89% 100.11%

zip by 7zip / lzhds-64KB 99.19% 99.85%

cabarc / lzhds-2MB 97.96% 98.75%

Table A.3: Ratio between the compression ratio of different LZ77-like com-

pressors. All the involved compressors, except for the gzip one, seam to

have an optimal parsing strategy. (See Table A.2 Caption for compressor

descriptions.) Notice that on each row there are compressors having the

same windows size.

algorithms and they use an optimal parsing (see Table A.2 and Table A.3).

In Table A.3 is shown the ratio between compression performances of com-

pressors with similar constrains and encoding. Indeed, gzip and lzhds-32KB

use a LZ77-like dictionary of 32KB, zip and lzhds-64KB have dictionary

size of 64KB. cabarc and lzhds-2MB use 2MB as dictionary size. They all

use Huffman codes. We notice that a difference of about 5 percent is due

to parsing optimality while small differences of about 2 percent are due to

implementation details like different codeword space and different text block

handling. We think that gzip and zip implementations in the 7-Zip com-

pression suite and cabarc have an optimal parsing, even if this fact is not

clearly stated or proved.

73

