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The discovery of rhamnose-binding lectins (RBLs) in teleost fish eggs led to the identification of a novel
lectin family characterized by a unique sequence motif and a structural fold, and initially proposed to
modulate fertilization. Further studies of the RBL tissue localization and gene organization were also sug-
gestive of role(s) in innate immunity. Here we describe the purification, and biochemical and functional
characterization of a novel RBL (DlRBL) from sea bass (Dicentrarchus labrax) serum. The purified DlRBL
had electrophoretic mobilities corresponding to 24 kDa and 100 kDa under reducing and non-reducing
conditions, respectively, suggesting that in plasma the DlRBL is present as a physiological homotetramer.
DlRBL subunit transcripts revealed an open reading frame encoding 212 amino acid residues that
included two tandemly-arrayed carbohydrate-recognition domains, and an 18-residue signal sequence
at the N-terminus. The deduced size of 24.1 kDa for the mature protein was in good agreement with
the subunit size of the isolated lectin. Binding activity of DlRBL for rabbit erythrocytes could be inhibited
in the presence of rhamnose or galactose, did not require calcium, and was optimal at around 20 �C and
within the pH 6.5–8.0 range. DlRBL agglutinated Gram positive and Gram negative bacteria, and exposure
of formalin-killed Escherichia coli to DlRBL enhanced their phagocytosis by D. labrax peritoneal macro-
phages relative to the unexposed controls. Taken together, the results suggest that plasma DlRBL may
play a role in immune recognition of microbial pathogens and facilitate their clearance by phagocytosis.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction pentraxins (Turner, 1996; Sharon and Lis 2004; Arason 1996; Vasta
Lectins are carbohydrate-binding proteins widely distributed in
eukaryotic taxa, and are involved in multiple biological processes,
such as development and immune responses (Vasta et al., 1994;
Arason, 1996; Kaltner and Stierstorfer, 1998; Kilpatrick, 2002).
With regards to the latter, lectins can bind to microbial surface gly-
cans through their CRDs (carbohydrate recognition domains), and
based on their multivalent oligomeric organization and the pres-
ence of additional effector domains, not only recognize microbial
pathogens but also mediate effector functions including agglutina-
tion, opsonization, and complement activation, that result in their
immobilization, phagocytosis, killing and removal from the inter-
nal milieu (Gabius, 1997; Kilpatrick, 2002; Loris, 2002; Vasta
et al., 2004; Turner, 1996; Sharon and Lis 2004; Fujita et al.,
2004). On the basis of conserved amino acid sequence motifs in
their CRDs, structural folds, and calcium requirements lectins have
been classified into various families that include among others, the
C-type, F-type, and rhamnose-binding lectins (RBLs), galectins and
et al., 2004; reviewed in Vasta and Ahmed, 2008, and Vasta et al.,
2011).

Lectin repertoires in teleost fish are highly diversified (Vasta
et al., 2011, 2012), and include not only representatives of the lec-
tin families described in mammals, but also members of lectin
families initially identified and characterized in fish species, such
as F-type lectins (Odom and Vasta, 2006; Bianchet et al., 2010)
and RBLs (Tateno et al., 1998; Jimbo et al., 2007; Terada et al.,
2007).

RBLs are Ca2+-independent lectins with specificity for rhamnose
and galactosides, particularly abundant in teleosts and ascidi-
ans, and other aquatic invertebrate species, such as annelids,
bivalves, and echinoderms (Ogawa et al., 2011). The sea urchin
(Anthocidaris crassispina) egg dimeric lectin (SUEL) was first iso-
lated as a D-galactoside-binding lectin and later shown to preferen-
tially bind L-rhamnose. This is consistent with the same orientation
of the hydroxyl groups at C2 and C4 in the pyranose rings of both
L-rhamnose and D-galactose. The 100 amino acids-long CRD
displays conserved sequence motifs, such as YGR, DPC and KYL
(Terada et al., 2007), and houses eight highly conserved cysteine
residues engaged in four disulfide bridges with characteristic
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topology that determine a unique structural fold (Jimbo et al.,
2007; Terada et al., 2007).

In teleost fish, most of the RBLs described to date have been iso-
lated from the egg cortex (Tateno et al., 1998; Lam and Ng 2002;
Shiina et al., 2002; Tateno et al., 2002a,b; Jimbo et al., 2007; Terada
et al., 2007; Watanabe et al., 2008). Because rhamnose is absent in
animal cells but widely distributed in the bacterial cell wall, the
ability of trout egg RBLs to recognize and bind lipopolysaccharide
and lipoteichoic acid, and agglutinate both Gram-positive and
Gram-negative bacteria suggested a role in egg defense against
infectious challenge (Tateno et al., 2002a). The presence of RBLs
in skin mucus also supported their proposed function(s) in im-
mune defense, and further work showed their participation in mul-
tiple antimicrobial activities such as inhibition of proliferation,
cytotoxicity, and opsonization of non-self cells or particles (Hosono
et al., 1993; Lam and Ng 2002; Tateno et al., 2002a; Terada et al.,
2007). A putative natural ligand of fish RBL was identified as globo-
triasylceramide (Gb3), a glycosphingolipid that is abundant in
membrane lipid rafts (Watanabe et al., 2009; Ogawa et al., 2011).

In this study we report the purification, cloning, and structural
and functional characterization of an RBL present in plasma of the
sea bass Dicentrarchus labrax. The protein had been observed as a
secondary product in the purification of an F-type lectin (DlFBL)
from sea bass plasma that we reported elsewhere (Salerno et al.,
2009). The purified sea bass RBL (DlRBL) showed a tetrameric
structure in which each single subunit contains two tandemly-
arrayed, distinct CRDs that exhibit the sequence motif typical of
the teleost RBLs. Agglutinating activity for E. coli and Vibrio algino-
litycus, and their opsonization for sea bass macrophages suggest
that it may function in recognition of potential microbial patho-
gens in the blood stream.

2. Material and methods

2.1. Chemicals and molecular biology reagents

Unless otherwise specified, chemicals and molecular biology re-
agents were from Sigma–Aldrich (USA), at the highest purity
available.

2.2. Animals, collection of blood and tissue samples, and preparation of
tissue extracts

Sea bass (D. labrax) (n = 25; approximately 250 g each) were
provided by the Ittica Trappeto fish farm (Trappeto, Palermo, Italy).
Animals were anesthetized in seawater containing 0.02% 3-amino-
benzoic acid ethyl ester (MS-222 Sigma), and bled by heart punc-
ture. The blood was allowed to clot at room temperature for 1 h,
the serum separated by centrifugation at 800g (10 min, 4 �C), ali-
quoted, and stored at �20 �C until use.

2.3. Purification of DlRBL

The DlRBL was isolated from sea bass serum by an optimized
two-step chromatography procedure (Table 1), following Camma-
rata et al. (2007). The first step consisted of affinity chromatogra-
phy on fucose-agarose, with 0.2 M fucose elution. As monitored
by absorbance at 280 nm, the elution profile yielded two peaks,
the second of which displayed the highest hemagglutinating activ-
ity (titer: 256–512) and contained the DlFBL (Salerno et al., 2009).
To purify DlRBL, the pooled fractions of the first peak (20 ml) were
loaded onto a galactose-agarose column (Pierce). The column was
washed with 1.0 M NaCl, followed by TBS (10 volumes) at a 0.2 ml/
min flow rate, and the DlRBL eluted with 20 ml of 50 mM galactose
in TBS at the same flow rate, monitored by absorbance at 280 nm,
and 2 ml fractions collected. The eluted fractions were tested for
their hemagglutinating activity towards rabbit erythrocytes, and
those that exhibited the highest activity were pooled and analyzed
by SDS–PAGE electrophoresis.

2.4. Hemagglutination assay

Rabbit and sheep erythrocytes (RBC; supplied by Istituto Zoo-
profilattico della Sicilia) were washed three times with PBS, centri-
fuged at 500g for 10 min at 4 �C and suspended at 1% in TBS
containing 0.1% (w/v) pig gelatin. A volume (25 ll) of sea bass ser-
um (1:10) or 25 ll of the purified DlRBL preparation (250 lg/ml)
dialyzed in TBS were serially (2-fold) diluted with TBS-gelatin in
96-well round-bottom microtiter plates (Nunc, Denmark), and
mixed with an equal volume of RBC suspension. The hemaggluti-
nating titer (HT) was measured after a 1 h incubation at 37 �C
and expressed as the reciprocal of the highest dilution showing
clear agglutination.

2.5. Protein content estimation

Protein content was estimated according to the method of
Bradford (1976)using bovine serum albumin (BSA) as a standard.

2.6. Polyacrylamide gel electrophoresis

SDS–PAGE (10%) was carried out following the method of
Laemmli (1970) under reducing conditions (5% mercaptoethanol).
To assess the apparent molecular size of DlRBL, the polyacrylamide
gels were calibrated with low range standard proteins (Bio-Rad,
Richmond, CA). Proteins were stained with Coomassie brillant Blue
R250.

2.7. N-terminal sequencing

The purified lectin from SDS–PAGE gels run under reducing con-
ditions was electrophoretically transferred (4 lg/well) to Immobi-
lon polyvinylidene difluoride membrane (Millipore, Bedford, MA,
USA), at 160 mA for 1 h. The membrane was stained with an aque-
ous solution of Coomassie Blue R-250, extensively rinsed with dis-
tilled water, and the band corresponding to the isolated protein
was excised and applied to a protein sequencer (Procise, Perkin-
Elmer, Switzerland). The sequence was determined by automated
Edman degradation using a protein sequencer at the Institute of
Protein Biochemistry (CNR Naples).

2.8. Phylogenetic analysis

The DlRBL protein sequence identified in a D. labrax EST library
as Rhamnose binding protein (Appendix 3, Contig_1715;
Sarropoulou et al., 2009) was aligned with RBLs sequences from
several species [(Channa argus (gi|189096288|gb|ACD76075.1);
Lutjanus sanguineus (gi|322423476|gb|ADX01347.1); Tetraodon
nigroviridis (gi|47222797|emb|CAG01764.1); Oncorhynchus mykiss
STL2 (gi|185134480|ref|NP_001117668.1|); Ciona intestinalis
(gi|198412427|ref|XP_002131218.1|); Nematostella vectensis
(gi|156358465|ref|XP_001624539.1| predicted protein); Strongylo-
centrotus purpuratus SAL (gi|72110389|ref|XP_788214.1|)] and a
phylogenetic tree was constructed by the Neighbor-Joining meth-
od (NJ) after 1000 bootstrap iterations by using CLC workbench
6.4. Calculations of theoretical protein characteristics from the de-
duced peptide sequence were performed with ProtParam
(www.expasy.ch) and signal peptide cleavage site have been pre-
dicted by the SignalP algorithm. The putative tertiary structure of
each CRD from DlFBL was developed with SWISS-MODEL and the
Swiss-PdbViewer (Guex and Peitsch, 1997; Arnold et al., 2006;
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Schwede et al., 2003) by using of the RBL CSL3 structure as the
template (Protein Data Bank accession code 2z�2A; 1.80 Å).

2.9. Carbohydrate specificity

The carbohydrate specificity of DlRBL was assessed by inhibi-
tion of its agglutinating activity for rabbit RBC by saccharides.
Inhibition experiments were carried out using decreasing concen-
trations (starting from 100 mM, in TBS pH 7.4; 5 mM CaCl2; pH 7.4)
of monosaccharides (L-fucose, L-rhamnose, D-galactose, D-glucose,
D-mannose, N-Acetyl-galactosamine, and N-Acetyl-glucosamine),
oligosaccharides (maltose, lactose, lactulose), and mannan (from
Saccharomyces cerevisae).

2.10. Physical and chemical treatments

To examine the divalent cation requirements for lectin binding,
either CaCl2 or MgCl2 was added to the HA medium to reach a
5–10 mM final concentration. EDTA (10 mM) or EGTA (10 mM)
was used to examine the effect of Ca2+/Mg2+ depletion on the lectin
activity. To examine the thermal stability of the protein, the puri-
fied lectin (250 lg/ml) was incubated at 18 �C, 37 �C, 50 �C, 60 �C,
70 �C and 90 �C for 20 min and cooled down for 10 min on ice
before the HA. Susceptibility of the lectin to freeze–thaw was
examined by carrying out the HA on samples maintained at
�20 �C for 2 months and thawed at room temperature. The pH
dependence of the DlRBL agglutinating activity was examined by
Sorensen phosphate buffer (SPB; 0.15 M KH2PO4, 0.15 M Na2HPO4)
with pH values ranging from 3 to 11 by addition of either acetic
acid (down to pH 3) or sodium carbonate (up to pH 11). The lectin
solution (250 lg/ml) was incubated the various buffer solutions in
a microtiter plate for 30 min before the HA assay.

2.11. Bacterial suspensions and agglutination

Bacteria (Escherichia coli; Aeromonas hidrophyla, Staphylococcus
aureus and V. alginolyticus) (Table 3) were grown to log phase in
tryptic soy broth (TSB) containing 3% NaCl at 25 �C, with continu-
ous shaking (120 rpm) in a Gallenkamp incubator. Cell numbers
were estimated by absorbance at 600 nm, as previously correlated
to plate counts. Bacteria were fixed by adding formaldehyde to the
bacterial stock suspension to a 2% final concentration, and the mix-
ture shaken (120 rpm) overnight at 21 �C. After centrifugation at
6000g for 15 min (4 �C), the formalin-killed bacteria were washed
three times with sterile PBS, suspended in PBS containing 0.1% (w/v)
gelatin to obtain 1 � 109 cells/ml, and stored at 4 �C until use.

2.12. Opsonic activity for peritoneal macrophages

For the phagocytosis assay, the formalin-killed bacteria E. coli
were washed three times with sterile PBS, suspended 1 � 109/ml
in carbonate buffer (0.1 M Na2CO3, 0.1 M NaHCO3, pH 9.5) contain-
ing 0.1 mg/ml FITC and incubated 30 min at 37 �C with gentle
shaking. FITC-treated formalin-killed bacteria were washed three
times in NaCl 0.9% and twice in PBS containing 2 mM CaCl2 (PBS-
Ca), and suspended (1 � 108/ml) in PBS-Ca. FITC-treated forma-
lin-killed bacteria (1 � 108/ml) were mixed in a microtube with
purified F-lectin (5, 10, 25 lg/ml) in PBS-Ca, incubated at 18 �C
for 60 min, and washed twice with the same buffer. In the controls
the purified lectin was replaced with PBS-Ca. The opsonized bacte-
ria (100 ll) were incubated with an equal volume of Peritoneal
cavity cells (PCC) (1 � 107/ml) for 30 min at 18 �C. Fluorescence
of the non-phagocytosed bacteria, was quenched by adding trypan
blue (2 mg/ml) in 0.02 M citrate buffer pH 4.4, containing 0.15 M
NaCl and 2 mg/ml crystal violet in PBS [32]. The phagocytosed fluo-
rescent bacteria were observed under a UV light microscope
equipped with Nomarsky differential interference contrast optic
(Diaplan, Leica, Wetzlar, Germany). The phagocytic rate (PR) was
determined as the percent of cells showing internalized bacteria,
and the phagocytic index (PI) as the average of ingested bacteria
relative to the total phagocyte number.
3. Results

3.1. labrax RBL purification and characterization

Fractions from the first peak eluted from the fucose-agarose col-
umn revealed hemagglutinating activity (1:32–1:256) that could
only be inhibited by L-rhamnose or D-galactose, but not by concen-
trations up to 200 mM of L-fucose, glucose, lactose, GalNAc, GlcNAc
or other sugars tested (Table 1). Accordingly, the protein contained
in the first peak was further purified by affinity chromatography on
a D-galactose–agarose column (1.6 � 5 cm), eluted with D-galact-
ose. A typical affinity chromatography purification profile is shown
in Fig. 1. The eluted protein represented approximately 0.1–0.5% of
the total serum protein loaded onto the column. Hemagglutination
titers (HT) of the eluted fractions (n = 28–36, 0.3–0.5 mg/ml; Fig. 1)
for rabbit RBC ranged from 1:16 to 1:64, and the activity was com-
pletely abolished by a pre-incubation with 4.2 mM L-rhamnose. As
shown in Table 2, the DlRBL pool had 60- to 70-fold higher activity
(specific activity: 4,267) than that of whole serum. Fractions 6–12
lacked hemagglutinating activity. The L-rhamnose-eluted fractions,
examined by SDS–PAGE under non-reducing conditions, revealed a
single 102.0 ± 3.2 kDa component, while under reducing condi-
tions the apparent mass was 24.1 ± 1.6 kDa (Fig. 2).
3.2. N terminal sequence of DlRBL

The selected protein identified by SDS–PAGE under non-reduc-
ing conditions was transferred to PVDF membrane and sequenced.
The N-terminal sequence was GVPTETVTTCEGNHVHRL.

A GenBank search revealed identities at several amino acid
positions with RBL-type lectin family members, and a 100% of
identity was obtained with a complete open reading frame tran-
script identified in a D. labrax EST library as Rhamnose binding pro-
tein (Sarropoulou et al., 2009).
3.3. DlRBL sequence analysis

The open reading frame of the DlRBL encoding 221 amino acids
(Supplementary Fig. 1). The nucleotide sequence revealed a 71-
nucleotide 50-UTR that precedes the putative translation start site.
The deduced protein sequence contains a signal peptide at the N-
terminal with a cleavage site that resides between A19 and G20

(Fig. 3A) as predicted by the SignalP algorithm. This sequence con-
tains the already identified 18 amino acid sequence identified at
the N-terminal. The calculated molecular mass of the DlRBL was
24.1 kDa (ProtParam; www.expasy.ch), with a theoretical isoelec-
tric point of 5.84.

A comparative sequence analysis (Supplementary Fig. 1) re-
vealed the presence of two CRDs spanning from Thr27 to Cys118

(N-CRD) and from Val125 to Cys214 (C-CRD) connected by a six ami-
no acid linker peptide. The Fig. 4A show a multiple alignment of
CRD from different species, conservation of the canonical RBL se-
quence motif is shown by a grey tone gradient; the four cysteine
bridges are shown by blue lines; the blue arrows indicate the EYGK
residues involved in carbohydrate binding in mouse RBL and pres-
ent in D. labrax RBL.



Table 1
Purification steps of DlRBL and DlFBL.

Purification stage Volume Protein content (PC⁄Vol.) (HA) THA Specific activity THA/PC Purification AS stage/AS serum Yield
ml mg HA titer AU AS %

Serum 20 160 512 10240 64 1 100
PI DlFBL (Fucose-agarose) 10 1.5 256 2560 1706 26.6
PII DlFBL⁄ (Fucose-agarose) 9.7 0.9 1024 9932 11035 172 0.56
PII DlRBL (Galactose-agarose) 20 0.3 64 1280 4267 66.7 10 (0.18#)

PI DlFBL: peak I of D. labrax Fucose Binding Lectin (DlFBL) after washing with TBS used for D. labrax Rhamnose Binding Lectin (DlRBL) purification source; PII DlFBL: peak II of
DlFBL (Fucose) after elution with Fucose. PII DlRBL (Galactose) peak II of DlRBL after elution with Galactose. HA: hemagglutinating activity; THA: total hemagglutinating
activity; ⁄previously published in Salerno et al., 2009; #referred to serum amount. The purification steps of DlRBL are marked in Bold.

Fig. 1. Affinity chromatography of D. labrax Rhamnose binding protein. The pooled fractions of the first peak peak derived from a fucose agarose column were loaded onto a
galactose-agarose column. Absorbance at 280 nm (h); hemagglutinating activity (magenta bar). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 2
Inhibition of hemagglutination activity of the Dicentrarchus labrax isolated lectin
against RE by various carbohydrates.

Carbohydrate Minimum inhibitory concentration (mM)

Monosaccharides
D-Glucose –
D-Galactose 70.0
D-Mannose –
L-Fucose –
L-Rahmnose 4.2
N-acetyl-D-glucosamine –
N-acetyl-D-galactosamine –

Disaccharides
Lactose –
Lactulose –
Maltose –

Polysaccharides
Mannan –

We used rabbit erythrocytes. Inhibitory activity is expressed as the minimum
inhibitory concentration that is required to completely inhibit the hemagglutinat-
ing activity of a titer. Dashes indicate non inhibitory activity at a concentration of
200 mM for monosaccharides or disaccharides.

Fig. 2. SDS–PAGE of D. labrax purified lectins. SDS–PAGE analysis of DlRBL (2.5 lg)
in the absence (lane 1) or presence (lane 2) of reducing agent (NR) (2-mercap-
toethanol) on a 12.5% acrylamide gel stained with Coomassie Blue R-250.
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3.4. Phylogenetic analysis, structure and CRD comparison

BLAST analysis revealed that the DlRBL deduced amino acid se-
quence presents close homologies with RBLs from invertebrates
and fish depending on their CRD organization. In the phylogenetic
tree, DlRBL clustered with the other binary teleost RBLs, and
homologies with CRDs of vertebrate and invertebrate RBLs,
although the teleost binary RBL cluster that includes DlRBL was
clearly distinguishable from the invertebrate RBLs. The detailed
phylogenetic analysis of the CRDs in RBLs showed highly conserved
sequences in their N-CRDs or C-CRDs indicating a probably ancient
CRDs duplication (Fig. 4B, red and blue box). In contrast, the N-
and C-CRD from the echinoderm S. purpuratus and the urochordate
C. intestinalis clustered together indicating a closer similarity
between their binary C- and N-CRDs and a more recent origin of
this duplication (Fig. 4B, green box). The homology model of DlRBL
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based on the O. mykiss CSL3 RBL structure (40.31%, of identity E va-
lue 0.00e-1) showed substantial structural overlap (Fig. 3B).
3.5. Biochemical and binding properties of DlRBL

The hemagglutinating activity of the purified DlRBL stored at –
20 �C was stable for more than 2 months. The activity was reduced
up to 70% by incubating the sample for 30 min at 60 �C, almost
abolished after incubation at 90 �C (Fig. 5A), and reduced in 50–
60% when tested in a medium at pH lower or higher than 7.0–7.4
(Fig. 5B). The hemagglutinating activity of DlRBL did not appear
to require Ca2+ or Mg2+, since CaCl2 or MgCl2 (5 mM) or EDTA or
EGTA (10 mM, either in the presence or absence of CaCl2 or MgCl2)
added to the eluted fractions (HA ranging from 64 to 512) did not
significantly affect the activity. The DlRBL eluted fractions (0.3–
0.4 mg/ml protein) agglutinated both erythrocytes and bacteria
(Supplementary Fig. 2, Table 3). Rabbit erythrocytes were aggluti-
Fig. 3. Structural analysis of DlRBL. (A) Sequence analysis of DlRBL: Signal P-NN progra
cutting site between Ala19 and Gly20. (B) Homology modeling: The N and C-CRD of DlRBL
(accession code 2z � 2A). The differences in the structure are highlighted in red and indic
reader is referred to the web version of this article.)
nated at the highest titers, whereas sheep erythrocytes were not
agglutinated at all. With regards the bacteria, the purified DlRBL
strongly bound to E. coli (HT = 128), and to lesser extent to A. hidro-
phyla, S. aureus and V. alginolyticus (Table 3).

3.6. Effect of DlFBL on phagocytic activity of peritoneal macrophages

The phagocytic rate of peritoneal macrophages increased signif-
icantly after E. coli were opsonized with 10 lg/ml the isolated
DlRBL (from 6.9 ± 2.9% to 34.5 ± 4.2 p < 0.001; 600 cells were
counted in three distinct assays) while the phagocytic index in-
creased 2.4-fold (from 1.7 ± 0.8 to 4.1 ± 1.6 p < 0.005) (Fig. 6).

4. Discussion

Lectins play important roles in the immune responses of inver-
tebrates and vertebrates either by recognizing exposed glycans on
m predicted a signal peptide located in the N-terminal region, and provided of the
were modeled onto the Oncorhynchus mykiss rhamnose binding lectin CSL3 structure
ated by arrows. (For interpretation of the references to color in this figure legend, the



Fig. 4. Phylogenetic analysis of RBL-type lectins. (A) Alignment of RBL CRDs from various species: The multiple alignment of CRD conservation of the canonical RBL sequence
motif is shown by a grey tone gradient; cysteine bridges are shown by blue lines; the blue arrows indicate the residues involved in carbohydrate binding in mouse RBL. (B)
Phylogenetic analysis of RBL sequences: The phylogram was created from neighbor-joining analysis using CLC workbench 6.4. Distances were corrected for multiple
substitutions and gap positions were excluded. Bootstrap values are percentages from 1000 iterations. The scale bar measures substitutions per site. RBL abbreviated names:
N or C letter indicated the N-terminal or C terminal CRD followed by the species name. C_argus = Channa argus (gi|189096288); L_sanguineus = Lutjanus sanguineus
(gi|322423476); T_nigroviridis = Tetraodon nigroviridis (gi|47222797); O_mykiss = Oncorhynchus mykiss STL2 (gi|185134480); C_intestinalis = Ciona intestinalis
(gi|198412427); N_vectensis = Nematostella vectensis (gi|156358465); S_purpuratus = Strongylocentrotus purpuratus SAL (gi|72110389). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Thermal stability and optimal pH range of DlRBL binding activity. DlRBL was
incubated at various temperatures for 30 min then cooled on ice for 10 min. The
residual hemagglutination activity was tested at room temperature. The hemag-
glutination activity of an untreated sample, tested at room temperature, repre-
sented 100% activity sample was incubated with buffer ranging from pH 3–11. The
titer value obtained at pH 8.0 represented 100% activity.
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potential pathogens or by their immunoregulatory roles through
the binding to carbohydrates on the surfaces of immunocompetent
cells (Kuhlman et al., 1989; Cooper et al., 1994; Tino and Wright
1996; Matsushita et al., 1996; Vasta and Ahmed, 2008; Vasta,
2009). It has been proposed that the RBLs are involved in the reg-
ulation of carbohydrate metabolism, control of fertilization and
cytotoxicity (Tateno et al., 2002a; Watanabe et al., 2009). In addi-
tion, an enhancing effect on cell proliferation has been reported for
RBL of human dermal fibroblasts (Faury et al., 2008). Immune chal-
lenge in fish upregulates RBLs expression, leading to increased
opsonization and phagocytosis of the microbes, and inducing the
synthesis and release of pro-inflammatory cytokines (Lam and
Ng 2002; Tateno et al., 2002a; Terada et al., 2007; Jia et al., 2009;
Watanabe et al., 2009; Ogawa et al., 2011).

In a previous report we characterized a 34 kDa fucose-binding
lectin from D. labrax serum (DlFBL) isolated through Sepharose
6BCL affinity chromatography (Cammarata et al., 2001). In subse-
quent studies (Cammarata et al., 2007, 2012; Salerno et al., 2009)
we established that DlFBL and SauFBL, a lectin from the gilt head
sea bream (Sparus aurata) of similar binding properties, were both
members of the F-type lectin family,and are also present in eggs
(Parisi et al., 2010). During affinity chromatography of D. labrax
serum on L-fucose-agarose a protein peak with hemagglutinating
activity that was susceptible to inhibition by L-rhamnose and D-gal-
actose but not by L-fucose was identified, suggesting that this was
a serum lectin distinct from DlFBL. In the present study we opti-
mized the purification procedure for this lectin, which we desig-



Table 3
Hemagglutinating (titer�1) against various erythrocyte types and bacteria by a
Rhamnose (DlRBL) and Fucosea (DlFBL) binding lectins from Dicentrarchus labrax
activity of purified lectin (50 lg/ml).

Agglutination activityc

Purified RBL Purified FBL

Erythrocytesb

Human A 16 64
Human B 16 2
Human AB 16 2
Human 0 16 64
Rabbit 32–128 256–512

Bacteria
E. coli 128 –
V. alginolyticus 8 –
A. hidrophyla 16 –
S. aureus 16 –

a Salerno et al. (2009).
b Erythrocytes were collected in Alsever solution and washed five times by

centrifuging at 800 g for 5 min in Tris-buffer saline (pH 7.5). The packed cells were
suspended in TBS to give a 1% (V/V) suspension of native erythrocytes and used to
test hemagglutination activity.

c Hemagglutination activity was expressed as a titer, the reciprocal of the highest
twofold dilution exhibiting hemagglutination (HA). Dashes indicate no activity. The
agglutinating assays were performed in 96-well V-bottomed microtiter plates.
Samples (25 mL) were serially diluted twofold in TBS, and an equal volume of
erythrocyte suspension was added to each well. The plates were shaken gently and
then incubated at 37 �C for 1 h (bacteria at room temperature for 24 h). The data
presented are from one representative experiment that was repeated three times.
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nated DlRBL, and characterized its molecular, structural, and bio-
logical properties.

For the purification of DlRBL we developed a two-step affinity
chromatography procedure in which the pooled active fractions
from the first peak of the L-fucose-agarose column were loaded
onto a galactose-agarose affinity column, and eluted with 50 mM
galactose. Based on the electrophoretic mobility in polyacrylamide
gels, the purified DlRBL is constituted by 24 kDa subunits. Cloning
of full length DlRBL transcript revealed that it consists of an open
reading frame encoding 212 aminoacid residues including 18 resi-
due signal sequence at the N-terminal. This was fully supported by
a transcript (Accession number: NP_001117668, BAA92256;
Sarropoulou et al., 2009) identified in a D. labrax EST library. The
deduced size of 24.1 kDa for the mature protein is in good agree-
ment with subunit size of the isolated lectin (24 kDa).
Fig. 6. Phagocytosis of DlRBL-exposed bacteria. Opsonic effect of DlRBL on sea bass peri
phagocytes exposed to DlRBL-opsonized FITC stained bacteria. B, D Peritoneal cavity p
microscope. C, D; under light microscope. IB: ingested bacteria; FB: free bacteria. Bar 20
Comparative sequence analysis revealed that DlRBL is a binary
tandem domain RBL-type lectin with the N- and C-CRDs connected
by a six-amino acid peptide linker.

The RBL CRD can be characterized by highly conserved 4 disul-
fide bridges at homologous positions as well as the conserved
motif.

BLAST analysis of DlRBL disclosed sequence homologies with
multiple RBLs from invertebrate and vertebrate species RBL CRDs.
In the phylogenetic tree, DlRBL included in a cluster of teleost bin-
ary RBL-type lectins, clearly distinguishable from those inverte-
brate RBL with a single CRD. Both N-CRD and C-CRD from fish
showed highly conserved sequences indicating a probably ancient
origin of CRDs duplication. The N- and C-CRDs from N. vectensis, S.
purpuratus and C. intestinalis clustered together, indicating a more
recent CRD duplication.

Electrophoresis of DlRBL in polyacrylamide gels under non-
reducing conditions indicated that the 24 kDa subunits are orga-
nized as a 100 kDa tetramer. The presence of two CRDs in each
polypeptide subunit, and therefore, the physiological DlRBL tetra-
mer displays 8 CRDs, suggesting that this multivalency is responsi-
ble for the observed agglutinating properties for erythrocytes and
bacteria. A similar subunit size and quaternary organization has
been described for other teleost RBLs such as the CSL1 isolated
from chum salmon eggs, that is also organized as a homotetramer,
and therefore displays 8 CRDs (Watanabe et al., 2009). In contrast,
the RBL subunits of CSL2 and CSL3, isolated from the same species,
can also form homooctadecamers and homodimers, respectively,
and therefore display 36 and 4 CRDs.

DlRBL actively agglutinates rabbit and human erythrocytes but
does not require divalent cations for binding to the carbohydrate
ligands, as all cations and chelators tested had no effect on the
DlRBL hemagglutinating activity. Similar observations have been
made in other fish RBLs, including the steelhead trout (O. mykiss)
egg lectin, grass carp (Ctenopharyngodon idellus) roe lectin, rudd
(Scardinius erythropthalmus) roe lectin, and olive rainbow smelt
(Osmerus eperlanus mordax) roe lectin (Lam and Ng 2002; Hosono
et al., 1993).

In addition to the hemagglutinating activity, DlRBL bind both
Gram-negative and Gram-positive bacteria. The ability to recognize
and bind lipopolysaccharides and lipoteichoic acid and agglutinate
both Gram-positive and Gram-negative bacteria has been described
in trout RBLs, suggesting an antibacterial activity (Tateno et al.,
2002a). We show clearly the presence of DlRBL in the serum. Other
toneal cavity leukocyte phagocytosis against Escherichia coli. A, C; Peritoneal cavity
hagocytes exposed to PBS-treated FITC stained bacteria. A, B; under fluorescence
lm.
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authors have demonstrated thet RBLs are mainly localized in the tis-
sues related to the immune system, such as mucous cells of gills,
goblet cells of intestine, spleen, thrombocytes, lymphocytes, mono-
cytes and neutrophils (Watanabe et al., 2008; Tateno et al., 2002c).

In addition, RBLs have also been found in the cortex of teleost
eggs as well as in the skin mucus, further confirming their protec-
tive role. A putative natural ligand of fish RBL is the glycosphingo-
lipid globotriasylceramide (Gb3), abundant in membrane lipid
rafts (Watanabe et al., 2009; Ogawa et al., 2011).

The exposure of formalin-killed E. coli to DlRBL enhanced their
phagocytosis by peritoneal macrophages. The opsonic activity of
DlRBL, together with its capacity of bacterial agglutination ob-
served support the hypothesis that the plasma DlRBL mediates
not only agglutination and immobilization of potentially patho-
genic microorganisms, but also promotes their phagocytosis and
clearance from circulation, thereby playing a key role in host de-
fense against infectious challenge.

Finally, our results confirmed a model for innate immunity in
fish proposed by Watanabe et al. (2009) in which RBLs recognize
various kinds of pathogens in inflammatory site thought the blood
circulation and enhance their phagocytosis by binding on the leu-
kocyte surface.
Acknowledgements

We are grateful to Mario Guarcello for expert fish maintenance.
This work was supported by grants from MIUR, and MC RITMARE
project (CNR and CONISMA) and by grant 5R01GM070589-06 from
the National Institutes of Health to GRV.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.dci.2014.01.019.
References

Arason, G.J., 1996. Lectins as defence in vertebrates and invertebrates. Fish Shellfish
Immunol. 6, 277–289.

Arnold, K., Bordoli, L., Kopp, J., Schwede, T., 2006. The SWISS-MODEL Workspace: a
web-based environment for protein structure homology modelling.
Bioinformatics 22, 195–201.

Bianchet, M.A., Odom, E.W., Vasta, G.R., Amzel, L.M., 2010. Structure and specificity
of a binary tandem domain F-lectin from striped bass (Morone saxatilis). J. Mol.
Biol. 401, 239–252.

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of
microgram quantitites of protein utilizing the principle of protein- dye binding.
Anal. Biochem. 72, 248–254.

Cammarata, M., Benenati, G., Odom, E., Salerno, G., Vizzini, A., Vasta, G.R., Parrinello,
N., 2007. Isolation and characterization of a fish F-type lectin from gilt head
bream (Sparus aurata) serum. Biochim. Biophys. Acta 1770, 150–155.

Cammarata, M., Salerno, G., Parisi, M.G., Benenati, G., Vizzini, A., Vasta, G.R.,
Parrinello, N., 2012. Primary structure and opsonic activity of an F-lectin from
serum of the gilt head bream Sparus aurata (Pisces, Sparidae). Ital. J. Zool. 79,
34–43.

Cammarata, M., Vazzana, M., Chinnici, C., Parrinello, N., 2001. A serum fucolectin
isolated and characterized from sea bass Dicentrarchus labrax. Biochim. Biophys.
Acta 1528, 196–202.

Cooper, D., Butcher, C.M., Berndt, M.C., Vadas, M.A., 1994. P-selectin interacts with a
beta 2-integrin to enhance phagocytosis. J. Immunol. 153, 3199–3209.

Faury, G., Ruszova, E., Molinari, J., Mariko, B., Raveaud, S., Velebny, V., Robert, L.,
2008. The alpha-L-Rhamnose recognizing lectin site of human dermal
fibroblasts functions as a signal transducer: modulation of Ca2+ fluxes and
gene expression. Biochim. Biophys. Acta 1780, 1388–1394.

Fujita, T., Matsushita, M., Endo, Y., 2004. The lectin-complement pathway—its role
in innate immunity and evolution. Immunol. Rev. 198, 185–202.

Gabius, H.J., 1997. Animal lectins. Eur. J. Biochem. 243, 543–576.
Guex, N., Peitsch, M.C., 1997. SWISS-MODEL and the Swiss-PdbViewer: an

environment for comparative protein modelling. Electrophoresis 18, 2714–
2723.

Hosono, M., Kawauchi, H., Nitta, K., Takatanagi, Y., Shiokawa, H., Mineki, R., et al.,
1993. Three rhamnose-binding lectins from Osmerus eperlanus mordax (Olive
rainbow smelt) roe. Biol. Pharm. Bull. 16, 239–243.
Jia, H., Liu, Y., Yan, W., Jia, J., 2009. PP4 and PP2A regulate Hedgehog signaling by
controlling Smo and Ci phosphorylation. Development 136, 307–316.

Jimbo, M., Usui, R., Sakai, R., Muramoto, K.H., 2007. Purification, cloning and
characterization of egg lectins from the teleost Tribolodon brandti. Comp.
Biochem. Physiol. B: Biochem. Mol. Biol. 1, 17331–17772.

Kaltner, H., Stierstorfer, B., 1998. Animal lectins as cell adhesion molecules. Acta
Anat. 161, 162–179.

Kilpatrick, D.C., 2002. Animal lectins: a historical introduction and overview.
Biochim. Biophys. Acta 1572, 187–197.

Kuhlman, M., Joiner, K., Ezekowitz, A.B., 1989. The human mannose-binding protein
functions as an opsonin. J. Exp. Med. 169, 1733–1745.

Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the
head of bacteriophage T4. Nature 227, 680–685.

Lam, Y.W., Ng, T.B., 2002. Purification and characterization of a rhamnose-binding
lectin with immuno enhancing activity from grass carp (Ctenopharyngodon
idellus) ovaries. Protein Expr. Purif. 26, 378–385.

Loris, R., 2002. Principles of structures of animal and plant lectins. Biochim. Biophys.
Acta 1572, 198–208.

Matsushita, M., Endo, Y., Taira, S., Sato, Y., Fujita, T., Ichikawa, N., Nakata, M.,
Mizuochi, T.A., 1996. Novel human serum lectin with collagen- and fibrinogen
like domains that functions as an opsonin. J. Biol. Chem. 271, 2448–2454.

Odom, E., Vasta, G.R., 2006. Characterization of a Binary Tandem Domain F-type
Lectin from Striped Bass (Morone saxatilis). J. Biol. Chem. 281, 1698–1713.

Ogawa, T., Watanabe, M., Naganuma, T., Muramoto, K., 2011. Diversified
carbohydrate-binding lectins from marine resources. J. Amino Acids, 838914.
http://dx.doi.org/10.4061/2011/838914.

Parisi, M.G., Cammarata, M., Benenati, G., Salerno, G., Mangano, V., Vizzini, A.,
Parrinello, N., 2010. A serum fucose-binding lectin (DlFBL) from adult
Dicentrarchus labrax is expressed in larva and juvenile tissues and contained
in eggs. Cell Tissue Res. 341, 279–288.

Salerno, G., Parisi, M.G., Parrinello, D., Benenati, G., Vizzini, A., Vazzana, M., Vasta,
G.R., Cammarata, M., 2009. F-type lectin from the sea bass (Dicentrarchus
labrax): purification, cDNA cloning, tissue expression and localization, and
opsonic activity. Fish Shellfish Immunol. 27, 143–153.

Sarropoulou, E., Sepulcre, P., Poisa-Beiro, L., Mulero, V., Meseguer, J., Figueras, A.,
Novoa, B., Terzoglou, V., Reinhardt, R., Magoulas, A., Kotoulas, G., 2009.
Profiling of infection specific mRNA transcripts of the European seabass
Dicentrarchus labrax. BMC Genomics 10, 157. http://dx.doi.org/10.1186/1471-
2164-10-157.

Schwede, T., Kopp, J., Guex, N., Peitsch, M.C., 2003. SWISS-MODEL: an automated
protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385.

Sharon, N., Lis, H., 2004. History of lectins: from hemagglutinins to biological
recognition molecules. Glycobiology 14, 53–62.

Shiina, N., Tateno, H., Ogawa, T., Muramoto, K., Saneyoshi, M., Kamiya, H., 2002.
Isolation and characterization of L-rhamnose-binding lectins from chum salmon
(Oncorhychus keta) eggs. Fish. Sci. 68, 1352–1366.

Tateno, H., Yamaguchi, T., Ogawa, T., Muramoto, K., Watanabe, T., Kamiya, H., et al.,
2002a. Immunohistochemical lacalization of rhamnose-binding lectins in the
steelheadtrout (Oncorhychus mykiss). Dev. Comp. Immunol. 26, 543–550.

Tateno, H., Ogawa, T., Muramoto, K., Kamiya, H., Saneyoshi, M., 2002b. Rhamnose-
binding lectins from eggs from steelhead trout (Oncorhynchus mykiss) Eggs
recognize bacterial lipopolysaccharides and lipoteichoic acid. Biosci. Biotechnol.
Biochem. 66, 604–612.

Tateno, H., Shibata, Y., Nagahama, Y., Hirai, T., Saneyoshi, M., Ogawa, T., et al., 2002c.
Tissues pecific expression of rhamnose-binding lectins in the steelhead trout
(Oncorhynchus mykiss). Biosci. Biotechnol. Biochem. 66, 1427–1430.

Tateno, H., Saneyoshi, A., Ogawa, T., Muramoto, K., Kamiya, H., Saneyoshi, M., 1998.
Isolation and characterization of rhamnose-binding lectins from eggs of
steelhead trout (Oncorhynchus mykiss) homologous to low density lipoprotein
receptor superfamily. J. Biol. Chem. 273, 19190–19197.

Terada, T., Watanabe, Y., Tateno, H., Naganuma, T., Ogawa, T., Muramoto, K., et al.,
2007. Structural characterization of a rhamnose-binding glycoprotein (lectin)
from Spanish mackerel (Scomberomorous niphonius) eggs. Biochim. Biophys.
Acta 1770, 617–629.

Tino, M.J., Wright, J.R., 1996. Surfactant protein a stimulates phagocytosis of
specific pulmonary pathogens by alveolar macrophages. Am. J. Physiol. 270,
677.

Turner, M.W., 1996. Mannose-binding lectin: the pluripotent molecule of the innate
immune system. Immunol. Today 17, 532–540.

Vasta, G.R., Ahmed, H., 2008. Animal Lectins: A Functional View. CRC Press.
Vasta, G.R., Nita-Lazar, M., Giomarelli, B., Ahmed, H., Du, S., Cammarata, M.,

Parrinello, N., Bianchet, M.A., Amzel, L.M., 2011. Structural and functional
diversity of the lectin repertoire in fish: relevance to innate and adaptive
immunity. Dev. Comp. Immunol. 35, 1388–1399.

Vasta, G.R., Ahmed, H., Bianchet, M.A., Fernández-Robledo, J.A., Amzel, L.M., 2012.
Diversity in recognition of glycans by F-type lectins and galectins:
molecular, structural, and biophysical aspects. Ann. N.Y. Acad. Sci. 1253,
14–26.

Vasta, G.R., Ahmed, H., Fink, N.E., Elola, M.T., Marsh, A.G., Snowden, A., Odom, E.W.,
1994. Animal lectins as self/non-self recognition molecules. Biochemical and
genetic approaches to understanding their biological roles and evolution. Ann.
N.Y. Acad. Sci. 712, 55–73.

Vasta, G.R., 2009. Roles of galectins in infection. Nat. Rev. Microbiol. 7, 424–438.
Vasta, G.R., Ahmed, H., Odom, E.W., 2004. Structural and functional diversity of

lectin repertoires in invertebrates, protochordates and ectothermic vertebrates.
Curr. Opin. Struct. Biol. 11, 53–62.

http://dx.doi.org/10.1016/j.dci.2014.01.019
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0005
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0005
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0010
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0010
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0010
http://refhub.elsevier.com/S0145-305X(14)00020-2/h9000
http://refhub.elsevier.com/S0145-305X(14)00020-2/h9000
http://refhub.elsevier.com/S0145-305X(14)00020-2/h9000
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0015
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0015
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0015
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0020
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0020
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0020
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0025
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0025
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0025
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0025
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0030
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0030
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0030
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0035
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0035
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0040
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0040
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0040
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0040
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0040
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0040
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0040
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0045
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0045
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0050
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0055
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0055
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0055
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0060
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0060
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0060
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0065
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0065
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0070
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0070
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0070
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0075
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0075
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0080
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0080
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0085
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0085
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0090
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0090
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0095
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0095
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0095
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0100
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0100
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0105
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0105
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0105
http://refhub.elsevier.com/S0145-305X(14)00020-2/h9005
http://refhub.elsevier.com/S0145-305X(14)00020-2/h9005
http://dx.doi.org/10.4061/2011/838914
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0120
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0120
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0120
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0120
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0125
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0125
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0125
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0125
http://dx.doi.org/10.1186/1471-2164-10-157
http://dx.doi.org/10.1186/1471-2164-10-157
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0135
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0135
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0140
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0140
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0145
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0145
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0145
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0145
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0145
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0150
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0150
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0150
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0155
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0155
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0155
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0155
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0160
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0160
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0160
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0165
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0165
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0165
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0165
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0170
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0170
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0170
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0170
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0175
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0175
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0175
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0180
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0180
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0185
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0190
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0190
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0190
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0190
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0195
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0195
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0195
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0195
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0200
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0200
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0200
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0200
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0205
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0210
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0210
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0210


340 M. Cammarata et al. / Developmental and Comparative Immunology 44 (2014) 332–340
Watanabe, Y., Shiina, N., Shinozaki, F., Yokoyama, H., Kominami, J., Nakamura-
Tsuruta, S., et al., 2008. Isolation and characterization of rhamnose-binding
lectin, which binds to microsporidian Glugea plecoglossi, from ayu (Pleacoglossus
altivelis) eggs. Dev. Comp. Immunol. 32, 487–499.
Watanabe, Y., Tateno, H., Nakamura-Tsuruta, S., Kominami, J., Hirabayashi, J.,
Nakamura, O., Watanabe, T., Kamiya, H., Naganuma, T., Ogawa, T., Naudé, R.J.,
Muramoto, K., 2009. The function of rhamnose-binding lectin in innate
immunity by restricted binding to Gb3. Dev. Comp. Immunol. 33, 187–197.

http://refhub.elsevier.com/S0145-305X(14)00020-2/h0215
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0215
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0215
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0215
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0220
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0220
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0220
http://refhub.elsevier.com/S0145-305X(14)00020-2/h0220

	A rhamnose-binding lectin from sea bass (Dicentrarchus labrax) plasma agglutinates and opsonizes pathogenic bacteria
	1 Introduction
	2 Material and methods
	2.1 Chemicals and molecular biology reagents
	2.2 Animals, collection of blood and tissue samples, and preparation of tissue extracts
	2.3 Purification of DlRBL
	2.4 Hemagglutination assay
	2.5 Protein content estimation
	2.6 Polyacrylamide gel electrophoresis
	2.7 N-terminal sequencing
	2.8 Phylogenetic analysis
	2.9 Carbohydrate specificity
	2.10 Physical and chemical treatments
	2.11 Bacterial suspensions and agglutination
	2.12 Opsonic activity for peritoneal macrophages

	3 Results
	3.1 labrax RBL purification and characterization
	3.2 N terminal sequence of DlRBL
	3.3 DlRBL sequence analysis
	3.4 Phylogenetic analysis, structure and CRD comparison
	3.5 Biochemical and binding properties of DlRBL
	3.6 Effect of DlFBL on phagocytic activity of peritoneal macrophages

	4 Discussion
	Acknowledgements
	Appendix A Supplementary data
	References


