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ABSTRACT
Amblyomma maculatum (Gulf Coast tick), and Dermacentor andersoni (Rocky Moun-
tain wood tick) are two North American ticks that transmit spotted fevers associated
Rickettsia. Amblyomma maculatum transmits Rickettsia parkeri and Francisella tularen-
sis, whileD. andersoni transmitsR. rickettsii,Anaplasma marginale,Coltivirus (Colorado
tick fever virus), and F. tularensis. Increases in temperature causes mild winters and
more extreme dry periods during summers, which will affect tick populations in
unknown ways. Here, we used ecological niche modeling (ENM) to assess the potential
geographic distributions of these two medically important vector species in North
America under current condition and then transfer those models to the future under
different future climate scenarios with special interest in highlighting new potential
expansion areas. Current model predictions for A. maculatum showed suitable areas
across the southern and Midwest United States, and east coast, western and southern
Mexico. ForD. andersoni, our models showed broad suitable areas across northwestern
United States. New potential for range expansions was anticipated for both tick species
northward in response to climate change, extending across the Midwest and New
England for A. maculatum, and still farther north into Canada for D. andersoni.

Subjects Ecology, Entomology, Epidemiology, Infectious Diseases, Climate Change Biology
Keywords Gulf Coast tick, Rocky Mountain wood tick, Ecological niche modeling, Climate
change, GCMs, RCPs, North America

INTRODUCTION
Beside the tick Dermacentor variabilis, Amblyomma maculatum (Gulf Coast tick), and
D. andersoni (Rocky Mountain wood tick) are three North American ticks that transmit
spotted fever (Boorgula et al., 2020; CDC, 2018; CDC, 2019). Spotted fever rickettsioses
(spotted fevers) are a group of bacterial pathogens that cause disease to humans by exposure
to infected ticks or mites (CDC, 2019). In the United States, there are several spotted
fevers: Rocky Mountain spotted fever (RMSF), which is the most documented spotted
fever, caused by Rickettsia rickettsii; R. parkeri rickettsiosis caused by Rickettsia parkeri;
rickettsialpox caused by R. akari; and Pacific Coast tick fever caused by R. philippi (CDC,
2019). Amblyomma maculatum transmits R. parkeri, and Francisella tularensis which cause
diseases in humans, and Hepatozoon americanum, which causes health problems in dogs
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Figure 1 Occurrence points and calibration areas for Amblyomma maculatum (blue dots and blue
buffer) andDermacentor andersoni (red dots and red buffer) in geographic and environmental space.

Full-size DOI: 10.7717/peerj.13279/fig-1

(Sonenshine, 2018). Dermacentor andersoni transmits R. rickettsii, Anaplasma marginale,
Coltivirus (Colorado tick fever virus), and Francisella tularensis (Alkishe, Raghavan &
Peterson, 2021; Dantas-Torres, Chomel & Otranto, 2012).

Amblyomma maculatum and D. andersoni have different geographic distributions:
A. maculatum occurs throughout the southern states of the Gulf Coast and Mid-Atlantic
states (Cumbie et al., 2020), whereas D. andersoni occurs throughout the Rocky Mountain
region, Nevada, California, and southwestern Canada (British Columbia, Alberta, and
Saskatchewan; Animal Diversity Web (ADW), 2021). Those different geographic ranges are
associated with different climate conditions for each tick species (Fig. 1). Amblyomma
maculatum is found in different months in different states with fall and winter considered
as low-activity seasons for this species (Nadolny & Gaff, 2018), whereas D. andersoni is
found in hot and dry areas in summer (Wilkinson, 1967).

Climate warming is warming North America dramatically. Mean global temperature
has increased more than 1◦C owing to anthropogenic greenhouse gas emissions (Djalante,
2019). This increasing temperature has caused mild winters with increasing rain more
than snow during winter, and more extreme drier periods during summers (Wuebbles
et al., 2017). Increasing temperature can also affect vector disease survival, abundance,
and activity as well as transmission dynamics, re-emergence of vector-borne diseases, and
geographic expansions (Rocklöv & Dubrow, 2020).

Here, we used ecological niche modeling (ENM) to assess the geographic potential
of these two medically important vectors of diseases in North America under current
conditions and then transfer those models to the future under different scenarios, with
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special interest in highlighting potential range new expansion areas. We also assess the
model uncertainty for projected future models to highlight areas with high versus low
confidence of geographic expansions.

METHODS
Data preparation
We obtained totals of 255 and 586 occurrence points for A. maculatum and D. andersoni,
respectively. Those data were obtained from various sources: Global Biodiversity
Information Facility (GBIF; http://www.gbif.org), VectorMap (http://vectormap.si.edu/),
and BISON (https://bison.usgs.gov) (sources summarized in Supplemental Information 1).
We followed Cobos et al. (2018) in cleaning the data to remove errors that clearly fall
outside of the known geographic distribution of the species, duplicate records, and
localities with missing or meaningless coordinates such as zero degrees latitude and zero
degrees longitude (0◦N, 0◦E), or georeferencing errors (records in ocean and far from
coast). We used the spTthin R package to reduce the data spatially based on a 50 km
distance filter for several reasons: based on precision of the occurrence points in the
area, environmental heterogeneity that present in the area, and to avoid problems with
autocorrelation (Aiello-Lammens et al., 2015). In the end, we had 93 and 82 occurrence
points for A. maculatum and D. andersoni, respectively. We divided the final occurrence
data randomly into two sets: 50% for model calibration and 50% for evaluation steps
involved in model calibration. For producing final models, we used the entire cleaned
occurrence points.

Delineate the calibration area
The accessible area (M) is the set of places to which the species has had access over relevant
time periods, and depends on the dispersal of the species from populations (Barve et al.,
2011). Since the movement of tick species is associated with the movement of host species,
we assumed ample dispersal abilities for the ticks (Nadolny & Gaff, 2018; Sonenshine, 2018).
As such, we created 200 km buffer areas around the known occurrence points for each
species (Fig. 1).

Environmental variables
For the current time, bioclimatic variables were downloaded fromWorldClim version 1.4,
at 10′ spatial resolution (Hijmans et al., 2005) (available at http://www.worldclim.org/). We
removed variables 8, 9, 18, and 19 because of known spatial artefacts (Escobar, 2020). The
15 remaining variables were masked to the calibration area (M) for each species. We then
used principal component analysis (PCA) to reduce dimensionality and multicollinearity
among those variables. After having PCA results, we created 11 sets of environmental
variables that represent all possible combinations of the first four principal components to
test them with other parameter settings to choose best models during model calibration,
following Cobos et al. (2019) (see below).

For future climatic conditions, we used five general circulation models (GCMs)
under two representative concentration pathway scenarios (RCP 4.5, and RCP 8.5).
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Future climate data layers were downloaded from the Climate Change, Agriculture
and Food Security (CCAFS) database at 10′ resolution (available at: http://www.ccafs-
climate.org/data_spatial_downscaling). GCMs used were (1) National Center for
Atmospheric Research (NCAR_CCSM4); (2) Met Office Hadley Centre (HadGEM2);
(3) Model for Interdisciplinary Research on Climate (MIROC5); (4) Institut Pierre Simon
Laplace (IPSL_CM5A); and (5) Russian Institute for Numerical Mathematics Climate
Model Version 4 (INM_CM4). GCM choice was based on frequency of use in other such
research applications, and on full availability of scenarios for both RCP scenarios.

Ecological niche modeling and model transfers
The combination of 11 sets of environmental variables, 15 feature classes (all combinations
of linear = l, quadratic = q, product = p, hinge = h), and 17 regularization multiplier
values (0.1 to 1 at intervals of 0.1, and 2 to 10 at intervals of 1) resulted in 2,805 candidate
models for each species. We evaluated candidate models based on statistical significance
(partial ROC, P ≤ 0.05; Peterson, Cobos & Jiménez-García, 2018), predictive performance
(omission rates, <5%; Anderson, Lew & Peterson, 2003), and a criterion of minimum
complexity (Akaike Information Criterion corrected for small sample sizes, AICc; Warren
& Seifert, 2011). Specifically, we used differences between particular AICc values and the
minimum values (1AICc < 2) to select best model parameter settings with which to
produce final models.

Final models
For creating finalmodels, we used the complete set of occurrences and the parameterizations
selected during model calibration. We created 10 bootstrap replicates, and transferred the
models across North America (Mexico, United States and Canada) under current and
future scenarios. We calculated medians of all replicate medians from final predictions for
each calibration area in which final models were produced to summarize model results.
Then, we binarized models using a threshold of allowable omission error rate (E) of
5%, assuming that as a percentage of data may have included errors that misrepresented
environments used by the species.

We calculated differences in suitable areas between current and the two future scenarios
RCP (4.5, and 8.5). For representing changes of suitable areas, we used the agreement
of changes (stable, gain, loss) among the five GCMs per RCP scenario. Simply, for each
RCP scenario, we took all projections to future conditions based on distinct GCMs and
compared against the current projection, and quantified the agreement of gain and loss of
suitable areas, as well as the stability of suitable and unsuitable conditions. All modeling
analysis steps were done in R 3.5.1 (R Core Team, 2018) using Maxent 3.4.1 (Phillips et al.,
2017), implemented in the kuenm package (Cobos et al., 2019).

Uncertainty in model projections
Weused themobility-oriented paritymetric (MOP, considering the nearest 5% of reference
cloud) (Owens et al., 2013) to assess strict extrapolation risk. We also calculated variance
arising from distinct sources (replicates, parameter settings, GCMs, and RCPs) in our
model projections (Peterson, Papeş & Soberón , 2018). Both model variability and strict
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extrapolation were represented geographically following Owens et al. (2013) and Cobos et
al. (2019), respectively.

RESULTS
Model calibration results
From among 2,805 candidate models for each of A. maculatum and D. andersoni, 2,728
and 2,554 were significantly better than random expectations, respectively (pROC
test, p≤ 0.05). Of these models, 2,129 and 761 met the omission rate criteria, (i.e.,
OR ≤ 0.05) respectively. Based on AICc, 55 and two models were selected as best models
for A. maculatum and D. andersoni, respectively. For A. maculatum, models performed
better with the variables in set 1 (PC1, PC2, PC3, PC4), set 2 (PC1, PC2, PC3), set 3 (PC1,
PC2, PC4), and set 6 (PC1, PC2), whereas for D. andersoni variables in sets 4 (PC1, PC3,
PC4) and 7 (PC1, PC3).

Current and future potential distribution
Amblyomma maculatum
Current model predictions for A. maculatum showed suitable areas across the southern
United States (Florida, Georgia, South and North Carolina, Virginia, West Virginia,
Maryland, Delaware, Kentucky, Tennessee, Arkansas, Alabama, Mississippi, Louisiana,
Oklahoma, and Texas), and in the Midwest (Missouri; eastern Kansas; southern
Illinois, Indiana, and Ohio), and restricted areas of northeastern states (New Jersey and
Pennsylvania). Suitable areas extend to include areas in western states (Arizona, California,
Oregon, and Washington), although those areas are not likely accessible to the species
(Fig. 2). Our models also showed suitable areas for the species across parts of eastern,
western, and southern Mexico (Quintana Roo) (Fig. 2).

Future model transfers showed stable suitable areas (i.e., suitable in current time and
in the future time) across the South, Midwest, and the Northeast, in the United States
(Fig. 2). Areas of range reduction (loss) were in restricted areas in Kansas, Oklahoma, and
Texas. Range expansion (gain) was anticipated in the northeastern (Pennsylvania, New
York, Connecticut, Rhode Island, Massachusetts, Vermont, New Hampshire, Maine) and
midwestern states (Kansas, Missouri, Nebraska, Iowa, Illinois, Indiana, Ohio, Michigan,
Wisconsin) (Fig. 2). In general, we noted greater agreement among models in terms of
losses and gains in the RCP 8.5 scenario compared to RCP 4.5.

Dermacentor andersoni
Current-time range predictions for D. andersoni showed broad suitable areas across
Washington, Idaho, Oregon, California,Montana, Nevada, Utah,Wyoming, and Colorado,
in cases where this species is known to occur in the United States. Climatically suitable
areas extended across the Midwest, and Northeast and in some southeastern states (Fig. 3),
although these areas are not likely accessible to the species. Currently suitable areas were also
observed in parts of central and western Canada (British Columbia, Alberta, Saskatchewan,
and restricted areas in Manitoba) (Fig. 3).

Future model transfers showed stable suitable areas across the states listed above,
with some degree of reduction in suitable areas in the western states including much of
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Figure 2 Left panel: potential suitable areas of Amblyomma maculatum based on binarized (5%
threshold) models under current conditions (in blue and gray), and future (blue= no longer suitable,
red= newly suitable) conditions. Right panel: agreement in strict extrapolation areas among the five
general circulation models. Results are presented for RCP 4.5 (top) and RCP 8.5 (bottom).

Full-size DOI: 10.7717/peerj.13279/fig-2

Washington, Oregon, California, Nevada, Arizona, New Mexico, and Utah, and restricted
areas in Colorado, Idaho, and Montana (Fig. 3). Predictions for the two RCP scenarios
showed closely similar patterns of range stability, expansion, and loss, withmore agreement
among models in the RCP 8.5 scenario (Fig. 3).

Model uncertainty
MOP results forA. maculatum showed that strict extrapolative areas among future scenarios
were concentrated in northern parts in North America, particularly in Canada, and in some
restricted areas of the United States and southern Mexico (Fig. 2). Model variability results
showed almost no variation coming from replicates and RCPs, but high contribution to
variation from GCMs and parameter choice (Fig. S3).

InD. andersoni, we noted high agreement of strictly extrapolative areas in both southern
and northern North America, and in lesser degree in the eastern United States and Canada
(Fig. 3). High model variability came mainly from parameter choice in the eastern United
States; we noted low variation deriving from GCMs, RCPs, and replicates (Fig. S4).

DISCUSSION
The geographic distributions of A. maculatum and D. andersoni are much wider today
than they were in the recent past. For example, A. maculatum has expanded its geographic
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Figure 3 Left panel: potential suitable areas ofDermacentor andersoni based on binarized (5% thresh-
old) models under current conditions (in blue and gray), and future (blue= no longer suitable, red=

newly suitable) conditions. Right panel: agreement in strict extrapolation areas among the five general
circulation models. Results are presented for RCP 4.5 (top) and RCP 8.5 (bottom).

Full-size DOI: 10.7717/peerj.13279/fig-3

range from the southeastern United States to become well established in the Northeast in
Connecticut (Molaei et al., 2021), and in the Midwest in southern Illinois (Jolley, 2020).
Beside themovement of tick adults for long distances via their hosts to new areas, immature
A. maculatum can also access new areas with the help of migratory birds; larvae and nymphs
can move thousands of miles during bird migratory seasons from the southern United
States north to southern Canada (Florin et al., 2014; Teel et al., 2010). Cuervo et al. (2021)
showed similar suitable ranges using current time predictors, and demonstrated that
levels of niche conservatism differed among different members of A. maculatum group
(A. tigrinum and A. triste).

This study is the first to assess the geographic distributions of the spotted fever vectors
A. maculatum and D. andersoni in North America under current and future climate
conditions. We included uncertainty analyses (MOP analysis and model variability) in our
future model projections to detect areas with strict extrapolation, and to assess variation
coming from multiple sources, such as different GCMs and RCPs. We considered only
abiotic climatic variables such as temperature and precipitation as predictors that may
influence the geographic distributions of those tick species.

Our models predicted that suitable areas for A. maculatum will remain stable in most
southern and Midwestern states, whereas few reductions in suitable areas were anticipated
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Figure 4 Detail of Fig. 2, showing the most recent confirmed established populations of Amblyomma maculatum in counties of Illinois and
Connecticut in the United States (light blue boundaries) (Jolley, 2020;Molaei et al., 2021). Gray indicates suitable areas under current and future
conditions. Red color indicates newly suitable areas with climate change.

Full-size DOI: 10.7717/peerj.13279/fig-4

only in western parts of Texas, Oklahoma, and Kansas (Fig. 2). Most importantly, our
models predicted newly suitable areas northward in the United States successfully, to cover
areas that were recently discovered to hold new populations in Connecticut and Illinois
(Jolley, 2020; Molaei et al., 2021) (Fig. 4). For D. andersoni, our models showed broader
suitable areas beyond its known range (from Washington state to Colorado). Midwestern
and eastern states; however, most of the anticipated reduction in ranges were in areas
not known to hold this tick species. Most of the anticipated expansions in range were in
northward in Canada (Fig. 3).

Our projections suggested higher potential of A. maculatum to invade new areas outside
its native range mainly in the southeastern United States. For D. andersoni, suitable areas
were mostly in northern North America (United States and Canada). We also noted more
extensive strict extrapolative areas for D. andersoni than A. maculatum, especially in the
eastern United States, which suggested caution about interpreting those areas as suitable
for D. andersoni (Fig. 3).

Several significant limitations and caveats regarding predictions emerging from
ecological niche modeling that should be considered. First, a species faces dispersal
limitations and biotic interactions that may prevent it from occupying the full suitable
area that corresponds to its fundamental ecological niche. Second, the variation in spatial
precision associated with different occurrence data records, which can cause problems
for model results. Third, data availability in which biases in sampling in regions more
than others can cause biases in model output (Peterson, 2014). All these points have been
considered in the design of our methodology to achieve the most robust model possible.

Alkishe and Peterson (2022), PeerJ, DOI 10.7717/peerj.13279 8/12

https://peerj.com
https://doi.org/10.7717/peerj.13279/fig-4
http://dx.doi.org/10.7717/peerj.13279


In the United States, numbers of documented spotted fever cases have increased in
recent years, especially in 2017, with 6248 new cases (CDC, 2021). Previous analyses have
noted overlap between reported cases in some states and suitable areas for spotted fever
vectors including Dermacentor variabilis (Alkishe, Raghavan & Peterson, 2021; Boorgula
et al., 2020). Spotted fever case data collected by the Centers for Disease Control and
Prevention, and used by Alkishe, Raghavan & Peterson (2021) however, were lacking in
full detail on the type of pathogen and associated tick species, which made it difficult to
interpret the source of the infection.

In summary, using ecological niche modeling allowed us to highlight suitable areas
of two medically important tick species in North America. We showed the potential for
expansion of those tick vectors into new areas that were not suitable in the past with
emphasis on the newly discovered dispersal of A. maculatum to those newly suitable areas
in Illinois and Connecticut. We also showed the uncertainty and variability that can come
from projection models to different times and places. These results help to recognize the
uncertainty and source of variability in predicting suitability.
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