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Institutskíı per. 9, Dolgoprudnýı, Moscow Region 141700, Russia
∗Corresponding author e-mail: antonino.messina@unipa.it

Abstract

A stationary physical system satisfies peculiar balance conditions involving mean values of appropriate
observables. In this paper, we show how to deduce such quantitative links, named balance equations,
demonstrating as well their usefulness in bringing to light physical properties of the system without
solving the Schrödinger equation. The knowledge of such properties in the case of the Rabi Hamiltonian
is exploited to provide arguments to make easier the variational engineering of the ground state of this
model.
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1. Introduction

Let H(η) be the time-independent Hamiltonian of a binary physical system S, whose states {| φ〉}
live and evolve in the Hilbert space H. We assume that such a Hermitian operator depends on a real

(set of) parameter(s) η. We denote by | ψE(η)〉 a normalized eigenvector of H(η) of eigenvalue E(η). We

recall that in the Schrödinger representation the time derivative of an operator A (generally depending

both on η and explicitly on t), denoted by
dA

dt
, is defined as (� = 1)

〈φ(t) | d

dt
A | φ(t)〉 ≡ d

dt
〈φ(0) | eiHtAe−iHt | φ(0)〉. (1)
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It is well known that such a definition leads to

d

dt
A =

∂

∂t
A+ i[H,A], (2)

which, on the one hand, implies that A is a constant of motion, if either [A,H] = 0 or the partial

time-derivative contribution is compensated by the commutator term (see, e.g., [1]). On the other hand,

Eqs. (1) and (2) guarantee that the expectation value of any time-independent operator A taken on

any stationary state | ψE(η)〉 of H(η) vanishes. Since, in general, A does not commute with H(η),

Eq. (2) originates in each stationary state a link between the mean values of the operators additively

stemming from the commutator [A,H]. This algebraic relation is an identity with respect to η and, when

A is an observable, it reflects, in any stationary state of H(η), the existence of a necessary quantitative

relationship among the η-dependent expectation values of appropriate operators which, being Hermitian

like i[A,H], are amenable to a physical interpretation.

Following [2–6], we call these equations balance equations associated to H(η).

The interest in the balance equations is at least threefold.

First of all, they are the fruit of a simple calculation and might help to highlight physical pro-

perties common to all the stationary states of S, in particular, its ground state, without solving the

time-independent Schrödinger equation, which might indeed be difficult to handle. On the other hand,

considered that, when this is the case, one generally looks for approximate expressions of the eigenso-

lutions of the Hamiltonian model under scrutiny, the balance equations might provide an exact tool to

check, a posteriori, the accuracy of the approximated solution found. As the third and final remark,

we, in addition, emphasize that the knowledge of a set of easily constructed and physically transparent

balance equations associated to a given Hamiltonian might put at our disposal arguments/constraints to

control a priori the quality of the approximation route. For example, we might be asked, on physical

grounds, to express H(η) in a selected basis where it might be diagonalized with the help of a convincing

truncation protocol, or, within a variational approach aimed at finding the ground state of the system

under study, we might wisely guess a “lucky” class of trial states.

In this paper, we highlight the usefulness and advantages of such balance equations-based approach

by considering, as an application, the variational engineering of the ground state of the following ever

appealing and always fashionable quantum Rabi model [7–9]

H = ωα†α+ λ(α+ α†)σx +
ω0

2
σz ≡ H(η) (3)

describing the linear coupling of strength λ between a quantum harmonic oscillator (or a single bosonic

mode) of angular frequency ω and an effective two-level system (or a spin 1/2) with the Bohr frequency

ω0. The dynamical variables of the quantum mode are the annihilation and creation operators α and α†,
whereas the two-level system is completely represented by the Pauli matrices σx, σy, and σz.

Over the last 70 years, this paradigmatic model has been investigated in a myriad of papers, even in its

multimode version useful to treat the two-level system as an open quantum system [10]. Many facets of its

static, dynamical, and thermodynamical behavior have been theoretically disclosed and experimentally

revealed in a lot of quite different physical contexts as, for example, cavity, circuit, solid-state quantum

electrodynamics, quantum information, and so on [11–16]. Quite recently advancements on the exact

analytical representation of the eigensolutions of H, motivated by the experimental realization of ultra

strong coupling regimes, have been reported [8, 17–19].
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The Rabi model depends on two independent effective real parameters defining a bidimensional space

S, which contains a region of experimental interest where, however, the physical behavior of the system

is analytically less characterized with respect to that which the system exhibits in the complementary

region of its parameter space. In this challenging region, the relative weight of the three parameters ω,

λ, and ω0 does not legitimatize any obvious perturbative treatment of H, so that the entanglement that

is established between the two parties in such a condition reflects the occurrence of a mutual influence

higher than that exhibited by the system out of this region. Such a situation singles out the so-called

intermediate coupling regime between the weak and the strong regimes realized by the system when

λ2 � ωω0 and λ2 � ωω0, respectively.

We stress from the very beginning that we do not intend here to improve the quality of the variational

ground state of the Rabi model as reported in the literature. Rather we wish to provide a concrete example

of how the knowledge of an appropriate set of balance equations associated to the Rabi Hamiltonian allows

one to understand the failure of an optimized specific trial state (for example, coherent state) in some

regions of the parameter space and at the same time how to improve the class of trial state in order to

get a new optimized solution closer to the exact ground state in a larger region of S. In other words, the

balance equations-based approach, exploited within the variational framework, might provide arguments

useful to justify a specific choice of the trial state in accordance with our expectations (that is, disposable

balance equations) concerning the exact ground state.

This paper is organized as follows.

In Sec. 2, we report some useful general properties possessed by the Rabi system in its ground state,

while the construction of a set of exact balance equations is presented in Sec. 3. The knowledge of these

exact constraints is exploited in Sec. 4 to engineer a class of trial variational ground states and find an

analytical optimized expression of the ground state. Some concluding remarks are pointed out in Sec. 5,

where possible developments based on the novel approach reported in this paper are briefly discussed.

2. Some General Properties of the Rabi Hamiltonian Ground State

The derivation of balance equations associated with the Rabi Hamiltonian is postponed to the next

section. Here, instead, we wish to resume and/or to derive some exact properties of the ground state

of this model. Such properties, conjugated with the balance equations, play an interesting role since

they reveal in a transparent way the nature of η-dependent constraints in the structure of the exact

ground state of the Rabi model, which then must be taken into account when tailoring the analytical

form of a variational trial state. It is easy to prove that the hermitian and unitary parity operator

P = −σz cos(πα
†α) commutes with H, so that the normalized stationary states | ψE, p〉 of H of definite

parity p = ±1, belonging to the energy eigenvalue E, may be represented as follows:

| ψE, p〉 =
∞∑
n=0

a(p)n | n〉 | σ = (−1)n+1p〉 (4)

provided that the bosonic state

| φE, p〉 =
∞∑
n=0

a(p)n | n〉 (5)

is normalized.
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Since the knowledge of | φE, p〉 univocally determines | ψE, p〉, it is not surprising that, as a consequence
of the peculiar spin–boson entanglement induced by P , the Rabi Hamiltonian may be unitarily traced

back to the following p-dependent bosonic Hamiltonian

H̃p = ωα†α+ λ(α+ α†)− ω0

2
p cos (πα†α), (6)

where p = ±1 is an eigenvalue of P .

It has been rigorously demonstrated [5, 6] that the ground state of H̃+ generates the ground state

| g+1〉 of H everywhere in S, and that there exist regions of S where the ground state of H̃−1 is degenerate

with that found in H̃+. This happens, for example, when ω0 = 0 and, in such a case, ground states of

H of no definite parity exist. It is easy to convince oneself that the probability amplitudes of the ground

state of H̃p (and then of H) may be chosen all real without loss of generality.

It is useful to write | ψE, p〉 exploiting the eigenstates of σx instead of those of σz. It is not difficult

to show that

| ΨE, p〉 = 1√
2

{ | φE, p〉 | +〉x − p cos (πα†α) | φE, p〉 | −〉x
}
. (7)

Let Eg be the exact ground state energy of the Rabi model. Since, occasionally, Eg may result in

degeneracy, we simply denote by | gp〉 a (the) solution of H | g〉 = Eg | g〉 having a definite parity p. It

is possible to show the validity of the following properties everywhere in S:

−ω0

2
− λ2

ω
≤ Eg ≤ −ω0

2
, (8)

〈gp | σz | gp〉 = −p〈gp | cos (πα†α) | gp〉 ≤ 0, (9)

〈gp | (α+ α†)σx | gp〉 ≤ 0, (10)

−ω0 ≤ ω〈gp | α†α cos (πα†α) | gp〉 = −ω〈gp | α†ασz | gp〉 ≤ ω0. (11)

Equations (8)–(11) are certainly valid for | g+1〉 (the ground state of H of parity p = +1 exists in

all points of S) and also for | g−1〉 in the case of degeneration. Equation (8) stems from elementary

considerations based on the position of Eg in the energy spectrum of H. Equation (9) reflects the

property P | gp〉 = p | gp〉 (then valid also outside the minimum energy subspace), as well as that the

probability of finding the oscillator in its ground state | g+1〉 (| g−1〉) with an even number of excitations

exceeds (is less than) that of finding the oscillator with an odd number of excitations. Equation (10)

means that the covariance of the dimensional coordinate of the quantum oscillator and the “coordinate”

of the two-level system is always negative in S, since 〈gp | (α+α†) | gp〉 = 〈gp | σx | gp〉 = 0 for symmetry

reasons. Moreover, this equation says that the interaction energy counters the nonnegative contribution

of the free energy of the quantum oscillator on | gp〉 in accordance with the requirement for Eg prescribed

by Eq. (8). This last comment is also valid for the expectation value of σz on | gp〉.
Equations (11) and (9) reveal the occurrence of a limited variability for

∣∣〈gp | (α†α)x | gp〉
∣∣, with

x = cos (πα†α) or x = σz, traceable back to the negativity of Eg everywhere in S. The link between

〈gp | α†α cos (πα†α) | gp〉 and 〈gp | α†ασz | gp〉 is once again a consequence of the entanglement introduced

in the binary Rabi system by the parity constraint. In principle, other identities and inequalities in S, as

in Eqs. (8) and (11), may be systematically constructed exploiting Eq. (5) and the relations deducible by

taking the mean value in the ground state | gp〉 of the operator equation expressing the anticommutator

between H and appropriate observables. From the mathematical point of view, the only hypothesis used

to derive Eqs. (8)–(11) is the assumed existence of all the expectation values involved, since, in accordance

with our procedure, we are not making use of the analytical form of | gp〉.
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3. Balance Equations

In this section, we demonstrate that all the stationary states of H share the occurrence of analy-

tical links valid everywhere in S among the expectation values of selected and physically interpretable

observables as anticipated in the Introduction. We call such relations balance equations even if, strictly

speaking, they are identities in S. What makes the balance equations of theoretical interest is the fact

that they may be systematically generated as necessary conditions of the stationarity, without any a

priori knowledge of the analytical form of the eigensolutions of H.

To make easier capturing the physical meaning of the results to be derived in this section, we write

the Rabi hamiltonian describing the bosonic mode as that for a quantum oscillator in its phase space

H =
p2

2m
+

1

2
mω2q

2 + F0qσx +
ω0

2
σz − ω

2
, (12)

where

q =

√
1

2mω
(α+ α†), p = i

√
mω

2
(α† − α), F0 =

√
2mωλ. (13)

Since, in view of Eq. (2),

m
d2q

dt2
= −mω2q − F0σx ≡ Fq + Fe, (14)

we immediately derive

〈ψE(η) | Fq | ψE(η)〉 = −〈ψE(η) | Fe | ψE(η)〉. (15)

Thus, in the ground state of the Rabi Hamiltonian the elastic force Fq and external force Fe due to

the two-level subsystem are, on the average, opposite. When the ground state has a definite parity, both

vanish, and Eq. (10) tells us that the two forces are anticorrelated since the expectation values of q and

σx vanish on | gp〉.
To appreciate further how a balance equation may contribute to bringing light to peculiar properties

of the ground state of the Rabi system, we exploit the fact that the mean value on | ΨE,p〉 of the operator
d2(qσx)

dt2
vanishes. The resulting balance equation on | gp〉, in particular, becomes

〈gp | p2/2m | gp〉 = F0

2
〈gp | qσx | gp〉+ 〈gp | mω2q2/2 | gp〉, (16)

where the Fock states in the expression of | gp〉 are to be considered in the q-representation.

Getting rid of 〈gp | p2/2m | gp〉 between Eq. (16) and the expression of Eg formally deducible from

Eq. (12), we can use the resulting equation from such elimination to cast the double limitation on the

lowest energy eigenvalue of H, as given by Eq. (14), in the following form:

1

2mω
− λ2

mω3
+ C ≤ 	2(qσx) ≤ 1

2mω
+ C, (17)

where 	2(qσx) ≡ 〈gp | (qσx)2 | gp〉 − 〈gp | qσx | gp〉2 and

mω2C = −(1 + 〈gp | σz | gp〉)− 3F0〈gp | qσx | gp〉 − 〈gp | qσx | gp〉2. (18)
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Considering that, in view of Eq. (7), | gp〉 may be formally written as

| gp〉 = 1√
2

{ | φEg , p〉 | +〉x − p cos (πα†α) | φEg , p〉 | −〉x
}
, (19)

we immediately see that

〈gp | qσx | gp〉 = 〈φEg , p | q | φEg , p〉, (20)

and then

	2(qσx) = 	2
φ(q), where 	2

φ (q) = 〈φEg , p | q2 | φEg , p〉 − 〈φEg , p | q | φEg , p〉. (21)

Since the fluctuations of q in a coherent bosonic state is 1/2mω, independent of its amplitude, the

exact inequality (17) suggests that the fluctuation of q on | φEg ,p〉 might exhibit values different from

1/2mω in selected domains of the parameter space S. This observation is of relevance since it explains

why an optimized coherent state fails in representing | ψg,+1〉 everywhere in S, as indeed found in the

literature, without any attempt to go beyond [2, 3]. Thus, we are interested in finding the argument

strengthening the hypothesis that, to overcome such a failure, we must introduce a variational trial state

exhibiting flexibility in the fluctuation of q in different coupling regimes.

To this end, we now deduce another balance equation based on the second derivative of ωα†α. The

final result may be expressed in the following suggestive form when restricted to the ground state | gp〉:

〈gp | FqFe | gp〉+ 〈gp | p dFe

dt
| gp〉+ F 2

0 = 0, with
dFe

dt
= F0ω0σy. (22)

This balance equation discloses the existence in each point of S of a link between the covariance of the two

forces Fq and Fe on the oscillator and the covariance between the oscillator momentum and the rapidity

of variation of Fe. In particular, it says that coupling regimes, where the correlations between the two

forces are almost vanishing, are characterized by an anticorrelation between p and
dFe

dt
. The relevance of

this comment may be elucidated by the consideration that for ω0 < ω, on the one hand, whatever η is,

| φEg ,+1〉 may be well approximated by an appropriate coherent state exhibiting an effective displacement

q̄.

When instead ω0 � ω, in the region of S where λ2 � ω0ω, Fq and Fe decorrelate more and more

approaching zero, when λ2/ω0ω tends to zero. In such a condition, the correlation between p and
dFe

dt
,

in view of Eq. (22), grows in absolute value approaching its minimum negative value −F 2
0 . Thus, in

this region of S, the anticorrelation between p and
dFe

dt
leads to the diminution of the displacement of

the oscillator with respect to q̄. This means that, when ω0 � ω and λ is such as to guarantee a weak

coupling regime, the ground state of the Rabi Hamiltonian exhibits an almost vanishing mean value of

q, but the spread of the same observable is greater than that associated to the coherent state occurring

when ω0 < ω. Mathematically this fact stems from the inevitable presence in | φEg ,+1〉 of the odd Fock

states necessary to comply with the condition 〈gp | pdFe

dt
| gp〉 < 0.

This heuristic analysis is qualitatively compatible with the double inequality (17) and provides an

example of a region of S where certainly the trial choice of | φEg ,+1〉 in the form of the coherent state is

not legitimate. On the basis of the suggestions stemming from the arguments developed in this section,

we can construct a proposal for | g+1〉 flexible enough to comply with all the balance equations, exact

necessary conditions, and to recover its coherent state-based description when ω0 < ω.
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4. Engineering a Variational Ground State

On the basis of what we have learned and highlighted about the properties of the ground state of parity

+1 in S, we must go beyond the trial choice of | ΦEg ,+1〉, as given by Eq. (5), since the coherent state

D(β) | 0〉 of the optimizable amplitude β essentially becomes incompatible with the double inequality (17)

everywhere in S. The operator D(β) is the unitary displacement operator defined as

D(β) = exp{βα† − β∗α}. (23)

To gain more flexibility in the fluctuations of (α+α†) while not renouncing as well a coherent recover

of | φEg ,+1〉, where appropriate in S, we propose the following two real-parameter squeezed and displaced

states:

| φEg ,+1(β, γ)〉 = S(γ)D(β) | 0〉, (24)

the squeezing unitary operator S(γ) being

S(γ) = exp
{
γ
(
α†2 − α2

)
/2

}
. (25)

One can demonstrate that | φEg ,+1(β, γ)〉 identically satisfies Eqs. (8)–(11) and that the two equations in

γ and β obtained from the balance equations (16) and (22) coincide with the two variational equations

determined from the optimization of the energy functional of the system in the class of states (24) with

respect to the two variational parameters γ and β. Moreover, Eq. (24) is compatible with Eq. (17) since,

when γ = 0, the squeezed displaced state gives back the coherent state | β〉 and, in general, meets all the

requirements on the ground state built so far in this paper. To find the optimized dependence of γ and

β on the model parameters, we must evaluate the energy E(β, γ), that is,

E(β, γ) = 〈0 | S†(γ)D†(β)H̃+D(β)S(γ) | 0〉, (26)

where from Eq. (6)

H̃+ = ωα†α+ λ(α+ α†)− ω0

2
cos(πα†α) (27)

is a nonlinear restriction of H in the parity-invariant subspace with p = +1, where the ground state

certainly is.

To this end, in the following we deduce an interesting link between the mean value E of the Rabi

reduced Hamiltonian H̃+ in any arbitrary pure state of the quantum bosonic mode and the value W (0, 0)

assumed by its Wigner function W (p, q) [20] in the same state. It is well known that the expectation

value of the parity operator cos (πα†α) is related to

W (0, 0) = 2

∫
〈x | φ〉〈φ | −x〉 dx (28)

in a generic state | φ〉 given in the Fock representation by

〈φ | cos (πα†α) | φ〉 = W (0, 0)/2 = Tr
(
ρ cos (πα†α)

)
, (29)

where ρ =| φ〉〈φ |. Then
E ≡ Tr (ρH̃+) = Tr

(
ρ[ωα†α+ λ(α+ α†)]

)− Tr
(
ρ[ω0/2] cos (πα

†α)
)

= Tr
(
ρ̃[ωα†α− λ2/2ω]

)− (ω0/4)W (0, 0) = ω〈ñ〉 − (λ2/2ω)− (ω0/4)W (0, 0), (30)
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where ρ̃ = D†(−λ/ω)ρD(−λ/ω), with D(−λ/ω) being the displacement operator accomplishing the

exact diagonalization of H̃+ when ω0 = 0. The mean value of α†α in the state ρ̃ is here denoted by 〈ñ〉.
Considering that |W (q, p)| ≤ 2 [21] in the oscillator phase space, we immediately arrive at

−ω0

2
− 2λ2

ω
≤ E(β, γ)− ω〈ñ〉 ≤ ω0

2
− 2λ2

ω
. (31)

When | φ〉 belongs to the class of trial states given by Eq. (24), W (0, 0) = e−2β2
, and after evaluating

〈ñ〉, we obtain

E(β, γ) = ω
[
β2e2γ + sinh(γ2)

]
+ 2λβeγ − (ω0/2)e

−2β2
. (32)

Developing this variational approach, we minimize E(β, γ) finding β̄ and γ̄, variable in S and such that

the unitary operator S(γ̄)D(β̄) transforms H̃+ into the sum of a diagonal contribution, whose ground

state is the vacuum state and another one that may legitimately be considered as perturbative with

respect to the diagonal one. This means that the ground state found within the class of trial states

given by Eq. (24) is reasonably close to the exact ground state and, as a consequence, that we are in a

position to investigate properties, different from its energy, of the Rabi system in its ground state, using

the variationally optimized fundamental state.

It is interesting to observe that other classes of trial states may be proposed, all fulfilling the balance

equations, so that a comparative investigation of their reliability with the class here proposed might lead

to the construction of new more reliable accurate proposals. This task will be faced with in a successive

paper.

5. Concluding Remarks

In this paper, we presented and applied the novel idea of balance equations, which is a quantitative link

existing among mean values of observables that necessarily hold in each stationary state of a physical

system. Generally speaking, the balance equations are infinitely many and may be seen as a class of

constraints making the system stationary. This circumstance has led the idea of exploiting the knowledge

of even a finite set of such balance equations to introduce a systematic approach to bring to light physical

properties that the system possesses in stationary conditions. To show the concreteness of such a point

of view, we conjugated the balance equations with the variational protocol considering in detail the

Rabi model, that is, one bosonic mode interacting with one qubit. For this model, we demonstrated

the usefulness of the balance equations to choose the probe function of its ground state. To study the

constraints for the system’s ground state energy, we used, in particular, the known inequalities for the

Wigner functions [20, 22]. Since there exists the probability representation of quantum states, where

the wave functions and energies of stationary states are determined by the tomographic-probability

distributions (see, e.g, [23] and the recent review [24]) obeying the corresponding equations [25], the

balance-equations approach can be extended to study the properties of the probability distributions of

the ground state satisfying the quantum equations. Such an extension will be considered in a future

publication.
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