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ABSTRACT 
 
Cancer stem cells (CSCs), characterized by high levels of ATP-binding cassette, 
anti-apoptotic molecules, active DNA-repair and slow replication capacities, 
surviving to conventional anti-cancer therapies, able to eradicate only the highly 
proliferating tumor cells, represent the elective target for new therapies. 
Colorectal CSCs (CR-CSCs) represent a powerful tool for preclinical validation 
of target therapies. In particular the elucidation of the mechanisms that govern 
stem cell survival and differentiation appears very essential for the identification 
of new molecular targets in cancer therapy. Among the molecules that govern 
these processes there are the Bone Morphogenetic Proteins (BMPs), members of 
the TGF-b superfamily. Here we propose that a BMP7 variant (BMP7v) have an 
important antitumoral and anti angiogenetic effect on CR-CSCs inducing a 
differentiation program and making these cells more sensitive to conventional 
chemotherapy drugs. BMP7v in vitro administration, activates the BMP signaling 
pathway in CR-CSCs, reducing the percentage of stem cell marker expression and 
enhancing epithelial colonic differentiation marker expression. BMP7v reduces 
self-renewal of CR-CSCs inducing their exit from quiescence and, reducing their 
typical mesenchymal trait, decreases their invasive and endothelial cord formation 
capacity. In vivo, BMP7v decreases tumor growth and stem cell marker 
expression, enhancing differentiation compared with control mice and in 
combination with CRC standard chemotherapy reduces tumor growth, inducing a 
differentiative and antiproliferative effect, associated with a strong anti-
angiogenic role. In addition, BMP7v as second-line of treatment also showed a  
significant anti-tumor activity in xenografts refractory to chemotherapy. Our data 
support the use of BMP7v as differentiative agent in combination with cytotoxic 
drugs for the treatment of CRC, and the use of BMP7v provides a potentially 
powerful and novel approach for the treatment of tumor disease. 
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INTRODUCTION 

 

Colorectal cancer and stem cell theory 

The colorectal cancer (CRC) is one of the most common cancers in Western 

countries. It represent the third form of cancer for frequency and the second 

leading cause of cancer death due to the resistance to current clinical therapies in 

the world. (1). 

Nowadays, the most important approaches, for the managment of this complex 

pathology remain the prevention and the early diagnosis, although a large 

numbers of patients after surgery and adjuvant therapy still develop recurrences 

and metastasis, due to the acquisition of resistance to conventional therapy, such 

as chemo- and radio-therapy (2). 

The colorectal cancer represent a classic example of a multistep pathogenesis, 

characterized by the acquisition of aberrant function of a proto-oncogene or loss 

of function of a tumor suppressor gene (3). Many studies showed that at least 4–5 

mutations are necessary to generate an invasive carcinoma (4). Some of these 

mutations seem to follow a constant trend, within the same sequences, and they 

are shared by many patients affected by colon-rectal cancer, unlike, other different 

mutations are individuals and therefore necessary to determine the final phenotype 

of disease (5). Many evidences on colon cancer mutations derived from studies on 

hereditary forms, representing 5% to 10% of all colon cancer cases. In particular, 

Familial adenomatous polyposis (FAP) is an autosomal dominant CRC syndrome 

caused by a mutation in the APC (adenomatous polyposis coli) gene which 

characterizes multiple CRC (6-8). 

In 1990, Fearon and Volgestein proposed a genetic model of colorectal 

carcinogenesis based on the accumulation of genetic mutations that occur in 

sequence, defining a particular staging of tumor development (9).  

The main event which characterizes the onset of CRC is represented by 

mutations-inactivating the gene APC that lead to hyperproliferation of the normal 

intestinal epithelium with the formation of adenomas class I (early adenoma ). In 

fact, the APC mutations are reported as the initiating gatekeeper that regulate 

positively the Wnt pathway in patients with FAP (10). The key role of APC 



 4 

protein is represented by the modulation the cytoplasmic levels of beta-catenin, a 

protein that migrating into the nucleus activates the transcription of genes 

involved in the regulation of proliferation, differentiation, migration and apoptosis 

(11).  

The progression from early adenoma towards the stage of intermediate adenoma 

is related to the acquisition of B-RAF and K-RAS mutations. These mutations, 

mutually exclusive, determine the constitutive activation of the Ras-Raf-MAPK 

protein signaling pathway.  

The loss of heterozygosis involving the chromosome 18q, the mutations in 

SMAD4 (Small Mother against DPP homolog 4), CDC4 (Cell Division Cycle 4) 

and DCC (Delected in Colorectal Cancer) or alternatively mismatch repair 

deficiency, P53, Bax and IGFR2 (insulin-like growth factor receptor 2) are 

involved in the transition to advanced adenoma (adenoma late) (4, 12, 13). 

Finally, a key event in the transition from advanced adenoma to carcinoma is 

represented by acquisition of mutations in one of the most important tumor 

suppressor genes, TP53. It is a powerful transcription factor, able to maintain the 

integrity of the genome through the regulation of the expression of more than 300 

genes involved in various cellular processes such as apoptosis, cell cycle arrest, 

senescence and DNA repair.  

The tumor suppressor gene TP53 is mutated in about 95 % of human cancers of 

various origins. Cancer cells that are non-functional TP53 have a substantial 

advantage in growth, since they can proliferate actively, even under conditions of 

stress or damage to the genome, developing resistance to apoptosis.  

Finally, the accumulation of additional mutations, many of which are still not 

known, induce the transformation in metastatic carcinoma (14). Fig.1. 
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Fig.1. Schematic representation of colorectal cancer multistep progression. (Di Franco S. et 
al., Encyclopedia of Molecular Cell Biology and Molecular Medicine, Wiley.) 

 

In the last decades the tumor biology has revolutionized the old view of 

tumourigenesis. CRC, as the other tumors, have long been consider as an 

exclusively genetic disorder. Nowadays, several studies showed that tumors are 

constitute by a highly heterogeneous population of tumor cells which differ in 

morphology, marker expression, proliferation capacity and tumorigenicity. To 

better describe the role of the different malignant cells within the same tumor, and 

to explain this morphological, proliferative and functional heterogeneity, two 

models have been proposed: the stochastic and hierarchical models. 

The first model, described by Nowell in 1976 (15) proposed that all cells within a 

tumor are biologically homogenous and able to regenerate the tumor (16). This 

model of tumorigenesis, in fact, describes the tumor formation as a process 

multistep due to the sequential accumulation of mutations in oncogenes and tumor 

suppressor genes. Accordingly, all cells within the same tumor are able to initiate 

a new tumors, but this theory does not consider the high cellular heterogeneity, 

the chemoresistance, the minimal residual disease and the tumor recurrence. In 

sum, tumors consist of a heterogeneous cell population that, acquiring new 

mutations, undergoes uncontrolled proliferation and invasivity. 
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Otherwise, the hierarchical model, considering all the factors intrinsic and 

extrinsic involved in defining cell behavior, such as, genomic instability, levels of 

transcription factors, signalling pathways, microenvironment and immune 

response, is based on the analysis of the high cell heterogeneity within the tumor 

in terms of features, surface markers expression, proliferation kinetics and tumor 

initiation capacity (17). 

This model suggest that only a subset of tumor cells within the tumor mass, called 

Cancer Initiating Cells or Cancer Stem Cells (CSCs), can initiate and sustain 

tumor growth (18). These cells possess the tumorigenic and self-renewal capacity, 

and the ability to differentiate in non-self renewing cells, that acquiring 

proliferative capacity, constitute the tumor bulk (19). Fig.2. 

 

 

 

 

 

 

 

Fig.2. Two general models of heterogeneity in solid cancer cells: a) stochastic and b) 
hierarchical models. (Reya T. et al. Stem cells, cancer, and cancer stem cells, Nature 2001) 

 

In the last years, novel insights in cancer research have suggested that the capacity 

to initiate and sustain tumor growth is a unique characteristic of this small subset 

of cancer cells with stemness properties within the tumor mass, called “cancer 

stem cells” (CSCs) or “tumor-initiating cells”, that have the capacity to propagate 

the tumor upon transplantation into immuno-compromised mice (19). 

CSCs are defined by their stem cell-like features that share with the normal stem 

cells that are characterized by self-renewal and pluripotent differentiation 

capacity. These cells are responsible to generate, through several cycles of 

division, progenitor cells which give rise to non-tumorigenic differentiated 

population that represent most part of the tumour mass. CSCs could derive either 

from self-renewing normal stem cells (SCs) that acquire epigenetic and genetic 
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changes required for tumorigenicity or from proliferative progenitor cells (PCs) 

that reprogramming themself acquire the self-renewal potential capacity (20). 

Emerging evidences suggest that CSCs isolated from a variety of tumors types 

retaining the tumorigenic capacity are responsible for the propagation, relapse and 

metastatic dissemination. CSCs can explain the phenomenon of the tumour 

chemoresistance in which several mutations confer to these cells drug-resistance, 

altered cell cycle checkpoints and impaired apoptosis machinery. For all these 

reasons, CSCs survive to conventional treatments giving often rise to minimal 

residual disease (MRD). Therefore to better understand the mechanisms that 

maintains stemness features and the subsequent characterization of CSCs could be 

crucial to develop new most appropriate anti tumor strategy approaches. 

Common signaling pathways, including Wnt, Notch and Sonic Hedgehog are 

involved in the regulation of normal and cancer stem cell. Many evidences 

underlining the importance of these cellular signalling showed as their 

deregulation plays an key role in the tumor development (21). Accordingly, 

several studies suggest the importance of self renewal pathways activation for 

CSCs maintainance (22). 

The CSCs theory has changed the conventional therapeutic approches, suggesting 

an alternative strategy targeted to these cellular subset. The CSCs are 

characterized by high resistance to conventional chemotherapeutic drugs that kill 

the rapidly proliferating cells sparing the slow dividing cells, through a particular 

upregulation of ATP-binding cassette transporters, active DNA-repair capaciy and 

overespression of antiapoptotic molecules (23, 24).  

Dick and collegues were the first to isolate and characterize CSCs from acute 

myeloid leukemia (AML) in blood and bone marrow. In particular they isolated a 

sub-population of CD34+CD38- from patients affected by AML, and they 

demonstrated that only this cellular subset was able to form colonies in vitro 

experiments. They also analized that only this subset was able to reproduce the 

parental tumor phenotype, when inoculated into immunodeficient mice (25, 26). 

Using a similar procedure many research groups identified a large number of 

tumor stem cell from a different solid tumor type. In particular, the first CSCs 

obtained from a solid tumor were a cellular subset CD44+CD24- isolated from 

breast cancer by Al Hajj et coll. (16). Subsequently, were isolate several different 
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CSCs tumoral type: brain (27), colon (28-30), head and neck (31), pancreas (32, 

33), melanoma (34), mesenchymal (35), hepatic (36), lung (37), prostate (38), and 

ovarian (39) tumors. 

 

Colon crypts and stem cells 

Although the SCs and CSCs characterization has been long studied, several 

molecules have been identified as a putative stemness markers, up to now, none of 

the markers studied seems to be exhaustive. Scientific evidences underline the 

importance to use different combinations of these markers in order to obtain a cell 

population enriched in stem cells. 

The adult intestinal epithelium presents a particular structure ordered into crypts 

and villi, organized with a hierarchical organization, composed by three different 

cell types: the colonocytes or columnar cell, the mucin-secreting goblet cells and 

the endocrine cells, originated from a colonic stem cell. These stem cell, located at 

the base of the crypt are surrounded by mesenchymal cells that form the stem 

niche, in which the stem cell, displaying stemness features, can generate through 

asymmetric division, a cell identical to itself , and a transit cell. The transit cell 

(rapidly dividing cells) proliferating and differentiating, migrates along the crypt, 

representing all the intestinal lineage (40-45). According to this theory these stem 

cells are responsible for the high turn over rate of the colonic epithelial cells (46-

48). 

This particular and complex structure of the colon crypts has made particular 

difficult the studies about the mechanisms of crypt formation from a single stem 

cell. The first study regarding the stem cell position in the colon was conducted by 

Chang et al. using 3H-thymidine injection, and recently it was confirmed using 

bromodeoxyuridine DNA-labeling dye (49, 50). 

Two different models have been proposed regarding the positioning of the stem 

cells: the “stem cell zone” model and the “ +4 position” model. According to the 

first model, the colon stem cell reside at the very bottom of the crypts. Unlike, the 

second model describes that the stem cells are located at the +4 position above the 

Paneth cells at the base of the crypts (51). 

Although the absence of a specific colonic stem cell markers makes their 
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identification and positioning very difficult, the colonic stem cell can be 

characterized by two main features: self-renewal and differentiation capacity. 

Stem cells may undergo asymmetric division, but they can also generate two 

identical stem cells via symmetric division that acquiring a diffentiated phenotype 

regenerate the colon tissue. Then, in the first case, it is possible to obtain a lineage 

expansion, but in the other case, a lineage extinction, because the differentiated 

progeny undergo to senescence. 

Accordingly with the CSCs theory it is widely accepted that the stem cells are 

responsible for the origine of the cancer. Their slow division cycle, allow them to 

accumulate several mutations over time up to define them CSCs (52-54).  

Different molecules have been proposed as a stemness markers: Musashi 1(Msi1), 

EphB receptors, Bmi 1, Lgr5. 

Msi1, an RNA binding protein, widely studied in Drosophila Melanogaster, seems 

to be involved in the asymmetric division that regulate the neural development, 

also in mammals. In human and murine small intestine it is located at the base of 

the crypts. Its silencing determines tumor growth arrest by Notch inhibition and 

p21 upregulation, proteins involved in stemness mainteinance (55-57).  

EphB2 receptor is tyrosine kinase receptor, belonging to the family of Wnt target 

gene, it is expressed in a decresing gradient from the crypt base toward the 

differentiated cell compartment (58). This expression along the crypts seems 

regulate the migration and proliferation of intestinal epithelium; mutants in their 

ligands, or mutant forms of these receptors involve in intestinal 

compartimentalization defects. Underlining their important role in the intestinal 

positioning of the different cell types along the crypts. (59). 

Bmi1, a repressor of Polycomb group, is involved in hematopoietic, breast and 

neural self renewal. In the small intestine it is expressed near to the bottom of the 

crypts (60, 61). 

Lgr5 is a G protein coupled receptor, belonging to the family of Wnt target gene. 

Its expression in a single cells is able to regenerate a crypt-like structure in vitro 

constituted by all cell type of colonic epithelium (62). This and other markers as 

have been associated with CSCs phenotype. 
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CR-CSCs identification, isolation and expansion 

The existence of colorectal CSCs (CR-CSCs), have been showed, for the first 

time, thanks to the detection of a new stemness markers, the transmembrane 

glycoprotein, CD133. This surface expressed polypeptide is associated with self 

renewal and tumor initiating cells, this protein was first associated as a marker for 

hematopoietic stem cells and progenitor cells, and successively used in other 

tumor type: (63): brain (27), prostate, hepatocellular and colon tumors (28-30, 64, 

65). 

Recently two indipendent groups have revealed that only CD133+ subset of tumor 

cells within a colon carcinoma, is able to initiate a tumor outgrowth (28-30). 

Accordingly, it has been showed that a small group of CD133+ cells is able to 

serially reproduce the original human tumor phenotype, rather than an high 

number of CD133- cells that fail to generate xenograft tumors in immuno-

compromised mice. In line with these data, only the tumorigenic CD133+ cells 

population generated crypt-like structures in vitro under differentiation condition 

on matrigel (65). In addiction, these cells during differentiation in vitro and in 

vivo acquire a typical epithelial colonic marker, CK20, reducing at the same time 

the CD133 stem cell marker.  

Accordingly, many clinical reports suggest CD133 as an indipendent prognostic 

marker and its combination with a nuclear localization of beta catenin is 

associated with a reduced patients survival (66-69).  

In sum, several research groups demonstrated that only the CD133+ cellular sub-

population, within a colon carcinoma, is able to initiate and sustain tumor growth 

(68-70).  

Moreover, mantaining the CD133+ cells with the same conditions of 

neurospheres, these cells were expansed for long term without loss their ability to 

reproduce human original tumor phenotype, underlining the self renewal and 

tumor initiation capacity of these sub population (28, 29).  

O’Brien and collegues, in order to evaluate whether all the CD133+ cells are CSCs 

or whether these subpopulation contains also more differentiated progenitors, 

through serial dilution assays, showed that the CD133+ subpopulation not only 

contains cancer initiating cells.  
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Accordingly, recent studies analyzed a new sub-group, contained in CD133+ cells, 

the CD44+/Epcam High/CD166+ stem like cells. Dalerba et al., (30) demonstrated 

that the CD44+/Epcam high cell subpopulation injected in NOD-SCID mice, is 

able to reproduce a tumor xenograft phenotypically similar to parental one.  

In a similar way, Du’s et al., (70) showed that also CD44 could be considered a 

putative marker, able to discriminate a subpopulation capable to growth in vitro as 

spheres and in vivo producing xenografts, resembling the parental human tumor. 

The role of CD133 as a marker of stem cell has long been debated, in particular, 

after the Shmelkov et al. publication, in which it was shown that CD133 is 

expressed ubiquitously in both undifferentiated and mature colonic cells (71). 

While the lack of CD133 expression is only found in the stromal and 

inflammatory cell compartment.  

Differently, Zhu et al. analizing the role of Prominin1, the mouse analogue of 

CD133, in adult colon tissue, showed that the Prominin1+ cells marking the adult 

colon stem cells, represent the target of tumoral trasformation. (72). 

On the bases of these conflicting data, it became clear that the use of a single 

marker is not adequate for a correct CSCs identification and isolation, to identify 

the subpopulation of CSCs, it would be more appropriate to use a panel of 

markers and to standardize protocols that can validate the use of a new marker. 

For all these reasons, several surface molecules have been proposed to mark colon 

CSCs, such as CD133, LGR5, CD44 and CD166. (73, 28-30).  

Recently, it has been demostrated that undifferentiated tumorigenic CRC cells 

could be expanded as tumor spheres in vitro using a serum-free medium 

containing EGF and basic FGF (74). The tumor spheres, infact, contain an 

heterogeneous cell population expressing a variable percentage of CD133, 

CD166, CD44, CD29, CD24 and nuclear beta-catenin. More recently ALDH1, a 

detoxifying enzyme, has been proposed as a specific marker able to identify, 

isolate and track human normal and CSCs during CRC development (75, 76). 

This marker is expressed by the CD44+ or CD133+ cells, located at the base of 

normal crypts. After sorting the ALDH1 high cells, injected subcutaneously in 

NOD SCID mice, generate tumor xenografts (76).  
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The isolation of CSCs is based essentially on two different approaches: the use of 

a culture medium serum-free that maintain stemness-selective conditions, 

originally developed for neural stem cell culture (77) or the direct selection by 

magnetic sorting or FACS technology for putative markers distinctively expressed 

by a cell subpopulation. On the bases of these procedures there is a common step 

in which the surgical excisions of solid tumours are processed by mechanical 

and/or enzymatic digestion to obtain a single-cell suspension. This freshly digest 

obtained is constitute by an cells heterogeneous mixture of the original tissue. In 

order to selectively obtain CSCs, the digest is cultured into ultra-low-adhesion 

flasks in a specific serum free medium, supplemented with growth factors such as 

basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). These 

conditions allow the undifferentiated tumour cells, stem and transit amplifying 

cells, to survive and slowly proliferate, while the differentiated cells die through 

anoikis. Sphere-forming cells are maintained in culture by dissociation and re-

plating as single cells, and retain the tumorigenic potential when injected into 

immunocompromised mice, reproducing the same morphological and antigenic 

features of the original tumour, data showed by histological examination of 

xenografts generated from spheres. This tumorigenic capacity is serially 

maintained, and the xenografts can be digested and the cells obtained can be 

indefinitely propagate under stemness conditions, maintaining the stem like 

features as well as the capacity to reform tumors. As previously described, a 

single clonogenic CD133+ cell, contained in CRC spheres is able to reproduce the 

original tumor, including the CSC compartment and the differentiated progeny. 

Alternatively, the second procedure, involves the selection of putative stem cell 

marker from the whole digest, by the use of monoclonal antibody directly or 

indirectly conjugated with magnetic beads. This sorting allow a double positive 

and negative selection, separating labelled and unlabelled cells, but this procedure 

permit only a single-marker selection. Another alternative method is represented 

by FACS sorting, which allows sorting of different populations with multi 

parameter analysis, testing contemporary several antibodies conjugated to 

different fluorochromes. 

Moreover the sorted cells can be also cultivated in stem cell conditions and also 

injected into immunocompromised mice to directly test the tumorigenic capacity 

(74).  
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Intestinal Niche 

Fibroblast, endothelium, inflammatory cells, cytokines and growth factors 

secreted by these cells, constitute the intestinal niche and are involved in CSCs 

maintenance at the base of colon crypts. They finely regulate the balance between 

self-renewal and differentiation (78-80). Indeed the pluripotency of colon SCs is 

strongly controlled by microenvironment that plays a crucial role ensuring a fine 

equilibrium between important pathways, such as PTEN-PI3K-Akt (81, 82), Bone 

Morphogenetic Protein (BMP) (83), Notch (84) and Sonic hedgehog (Shh) (85). 

In particular the intestinal sub-epithelial myofibroblast (ISEMFs) surrounding the 

normal colon stem cells, regulate this balance secreting hepatocyte growth factor 

(HGF) for maintenance of stem cell in the intestinal niche. The presence of 

ISEMFs or HGF, as demonstrated by Vermulen et al., restore the stem cell 

phenotype, inducing a cellular de-differentiation (80). 

The colon crypt unit represented in figure 3, shows a particular cellular 

distribution in which at the basis of the crypt are located the mesenchymal cells 

(ISEMFs) and their secreted factors responsible for the stem cell niche 

maintenance, while along the villux apex, where are located several Wnt 

inhibitors, in order to reduce the stemness features it is possible to identify a 

progressive cellular differentiation. The pathways mentioned above, are involved 

in self renewal and are de-regulated both in normal and CSCs (21, 22).  

One of the most studied pathway envolved in CSCs progression is represented by 

the Wnt signalling. 

The Wnt signalling in the basis of the crypts promotes nuclear beta catenin 

accumulation, which activate the transcription of several genes involved in cell 

cycle regulation and proliferation. Beta catenin also induces the expression of 

EphB1-2, which regulate stemness, cell migration and differentiation (86-88). 

The distribution of Wnt pathway members, results particularly regulated. Wnt 

ligands are predominantly expressed at the basis of the crypts and are reduced 

along the crypt where more differentiated cells reside, and where are most express 

the Wnt inhibitors factors (88-90). 

In addiction to Wnt pathway, BMP, Notch and Shh pathways regulate the niche 

homeostasis. 
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BMP proteins are TGF-beta superfamily members that through binding to 

receptors BMPR1A, BMPR1B and BMPR2 can trigger different biological 

processes in CSCs (91). 

The activation of this pathway promotes the phosphorylation of Smad1, 5 and 8 

that in association with SMAD 4 translocate into the nucleus and in cooperation 

with other transcriptor factors regulate the target genes expression (92, 93). 

Recent data have demonstrated that the BMPs promote terminal differentiation 

and apoptosis (94). Kosinsky et al., analyzed the distribution of the different 

factors along the crypt: the cells at the apex of the crypt express high levels of 

BMPs, while at the basis of the crypt, their levels are reduced, but the levels of 

BMPs antagonist, produced by myofibroblasts, contribute to the maintenance of 

stemness (95, 83). 

Notch pathway is envolved in intestinal SCs fate and includes four different trans-

membrane receptors (Notch1 to Notch4). The binding of five different ligands 

(Jagged-1, -2, Delta-like 1, 2 and 4) induces the release of the Notch intracellular 

domain that translocates into the nucleus where it forms a complex with DNA-

binding proteins activating the target genes transcription involved in epithelial cell 

fate determination (96). Recent reports showed its key role in intestinal 

homeostasis and neoplastic transformation. Moreover, the expression of Notch 

intracellular domain blocks cell differentiation, inducing expansion of immature 

progenitors (97, 84). Defects in Notch pathway were observed in colon cancer 

stem cells (CCSCs), using an antibody anti DLL4 (an important Notch pathway’s 

component) to directly inhibit human colon cancer xenograft growth.  

Finally, Sonic Hedgehog pathway regulate the gut organogenesis, binding to its 

receptor Patched (PTCH), allowing the release of a G-coupled protein 

Smoothened (Smo), which with the GLI transcriptors factors migrate into the 

nucleus inducing target gene activation (85) 

In several cancers, such as leukemia, pancreas, stomach, prostate, breast, 

glioblastoma and colon cancer were found many alterations in the Hedgehog 

pathway (98-103). 
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In conclusion, the aberrant alteration of these pathways involved in self-renewal 

of the intestinal stem cells could be the driving force that promote colon cancer. 

(104)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Graphic representation of a colon crypt. (Di Franco S. et al. Colon Cancer Stem Cells: 
Bench-to-Bedside-New Therapeutical Approaches in Clinical Oncology for Disease Breakdown. 
Cancers 2011).  
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Clinical implication of CR-CSCs and BMPs as alternative therapeutic 

strategy  

The CSCs theory, in colorectal cancer, has exciting clinical implications, 

confirming that the therapy failure and relapses are due to the CSCs resistance. 

Indeed, CSCs, retaining the stemness features, such as quiescence, self-renewal 

ability and multidrug resistance, represent the population intrinsically 

refractoriness to conventional therapies developed to eradicate the rapidly 

dividing cells that constitute the majority of the non stem cell component within 

the tumor.  

Nowadays, patients with metastatic CRC are treated with two useful protocols 

FOLFOX (Folinic acid/Fluorouracil and Oxaliplatin) and FOLFIRI (FOLFOX 

plus vitamin B and irinotecan). Neoadjuvant chemotherapy for these patients, is 

represented by anti-angiogenic drugs as the Bevacizumab, a humanized 

monoclonal antibody that targets the vascular endothelial growth factor (VEGF), 

which plays an inportant role as angiogenic factor in primary and metastatic 

human CRC (105, 106). Another neo-adjuvant drug is Cetuximab, also known as 

Erbitux, a monoclonal antibody that inhibits the epidermal growth factor receptor 

(EGFR), indicated for the treatment of EGFR expressing patients affected by 

KRAS wild-type metastatic colorectal cancer, alone or in combination with 

FOLFIRI (107). 

The future of diagnostics and treatments of tumor disease should aim to eliminate, 

not only the terminally differentiated component of the tumor bulk, but, it should 

be focused, in particular, to the subpopulation of cancer stem cells that represent 

the driving force for the tumor expansion (19). In order to evaluate the CR-CSCs 

role in the therapy response, recurrence and metastasis, a recent work showed that 

the subpopulation of CD133+ CR-CSCs results more resistant to both 

conventional chemotherapeutic drugs, and innovative therapies, compared to 

epithelial cells that constitute the majority cell population within the tumor (65, 

74). 

These recent findings support the idea that tumor-initiating cells are highly 

resistant to cytotoxic cancer therapies, underlining the importance of their role in 

colorectal tumors refractoriness and recurrence also many years after the 

"successful" treatment of primary tumour.  
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The CSCs contribute to the poor therapeutic sensitivity through many 

mechanisms, such as preferential activation of DNA damage checkpoint, high 

levels expression of ABC transporters and anti-apoptotic molecules, slow 

replication capacity and other aberrant molecular mechanisms that destroy the 

normal balance between proliferation and survival or cell death (23). 

In addition the CSCs refractoriness is finely regulated by microenvironmental 

soluble molecules that are involved in many different sectors of tumor 

development, regulating the growth, migration, and differentiation of all cellular 

components into both the tumor mass and in the microenvironment. 

The possibility to isolate and study CSCs represents a revolutionary approach in 

cancer research and these cells represent the elective target for new therapies, 

endowed to high and selective toxicity towards the specific tumor with reduced 

toxicity for normal cells. 

An alternative therapeutic strategy seems to be represented by selectively target of 

CSCs pathways . 

Recent reports have demonstrated that the autocrine production of IL-4 by cancer 

cells from breast, thyroid, colon, and lung acts as negative regulator of apoptosis, 

conferring resistance to death receptors and chemotherapy-induced cell death 

(108). Moreover IL-4 seem to be involved in stimulation of activated B-cell, in T-

cell proliferation and the differentiation of CD4+ T-cells into Th2 cells (109). The 

use of anti–IL-4 neutralizing antibody or IL-4 receptor α antagonist, on CR-CSCs, 

inhibiting IL-4 signaling transduction pathway, sensitizes these cells to 

chemotherapeutic agents through down-regulation of anti-apoptotic proteins, such 

as cFLIP, Bcl-xL, and PED. Moreover, the combined use of IL-4 antibodies plus 

5-fluorouracil or oxaliplatin also reduces xenografts tumor growth (65). 

Concluding, recent studies have evaluated that the CR-CSCs CD133+, are 

protected by apoptosis phenomenon through the up-regulation of IL-4 (110). 

Another important approach could be represented by cancer immunotherapy. 

Although the cancer cells are less immunogenic than their normal counterpart, the 

immune system could plays a crucial role in order to effectively and safely 

increase antitumor responses recognizing and eliminating them (111). Although, 

these cells do not express MHC molecules, making tumor cells resistant to αβ T 

cell-mediated cytotoxicity, recently, it has been demonstrated that a subpopulation 
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of T cells, the γδ T cells, show potent MHC-unrestricted lytic activity versus 

different tumor cells in vitro, suggesting their potential employment in anticancer 

therapy. γδ T cells have been isolated and identified from tumor infiltrating 

lymphocytes in different cancer types. 

The development of targeted therapies for colorectal cancer requires new 

therapeutic regiments that aims to eliminate the self-renewal compartment of 

tumor mass by targeting stemness features owned by CR-CSCs, making this 

population more sensitive to conventional drugs. This is the main goal that the 

differentiation therapy aims to achieve. 

The therapy based on the induction of differentiation is aimed to affects the self 

renewal ability of CSCs, and could represent an alternative way to inhibit tumour 

growth. 

Among the molecules that govern stem cell survival and differentiation, the Bone 

Morphogenetic Proteins (BMPs), a subgroup of TGF-b superfamily members, 

play an important role in the regulation of colon stem cell features and contribute 

to the network of the signals that define the intestinal stem cell niche modulating 

the equilibrium between proliferation and differentiation signalling pathways 

(112-114)  

These proteins and their intracellular signaling components have been conserved 

in Drosophila and Caenorhabditis elegans and they were originally isolated from 

bone. The major contribution to their isolation and characterization was made by 

Sampath and Reddi (115). 

BMPs are synthesized as large precursor proteins in the cytoplasm where they are 

proteolytically processed in a mature proteins (116). The mature BMP molecules 

are characterized by a cysteine knot with the seven conserved cysteine domains. 

The dimeric form is active as a homodimer or heterodimer with a molecular 

weight of about 30-38 kDa. 

BMPs bind to two different transmembrane serine/threonine kinase receptors, 

type I (BMPRI) and type II (BMPRII). Type I receptors include activin receptor 

type IA (ActRIA or ALK2) and BMP receptors type IA and IB (BMPRIA or 

ALK3; BMPRIB or ALK6), while type II receptors are represent by BMP 

receptor type II (BMPRII), activin receptor type IIA and IIB (ActRIIA and 

ActRIIB) (117, 118). After the formation of heteromeric complexes, type II 
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receptor phosphorylates the type I receptor (119) and the signalling pathway is 

then activated through Smad and non-Smad mechanism (117, 119). In addition to 

the Smad pathway, indeed, the BMPs activate an alternative pathway, which 

includes p38 and ERK MAP kinases (120). When Smad 1,5,8 protein (R-Smad) 

are phyosphorylated by the type I receptors, they can interact with co-Smad 

(Smad4) and after translocate into the nucleus in order to initiate the transcription 

of BMPs response genes (121). 

The Inhibitory Smads, Smad 6/7, inhibits BMP signaling (122), indeed, BMPs 

activation is tightly regulated by the presence or the absence of antagonists and 

inhibitors such as Gremlin, Chordin and Noggin (83). BMP antagonists are 

soluble factors that control BMPs signaling with various degrees of affinity and 

specifity, binding the BMPs, preventing the functional receptor/ligand interaction: 

twisted gastrulation (TSG), chordin and noggin and the DAN-family of inhibitors. 

BMPs are involved in the earliest stage of development, and play a key role in the 

normal intestinal development, growth and morphogenesis. Their signalling act to 

mediator between epithelial and mesenchymal stroma interaction necessary for 

the correct intestinal homeostasis (123).  

During the human and mouse intestine development, BMP7 and BMP6 were 

found, respectively, on the intestinal epithelium and smooth muscle cells (124, 

125). Moreover, the high expression of BMP2 and BMP4 in the mesenchymal site 

drive the villus formation (126). In particular many reports showed that the BMPs 

pathway is functional in all three tissue layers of the gastro-intestinal tract, to 

allow the reciprocal correct interaction. Mice overexpressing the BMP-antagonist 

noggin, undergo to abnormal villus morphogenesis, associated with stromal and 

epithelial hyperplasia, ectopic crypt formation, due to low levels of BMPRIA and 

pSmad1/5/8 (123).  

All these results suggest that human gastro-intestinal and chronic intestinal 

diseases, could be associated with defects in the BMPs signaling pathway (113).  

Hardwick et al., have demonstrated that the mature colonocytes at the epithelial 

surface of normal human and mouse colon, express BMP2, the BMP receptors (Ia, 

Ib, II), phosphorylated Smad1 and Smad4 (112). Stroma and crypt epithelium of 

the adult mouse intestine show an high expression of BMPRIA and BMP2 (123, 
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127). While, Haramis et al showed that BMP4 is expressed in stromal cells and 

mesenchimal cells surrounding the crypt and glands of the intestine (127, 113). 

The BMPs pathway components result highly expressed in colon tops while the 

BMP antagonists gremlin 1, gremlin 2 and chordin-like 1, produced by 

myofibroblasts and smooth muscle cells, are located in basal colon crypts.  

Juvenile polyposis (JP), is an autosomal dominant hamartomatous polyposis 

syndrome in which germline mutations of two members of the BMPs pathway are 

involved. The patients, having mutations or deletions in SMAD4 and BMPR1A 

genes (128-130) are predisposed to upper gastrointestinal and colorectal cancer, in 

almost half of the cases. JP patients, with SMAD4 mutations, showed a significant 

prevalence of gastric polyposis (131). SMAD4, known as a tumor suppressor gene 

in pancreatic and colon cancer, in JP acts as a susceptibility gene, a “gatekeeper“, 

its loss of function results in polyp formation in which an important role is played 

by stromal inflammatory response regulating epithelial tumorigenesis (132). 

Homozygous SMAD4 knockout mice, develop polyps, with thickened intestinal 

mucosa and loss of villus architecture showing plasma cell infiltrates into the 

stroma, while mice with conditional SMAD4 deletion in the intestinal epithelial 

cells did not develop intestinal tumors (133). Although, JP patients with a 

germline SMAD4 mutation, showed biallelic inactivation of SMAD4 in both the 

epithelium and stroma, suggesting a common clonal origin (134). 

Another gastro-intestinal disease, Familial adenomatous polyposis (FAP), is an 

autosomal dominant syndrome, characterized by hundreads of adenomatous 

colorectal polyps due to a deletion in the adenomatous polyposis coli (APC) gene, 

localized on chromosome 5q21. APC gene, as above mentioned, is involved in 

ubiquitine-mediated degradation of beta catenin, regulating Wnt signalling and its 

functional defects leads to uncontrolled cell proliferation (135). In FAP patients, 

an higher expression of Wnt signaling molecules, results in BMPs signaling 

downregulation, differently, in intestinal homeostasis, the BMPs inhibit the 

effects of Wnt-pathway to regulate the intestinal stem cell proliferation and 

repression of polyps formation (113, 127). Many results showed that 

heterozygous APC mutant mice, with higher expression of the BMPs antagonist 

Gremlin 1 and lower BMP2 and BMP4 expression develop severe polyposis and 

faster rate of tumor growth (136). Accordingly, human FAP tissue specimens in 
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dysplatic mycroadenomas epithelium do not maintain BMP2 expression (112). 

The association of these genetic disorders, with the BMPs signaling pathway, was 

confirmed by experiments on transgenic mice, overexpressing the BMP 

antagonist, noggin or mice with conditional inactivation of BMPRIA. These mice 

showed an increased formation of intestinal polyps (113, 127). Moreover, 

conditional inactivation of BMPRII in stroma, led to multiple hamartomatous 

polyp appearance. (137, 138). 

These findings indicate that altered BMPs expression plays an important role in 

aberrant cellular proliferation and tumorigenesis in the human intestine. During 

the last decade, extensive researches were conducted to explain the factors 

involved in the initiation and progression of colorectal cancers in particular, 

BMPs and their signaling pathway have been specially studied. (139, 140). 

Many different groups have demonstrated that several BMPs are suppressive for 

colorectal cancer cells growth (112, 141, 142). Back et al. showed that BMP2 

exerts growth suppression by increasing p21WAF1 protein levels, and not its 

transcription, modulating RAS-ERK pathway (143). 

Moreover, the loss of BMP signaling seems to be correlated to tumor progression, 

indeed, the BMPs expression, is lost from late adenoma to early carcinoma. 

Abnormal CSCs proliferation in CRCs, is due to an abnormal activation of Wnt 

signalling pathway and BMPs signalling inhibition, that promote nuclear beta-

catenin accumulation through PTEN downregulation and iperactivation of PI3K-

Akt pathway (113). Confirming that the BMPs pathway alteration leads to pre-

cancerous lesions (138). 

The TGF-β signalling inactivation plays a key role in CRC development (144), 

indeed, it has been reported that the loss of BMPRII and SMAD4 is frequently 

deleted also in sporadic CRC and that BMPs pathway is inactivated in the 

majority of colorectal tumors (145, 146). This is strongly supported by a 

transgenic mice model in which the inactivation of the BMPs pathway leads to 

polyps formation and up-regulation of Wnt signalling (127). 

Considering BMPs’ role in regulating SCs differentiation and inducing apoptosis 

and differentiation program, it is possible to suppose that CSCs treatment with 
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these molecules could inducing differentiation, make these cells more sensitive to 

conventional chemotherapies.  

Some preliminary studies have been performed on both CSCs of glioblastoma 

(GBM) and CRCs.  

Interestingly, it has been recently demonstrated that in human glioblastoma BMP-

BMPR signalling, controls the activity of normal brain stem cells, and inhibits 

glioblastoma stem like cells (GSLCs) (147). It has been also demonstrated that 

BMP2, BMP4 and BMP7 treatment inhibits sphere forming capacity and induces 

differentiation of CD133+ cells; reducing in vivo glioblastoma tumor growth (147-

149). 

Recently, it has been demonstrated that the treatment of CR-CSCs with BMP4 

induces in vitro differentiation and reduces their tumorigenic potential, sensitizing 

these cells to conventional chemotherapic drugs reducing the tumor size and 

inducing complete long-term regression of colon CSC-derived xenograft tumors 

(94). 

Given the regulatory effect of BMPs on neural stem cells, their progenitors and 

GSLCs, recently, Tate et al. have demonstrated that BMP7 variant (BMP7v) acts 

on proliferation, differentiation, angiogenesis, and in vivo tumorigenicity of 

GSLCs isolated from surgical specimens of primary GBM. In particular, BMP7v, 

decreases proliferation of GSLCs, inducing their differentiation into neuronal- and 

astrocyte cellular phenotypes, and inhibites angiogenic endothelial cord 

formation. These results were confirmed by in vivo analysis of subcutaneous or 

orthotopic tumor models. Their data suggest that BMP7v therapy, directed against 

CSCs and angiogenesis, represents a potentially powerful therapeutic option that 

may improve the poor outcome of conventional treatments (150). 

The current therapeutics strategy target and kill differentiated tumor cells that 

constitute the tumor bulk, failing to affect the rare cancer stem-like cell 

population.  

These data suggest the use BMPs, as alternative therapy, to induce the 

differentiation of CSCs and to make them more sensitive to conventional 

chemotherapy. Since the differentiated tumor cells are more sensitive to 

conventional cancer therapies, therapy differentiative represents another possible 
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therapeutic strategy to inhibit tumor growth by inducing the differentiation of 

CSCs, making them more susceptible to the action of chemotherapeutic agents.  

The induction of CSCs differentiation provides a potentially powerful and novel 

approach to the treatment of cancer disease. 
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AIMS 

 

The high mortality rate of colorectal cancer (CRC) is mainly due to the inefficacy 

of standard treatments to cure the metastatic disease. The recurrence and relapse 

characteristic of this kind of cancer suggest that the only one curative therapy 

could be represented by targeting the subpopulations of tumor cells with 

tumorigenic potential, the so-called, cancer stem cells (CSCs) (151). Several 

studies report that radio-chemotherapy, directed against differentiated cells, 

forming the bulk of tumor cell population, are unable to eradicate the tumorigenic 

and metastagenic population, without obtaining a long-term clinical remission. 

Accordingly, the induction of differentiation, affecting the self-renewal ability of 

CSCs, represents an alternative way to inhibit tumor growth and to sensitize CSCs 

to conventional chemotherapy. The treatment of CSCs towards terminally 

differentiation represent an intriguing concept for future therapy. On the basis of 

these data my project proposed to investigate the role of a stable BMP7 variant 

(BMP7v) on CR-CSCs in order to make these cells more sensitive to conventional 

chemotherapy drugs and to develop a new treatment protocol easily tested in 

preclinical models to design a future appropriate clinical trials. 
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MATERIALS AND METHODS 

 

Tissue collection, isolation and culture of cancer cells 

Human CRC tissues were obtained from patients undergoing to CR resection, in 

accordance with the ethical standards of the institutional committee. Normal colon 

mucosa was obtained from the histologically uninvolved resection. Histological 

diagnosis was based on the morphological microscopic features of carcinoma 

cells, determining the histological type and grade.  

Surgical specimens were intensively washed in PBS solution containing 

antibiotics and incubated overnight in DMEM/F12 (GIBCO) containing penicillin 

(500 U/ml, GIBCO), streptomycin (500 µg/ml, GIBCO) and amphotericin B (1.25 

µg/ml, GIBCO) in order to avoid contaminations. Tumor tissues were 

mechanically and enzymatically digested. Enzymatic dissociation was performed 

using collagenase and hyaluronidase in DMEM for 1 hour at 37° C. Dissociated 

CRC cells were then cultured in presence of serum-free medium supplemented 

with epidermal growth factor (20 ng/mL) and basic fibroblast growth factor (10 

ng/mL, both from Sigma-Aldrich, St. Louis, MO 63103, USA) in non-adherent 

conditions, in ultralow adhesion flasks (Corning, Lowell, MA), to promote the 

growth of CSCs as spheres. These culture conditions allow the selection and 

propagation of tumour spheres, containing immature tumour cells, while non 

malignant or differentiated cells are negatively selected. To achieve in vitro 

differentiation of CSCs, dissociated sphere cells were cultured in DMEM-high 

glucose supplemented with 10% FBS in adherent conditions. These cells were 

conventionally indicated as sphere-derived adherent cells (SDACs). All cell 

cultures were carried out at 37°C in a 5% CO2 humidified incubator. Magnetic 

cell separation was performed on tumour cell populations obtained from 

enzymatic dissociation of CRC specimens using microbeads conjugated with 

CD133/1 (AC133, mouse IgG1, cell isolation kit, Miltenyi). After magnetic 

sorting, viability was assessed using trypan blue exclusion. Quality of sorting was 

verified by flow cytometry with an antibody against CD133/2 (293C3-PE, mouse 

IgG1, Miltenyi) on both CD133+ and CD133− depleted cell population.  

Cell death was evaluated by orange acridine/ethidium bromide staining or by 

CellTiter Glo Assay Kit (Promega) accordingly to manufacturer’s instruction. 
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BMP7v used for this work was produced by Eli Lilly and Company. The 

pharmaceutical development of BMP7v represented the major limitation with its 

suboptimal solubility at neutral pH. Mutations into the N terminus of the BMP7v 

prodomain were introduced to enhance the cleavage of prodomain and mature 

domain. Five point mutations were addicted onto the surface of the mature 

domain, through a random mutagenesis approach, to create a molecule that 

retained the same signaling properties of wild-type BMP7 but had greater 

expression and enhanced biophysical properties such as solubility and stability. 

BMP7v material can be made available to researchers upon request to the Lilly 

authors (152).  

In order to detect the proportion of differentiated and undifferentiated cells, 

dissociated spheres were cultured in stem cell medium in presence of BMP7v 

(100ng/ml) up to 18 days. At different time points, the adherent cells were 

harvested with trypsin and mixed with floating cells. The cell mixture was then 

cytospun and stained for CK20 and CD133. 

To evaluate BMP7v role in differentiation in vitro, the spheres were dissociated 

into single cells and cultured in the presence of BMP7v (100ng/ml) for 48 hours 

or 90 minutes in order to evaluate the p-Smad 1, 5, 8 nuclear traslocation. 

 

Histochemistry and Immunohistochemistry /Immunofluorescence 

Histochemical and immunohistochemical/immunofluorescence analyses were 

performed on 5 µm paraffin-embedded sections of human normal colon and CRC 

tissues or subcutaneous tumor xenografts and cytospuns of freshly sorted cells and 

spheres cells exposed to BMP7v  

The following antibodies were used: BMP7 (164311, mouse IgG2B; R&D 

system), CD133 (AC133, mouse IgGb; Miltenyi), BMPRIA, (87933, mouse 

IgG2b; R&D Systems), BMPR1B (88614, mouse IgG2a; R&D Systems), BMPR2 

(73805, mouse IgG2b; R&D Systems), pSmad 1,5,8 (rabbit polyclonal; CST), 

cytokeratin 20 (Ks20.8, mouse IgGa; Dako Cytomation), p21(#2947, Rabbit IgG; 

CST), E-cadherin (rabbit polyclonal; CST), Vimentin (#39325, Rabbit; CST), 

Beta-catenin (H102, rabbit polyclonal; Santa Cruz Biotechnology), CD166 

(MOG/07, Mouse Monoclonal Antibody; Leica), Lgr5 (RB 14211, Rabbit Ig; 

ABGENT) Ki67 (MIB-1, mouse IgG1; Dako Cytomation), CD31 (clone JC70A, 
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mouse IgG1Kappa; Dako ytomation), VEGFR2 (goat IgG; R&D System) or 

isotype-matched controls at appropriate dilutions. 

For immunohistochemistry (IHC) the dewaxed slides were heated for 1 min at 

450 W and 5 min at 100 W in a microwave oven in 0.1M citrate buffer pH 6.0 or 

pH 9.0 only for KI67 staining. For cytoplasmatic epitopes detection, samples were 

permeabilized with 0.1% TritonX-100 in PBS for 10 min sections and after the 

slides were incubated with Tris-buffered saline (TBS) containing 10% AB human 

serum to block unspecific binding. After elimination of excess serum the sections 

were exposed overnight at 4°C to specific Abs against BMP7, CD133, CD166, 

Beta-catenin, Lgr5, Ki67, CK20, CD31, VEGFR2 or isotype-matched controls at 

appropriate dilutions. Following exposure to primary Abs, sections were treated 

with biotinylated anti-mouse- rabbit and anti goat immunoglobulins, washed in 

PBS and then incubated with streptavidin peroxidase (LSAB 2 Kit; Dako 

Cytomation or Vectastain kit; Vector). Stainings were detected using 3-amino-9-

ethylcarbazole (AEC) chromogen. Counterstain of nuclei was performed using 

aqueous hematoxylin (Sigma). 

For hematoxylin and eosin (H&E) staining, dewaxed sections were stained in 

Hematoxylin (Sigma) for 1 minutes, washed in water and then exposed for 30 

seconds to eosin (Sigma). Stained sections were dehydrated and mounted with 

syntetic resin. 

For Azan Mallory, sections were stained with azocarmine G (Sigma) for 1 hour 

and with 5% of phosphovolframic acid for an additional hour. Then, sections were 

stained with aniline blue/orange G (Sigma) and mounted in synthetic resin. 

All IHC images were analyzed with Imaging Analyzer Software 

Apoptotic events were determined by TUNEL labeling  using In Situ Cell Death 

Detection, AP Kit (Boehringer Mannheim) (roche). DNA strand breaks were 

detected by 5-bromo-4-chloro-3-indolyl-phosphate (BCIP, Dako Cytomation) 

substrate.  

Immunofluorescence stainings were performed on 5-µm-thick embedded sections 

of human CRC tissues, on cytospun freshly sorted cells, spheres cells allowed to 

differentiate in 10% FBS or after exposure to BMP7v. Cells were fixed in 2% 

PFA for 20 min at 37°C. For cytoplasmatic epitopes detection, samples were 

permeabilized with 0.1% TritonX-100 in PBS for 10 min, blocked with 3% BSA 
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for 30 min and exposed overnight at 4°C to antibodies against BMP7, CD133, 

BMPRIA, BMPRIB and BMPRII, p-SMAD1,5,8, CK20, p21, E-cadherin, 

Vimentin and beta-catenin or isotype-matched controls at appropriate dilutions. 

Then, cells were treated with FITC or Rhodamine anti-mouse or anti-rabbit 

antibodies (Molecular Probes, Inc.) plus RNase (200 ng/ml, Sigma). Nuclei were 

counterstained using Toto-3 iodide (642/660, Molecular Probes). Confocal 

analysis was used to acquire fluorescence stainings. 

 

RNA isolation and Real-time PCR 

Total RNA from cell pellet was obtained using the Rneasy Mini Kit (Qiagen 

GmbH), the residual amounts of DNA remaining was removed using the RNase-

Free DNase according to manufacturer’s instructions. The yield of the extracted 

RNA was determined by measuring the optical density at 260 nm by Nanodrop 

ND-1000 (Nanodrop, Wilmington, DE). 

1 µg of total RNA was retro-transcribed using High-Capacity cDNA Archive Kit 

(Applied Biosystems) according to manufacturer’s instructions. PCR 

amplification and detection of the PCR amplified gene products were performed 

with the SYBR Green PCR master mix (SuperArray Bioscience, Frederick, MD) 

All amplification reactions were done in triplicate, and the relative quantitation of 

gene expression was calculated using the comparative Ct method (ΔΔCt). Levels 

of mRNA expression were expressed after normalization with endogenous 

control, GAPDH. For SYBR green chemistry, the following primers were 

purchased from MWG: BMPR1A forward primer 5' GTC ATA CGA AGA TAT 

GCG TGA GGT TGT 3', BMPR1A reverse primer 5' ATG CTG TGA GTC TGG 

AGG CTG GAT T 3, BMPR1B forward primer 5' AAG GCT CAG ATT TTC 

AGT GTC GGG A 3', BMPR1B reverse primer 5' GGA GGC AGT GTA GGG 

TGT AGG TCT TTA TT 3', BMPR2 forward primer 5' GTG ACT GGG TAA 

GCT CTT GCC GTC T 3', BMPR2 reverse primer 5' GCA GGT TTA TAA TGA 

TCT CCT CGT GGT 3', GAPDH forward primer 5' GCT TCG CTC TCT GCT 

CCT CCT GT 3', GAPDH reverse primer 5' TAC GAC CAA ATC CGT TGA 

CTC CG 3'.  
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Flow cytometry 

Flow cytometry was performed on freshly purified colon cancer cells after 

magnetic CD45+ cells depletion, SDAC and dissociated sphere cells untreated and 

treated with BMP7v. Cell preparations were fixed in 2% paraformaldehyde for 10 

min at 37°C and permeabilized by 0.1% Triton-X 100 for 10 min at 4°C to detect 

cytoplasmatic epitopes. Cells were washed twice with 0.5% bovine serum 

albumin (BSA, Sigma) in PBS and exposed to antibodies against CD133/2 

(293C3-PE, mouse IgG2b, Miltenyi), CD133/1 (AC133, mouse IgG2b, Miltenyi), 

CK20 (Ks20.8, mouse IgG2a, DAKO Cytomation). Samples were then incubated 

with FITC-conjugated anti-mouse or anti-rabbit antibodies (Molecular Probes). 

Cells were subjected to flow cytometry analysis using a FACSCalibur cytometer 

and Cell Quest Software (Becton Dickinson). Only cells with staining intensities 

above the maximal level of isotype-matched controls were defined as positive 

cells. 

Cell cycle analysis was performed on dissociated sphere cells untreated and 

treated with BMP7v for 48 hours and SDACs. The cells were washed in PBS and 

fixed in ice-cold 70% ethanol at 4°C overnight and then incubated with PBS 

containing propidium iodide (50 µg/ml, Sigma), sodium citrate (3.8 Mm, Sigma) 

and RNase (10 µg/ml, Sigma) at 37°C for 30 minutes. Samples were analyzed 

using a flow cytometer (BD Biosciences). 

PKH26 (Sigma) staining was performed, according to manufacturer’s 

instructions, on dissociated sphere cells, untreated and treated with BMP7v 

(100ng/ml) for 48 hours, up to 14 days, at different time points these cells were 

harvested for the FACS analysis,  

 

Protein isolation and immunoblotting 

Cell pellets were re-suspended in ice-cold NP40 lysis buffer [50 mM Tris-HCl 

(pH 7.5), 150 mM NaCl, 1 mM EGTA, and 1% NP40] containing proteases and 

phosphatases inhibitors and fractioned on SDS-polyacrylamide gels and blotted 

on nitrocellulose membranes. Membranes were blocked for 1 hour with nonfat 

dry milk in TBS containing 0.05% Tween 20 and successively incubated with 

antibodies specific against PTEN (17A, mouse IgMk, Neomarkers), AKT (rabbit 

polyclonal, CST), p-AKT (Ser 473, rabbit polyclonal, CST), GSK3ß (rabbit 
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polyclonal, CST), p-GSK3ß (Ser9, rabbit polyclonal, CST) and beta-actin 

(JLA20, mouse IgM, Calbiochem) used as loading control. Membranes were then 

washed, incubated for 1 hour with horseradish peroxidase-conjugated anti-mouse, 

anti-rabbit or anti-goat immunoglobulins (Amersham Biosciences) and developed 

with a chemiluminescence detection system (SuperSignal West Pico/Dura 

Extended duration Substrate, Pierce Biotechnology). Densitometric analysis of 

protein expression level was performed by Vision Works LS (UVP). Results were 

expressed as protein/beta-actin OD ratio. 

 

Clonogenic and colony forming assays 

Dissociated sphere cells untreated and treated with BMP7v for 48 hours were 

plated in presence of stem cell medium, on ultra-low-adhesion 96-well plates at a 

concentration of a single cell per well. Wells containing either none or more than 

one cell were excluded for this analysis, but these valors was used to calculate the 

cancer stem cell frequency, with ELDA software. 

Colony forming was performed on dissociated sphere cells untreated and treated 

with BMP7v, 5FU+Oxaliplatin alone or in combination. Cells were plated on 

Agarose Sea Plague Agar (Invitrogen), and maintained up to 21 days at 37°C in 

presence of 5% CO2.  The colonies were stained with 10% Cristal Violet. 

 

Invasion assay 

Cell migration capacity was assessed using growth factor–depleted matrigel–

coated (BD Biosciences) transwell insert. Dissociated sphere cells (2x103) 

untreated and treated with BMP7v 100ng/ml for 48 hours were plated into 

matrigel-coated transwell of 8 µm pore size (Corning). Supernatant of NIH-3T3 

cells, cultured in stem cell medium was used as chemoattractant in the transwell 

lower part. Migration was observed  and counted microscopically up to 96 hours. 

 

RT2 ProfilerTM PCR Array.  

The RT2 Profiler PCR array was assessed for genes related to Wnt targets (PAHS-

243ZR-12; SuperArray Bioscience). It was used to simultaneously examine the 
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mRNA levels of 89 genes closely associated with Wnt pathway, including five 

"housekeeping genes" in 96-well plates following the manufacturer's protocol. 

Cycle threshold values were calculated for all the genes present on the array and 

normalized using the average of 5 housekeeping genes (ACTB, B2M, HPRT1, 

RPLP0 and GAPDH). RT2 Profiler PCR Array Data Analysis was represented by 

clustergrams based on Pearson’s Correlation of 2^ (ΔCt). 

 

Animals and tumor model 

Mice were obtained from Charles River Laboratories (Milan, Italy) and 

maintained according to institutional guidelines of the University of Palermo 

animal care and committee. Dissociated CRC sphere cells (5x105) were implanted 

subcutaneously (s.c.) with matrigel GF reduced (BD Biosciences) at a 1:1 ratio in 

a total volume of 100 µL into the flank of five-to-six week old NOD-SCID mice. 

Tumor mass size was calculated according to the formula: (π/6) x larger diameter 

x (smaller diameter)2. When tumors were palpable the mice were treated three 

times a week by intraperitoneal injection of BMP7v for three weeks at different 

concentrations: 50, 5, 0.5 and 0.05µg/kg, and PBS as control, in order to test the 

efficacy dose.  

Then the other set of mice were treated three times a week for three weeks by 

intraperitoneal injection (IP) of PBS, as control, BMP7v (50µg/kg) alone or in 

combination with 5FU and Oxaliplatin. (5-FU: 15 mg/kg/day for 2 days a week 

for 3 weeks; and Oxa: 0.25 mg/kg once a week for 3 weeks). 

Histological examination, analysis of differentiation, incidence of cell death and 

mitotic index were determined on tumor xenografts using AC133, CK20, TUNEL 

and Ki67 staining. 

To test the BMP7v activity as second line treatment, when the tumor xenografts 

obtained as previous described, were palpable, the standard adjuvant treatment, 

Oxaliplatin (0.25 mg/kg once a week for 3 weeks) and 5-FU (15 mg/kg/day for 2 

days a week for 3 weeks) was performed intraperitoneally on eight mice for 

group. After this first line of treatment with 5FU plus Oxaliplatin alone for two 

weeks when tumor re-growth, the follow IP treatments were performed: PBS, 

5FU+Oxaliplatin, BMP7v and BMP7v+5FU+Oxaliplatin, in a standard protocol 



 32 

for three weeks. The tumor xenografts obtained after 13 weeks from injection 

were used for histological examination. 

 

Endothelial tube formation assay 

The effects of BMP7v on in vitro endothelial tube formation were evaluate using 

HUVEC, obtained from Lonza (Clonetics, Verviers, Belgium) and grown in 

endothelial growth medium (EGM) according to supplier’s information. HUVEC, 

pretreated with BMP4 (2nM R&D System) and BMP7v (100ng/ml) for 24, 48, 72 

hours, were plated (70,000 cells/well) in Matrigel-coated 24 well plate (BD 

Bioscience), and incubated up to 5 hrs at 37°C. Endothelial tube formation, 

evaluated by phase-contrast microscopy, was photographed at different time 

points and the cables length was measured manually with the IMAGE-J software. 

 

Statistical analysis 

Data were expressed as mean ± standard deviation of the mean. 

Immunohistochemical  scores were calculated from the positivity observed on 

paraffin-embedded engrafted tumor tissues counted by two independent 

observers.  

Statistical significance was determined by Analysis of Variance (one-way or two-

way) with Bonferroni post-test. Results were considered significant when p values 

were less than 0.05. * indicates P<0.05, ** indicate P<0.01, ***  indicate 

P<0.001. 

  



 33 

RESULTS 

 

BMP7 is widely expressed in colo-rectal cancer tissue but not in colo-rectal 

cancer stem cells 

Human colo-rectal cancer (CRC) specimens were provided by the Surgical 

Department of Policlinico “Paolo Giaccone”, Palermo.  

These tumors and their normal counterpart (obtained from the edge of the resected 

specimen) were analysed for BMP7 expression with immunohistochemistry: CRC 

specimens widely expressed BMP7, compared to their normal counterpart 

(Fig.4A).  

Expression of this cytokine was also analysed with immunofluorescence (IF) on 

paraffin embedded cancer tissue: BMP7 was localized along the upper part of the 

crypt, with the exception of the base of the crypt where stem cells reside (Fig.4B). 

These findings prompted us to investigate whether there is differential expression 

of BMP7 between cancer stem cells (CSCs) and their differentiated counterpart 

using our in vitro models, i.e. sphere cells and sphere-derived adherent cells 

(SDACs), respectively. While SDACs displayed high levels of BMP7 expression, 

sphere cells showed very low positivity.  

We also analyzed BMP7 expression in CR-CSCs sorted for CD133 positivity, a 

known CSC marker: IF analysis showed that BMP7 is exclusively expressed by 

CD133- cells (Fig.4C-D). 

All in vitro experiments shown in this report were conducted in three different cell 

lines. The images are from one cell line, but are representative of results obtained 

for all three cell lines. 

These data suggest a correlation between BMP7 expression and differentiation of 

CRC cells, and therefore a possible role in CSCs differentiation.  

 

 

 

  



 34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. CD133+ CR-CSCs do not express BMP7. A) Immunohistochemical analysis for BMP7 on 
normal and tumoral colon paraffin-embedded sections. Nuclei are revealed by hematoxylin 
staining (blue). B) Confocal microscopy analysis of BMP7 (green) on CRC paraffin-embedded 
tissue. Nuclei were counterstained with Toto-3 (blue). C) Representative images of 
immunofluorescence analysis of BMP7 (green) in sphere cells (Spheres) and SDACs. Nuclei were 
counterstained with Toto-3 (blue). D) Representative images of immunofluorescence analysis of 
BMP7 (green) on CD133- and CD133+ CRC cells sorted from the sample as in C. Nuclei were 
counterstained by Toto-3 (blue). 

 

 

 

BMP7v in vitro administration activates the BMP signaling pathway in CR-

CSCs. 

To evaluate the possible use of BMP7v as a differentiative agent of CSCs, we 

analysed the expression of BMP receptors through real-time PCR and IF analysis.  

Both CRC sphere cells and SDACs expressed BMPR1A, BMPR1B and BMPR2 

(Fig.5A). 
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In order to verify the BMPRs functionality in CR-CSCs, we evaluated p-SMAD1-

5-8 localization with IF after treatment with BMP7v (100ng/ml): activation of the 

BMP7 pathway was confirmed by the prevalent p-Smad1,5,8 nuclear 

translocation following treatment (Fig.5B-C).  

Western blot analysis of downstream targets to the BMP7 pathway are consistent 

with these findings (Fig.5D). 

These results indicate that exogenous addition of BMP7v can activate the 

canonical BMP signaling pathway in CR-CSCs.  
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Fig.5. BMP7v administration activates the canonical signaling pathway in CR-CSCs. A) 
Relative quantification of BMPR1A, BMPR1B, and BMPR2 mRNA expression levels in sphere 
cells (Spheres) and SDACs. B) Representative images of immunofluorescence analysis of 
BMPR1A, BMPR1B, and BMPR2 (green) in sphere cells and SDACs. Nuclei were counterstained 
with Toto-3 (blue). C) Representative images of confocal microscopy analysis of pSmad1,5,8 
(green) in sphere cells, untreated or treated with BMP7v for 90 minutes or 48 hours. Nuclei were 
stained with Toto-3 (blue). D) Densitometric analyses of protein expression levels of AKT, p-
AKT, PTEN , GSK3β and p- GSK3β in sphere cells, untreated or exposed to BMP7v for 48 hours, 
and SDACs. Loading control was assessed by β-actin.  

 

 

 

BMP7v induces in vitro differentiation in CR-CSCs and reduces the 

percentage of CD133+ cells 

To evaluate the role of BMP7v in inducing differentiation, we tested whether 

sphere cells could be forced to differentiate upon exposure to the morphogenetic 

factor. CRC sphere cells were cultured in the presence of BMP7v or 10% FBS. 

BMP7v alone induced a rapid differentiation of CR-CSCs, evaluated by plastic 

adherence and acquisition of the typical differentiated appearance, i.e. large size 

and polygonal shape (Fig.6A).  

Accordingly, BMP7v treatment reduced the percentage of CD133+ and increased 

CK20 expression in CR-CSCs (Fig.6B-C). 

Reduction of the CD133+ cells following 48 hours of BMP7v treatment was also 

confirmed by flow cytometry (Fig.6D). 
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Fig.6. BMP7v promotes in vitro differentiation of CR-CSCs. A) Representative images of 
phase-contrast microscopy of dissociated sphere cells, untreated or treated with BMP7v up to 18 
days. B) Percentage of CK20+ sphere cells, untreated or treated with BMP7v up to 18 days. C) 
Percentage of CD133+ sphere cells, untreated or treated with BMP7v. D) Representative flow 
cytometry profile of CD133 expression in sphere cells, untreated or treated with BMP7v for 48 
hours. 
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BMP7v reduces self-renewal of CR-CSCs  

To evaluate the effect of BMP7v treatment on CR-CSCs self renewal capacity, we 

performed the in vitro colony forming assay. BMP7v, given for 48 hours, reduced 

the CR-CSCs sphere forming capacity.  

We also tested the effect of combining BMP7v to standard chemotherapy 

(5FU+Oxa): this treatment resulted in a more significant reduction of clonogenic 

capacity compared to chemotherapy alone in CR-CSCs. 

To further test the CR-CSC sensibility to BMP7v, one week after the first step of 

treatment, the cells were re-treated: this treatment reduced the colony forming 

efficiency even more drastically (Fig.7A-B).  

As p21 seems to be a key regulator of CR-CSC self renewal, we also evaluated its 

cellular localization with IF: BMP7v treatment induces depletion of nuclear p21, 

confirming the induction of cell cycle progression, with consequent cancer stem 

cell clone exhaustion (Fig.7C). 

We showed that BMP7v treatment not only reduces CR-CSCs self-renewal but 

also potentiates the effect of standard chemotherapy. 
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Fig.7. BMP7v reduces self renewal of CR-CSCs. A) Representative colony forming assay of 
sphere cells, untreated or treated with 5FU+Oxaliplatin (chemo), BMP7v alone (BMP7v), 
BMP7v+5FU+Oxaliplatin (BMP7v+chemo), for 48 hours; these treatments were performed once 
as a 1st line or repeated after one week as a 2nd line of treatment. B) Percentage of colony forming 
efficiency in sphere cells, untreated or treated as in A. C) Representative images of confocal 
microscopy analysis of p21 (green) in sphere cells, untreated and treated with BMP7v for 48 hrs. 
Nuclei were stained with Toto-3 (blue). 

 

 

BMP7v induces CR-CSCs to exit from quiescence 

We then evaluated the effect of BMP7v on cell cycle distribution. FACS analysis 

revealed that 48 hours of BMP7v treatment, unlike to BMP4, induced a 

significant increase in the percentage of cells in the G2/M phase, with a reduction 

of cells in G0/G1.  

Interestingly, the BMP7v induced cell cycle distribution in sphere cells was 

similar to the baseline SDACs profile (Fig.8A-B). 

To evaluate the effect of BMP7v on proliferation of CR-CSCs, we performed 

PKH26 staining: treatment induced a reduction of PKH26 high cells, confirming 

the induction of proliferation in a time dependent manner (Fig.8C-D). 

These data suggest that, in addition to differentiation induction, BMP7v treatment 

displays an unexpected proliferative effect.  

This cytokine drives different cell subpopulations present in sphere cultures to 

exit from the quiescent state, characteristic of stem cells, thus making them more 

sensitive to standard chemotherapies. 

Taken together, these in vitro results indicate that BMP7v treatment is able to 

reduce stemness of CR-CSCs.  
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Fig.8. BMP7v induces CR-CSCs to exit from quiescence. A) Representative cell-cycle profile 
of sphere cells, untreated or treated with BMP7v for 48 hours, and SDACs. B) Cell-cycle 
distribution of sphere cells treated as in A. C) Representative PKH-26 profile of sphere cells, 
untreated or treated with BMP7v up to 14 days. D) Percentage of PKH-26 high cells treated as in 
C. 

 

 

BMP7v reduces the mesenchymal CR-CSCs traits 

Given the link between CSCs, epithelial-mesenchymal transition (EMT) and 

metastasis, we tested the effect of BMP7v treatment on CR-CSCs invasive 

capacity, using a transwell migration assay: BMP7v drastically reduces CR-CSC 

motility and invasiveness (Fig.9A).  
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We then analysed expression of EMT markers, such as E-caderin, Vimentin and 

beta-catenin: BMP7v suppressed the mesenchymal trait, inducing E-cadherin 

expression and cytoplasmic localization of beta-catenin, while silencing Vimentin 

(Fig.9B). 

Given the role of the Wnt pathway in EMT, a Wnt signaling trascriptional profile 

was performed on CR-CSCs after 48 hours of BMP7v treatment to verify its 

action on regulation of Wnt targets: results revealed a strong regulation of Wnt 

targets involved in stemness and migration.  

BMP7v induced upregulation of Wnt inhibitors such as SFRP2 and Axin2, 

associated with down regulation of stem cell markers, such as SOX2 e Nanog. In 

addition, the treatment reduced expression of migration regulator genes, such as 

Met and MMP2 and 7 (Fig.9C).  

These results confirm the induction of differentiation via the Wnt pathway. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9. BMP7v reduces the mesenchymal CR-CSCs traits. A) Invasion assay of sphere cells, 
untreated or treated with BMP7v for 48 hours at different time points up to 96 hrs. B) 
Representative images of confocal microscopy analysis of E-cadherin, Vimentin and Beta-catenin 
(green) in sphere cells, untreated or treated as in A. Nuclei were stained with Toto-3 (blue). C) 
Wnt target card clustergram on sphere cells untreated or treated as in A. 
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BMP7v in combination with standard chemotherapy reduces CR-CSCs 

tumor growth in vivo 

To evaluate the effects of BMP7v on CR-CSCs tumor growth in vivo, different 

concentrations were administered intraperitoneally (IP) three times a week.  

Three to four weeks after subcutaneous injection of sphere cells, palpable tumors 

were observed in immuno-compromised mice. BMP7v treatment was started at 

different doses listed below: 50, 5, 0.5 and 0.05µg/kg. 

The results showed a reduction in tumor size and a notable necrotic effect 

confirmed by Azan Mallory staining on paraffin embedded xenografts sections: 

these effects were more pronounced in the 50µg/kg group (Fig.10A-C). 
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Based on these findings, we decided to use 50µg/kg in combination with standard 

chemotherapy, to evaluate whether BMP7v could enhance its cytotoxic effect in 

vivo.  

Tumors were obtained injecting Smad4-wt, Smad4-null and Smad4-null PI3K/CA 

sphere cells. They were then exposed to Oxaliplatin plus 5-FU alone or in 

combination with intraperitoneal injection of PBS or BMP7v. 

Combined treatment resulted in a considerable reduction of tumor growth in 

Smad4-wt and Smad4-null, while it was less effective in Smad4 null harboring 

PI3KCA mutation.  

BMP7v alone gave a more pronounced growth delay than standard chemotherapy 

(Fig.10D). 

Histological analysis of xenografts treated with BMP7v plus chemotherapy 

showed an high percentage of dying cells and large areas of fibrosis, highlighted 

by TUNEL staining (Fig.10E). 

BMP7v plus chemotherapy treated tumors showed lower expression of CD133, 

CD166, β-catenin, Lgr5 and Ki67, with a significant increase of CK20 compared 

to control, suggesting anti-proliferative and pro-differentiative effects in vivo 

(Fig.10E-L).  

Our findings confirm the rationale for combining a pro-differentiation agent with 

chemotherapy drugs, supporting the use of BMP7v in colorectal cancer patients. 
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Fig.10. BMP7v in combination with standard chemotherapy reduces CR-CSCs tumor 
growth in vivo. A) Size of subcutaneous tumors following injection of sphere cells. When tumor 
xenografts were palpable immuno-compromised mice were treated intraperitoneally three times a 
week with BMP7v (50, 5, 0.5 or 0.05 ug/Kg) or with PBS as control. B) Percentage of necrosis 
evaluated on paraffin-embedded sections of xenografts, untreated or treated as in A. C) 
Representative Azan-Mallory staining on paraffin embebbed xenografts untreated (PBS) or treated 
as in A. D) Size of subcutaneous CRC xenografts derived from injection of sphere cells. Mice 
were untreated (PBS) or treated intraperitoneally with BMP7v (50ug/Kg), 5-FU plus Oxaliplatin 
alone or in combination with BMP7v. The arrows indicate the starting point of treatment. Data 
were obtained on three different cell lines .E) Immunohistochemical analysis of CD133 and 
TUNEL (dark blue) revealed by AEC (red) on paraffin-embedded sections of xenografts obtained 
as in D. Nuclei are revealed by hematoxylin staining (blue). Arrowheads indicate TUNEL positive 
cells. F) Percentage of CD133+ cells evaluated on paraffin-embedded sections of tumors, untreated 
(PBS) or treated as in D. G) Percentage of TUNEL positive cells evaluated on paraffin-embedded 
sections of tumors untreated (PBS) or treated as in D. H) Immunohistochemical analysis of 
CD166, beta-catenin and Lgr5 revealed by AEC (red) on paraffin-embedded sections of xenografts 
obtained as in D. Nuclei are revealed by hematoxylin staining (blue). Arrowheads indicate CD166, 
beta-catenin and Lgr5 positive cells. I) Immunohistochemical analysis of Ki67 revealed by AEC 
(red) on paraffin-embedded sections of xenografts obtained as in D. Nuclei are revealed by 
hematoxylin staining (blue). Arrowheads indicate Ki67 positive cells. (upper: low magnification; 
lower: high magnification) J) Percentage of Ki67 positive cells evaluated on paraffin-embedded 
sections of tumors untreated (PBS) or treated as in D. K) Immunohistochemical analysis of CK20 
revealed by AEC (red) on paraffin-embedded sections of xenografts obtained as in D. Nuclei are 
revealed by hematoxylin staining (blue). (upper: low magnification; lower: high magnification) L) 
Percentage of CK20 positive cells evaluated on paraffin-embedded sections of tumors, untreated 
(PBS) or treated as in D. 

 

 

BMP7v has a strong anti-angiogenic effect in vivo 

Since BMP7v treatment resulted in a considerable growth delay associated with a 

potent necrotic effect, we investigated further its anti-angiogenic potential. 

Xenografts were exposed to BMP7v or BMP4, another member of the BMP 

family with an anti-tumour activity.  
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Histological examination showed a significant reduction of human CD31 and 

VEGFR2 expression following BMP7v, but not BMP4 treatment (Fig.11A-C). 
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We also performed an endothelial tube formation assay using endothelial cells 

from the umbilical vein (HUVEC): BMP7v affected the ability to form vessels 

after 48 hrs of treatment, while this was not observed for BMP4 (Fig.11D-F). 

These findings confirm a specific anti-angiogenic effect of BMP7v in colorectal 

cancer xenografts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.11. BMP7v has a strong anti-angiogenic effect. A) Immunohistochemical analysis of CD31 
and VEGFR2 revealed by AEC (red) on paraffin-embedded section of xenografts obtained after 
PBS or BMP7v treatment (50ug/Kg). Nuclei are revealed by hematoxylin staining (blue). B) 
Percentages of CD31 and VEGFR2 expression evaluated on paraffin embedded sections of tumors 
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treated as in A. C) Immunohistochemical analysis of CD31 and VEGFR2 revealed by AEC (red) 
on paraffin-embedded section of xenografts obtained after intra-tumoral injection of PBS or BMP4 
loaded beads. Nuclei are revealed by hematoxylin staining (blue). D) Representative images of 
phase-contrast microscopy of endothelial tube formation assay. Huvec cells, untreated (EGM 
medium as control) or pretreated with BMP7v (100ng/ml) at different time points. E) Measure 
(pxl) of total tube length obtained with Huvec treated as in D. F) Representative images of phase-
contrast microscopy of endothelial tube formation assay. Huvec cells untreated (EGM medium as 
control) or pretreated with BMP4 (2nM) and BMP7v (100ng/ml) at different time points.  

 

 

BMP7v as second-line treatment shows significant anti-tumor activity in 

xenografts refractory to chemotherapy 

To test the activity of BMP7v as second line treatment, first line treatment with 

5FU plus Oxaliplatin was administrated for two weeks. After tumour re-growth, 

mice were treated with: PBS, 5FU+Oxaliplatin, BMP7v or 

BMP7v+5FU+Oxaliplatin, for three weeks. BMP7v alone showed greater efficacy 

compared to combined treatment in tumor xenografts previously treated with 

standard chemotherapy (Fig.12A). 

Hystological examination of xenografts, obtained 13 weeks after injection, 

revealed a strong necrotic effect. This was also confirmed with Azan Mallory 

staining (Fig.12B-C). 

These results further support the possible use of BMP7v in colorectal cancer, 

providing evidence for its efficacy in pre-treated patients. 
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Fig.12. BMP7v shows an anti tumor activity as second line treatment in xenografts 
refractory to chemotherapy. A) Size of subcutaneous CRC xenografts derived from injection of 
sphere cells. Mice were untreated (PBS) or treated intraperitoneally with 5-FU+Oxaliplatin for two 
weeks. After tumor re-growth mice were treated with PBS, BMP7v (50ug/Kg), 5-FU+Oxaliplatin 
alone or combination. B) H&E staining of paraffin-embedded sections of xenografts obtained as in 
A. C) Percentage of necrosis evaluated on paraffin-embedded sections of xenografts untreated 
(PBS) or treated as in A.  
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DISCUSSION AND CONCLUSIONS 

 

Current therapies mostly hit the differentiated cells, sparing the tumorigenic 

population which is responsible for the tumor relapse. Although clinical protocols 

are traditionally directed against the bulk of tumor cell population, increasing 

evidence suggests that curative therapies can be established only by targeting the 

subpopulations of tumor cells with tumorigenic potential. Several reports indicate 

that chemotherapy is more active on differentiated cells and generally ineffective 

against the tumorigenic population. In fact, traditional debulking agents often fail 

to produce long-term clinical remission and tumor relapses as a result of the 

inability to target cancer initiating cells (151). 

The induction of differentiation affecting the self-renewal ability of CSCs 

represents an alternative way to inhibit tumor growth and to sensitize CSCs to 

conventional chemotherapy drugs.  

According to recent publications, the tumor-initiating cells have stem like 

characteristics such as abilities of self-renewal, differentiation and invasion. 

Several research groups have identified tumorigenic populations with stem-like 

features in CRC (28-30, 73, 76, 80). These cellular subpopulation is able to 

promote tumor growth and is considered as an optimal cellular target to obtain 

effective therapies.  

Many reports suggest that the balance between self-renewal and differentiation in 

normal stem cells results deregulated in CR-CSCs. 

Indeed, the activation of Wnt signaling plays a key role in maintaining the normal 

stem cell population in the gut and promoting self-renewal of CR-CSCs (153-156) 

but also the cytokines, released in the microenvironment, contribute significantly 

to maintain the undifferentiated status and clonogenic activity of the tumorigenic 

cells (157). 

Thus, the differentiation therapy could represent a considerable therapeutic option 

for the treatment of colon cancer, inhibiting CSCs self-renewal ability and 

eradicating the tumor-driving cell population. Although this approach does not 

directly kill the cancer cells, it could make the conventional therapies more 

effective in the eradication of the tumor bulk.  
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For years retinoic acid has been used in the treatment and differentiation of 

promyelocytic leukemia, thus validating this concept (158). The pro-

differentiative effect of Bone Morphogenetic Protein 4 (BMP4) has been already 

proposed as a therapeutic option for human glioblastoma and colorectal cancer 

(147, 158-160) 

Moreover these treatments enhanced the antitumor activity of chemotherapeutic 

drugs, whose concomitant administration is able to induce a complete therapeutic 

response, also after treatment interruption. Thus supporting the combined use of 

differentiative and cytotoxic agents for cancer therapy. Accordingly, the induction 

of differentiation, affecting the self-renewal ability of CSCs, represents an 

alternative way to inhibit tumor growth and to sensitize CSCs to conventional 

chemotherapy.  

On the basis of these data, this work proposed to investigate the role of a stable 

BMP7 variant (BMP7v) on CSCs purified from CRC sample, in order to make 

these cells more sensitive to conventional chemotherapy drugs and to develop a 

new treatment protocol easily tested in preclinical models to design a future 

appropriate clinical trials. 

This study identifies, the use of BMP7v, as new potential therapeutic approach 

that activates CRC differentiation program. As previously described, the pro-

differentiation activity of BMPs, is perfectly detectable in normal gut in which 

these molecules are expressed following a decreasing gradient from the intestine 

lumen up to the crypt, thus limiting the stem cell expansion at the bottom of the 

crypts promoting the intestinal epithelial cell differentiation along the upper part 

of the crypts (113, 114).  

The present data show that all CRC specimens analysed, widely express BMP7, 

compared to their normal counterpart and its expression is limited to the 

differentiated progeny of CRC epithelial cells, which constitute the major 

population of the tumor mass. Here we demonstrated that BMP7 is localized 

along the upper part of the crypt, with the exception of the base of the crypt where 

stem cells reside. On the contrary, its expression is undetectable in the CD133+ 

CR-CSCs fraction. BMP7 results exclusively expressed by CD133- cells or in 

their differentiated counterpart, the sphere-derived adherent cells (SDACs). 

Although both CRC sphere cells and SDACs express BMPR1A, BMPR1B and 
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BMPR2. These results suggest a correlation between BMP7 expression and 

differentiation of CRC cells, and therefore a possible role in CSCs differentiation.  

The activation of the BMP signalling pathway was confirmed by the prevalent p-

Smad1,5,8 nuclear translocation following BMP7v treatment, as confirmed by 

analysis of downstream protein targets. Accordingly, BMP7v treatment increased 

PTEN levels inhibiting PI3K/AKT survival pathway confirming its differentiative 

role on CR-CSCs (161). 

BMP7v treatment induced a rapid differentiation of CR-CSCs, morphologically 

evaluated by plastic adherence and acquisition of the typical differentiated 

phenotype, into large and polygonal colonic cells. Consequently, this treatment on 

CR-CSCs reduced the percentage of CD133+ subpopulation increasing the CK20 

expression, a typical markers of epithelial colonic differentiation. 

BMP7v, also reduce the sphere forming capacity, and maintain this capacity also 

after a first step of treatment, showing that this second treatment reduces the 

colony forming efficiency even more drastically. Moreover BMP7v not only 

decreases CR-CSCs self-renewal but also potentiates the effect of standard 

chemotherapy. 

Taken together, these in vitro results indicate that this cytokine drives the different 

cell subpopulations present in sphere cultures to exit from the quiescent state, 

characteristic of stem cells, thus making them more sensitive to standard 

chemotherapies, as showed by cell cycle analysis. The BMP7v treatment in fact 

increased the percentage of cells in the G2/M phase, reducing the cells in G0/G1, 

confirming that BMP7v treatment is able to reduce CR-CSCs stemness trait.  

According to these data the treatment reduces CR-CSC motility and invasiveness, 

underlining the link between CSCs, epithelial-mesenchymal transition (EMT) and 

metastasis, as showed by the analysis of putative EMT markers: BMP7v 

suppressed the mesenchymal trait, inducing E-cadherin expression and 

cytoplasmic localization of beta-catenin, reducing Vimentin expression. 

To confirm the correlation between BMP and Wnt pathways suggested by western 

blotting analysis a Wnt signaling trascriptional profile was performed on CR-

CSCs after 48 hours of BMP7v treatment: BMP7v induced up-regulation of Wnt 

inhibitors such as SFRP2 and Axin2, associated with down regulation of stem cell 

markers, such as SOX2 e Nanog. In addition, the treatment reduced expression of 
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migration regulator genes, such as Met and MMP2 and 7. These results confirm 

the induction of differentiation via the Wnt pathway. 

The clinical results obtained in leukemia, sustain the combination of a pro-

differentiation agent with chemotherapy, suggesting the synergic action of 

BMP7v in combination with conventional drugs used in the management of CRC 

disease. BMP7v in combination with standard chemotherapy reduced CR-CSCs 

tumor growth in vivo as showed by strong reduction of tumor size, and by lower 

expression of CD133, CD166, beta-catenin, Lgr5 and Ki67, with a significant 

increase of CK20 compared to control, suggesting anti-proliferative and pro-

differentiative effects in vivo. 

Our findings confirm the rationale for combining a pro-differentiation agent with 

chemotherapy drugs, supporting the use of BMP7v in colorectal cancer patients. 

Since BMP7v treatment resulted in a notable necrotic effect, paraffin embedded 

xenografts sections were analyzed for CD31 and VEGFR2 expression. 

The histological examination showed a significant reduction of human CD31 and 

VEGFR2 expression following BMP7v treatment, but not BMP4 treatment. This 

anti-angiogenetic effect was confirmed through an endothelial tube formation 

assay. These findings confirm a specific anti-angiogenic effect of BMP7v in 

colorectal cancer xenografts 

BMP7v also showed a significant anti-tumor activity in xenografts refractory to 

chemotherapy, revealing a strong necrotic effect and a greater efficacy compared 

to combined treatment in tumor xenografts previously treated with standard 

chemotherapy. 

These results also support the possible use of BMP7v in colorectal cancer, 

providing evidence for its efficacy also in pre-treated patients.  

Concluding, the clinical benefit obtained by the combination of a 

prodifferentiative agent with chemotherapy led us to propose the combination of 

BMP7v with current standard chemotherapy regimens for CRC further supporting 

the usefulness of CSCs differentiation as a CRC therapy. 
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ABSTRACT 

 
Cancer stem cells (CSCs), characterized by high levels of ATP-binding cassette, 
anti-apoptotic molecules, active DNA-repair and slow replication capacities, 
surviving to conventional anti-cancer therapies, able to eradicate only the highly 
proliferating tumor cells, represent the elective target for new therapies. 
Colorectal CSCs (CR-CSCs) represent a powerful tool for preclinical validation 
of target therapies. In particular the elucidation of the mechanisms that govern 
stem cell survival and differentiation appears very essential for the identification 
of new molecular targets in cancer therapy. Among the molecules that govern 
these processes there are the Bone Morphogenetic Proteins (BMPs), members of 
the TGF-b superfamily. Here we propose that a BMP7 variant (BMP7v) have an 
important antitumoral and anti angiogenetic effect on CR-CSCs inducing a 
differentiation program and making these cells more sensitive to conventional 
chemotherapy drugs. BMP7v in vitro administration, activates the BMP signaling 
pathway in CR-CSCs, reducing the percentage of stem cell marker expression and 
enhancing epithelial colonic differentiation marker expression. BMP7v reduces 
self-renewal of CR-CSCs inducing their exit from quiescence and, reducing their 
typical mesenchymal trait, decreases their invasive and endothelial cord formation 
capacity. In vivo, BMP7v decreases tumor growth and stem cell marker 
expression, enhancing differentiation compared with control mice and in 
combination with CRC standard chemotherapy reduces tumor growth, inducing a 
differentiative and antiproliferative effect, associated with a strong anti-
angiogenic role. In addition, BMP7v as second-line of treatment also showed a  
significant anti-tumor activity in xenografts refractory to chemotherapy. Our data 
support the use of BMP7v as differentiative agent in combination with cytotoxic 
drugs for the treatment of CRC, and the use of BMP7v provides a potentially 
powerful and novel approach for the treatment of tumor disease. 

 

 

 

 

 

 

 

 

 

 

 

  



 3 

INTRODUCTION 

 

Colorectal cancer and stem cell theory 

The colorectal cancer (CRC) is one of the most common cancers in Western 

countries. It represent the third form of cancer for frequency and the second 

leading cause of cancer death due to the resistance to current clinical therapies in 

the world. (1). 

Nowadays, the most important approaches, for the managment of this complex 

pathology remain the prevention and the early diagnosis, although a large 

numbers of patients after surgery and adjuvant therapy still develop recurrences 

and metastasis, due to the acquisition of resistance to conventional therapy, such 

as chemo- and radio-therapy (2). 

The colorectal cancer represent a classic example of a multistep pathogenesis, 

characterized by the acquisition of aberrant function of a proto-oncogene or loss 

of function of a tumor suppressor gene (3). Many studies showed that at least 4–5 

mutations are necessary to generate an invasive carcinoma (4). Some of these 

mutations seem to follow a constant trend, within the same sequences, and they 

are shared by many patients affected by colon-rectal cancer, unlike, other different 

mutations are individuals and therefore necessary to determine the final phenotype 

of disease (5). Many evidences on colon cancer mutations derived from studies on 

hereditary forms, representing 5% to 10% of all colon cancer cases. In particular, 

Familial adenomatous polyposis (FAP) is an autosomal dominant CRC syndrome 

caused by a mutation in the APC (adenomatous polyposis coli) gene which 

characterizes multiple CRC (6-8). 

In 1990, Fearon and Volgestein proposed a genetic model of colorectal 

carcinogenesis based on the accumulation of genetic mutations that occur in 

sequence, defining a particular staging of tumor development (9).  

The main event which characterizes the onset of CRC is represented by 

mutations-inactivating the gene APC that lead to hyperproliferation of the normal 

intestinal epithelium with the formation of adenomas class I (early adenoma ). In 

fact, the APC mutations are reported as the initiating gatekeeper that regulate 

positively the Wnt pathway in patients with FAP (10). The key role of APC 
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protein is represented by the modulation the cytoplasmic levels of beta-catenin, a 

protein that migrating into the nucleus activates the transcription of genes 

involved in the regulation of proliferation, differentiation, migration and apoptosis 

(11).  

The progression from early adenoma towards the stage of intermediate adenoma 

is related to the acquisition of B-RAF and K-RAS mutations. These mutations, 

mutually exclusive, determine the constitutive activation of the Ras-Raf-MAPK 

protein signaling pathway.  

The loss of heterozygosis involving the chromosome 18q, the mutations in 

SMAD4 (Small Mother against DPP homolog 4), CDC4 (Cell Division Cycle 4) 

and DCC (Delected in Colorectal Cancer) or alternatively mismatch repair 

deficiency, P53, Bax and IGFR2 (insulin-like growth factor receptor 2) are 

involved in the transition to advanced adenoma (adenoma late) (4, 12, 13). 

Finally, a key event in the transition from advanced adenoma to carcinoma is 

represented by acquisition of mutations in one of the most important tumor 

suppressor genes, TP53. It is a powerful transcription factor, able to maintain the 

integrity of the genome through the regulation of the expression of more than 300 

genes involved in various cellular processes such as apoptosis, cell cycle arrest, 

senescence and DNA repair.  

The tumor suppressor gene TP53 is mutated in about 95 % of human cancers of 

various origins. Cancer cells that are non-functional TP53 have a substantial 

advantage in growth, since they can proliferate actively, even under conditions of 

stress or damage to the genome, developing resistance to apoptosis.  

Finally, the accumulation of additional mutations, many of which are still not 

known, induce the transformation in metastatic carcinoma (14). Fig.1. 
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Fig.1. Schematic representation of colorectal cancer multistep progression. (Di Franco S. et 
al., Encyclopedia of Molecular Cell Biology and Molecular Medicine, Wiley.) 

 

In the last decades the tumor biology has revolutionized the old view of 

tumourigenesis. CRC, as the other tumors, have long been consider as an 

exclusively genetic disorder. Nowadays, several studies showed that tumors are 

constitute by a highly heterogeneous population of tumor cells which differ in 

morphology, marker expression, proliferation capacity and tumorigenicity. To 

better describe the role of the different malignant cells within the same tumor, and 

to explain this morphological, proliferative and functional heterogeneity, two 

models have been proposed: the stochastic and hierarchical models. 

The first model, described by Nowell in 1976 (15) proposed that all cells within a 

tumor are biologically homogenous and able to regenerate the tumor (16). This 

model of tumorigenesis, in fact, describes the tumor formation as a process 

multistep due to the sequential accumulation of mutations in oncogenes and tumor 

suppressor genes. Accordingly, all cells within the same tumor are able to initiate 

a new tumors, but this theory does not consider the high cellular heterogeneity, 

the chemoresistance, the minimal residual disease and the tumor recurrence. In 

sum, tumors consist of a heterogeneous cell population that, acquiring new 

mutations, undergoes uncontrolled proliferation and invasivity. 
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Otherwise, the hierarchical model, considering all the factors intrinsic and 

extrinsic involved in defining cell behavior, such as, genomic instability, levels of 

transcription factors, signalling pathways, microenvironment and immune 

response, is based on the analysis of the high cell heterogeneity within the tumor 

in terms of features, surface markers expression, proliferation kinetics and tumor 

initiation capacity (17). 

This model suggest that only a subset of tumor cells within the tumor mass, called 

Cancer Initiating Cells or Cancer Stem Cells (CSCs), can initiate and sustain 

tumor growth (18). These cells possess the tumorigenic and self-renewal capacity, 

and the ability to differentiate in non-self renewing cells, that acquiring 

proliferative capacity, constitute the tumor bulk (19). Fig.2. 

 

 

 

 

 

 

 

Fig.2. Two general models of heterogeneity in solid cancer cells: a) stochastic and b) 
hierarchical models. (Reya T. et al. Stem cells, cancer, and cancer stem cells, Nature 2001) 

 

In the last years, novel insights in cancer research have suggested that the capacity 

to initiate and sustain tumor growth is a unique characteristic of this small subset 

of cancer cells with stemness properties within the tumor mass, called “cancer 

stem cells” (CSCs) or “tumor-initiating cells”, that have the capacity to propagate 

the tumor upon transplantation into immuno-compromised mice (19). 

CSCs are defined by their stem cell-like features that share with the normal stem 

cells that are characterized by self-renewal and pluripotent differentiation 

capacity. These cells are responsible to generate, through several cycles of 

division, progenitor cells which give rise to non-tumorigenic differentiated 

population that represent most part of the tumour mass. CSCs could derive either 

from self-renewing normal stem cells (SCs) that acquire epigenetic and genetic 
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changes required for tumorigenicity or from proliferative progenitor cells (PCs) 

that reprogramming themself acquire the self-renewal potential capacity (20). 

Emerging evidences suggest that CSCs isolated from a variety of tumors types 

retaining the tumorigenic capacity are responsible for the propagation, relapse and 

metastatic dissemination. CSCs can explain the phenomenon of the tumour 

chemoresistance in which several mutations confer to these cells drug-resistance, 

altered cell cycle checkpoints and impaired apoptosis machinery. For all these 

reasons, CSCs survive to conventional treatments giving often rise to minimal 

residual disease (MRD). Therefore to better understand the mechanisms that 

maintains stemness features and the subsequent characterization of CSCs could be 

crucial to develop new most appropriate anti tumor strategy approaches. 

Common signaling pathways, including Wnt, Notch and Sonic Hedgehog are 

involved in the regulation of normal and cancer stem cell. Many evidences 

underlining the importance of these cellular signalling showed as their 

deregulation plays an key role in the tumor development (21). Accordingly, 

several studies suggest the importance of self renewal pathways activation for 

CSCs maintainance (22). 

The CSCs theory has changed the conventional therapeutic approches, suggesting 

an alternative strategy targeted to these cellular subset. The CSCs are 

characterized by high resistance to conventional chemotherapeutic drugs that kill 

the rapidly proliferating cells sparing the slow dividing cells, through a particular 

upregulation of ATP-binding cassette transporters, active DNA-repair capaciy and 

overespression of antiapoptotic molecules (23, 24).  

Dick and collegues were the first to isolate and characterize CSCs from acute 

myeloid leukemia (AML) in blood and bone marrow. In particular they isolated a 

sub-population of CD34+CD38- from patients affected by AML, and they 

demonstrated that only this cellular subset was able to form colonies in vitro 

experiments. They also analized that only this subset was able to reproduce the 

parental tumor phenotype, when inoculated into immunodeficient mice (25, 26). 

Using a similar procedure many research groups identified a large number of 

tumor stem cell from a different solid tumor type. In particular, the first CSCs 

obtained from a solid tumor were a cellular subset CD44+CD24- isolated from 

breast cancer by Al Hajj et coll. (16). Subsequently, were isolate several different 
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CSCs tumoral type: brain (27), colon (28-30), head and neck (31), pancreas (32, 

33), melanoma (34), mesenchymal (35), hepatic (36), lung (37), prostate (38), and 

ovarian (39) tumors. 

 

Colon crypts and stem cells 

Although the SCs and CSCs characterization has been long studied, several 

molecules have been identified as a putative stemness markers, up to now, none of 

the markers studied seems to be exhaustive. Scientific evidences underline the 

importance to use different combinations of these markers in order to obtain a cell 

population enriched in stem cells. 

The adult intestinal epithelium presents a particular structure ordered into crypts 

and villi, organized with a hierarchical organization, composed by three different 

cell types: the colonocytes or columnar cell, the mucin-secreting goblet cells and 

the endocrine cells, originated from a colonic stem cell. These stem cell, located at 

the base of the crypt are surrounded by mesenchymal cells that form the stem 

niche, in which the stem cell, displaying stemness features, can generate through 

asymmetric division, a cell identical to itself , and a transit cell. The transit cell 

(rapidly dividing cells) proliferating and differentiating, migrates along the crypt, 

representing all the intestinal lineage (40-45). According to this theory these stem 

cells are responsible for the high turn over rate of the colonic epithelial cells (46-

48). 

This particular and complex structure of the colon crypts has made particular 

difficult the studies about the mechanisms of crypt formation from a single stem 

cell. The first study regarding the stem cell position in the colon was conducted by 

Chang et al. using 3H-thymidine injection, and recently it was confirmed using 

bromodeoxyuridine DNA-labeling dye (49, 50). 

Two different models have been proposed regarding the positioning of the stem 

cells: the “stem cell zone” model and the “ +4 position” model. According to the 

first model, the colon stem cell reside at the very bottom of the crypts. Unlike, the 

second model describes that the stem cells are located at the +4 position above the 

Paneth cells at the base of the crypts (51). 

Although the absence of a specific colonic stem cell markers makes their 
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identification and positioning very difficult, the colonic stem cell can be 

characterized by two main features: self-renewal and differentiation capacity. 

Stem cells may undergo asymmetric division, but they can also generate two 

identical stem cells via symmetric division that acquiring a diffentiated phenotype 

regenerate the colon tissue. Then, in the first case, it is possible to obtain a lineage 

expansion, but in the other case, a lineage extinction, because the differentiated 

progeny undergo to senescence. 

Accordingly with the CSCs theory it is widely accepted that the stem cells are 

responsible for the origine of the cancer. Their slow division cycle, allow them to 

accumulate several mutations over time up to define them CSCs (52-54).  

Different molecules have been proposed as a stemness markers: Musashi 1(Msi1), 

EphB receptors, Bmi 1, Lgr5. 

Msi1, an RNA binding protein, widely studied in Drosophila Melanogaster, seems 

to be involved in the asymmetric division that regulate the neural development, 

also in mammals. In human and murine small intestine it is located at the base of 

the crypts. Its silencing determines tumor growth arrest by Notch inhibition and 

p21 upregulation, proteins involved in stemness mainteinance (55-57).  

EphB2 receptor is tyrosine kinase receptor, belonging to the family of Wnt target 

gene, it is expressed in a decresing gradient from the crypt base toward the 

differentiated cell compartment (58). This expression along the crypts seems 

regulate the migration and proliferation of intestinal epithelium; mutants in their 

ligands, or mutant forms of these receptors involve in intestinal 

compartimentalization defects. Underlining their important role in the intestinal 

positioning of the different cell types along the crypts. (59). 

Bmi1, a repressor of Polycomb group, is involved in hematopoietic, breast and 

neural self renewal. In the small intestine it is expressed near to the bottom of the 

crypts (60, 61). 

Lgr5 is a G protein coupled receptor, belonging to the family of Wnt target gene. 

Its expression in a single cells is able to regenerate a crypt-like structure in vitro 

constituted by all cell type of colonic epithelium (62). This and other markers as 

have been associated with CSCs phenotype. 
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CR-CSCs identification, isolation and expansion 

The existence of colorectal CSCs (CR-CSCs), have been showed, for the first 

time, thanks to the detection of a new stemness markers, the transmembrane 

glycoprotein, CD133. This surface expressed polypeptide is associated with self 

renewal and tumor initiating cells, this protein was first associated as a marker for 

hematopoietic stem cells and progenitor cells, and successively used in other 

tumor type: (63): brain (27), prostate, hepatocellular and colon tumors (28-30, 64, 

65). 

Recently two indipendent groups have revealed that only CD133+ subset of tumor 

cells within a colon carcinoma, is able to initiate a tumor outgrowth (28-30). 

Accordingly, it has been showed that a small group of CD133+ cells is able to 

serially reproduce the original human tumor phenotype, rather than an high 

number of CD133- cells that fail to generate xenograft tumors in immuno-

compromised mice. In line with these data, only the tumorigenic CD133+ cells 

population generated crypt-like structures in vitro under differentiation condition 

on matrigel (65). In addiction, these cells during differentiation in vitro and in 

vivo acquire a typical epithelial colonic marker, CK20, reducing at the same time 

the CD133 stem cell marker.  

Accordingly, many clinical reports suggest CD133 as an indipendent prognostic 

marker and its combination with a nuclear localization of beta catenin is 

associated with a reduced patients survival (66-69).  

In sum, several research groups demonstrated that only the CD133+ cellular sub-

population, within a colon carcinoma, is able to initiate and sustain tumor growth 

(68-70).  

Moreover, mantaining the CD133+ cells with the same conditions of 

neurospheres, these cells were expansed for long term without loss their ability to 

reproduce human original tumor phenotype, underlining the self renewal and 

tumor initiation capacity of these sub population (28, 29).  

O’Brien and collegues, in order to evaluate whether all the CD133+ cells are CSCs 

or whether these subpopulation contains also more differentiated progenitors, 

through serial dilution assays, showed that the CD133+ subpopulation not only 

contains cancer initiating cells.  
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Accordingly, recent studies analyzed a new sub-group, contained in CD133+ cells, 

the CD44+/Epcam High/CD166+ stem like cells. Dalerba et al., (30) demonstrated 

that the CD44+/Epcam high cell subpopulation injected in NOD-SCID mice, is 

able to reproduce a tumor xenograft phenotypically similar to parental one.  

In a similar way, Du’s et al., (70) showed that also CD44 could be considered a 

putative marker, able to discriminate a subpopulation capable to growth in vitro as 

spheres and in vivo producing xenografts, resembling the parental human tumor. 

The role of CD133 as a marker of stem cell has long been debated, in particular, 

after the Shmelkov et al. publication, in which it was shown that CD133 is 

expressed ubiquitously in both undifferentiated and mature colonic cells (71). 

While the lack of CD133 expression is only found in the stromal and 

inflammatory cell compartment.  

Differently, Zhu et al. analizing the role of Prominin1, the mouse analogue of 

CD133, in adult colon tissue, showed that the Prominin1+ cells marking the adult 

colon stem cells, represent the target of tumoral trasformation. (72). 

On the bases of these conflicting data, it became clear that the use of a single 

marker is not adequate for a correct CSCs identification and isolation, to identify 

the subpopulation of CSCs, it would be more appropriate to use a panel of 

markers and to standardize protocols that can validate the use of a new marker. 

For all these reasons, several surface molecules have been proposed to mark colon 

CSCs, such as CD133, LGR5, CD44 and CD166. (73, 28-30).  

Recently, it has been demostrated that undifferentiated tumorigenic CRC cells 

could be expanded as tumor spheres in vitro using a serum-free medium 

containing EGF and basic FGF (74). The tumor spheres, infact, contain an 

heterogeneous cell population expressing a variable percentage of CD133, 

CD166, CD44, CD29, CD24 and nuclear beta-catenin. More recently ALDH1, a 

detoxifying enzyme, has been proposed as a specific marker able to identify, 

isolate and track human normal and CSCs during CRC development (75, 76). 

This marker is expressed by the CD44+ or CD133+ cells, located at the base of 

normal crypts. After sorting the ALDH1 high cells, injected subcutaneously in 

NOD SCID mice, generate tumor xenografts (76).  
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The isolation of CSCs is based essentially on two different approaches: the use of 

a culture medium serum-free that maintain stemness-selective conditions, 

originally developed for neural stem cell culture (77) or the direct selection by 

magnetic sorting or FACS technology for putative markers distinctively expressed 

by a cell subpopulation. On the bases of these procedures there is a common step 

in which the surgical excisions of solid tumours are processed by mechanical 

and/or enzymatic digestion to obtain a single-cell suspension. This freshly digest 

obtained is constitute by an cells heterogeneous mixture of the original tissue. In 

order to selectively obtain CSCs, the digest is cultured into ultra-low-adhesion 

flasks in a specific serum free medium, supplemented with growth factors such as 

basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). These 

conditions allow the undifferentiated tumour cells, stem and transit amplifying 

cells, to survive and slowly proliferate, while the differentiated cells die through 

anoikis. Sphere-forming cells are maintained in culture by dissociation and re-

plating as single cells, and retain the tumorigenic potential when injected into 

immunocompromised mice, reproducing the same morphological and antigenic 

features of the original tumour, data showed by histological examination of 

xenografts generated from spheres. This tumorigenic capacity is serially 

maintained, and the xenografts can be digested and the cells obtained can be 

indefinitely propagate under stemness conditions, maintaining the stem like 

features as well as the capacity to reform tumors. As previously described, a 

single clonogenic CD133+ cell, contained in CRC spheres is able to reproduce the 

original tumor, including the CSC compartment and the differentiated progeny. 

Alternatively, the second procedure, involves the selection of putative stem cell 

marker from the whole digest, by the use of monoclonal antibody directly or 

indirectly conjugated with magnetic beads. This sorting allow a double positive 

and negative selection, separating labelled and unlabelled cells, but this procedure 

permit only a single-marker selection. Another alternative method is represented 

by FACS sorting, which allows sorting of different populations with multi 

parameter analysis, testing contemporary several antibodies conjugated to 

different fluorochromes. 

Moreover the sorted cells can be also cultivated in stem cell conditions and also 

injected into immunocompromised mice to directly test the tumorigenic capacity 

(74).  
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Intestinal Niche 

Fibroblast, endothelium, inflammatory cells, cytokines and growth factors 

secreted by these cells, constitute the intestinal niche and are involved in CSCs 

maintenance at the base of colon crypts. They finely regulate the balance between 

self-renewal and differentiation (78-80). Indeed the pluripotency of colon SCs is 

strongly controlled by microenvironment that plays a crucial role ensuring a fine 

equilibrium between important pathways, such as PTEN-PI3K-Akt (81, 82), Bone 

Morphogenetic Protein (BMP) (83), Notch (84) and Sonic hedgehog (Shh) (85). 

In particular the intestinal sub-epithelial myofibroblast (ISEMFs) surrounding the 

normal colon stem cells, regulate this balance secreting hepatocyte growth factor 

(HGF) for maintenance of stem cell in the intestinal niche. The presence of 

ISEMFs or HGF, as demonstrated by Vermulen et al., restore the stem cell 

phenotype, inducing a cellular de-differentiation (80). 

The colon crypt unit represented in figure 3, shows a particular cellular 

distribution in which at the basis of the crypt are located the mesenchymal cells 

(ISEMFs) and their secreted factors responsible for the stem cell niche 

maintenance, while along the villux apex, where are located several Wnt 

inhibitors, in order to reduce the stemness features it is possible to identify a 

progressive cellular differentiation. The pathways mentioned above, are involved 

in self renewal and are de-regulated both in normal and CSCs (21, 22).  

One of the most studied pathway envolved in CSCs progression is represented by 

the Wnt signalling. 

The Wnt signalling in the basis of the crypts promotes nuclear beta catenin 

accumulation, which activate the transcription of several genes involved in cell 

cycle regulation and proliferation. Beta catenin also induces the expression of 

EphB1-2, which regulate stemness, cell migration and differentiation (86-88). 

The distribution of Wnt pathway members, results particularly regulated. Wnt 

ligands are predominantly expressed at the basis of the crypts and are reduced 

along the crypt where more differentiated cells reside, and where are most express 

the Wnt inhibitors factors (88-90). 

In addiction to Wnt pathway, BMP, Notch and Shh pathways regulate the niche 

homeostasis. 
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BMP proteins are TGF-beta superfamily members that through binding to 

receptors BMPR1A, BMPR1B and BMPR2 can trigger different biological 

processes in CSCs (91). 

The activation of this pathway promotes the phosphorylation of Smad1, 5 and 8 

that in association with SMAD 4 translocate into the nucleus and in cooperation 

with other transcriptor factors regulate the target genes expression (92, 93). 

Recent data have demonstrated that the BMPs promote terminal differentiation 

and apoptosis (94). Kosinsky et al., analyzed the distribution of the different 

factors along the crypt: the cells at the apex of the crypt express high levels of 

BMPs, while at the basis of the crypt, their levels are reduced, but the levels of 

BMPs antagonist, produced by myofibroblasts, contribute to the maintenance of 

stemness (95, 83). 

Notch pathway is envolved in intestinal SCs fate and includes four different trans-

membrane receptors (Notch1 to Notch4). The binding of five different ligands 

(Jagged-1, -2, Delta-like 1, 2 and 4) induces the release of the Notch intracellular 

domain that translocates into the nucleus where it forms a complex with DNA-

binding proteins activating the target genes transcription involved in epithelial cell 

fate determination (96). Recent reports showed its key role in intestinal 

homeostasis and neoplastic transformation. Moreover, the expression of Notch 

intracellular domain blocks cell differentiation, inducing expansion of immature 

progenitors (97, 84). Defects in Notch pathway were observed in colon cancer 

stem cells (CCSCs), using an antibody anti DLL4 (an important Notch pathway’s 

component) to directly inhibit human colon cancer xenograft growth.  

Finally, Sonic Hedgehog pathway regulate the gut organogenesis, binding to its 

receptor Patched (PTCH), allowing the release of a G-coupled protein 

Smoothened (Smo), which with the GLI transcriptors factors migrate into the 

nucleus inducing target gene activation (85) 

In several cancers, such as leukemia, pancreas, stomach, prostate, breast, 

glioblastoma and colon cancer were found many alterations in the Hedgehog 

pathway (98-103). 
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In conclusion, the aberrant alteration of these pathways involved in self-renewal 

of the intestinal stem cells could be the driving force that promote colon cancer. 

(104)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Graphic representation of a colon crypt. (Di Franco S. et al. Colon Cancer Stem Cells: 
Bench-to-Bedside-New Therapeutical Approaches in Clinical Oncology for Disease Breakdown. 
Cancers 2011).  
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Clinical implication of CR-CSCs and BMPs as alternative therapeutic 

strategy  

The CSCs theory, in colorectal cancer, has exciting clinical implications, 

confirming that the therapy failure and relapses are due to the CSCs resistance. 

Indeed, CSCs, retaining the stemness features, such as quiescence, self-renewal 

ability and multidrug resistance, represent the population intrinsically 

refractoriness to conventional therapies developed to eradicate the rapidly 

dividing cells that constitute the majority of the non stem cell component within 

the tumor.  

Nowadays, patients with metastatic CRC are treated with two useful protocols 

FOLFOX (Folinic acid/Fluorouracil and Oxaliplatin) and FOLFIRI (FOLFOX 

plus vitamin B and irinotecan). Neoadjuvant chemotherapy for these patients, is 

represented by anti-angiogenic drugs as the Bevacizumab, a humanized 

monoclonal antibody that targets the vascular endothelial growth factor (VEGF), 

which plays an inportant role as angiogenic factor in primary and metastatic 

human CRC (105, 106). Another neo-adjuvant drug is Cetuximab, also known as 

Erbitux, a monoclonal antibody that inhibits the epidermal growth factor receptor 

(EGFR), indicated for the treatment of EGFR expressing patients affected by 

KRAS wild-type metastatic colorectal cancer, alone or in combination with 

FOLFIRI (107). 

The future of diagnostics and treatments of tumor disease should aim to eliminate, 

not only the terminally differentiated component of the tumor bulk, but, it should 

be focused, in particular, to the subpopulation of cancer stem cells that represent 

the driving force for the tumor expansion (19). In order to evaluate the CR-CSCs 

role in the therapy response, recurrence and metastasis, a recent work showed that 

the subpopulation of CD133+ CR-CSCs results more resistant to both 

conventional chemotherapeutic drugs, and innovative therapies, compared to 

epithelial cells that constitute the majority cell population within the tumor (65, 

74). 

These recent findings support the idea that tumor-initiating cells are highly 

resistant to cytotoxic cancer therapies, underlining the importance of their role in 

colorectal tumors refractoriness and recurrence also many years after the 

"successful" treatment of primary tumour.  
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The CSCs contribute to the poor therapeutic sensitivity through many 

mechanisms, such as preferential activation of DNA damage checkpoint, high 

levels expression of ABC transporters and anti-apoptotic molecules, slow 

replication capacity and other aberrant molecular mechanisms that destroy the 

normal balance between proliferation and survival or cell death (23). 

In addition the CSCs refractoriness is finely regulated by microenvironmental 

soluble molecules that are involved in many different sectors of tumor 

development, regulating the growth, migration, and differentiation of all cellular 

components into both the tumor mass and in the microenvironment. 

The possibility to isolate and study CSCs represents a revolutionary approach in 

cancer research and these cells represent the elective target for new therapies, 

endowed to high and selective toxicity towards the specific tumor with reduced 

toxicity for normal cells. 

An alternative therapeutic strategy seems to be represented by selectively target of 

CSCs pathways . 

Recent reports have demonstrated that the autocrine production of IL-4 by cancer 

cells from breast, thyroid, colon, and lung acts as negative regulator of apoptosis, 

conferring resistance to death receptors and chemotherapy-induced cell death 

(108). Moreover IL-4 seem to be involved in stimulation of activated B-cell, in T-

cell proliferation and the differentiation of CD4+ T-cells into Th2 cells (109). The 

use of anti–IL-4 neutralizing antibody or IL-4 receptor α antagonist, on CR-CSCs, 

inhibiting IL-4 signaling transduction pathway, sensitizes these cells to 

chemotherapeutic agents through down-regulation of anti-apoptotic proteins, such 

as cFLIP, Bcl-xL, and PED. Moreover, the combined use of IL-4 antibodies plus 

5-fluorouracil or oxaliplatin also reduces xenografts tumor growth (65). 

Concluding, recent studies have evaluated that the CR-CSCs CD133+, are 

protected by apoptosis phenomenon through the up-regulation of IL-4 (110). 

Another important approach could be represented by cancer immunotherapy. 

Although the cancer cells are less immunogenic than their normal counterpart, the 

immune system could plays a crucial role in order to effectively and safely 

increase antitumor responses recognizing and eliminating them (111). Although, 

these cells do not express MHC molecules, making tumor cells resistant to αβ T 

cell-mediated cytotoxicity, recently, it has been demonstrated that a subpopulation 
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of T cells, the γδ T cells, show potent MHC-unrestricted lytic activity versus 

different tumor cells in vitro, suggesting their potential employment in anticancer 

therapy. γδ T cells have been isolated and identified from tumor infiltrating 

lymphocytes in different cancer types. 

The development of targeted therapies for colorectal cancer requires new 

therapeutic regiments that aims to eliminate the self-renewal compartment of 

tumor mass by targeting stemness features owned by CR-CSCs, making this 

population more sensitive to conventional drugs. This is the main goal that the 

differentiation therapy aims to achieve. 

The therapy based on the induction of differentiation is aimed to affects the self 

renewal ability of CSCs, and could represent an alternative way to inhibit tumour 

growth. 

Among the molecules that govern stem cell survival and differentiation, the Bone 

Morphogenetic Proteins (BMPs), a subgroup of TGF-b superfamily members, 

play an important role in the regulation of colon stem cell features and contribute 

to the network of the signals that define the intestinal stem cell niche modulating 

the equilibrium between proliferation and differentiation signalling pathways 

(112-114)  

These proteins and their intracellular signaling components have been conserved 

in Drosophila and Caenorhabditis elegans and they were originally isolated from 

bone. The major contribution to their isolation and characterization was made by 

Sampath and Reddi (115). 

BMPs are synthesized as large precursor proteins in the cytoplasm where they are 

proteolytically processed in a mature proteins (116). The mature BMP molecules 

are characterized by a cysteine knot with the seven conserved cysteine domains. 

The dimeric form is active as a homodimer or heterodimer with a molecular 

weight of about 30-38 kDa. 

BMPs bind to two different transmembrane serine/threonine kinase receptors, 

type I (BMPRI) and type II (BMPRII). Type I receptors include activin receptor 

type IA (ActRIA or ALK2) and BMP receptors type IA and IB (BMPRIA or 

ALK3; BMPRIB or ALK6), while type II receptors are represent by BMP 

receptor type II (BMPRII), activin receptor type IIA and IIB (ActRIIA and 

ActRIIB) (117, 118). After the formation of heteromeric complexes, type II 



 19 

receptor phosphorylates the type I receptor (119) and the signalling pathway is 

then activated through Smad and non-Smad mechanism (117, 119). In addition to 

the Smad pathway, indeed, the BMPs activate an alternative pathway, which 

includes p38 and ERK MAP kinases (120). When Smad 1,5,8 protein (R-Smad) 

are phyosphorylated by the type I receptors, they can interact with co-Smad 

(Smad4) and after translocate into the nucleus in order to initiate the transcription 

of BMPs response genes (121). 

The Inhibitory Smads, Smad 6/7, inhibits BMP signaling (122), indeed, BMPs 

activation is tightly regulated by the presence or the absence of antagonists and 

inhibitors such as Gremlin, Chordin and Noggin (83). BMP antagonists are 

soluble factors that control BMPs signaling with various degrees of affinity and 

specifity, binding the BMPs, preventing the functional receptor/ligand interaction: 

twisted gastrulation (TSG), chordin and noggin and the DAN-family of inhibitors. 

BMPs are involved in the earliest stage of development, and play a key role in the 

normal intestinal development, growth and morphogenesis. Their signalling act to 

mediator between epithelial and mesenchymal stroma interaction necessary for 

the correct intestinal homeostasis (123).  

During the human and mouse intestine development, BMP7 and BMP6 were 

found, respectively, on the intestinal epithelium and smooth muscle cells (124, 

125). Moreover, the high expression of BMP2 and BMP4 in the mesenchymal site 

drive the villus formation (126). In particular many reports showed that the BMPs 

pathway is functional in all three tissue layers of the gastro-intestinal tract, to 

allow the reciprocal correct interaction. Mice overexpressing the BMP-antagonist 

noggin, undergo to abnormal villus morphogenesis, associated with stromal and 

epithelial hyperplasia, ectopic crypt formation, due to low levels of BMPRIA and 

pSmad1/5/8 (123).  

All these results suggest that human gastro-intestinal and chronic intestinal 

diseases, could be associated with defects in the BMPs signaling pathway (113).  

Hardwick et al., have demonstrated that the mature colonocytes at the epithelial 

surface of normal human and mouse colon, express BMP2, the BMP receptors (Ia, 

Ib, II), phosphorylated Smad1 and Smad4 (112). Stroma and crypt epithelium of 

the adult mouse intestine show an high expression of BMPRIA and BMP2 (123, 
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127). While, Haramis et al showed that BMP4 is expressed in stromal cells and 

mesenchimal cells surrounding the crypt and glands of the intestine (127, 113). 

The BMPs pathway components result highly expressed in colon tops while the 

BMP antagonists gremlin 1, gremlin 2 and chordin-like 1, produced by 

myofibroblasts and smooth muscle cells, are located in basal colon crypts.  

Juvenile polyposis (JP), is an autosomal dominant hamartomatous polyposis 

syndrome in which germline mutations of two members of the BMPs pathway are 

involved. The patients, having mutations or deletions in SMAD4 and BMPR1A 

genes (128-130) are predisposed to upper gastrointestinal and colorectal cancer, in 

almost half of the cases. JP patients, with SMAD4 mutations, showed a significant 

prevalence of gastric polyposis (131). SMAD4, known as a tumor suppressor gene 

in pancreatic and colon cancer, in JP acts as a susceptibility gene, a “gatekeeper“, 

its loss of function results in polyp formation in which an important role is played 

by stromal inflammatory response regulating epithelial tumorigenesis (132). 

Homozygous SMAD4 knockout mice, develop polyps, with thickened intestinal 

mucosa and loss of villus architecture showing plasma cell infiltrates into the 

stroma, while mice with conditional SMAD4 deletion in the intestinal epithelial 

cells did not develop intestinal tumors (133). Although, JP patients with a 

germline SMAD4 mutation, showed biallelic inactivation of SMAD4 in both the 

epithelium and stroma, suggesting a common clonal origin (134). 

Another gastro-intestinal disease, Familial adenomatous polyposis (FAP), is an 

autosomal dominant syndrome, characterized by hundreads of adenomatous 

colorectal polyps due to a deletion in the adenomatous polyposis coli (APC) gene, 

localized on chromosome 5q21. APC gene, as above mentioned, is involved in 

ubiquitine-mediated degradation of beta catenin, regulating Wnt signalling and its 

functional defects leads to uncontrolled cell proliferation (135). In FAP patients, 

an higher expression of Wnt signaling molecules, results in BMPs signaling 

downregulation, differently, in intestinal homeostasis, the BMPs inhibit the 

effects of Wnt-pathway to regulate the intestinal stem cell proliferation and 

repression of polyps formation (113, 127). Many results showed that 

heterozygous APC mutant mice, with higher expression of the BMPs antagonist 

Gremlin 1 and lower BMP2 and BMP4 expression develop severe polyposis and 

faster rate of tumor growth (136). Accordingly, human FAP tissue specimens in 
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dysplatic mycroadenomas epithelium do not maintain BMP2 expression (112). 

The association of these genetic disorders, with the BMPs signaling pathway, was 

confirmed by experiments on transgenic mice, overexpressing the BMP 

antagonist, noggin or mice with conditional inactivation of BMPRIA. These mice 

showed an increased formation of intestinal polyps (113, 127). Moreover, 

conditional inactivation of BMPRII in stroma, led to multiple hamartomatous 

polyp appearance. (137, 138). 

These findings indicate that altered BMPs expression plays an important role in 

aberrant cellular proliferation and tumorigenesis in the human intestine. During 

the last decade, extensive researches were conducted to explain the factors 

involved in the initiation and progression of colorectal cancers in particular, 

BMPs and their signaling pathway have been specially studied. (139, 140). 

Many different groups have demonstrated that several BMPs are suppressive for 

colorectal cancer cells growth (112, 141, 142). Back et al. showed that BMP2 

exerts growth suppression by increasing p21WAF1 protein levels, and not its 

transcription, modulating RAS-ERK pathway (143). 

Moreover, the loss of BMP signaling seems to be correlated to tumor progression, 

indeed, the BMPs expression, is lost from late adenoma to early carcinoma. 

Abnormal CSCs proliferation in CRCs, is due to an abnormal activation of Wnt 

signalling pathway and BMPs signalling inhibition, that promote nuclear beta-

catenin accumulation through PTEN downregulation and iperactivation of PI3K-

Akt pathway (113). Confirming that the BMPs pathway alteration leads to pre-

cancerous lesions (138). 

The TGF-β signalling inactivation plays a key role in CRC development (144), 

indeed, it has been reported that the loss of BMPRII and SMAD4 is frequently 

deleted also in sporadic CRC and that BMPs pathway is inactivated in the 

majority of colorectal tumors (145, 146). This is strongly supported by a 

transgenic mice model in which the inactivation of the BMPs pathway leads to 

polyps formation and up-regulation of Wnt signalling (127). 

Considering BMPs’ role in regulating SCs differentiation and inducing apoptosis 

and differentiation program, it is possible to suppose that CSCs treatment with 
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these molecules could inducing differentiation, make these cells more sensitive to 

conventional chemotherapies.  

Some preliminary studies have been performed on both CSCs of glioblastoma 

(GBM) and CRCs.  

Interestingly, it has been recently demonstrated that in human glioblastoma BMP-

BMPR signalling, controls the activity of normal brain stem cells, and inhibits 

glioblastoma stem like cells (GSLCs) (147). It has been also demonstrated that 

BMP2, BMP4 and BMP7 treatment inhibits sphere forming capacity and induces 

differentiation of CD133+ cells; reducing in vivo glioblastoma tumor growth (147-

149). 

Recently, it has been demonstrated that the treatment of CR-CSCs with BMP4 

induces in vitro differentiation and reduces their tumorigenic potential, sensitizing 

these cells to conventional chemotherapic drugs reducing the tumor size and 

inducing complete long-term regression of colon CSC-derived xenograft tumors 

(94). 

Given the regulatory effect of BMPs on neural stem cells, their progenitors and 

GSLCs, recently, Tate et al. have demonstrated that BMP7 variant (BMP7v) acts 

on proliferation, differentiation, angiogenesis, and in vivo tumorigenicity of 

GSLCs isolated from surgical specimens of primary GBM. In particular, BMP7v, 

decreases proliferation of GSLCs, inducing their differentiation into neuronal- and 

astrocyte cellular phenotypes, and inhibites angiogenic endothelial cord 

formation. These results were confirmed by in vivo analysis of subcutaneous or 

orthotopic tumor models. Their data suggest that BMP7v therapy, directed against 

CSCs and angiogenesis, represents a potentially powerful therapeutic option that 

may improve the poor outcome of conventional treatments (150). 

The current therapeutics strategy target and kill differentiated tumor cells that 

constitute the tumor bulk, failing to affect the rare cancer stem-like cell 

population.  

These data suggest the use BMPs, as alternative therapy, to induce the 

differentiation of CSCs and to make them more sensitive to conventional 

chemotherapy. Since the differentiated tumor cells are more sensitive to 

conventional cancer therapies, therapy differentiative represents another possible 
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therapeutic strategy to inhibit tumor growth by inducing the differentiation of 

CSCs, making them more susceptible to the action of chemotherapeutic agents.  

The induction of CSCs differentiation provides a potentially powerful and novel 

approach to the treatment of cancer disease. 
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AIMS 

 

The high mortality rate of colorectal cancer (CRC) is mainly due to the inefficacy 

of standard treatments to cure the metastatic disease. The recurrence and relapse 

characteristic of this kind of cancer suggest that the only one curative therapy 

could be represented by targeting the subpopulations of tumor cells with 

tumorigenic potential, the so-called, cancer stem cells (CSCs) (151). Several 

studies report that radio-chemotherapy, directed against differentiated cells, 

forming the bulk of tumor cell population, are unable to eradicate the tumorigenic 

and metastagenic population, without obtaining a long-term clinical remission. 

Accordingly, the induction of differentiation, affecting the self-renewal ability of 

CSCs, represents an alternative way to inhibit tumor growth and to sensitize CSCs 

to conventional chemotherapy. The treatment of CSCs towards terminally 

differentiation represent an intriguing concept for future therapy. On the basis of 

these data my project proposed to investigate the role of a stable BMP7 variant 

(BMP7v) on CR-CSCs in order to make these cells more sensitive to conventional 

chemotherapy drugs and to develop a new treatment protocol easily tested in 

preclinical models to design a future appropriate clinical trials. 
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MATERIALS AND METHODS 

 

Tissue collection, isolation and culture of cancer cells 

Human CRC tissues were obtained from patients undergoing to CR resection, in 

accordance with the ethical standards of the institutional committee. Normal colon 

mucosa was obtained from the histologically uninvolved resection. Histological 

diagnosis was based on the morphological microscopic features of carcinoma 

cells, determining the histological type and grade.  

Surgical specimens were intensively washed in PBS solution containing 

antibiotics and incubated overnight in DMEM/F12 (GIBCO) containing penicillin 

(500 U/ml, GIBCO), streptomycin (500 µg/ml, GIBCO) and amphotericin B (1.25 

µg/ml, GIBCO) in order to avoid contaminations. Tumor tissues were 

mechanically and enzymatically digested. Enzymatic dissociation was performed 

using collagenase and hyaluronidase in DMEM for 1 hour at 37° C. Dissociated 

CRC cells were then cultured in presence of serum-free medium supplemented 

with epidermal growth factor (20 ng/mL) and basic fibroblast growth factor (10 

ng/mL, both from Sigma-Aldrich, St. Louis, MO 63103, USA) in non-adherent 

conditions, in ultralow adhesion flasks (Corning, Lowell, MA), to promote the 

growth of CSCs as spheres. These culture conditions allow the selection and 

propagation of tumour spheres, containing immature tumour cells, while non 

malignant or differentiated cells are negatively selected. To achieve in vitro 

differentiation of CSCs, dissociated sphere cells were cultured in DMEM-high 

glucose supplemented with 10% FBS in adherent conditions. These cells were 

conventionally indicated as sphere-derived adherent cells (SDACs). All cell 

cultures were carried out at 37°C in a 5% CO2 humidified incubator. Magnetic 

cell separation was performed on tumour cell populations obtained from 

enzymatic dissociation of CRC specimens using microbeads conjugated with 

CD133/1 (AC133, mouse IgG1, cell isolation kit, Miltenyi). After magnetic 

sorting, viability was assessed using trypan blue exclusion. Quality of sorting was 

verified by flow cytometry with an antibody against CD133/2 (293C3-PE, mouse 

IgG1, Miltenyi) on both CD133+ and CD133− depleted cell population.  

Cell death was evaluated by orange acridine/ethidium bromide staining or by 

CellTiter Glo Assay Kit (Promega) accordingly to manufacturer’s instruction. 
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BMP7v used for this work was produced by Eli Lilly and Company. The 

pharmaceutical development of BMP7v represented the major limitation with its 

suboptimal solubility at neutral pH. Mutations into the N terminus of the BMP7v 

prodomain were introduced to enhance the cleavage of prodomain and mature 

domain. Five point mutations were addicted onto the surface of the mature 

domain, through a random mutagenesis approach, to create a molecule that 

retained the same signaling properties of wild-type BMP7 but had greater 

expression and enhanced biophysical properties such as solubility and stability. 

BMP7v material can be made available to researchers upon request to the Lilly 

authors (152).  

In order to detect the proportion of differentiated and undifferentiated cells, 

dissociated spheres were cultured in stem cell medium in presence of BMP7v 

(100ng/ml) up to 18 days. At different time points, the adherent cells were 

harvested with trypsin and mixed with floating cells. The cell mixture was then 

cytospun and stained for CK20 and CD133. 

To evaluate BMP7v role in differentiation in vitro, the spheres were dissociated 

into single cells and cultured in the presence of BMP7v (100ng/ml) for 48 hours 

or 90 minutes in order to evaluate the p-Smad 1, 5, 8 nuclear traslocation. 

 

Histochemistry and Immunohistochemistry /Immunofluorescence 

Histochemical and immunohistochemical/immunofluorescence analyses were 

performed on 5 µm paraffin-embedded sections of human normal colon and CRC 

tissues or subcutaneous tumor xenografts and cytospuns of freshly sorted cells and 

spheres cells exposed to BMP7v  

The following antibodies were used: BMP7 (164311, mouse IgG2B; R&D 

system), CD133 (AC133, mouse IgGb; Miltenyi), BMPRIA, (87933, mouse 

IgG2b; R&D Systems), BMPR1B (88614, mouse IgG2a; R&D Systems), BMPR2 

(73805, mouse IgG2b; R&D Systems), pSmad 1,5,8 (rabbit polyclonal; CST), 

cytokeratin 20 (Ks20.8, mouse IgGa; Dako Cytomation), p21(#2947, Rabbit IgG; 

CST), E-cadherin (rabbit polyclonal; CST), Vimentin (#39325, Rabbit; CST), 

Beta-catenin (H102, rabbit polyclonal; Santa Cruz Biotechnology), CD166 

(MOG/07, Mouse Monoclonal Antibody; Leica), Lgr5 (RB 14211, Rabbit Ig; 

ABGENT) Ki67 (MIB-1, mouse IgG1; Dako Cytomation), CD31 (clone JC70A, 
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mouse IgG1Kappa; Dako ytomation), VEGFR2 (goat IgG; R&D System) or 

isotype-matched controls at appropriate dilutions. 

For immunohistochemistry (IHC) the dewaxed slides were heated for 1 min at 

450 W and 5 min at 100 W in a microwave oven in 0.1M citrate buffer pH 6.0 or 

pH 9.0 only for KI67 staining. For cytoplasmatic epitopes detection, samples were 

permeabilized with 0.1% TritonX-100 in PBS for 10 min sections and after the 

slides were incubated with Tris-buffered saline (TBS) containing 10% AB human 

serum to block unspecific binding. After elimination of excess serum the sections 

were exposed overnight at 4°C to specific Abs against BMP7, CD133, CD166, 

Beta-catenin, Lgr5, Ki67, CK20, CD31, VEGFR2 or isotype-matched controls at 

appropriate dilutions. Following exposure to primary Abs, sections were treated 

with biotinylated anti-mouse- rabbit and anti goat immunoglobulins, washed in 

PBS and then incubated with streptavidin peroxidase (LSAB 2 Kit; Dako 

Cytomation or Vectastain kit; Vector). Stainings were detected using 3-amino-9-

ethylcarbazole (AEC) chromogen. Counterstain of nuclei was performed using 

aqueous hematoxylin (Sigma). 

For hematoxylin and eosin (H&E) staining, dewaxed sections were stained in 

Hematoxylin (Sigma) for 1 minutes, washed in water and then exposed for 30 

seconds to eosin (Sigma). Stained sections were dehydrated and mounted with 

syntetic resin. 

For Azan Mallory, sections were stained with azocarmine G (Sigma) for 1 hour 

and with 5% of phosphovolframic acid for an additional hour. Then, sections were 

stained with aniline blue/orange G (Sigma) and mounted in synthetic resin. 

All IHC images were analyzed with Imaging Analyzer Software 

Apoptotic events were determined by TUNEL labeling  using In Situ Cell Death 

Detection, AP Kit (Boehringer Mannheim) (roche). DNA strand breaks were 

detected by 5-bromo-4-chloro-3-indolyl-phosphate (BCIP, Dako Cytomation) 

substrate.  

Immunofluorescence stainings were performed on 5-µm-thick embedded sections 

of human CRC tissues, on cytospun freshly sorted cells, spheres cells allowed to 

differentiate in 10% FBS or after exposure to BMP7v. Cells were fixed in 2% 

PFA for 20 min at 37°C. For cytoplasmatic epitopes detection, samples were 

permeabilized with 0.1% TritonX-100 in PBS for 10 min, blocked with 3% BSA 
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for 30 min and exposed overnight at 4°C to antibodies against BMP7, CD133, 

BMPRIA, BMPRIB and BMPRII, p-SMAD1,5,8, CK20, p21, E-cadherin, 

Vimentin and beta-catenin or isotype-matched controls at appropriate dilutions. 

Then, cells were treated with FITC or Rhodamine anti-mouse or anti-rabbit 

antibodies (Molecular Probes, Inc.) plus RNase (200 ng/ml, Sigma). Nuclei were 

counterstained using Toto-3 iodide (642/660, Molecular Probes). Confocal 

analysis was used to acquire fluorescence stainings. 

 

RNA isolation and Real-time PCR 

Total RNA from cell pellet was obtained using the Rneasy Mini Kit (Qiagen 

GmbH), the residual amounts of DNA remaining was removed using the RNase-

Free DNase according to manufacturer’s instructions. The yield of the extracted 

RNA was determined by measuring the optical density at 260 nm by Nanodrop 

ND-1000 (Nanodrop, Wilmington, DE). 

1 µg of total RNA was retro-transcribed using High-Capacity cDNA Archive Kit 

(Applied Biosystems) according to manufacturer’s instructions. PCR 

amplification and detection of the PCR amplified gene products were performed 

with the SYBR Green PCR master mix (SuperArray Bioscience, Frederick, MD) 

All amplification reactions were done in triplicate, and the relative quantitation of 

gene expression was calculated using the comparative Ct method (ΔΔCt). Levels 

of mRNA expression were expressed after normalization with endogenous 

control, GAPDH. For SYBR green chemistry, the following primers were 

purchased from MWG: BMPR1A forward primer 5' GTC ATA CGA AGA TAT 

GCG TGA GGT TGT 3', BMPR1A reverse primer 5' ATG CTG TGA GTC TGG 

AGG CTG GAT T 3, BMPR1B forward primer 5' AAG GCT CAG ATT TTC 

AGT GTC GGG A 3', BMPR1B reverse primer 5' GGA GGC AGT GTA GGG 

TGT AGG TCT TTA TT 3', BMPR2 forward primer 5' GTG ACT GGG TAA 

GCT CTT GCC GTC T 3', BMPR2 reverse primer 5' GCA GGT TTA TAA TGA 

TCT CCT CGT GGT 3', GAPDH forward primer 5' GCT TCG CTC TCT GCT 

CCT CCT GT 3', GAPDH reverse primer 5' TAC GAC CAA ATC CGT TGA 

CTC CG 3'.  
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Flow cytometry 

Flow cytometry was performed on freshly purified colon cancer cells after 

magnetic CD45+ cells depletion, SDAC and dissociated sphere cells untreated and 

treated with BMP7v. Cell preparations were fixed in 2% paraformaldehyde for 10 

min at 37°C and permeabilized by 0.1% Triton-X 100 for 10 min at 4°C to detect 

cytoplasmatic epitopes. Cells were washed twice with 0.5% bovine serum 

albumin (BSA, Sigma) in PBS and exposed to antibodies against CD133/2 

(293C3-PE, mouse IgG2b, Miltenyi), CD133/1 (AC133, mouse IgG2b, Miltenyi), 

CK20 (Ks20.8, mouse IgG2a, DAKO Cytomation). Samples were then incubated 

with FITC-conjugated anti-mouse or anti-rabbit antibodies (Molecular Probes). 

Cells were subjected to flow cytometry analysis using a FACSCalibur cytometer 

and Cell Quest Software (Becton Dickinson). Only cells with staining intensities 

above the maximal level of isotype-matched controls were defined as positive 

cells. 

Cell cycle analysis was performed on dissociated sphere cells untreated and 

treated with BMP7v for 48 hours and SDACs. The cells were washed in PBS and 

fixed in ice-cold 70% ethanol at 4°C overnight and then incubated with PBS 

containing propidium iodide (50 µg/ml, Sigma), sodium citrate (3.8 Mm, Sigma) 

and RNase (10 µg/ml, Sigma) at 37°C for 30 minutes. Samples were analyzed 

using a flow cytometer (BD Biosciences). 

PKH26 (Sigma) staining was performed, according to manufacturer’s 

instructions, on dissociated sphere cells, untreated and treated with BMP7v 

(100ng/ml) for 48 hours, up to 14 days, at different time points these cells were 

harvested for the FACS analysis,  

 

Protein isolation and immunoblotting 

Cell pellets were re-suspended in ice-cold NP40 lysis buffer [50 mM Tris-HCl 

(pH 7.5), 150 mM NaCl, 1 mM EGTA, and 1% NP40] containing proteases and 

phosphatases inhibitors and fractioned on SDS-polyacrylamide gels and blotted 

on nitrocellulose membranes. Membranes were blocked for 1 hour with nonfat 

dry milk in TBS containing 0.05% Tween 20 and successively incubated with 

antibodies specific against PTEN (17A, mouse IgMk, Neomarkers), AKT (rabbit 

polyclonal, CST), p-AKT (Ser 473, rabbit polyclonal, CST), GSK3ß (rabbit 
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polyclonal, CST), p-GSK3ß (Ser9, rabbit polyclonal, CST) and beta-actin 

(JLA20, mouse IgM, Calbiochem) used as loading control. Membranes were then 

washed, incubated for 1 hour with horseradish peroxidase-conjugated anti-mouse, 

anti-rabbit or anti-goat immunoglobulins (Amersham Biosciences) and developed 

with a chemiluminescence detection system (SuperSignal West Pico/Dura 

Extended duration Substrate, Pierce Biotechnology). Densitometric analysis of 

protein expression level was performed by Vision Works LS (UVP). Results were 

expressed as protein/beta-actin OD ratio. 

 

Clonogenic and colony forming assays 

Dissociated sphere cells untreated and treated with BMP7v for 48 hours were 

plated in presence of stem cell medium, on ultra-low-adhesion 96-well plates at a 

concentration of a single cell per well. Wells containing either none or more than 

one cell were excluded for this analysis, but these valors was used to calculate the 

cancer stem cell frequency, with ELDA software. 

Colony forming was performed on dissociated sphere cells untreated and treated 

with BMP7v, 5FU+Oxaliplatin alone or in combination. Cells were plated on 

Agarose Sea Plague Agar (Invitrogen), and maintained up to 21 days at 37°C in 

presence of 5% CO2.  The colonies were stained with 10% Cristal Violet. 

 

Invasion assay 

Cell migration capacity was assessed using growth factor–depleted matrigel–

coated (BD Biosciences) transwell insert. Dissociated sphere cells (2x103) 

untreated and treated with BMP7v 100ng/ml for 48 hours were plated into 

matrigel-coated transwell of 8 µm pore size (Corning). Supernatant of NIH-3T3 

cells, cultured in stem cell medium was used as chemoattractant in the transwell 

lower part. Migration was observed  and counted microscopically up to 96 hours. 

 

RT2 ProfilerTM PCR Array.  

The RT2 Profiler PCR array was assessed for genes related to Wnt targets (PAHS-

243ZR-12; SuperArray Bioscience). It was used to simultaneously examine the 
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mRNA levels of 89 genes closely associated with Wnt pathway, including five 

"housekeeping genes" in 96-well plates following the manufacturer's protocol. 

Cycle threshold values were calculated for all the genes present on the array and 

normalized using the average of 5 housekeeping genes (ACTB, B2M, HPRT1, 

RPLP0 and GAPDH). RT2 Profiler PCR Array Data Analysis was represented by 

clustergrams based on Pearson’s Correlation of 2^ (ΔCt). 

 

Animals and tumor model 

Mice were obtained from Charles River Laboratories (Milan, Italy) and 

maintained according to institutional guidelines of the University of Palermo 

animal care and committee. Dissociated CRC sphere cells (5x105) were implanted 

subcutaneously (s.c.) with matrigel GF reduced (BD Biosciences) at a 1:1 ratio in 

a total volume of 100 µL into the flank of five-to-six week old NOD-SCID mice. 

Tumor mass size was calculated according to the formula: (π/6) x larger diameter 

x (smaller diameter)2. When tumors were palpable the mice were treated three 

times a week by intraperitoneal injection of BMP7v for three weeks at different 

concentrations: 50, 5, 0.5 and 0.05µg/kg, and PBS as control, in order to test the 

efficacy dose.  

Then the other set of mice were treated three times a week for three weeks by 

intraperitoneal injection (IP) of PBS, as control, BMP7v (50µg/kg) alone or in 

combination with 5FU and Oxaliplatin. (5-FU: 15 mg/kg/day for 2 days a week 

for 3 weeks; and Oxa: 0.25 mg/kg once a week for 3 weeks). 

Histological examination, analysis of differentiation, incidence of cell death and 

mitotic index were determined on tumor xenografts using AC133, CK20, TUNEL 

and Ki67 staining. 

To test the BMP7v activity as second line treatment, when the tumor xenografts 

obtained as previous described, were palpable, the standard adjuvant treatment, 

Oxaliplatin (0.25 mg/kg once a week for 3 weeks) and 5-FU (15 mg/kg/day for 2 

days a week for 3 weeks) was performed intraperitoneally on eight mice for 

group. After this first line of treatment with 5FU plus Oxaliplatin alone for two 

weeks when tumor re-growth, the follow IP treatments were performed: PBS, 

5FU+Oxaliplatin, BMP7v and BMP7v+5FU+Oxaliplatin, in a standard protocol 
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for three weeks. The tumor xenografts obtained after 13 weeks from injection 

were used for histological examination. 

 

Endothelial tube formation assay 

The effects of BMP7v on in vitro endothelial tube formation were evaluate using 

HUVEC, obtained from Lonza (Clonetics, Verviers, Belgium) and grown in 

endothelial growth medium (EGM) according to supplier’s information. HUVEC, 

pretreated with BMP4 (2nM R&D System) and BMP7v (100ng/ml) for 24, 48, 72 

hours, were plated (70,000 cells/well) in Matrigel-coated 24 well plate (BD 

Bioscience), and incubated up to 5 hrs at 37°C. Endothelial tube formation, 

evaluated by phase-contrast microscopy, was photographed at different time 

points and the cables length was measured manually with the IMAGE-J software. 

 

Statistical analysis 

Data were expressed as mean ± standard deviation of the mean. 

Immunohistochemical  scores were calculated from the positivity observed on 

paraffin-embedded engrafted tumor tissues counted by two independent 

observers.  

Statistical significance was determined by Analysis of Variance (one-way or two-

way) with Bonferroni post-test. Results were considered significant when p values 

were less than 0.05. * indicates P<0.05, ** indicate P<0.01, ***  indicate 

P<0.001. 
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RESULTS 

 

BMP7 is widely expressed in colo-rectal cancer tissue but not in colo-rectal 

cancer stem cells 

Human colo-rectal cancer (CRC) specimens were provided by the Surgical 

Department of Policlinico “Paolo Giaccone”, Palermo.  

These tumors and their normal counterpart (obtained from the edge of the resected 

specimen) were analysed for BMP7 expression with immunohistochemistry: CRC 

specimens widely expressed BMP7, compared to their normal counterpart 

(Fig.4A).  

Expression of this cytokine was also analysed with immunofluorescence (IF) on 

paraffin embedded cancer tissue: BMP7 was localized along the upper part of the 

crypt, with the exception of the base of the crypt where stem cells reside (Fig.4B). 

These findings prompted us to investigate whether there is differential expression 

of BMP7 between cancer stem cells (CSCs) and their differentiated counterpart 

using our in vitro models, i.e. sphere cells and sphere-derived adherent cells 

(SDACs), respectively. While SDACs displayed high levels of BMP7 expression, 

sphere cells showed very low positivity.  

We also analyzed BMP7 expression in CR-CSCs sorted for CD133 positivity, a 

known CSC marker: IF analysis showed that BMP7 is exclusively expressed by 

CD133- cells (Fig.4C-D). 

All in vitro experiments shown in this report were conducted in three different cell 

lines. The images are from one cell line, but are representative of results obtained 

for all three cell lines. 

These data suggest a correlation between BMP7 expression and differentiation of 

CRC cells, and therefore a possible role in CSCs differentiation.  
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Fig.4. CD133+ CR-CSCs do not express BMP7. A) Immunohistochemical analysis for BMP7 on 
normal and tumoral colon paraffin-embedded sections. Nuclei are revealed by hematoxylin 
staining (blue). B) Confocal microscopy analysis of BMP7 (green) on CRC paraffin-embedded 
tissue. Nuclei were counterstained with Toto-3 (blue). C) Representative images of 
immunofluorescence analysis of BMP7 (green) in sphere cells (Spheres) and SDACs. Nuclei were 
counterstained with Toto-3 (blue). D) Representative images of immunofluorescence analysis of 
BMP7 (green) on CD133- and CD133+ CRC cells sorted from the sample as in C. Nuclei were 
counterstained by Toto-3 (blue). 

 

 

 

BMP7v in vitro administration activates the BMP signaling pathway in CR-

CSCs. 

To evaluate the possible use of BMP7v as a differentiative agent of CSCs, we 

analysed the expression of BMP receptors through real-time PCR and IF analysis.  

Both CRC sphere cells and SDACs expressed BMPR1A, BMPR1B and BMPR2 

(Fig.5A). 
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In order to verify the BMPRs functionality in CR-CSCs, we evaluated p-SMAD1-

5-8 localization with IF after treatment with BMP7v (100ng/ml): activation of the 

BMP7 pathway was confirmed by the prevalent p-Smad1,5,8 nuclear 

translocation following treatment (Fig.5B-C).  

Western blot analysis of downstream targets to the BMP7 pathway are consistent 

with these findings (Fig.5D). 

These results indicate that exogenous addition of BMP7v can activate the 

canonical BMP signaling pathway in CR-CSCs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

SD
AC

s
Sp

he
re

s

BMPR IA BMPR IB BMPR II

PB
S

90 min

48 hrs

BM
P7
v

pSmad 1,5,8

0 min

B 

0

0.2

0.4

0.6

0.8

Spheres SDACs

re
la

tiv
e 

m
R

N
A

 le
ve

l 
(B

M
PR

1A
/G

A
PD

H
 1

0^
-2

)

0

0.5

1

1.5

Spheres SDACs

re
la

tiv
e 

m
R

N
A

 le
ve

l 
(B

M
PR

1B
/G

A
PD

H
 1

0
-̂5

)

0

0.5

1

1.5

2

Spheres SDACs
re

la
tiv

e 
m

R
N

A
 le

ve
l 

(B
M

PR
2/

G
A

PD
H

 1
0

-̂2
)

A 

C 



 36 

 

 

 

 

 

 

 

 

 
Fig.5. BMP7v administration activates the canonical signaling pathway in CR-CSCs. A) 
Relative quantification of BMPR1A, BMPR1B, and BMPR2 mRNA expression levels in sphere 
cells (Spheres) and SDACs. B) Representative images of immunofluorescence analysis of 
BMPR1A, BMPR1B, and BMPR2 (green) in sphere cells and SDACs. Nuclei were counterstained 
with Toto-3 (blue). C) Representative images of confocal microscopy analysis of pSmad1,5,8 
(green) in sphere cells, untreated or treated with BMP7v for 90 minutes or 48 hours. Nuclei were 
stained with Toto-3 (blue). D) Densitometric analyses of protein expression levels of AKT, p-
AKT, PTEN , GSK3β and p- GSK3β in sphere cells, untreated or exposed to BMP7v for 48 hours, 
and SDACs. Loading control was assessed by β-actin.  

 

 

 

BMP7v induces in vitro differentiation in CR-CSCs and reduces the 

percentage of CD133+ cells 

To evaluate the role of BMP7v in inducing differentiation, we tested whether 

sphere cells could be forced to differentiate upon exposure to the morphogenetic 

factor. CRC sphere cells were cultured in the presence of BMP7v or 10% FBS. 

BMP7v alone induced a rapid differentiation of CR-CSCs, evaluated by plastic 

adherence and acquisition of the typical differentiated appearance, i.e. large size 

and polygonal shape (Fig.6A).  

Accordingly, BMP7v treatment reduced the percentage of CD133+ and increased 

CK20 expression in CR-CSCs (Fig.6B-C). 

Reduction of the CD133+ cells following 48 hours of BMP7v treatment was also 

confirmed by flow cytometry (Fig.6D). 
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Fig.6. BMP7v promotes in vitro differentiation of CR-CSCs. A) Representative images of 
phase-contrast microscopy of dissociated sphere cells, untreated or treated with BMP7v up to 18 
days. B) Percentage of CK20+ sphere cells, untreated or treated with BMP7v up to 18 days. C) 
Percentage of CD133+ sphere cells, untreated or treated with BMP7v. D) Representative flow 
cytometry profile of CD133 expression in sphere cells, untreated or treated with BMP7v for 48 
hours. 
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BMP7v reduces self-renewal of CR-CSCs  

To evaluate the effect of BMP7v treatment on CR-CSCs self renewal capacity, we 

performed the in vitro colony forming assay. BMP7v, given for 48 hours, reduced 

the CR-CSCs sphere forming capacity.  

We also tested the effect of combining BMP7v to standard chemotherapy 

(5FU+Oxa): this treatment resulted in a more significant reduction of clonogenic 

capacity compared to chemotherapy alone in CR-CSCs. 

To further test the CR-CSC sensibility to BMP7v, one week after the first step of 

treatment, the cells were re-treated: this treatment reduced the colony forming 

efficiency even more drastically (Fig.7A-B).  

As p21 seems to be a key regulator of CR-CSC self renewal, we also evaluated its 

cellular localization with IF: BMP7v treatment induces depletion of nuclear p21, 

confirming the induction of cell cycle progression, with consequent cancer stem 

cell clone exhaustion (Fig.7C). 

We showed that BMP7v treatment not only reduces CR-CSCs self-renewal but 

also potentiates the effect of standard chemotherapy. 
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Fig.7. BMP7v reduces self renewal of CR-CSCs. A) Representative colony forming assay of 
sphere cells, untreated or treated with 5FU+Oxaliplatin (chemo), BMP7v alone (BMP7v), 
BMP7v+5FU+Oxaliplatin (BMP7v+chemo), for 48 hours; these treatments were performed once 
as a 1st line or repeated after one week as a 2nd line of treatment. B) Percentage of colony forming 
efficiency in sphere cells, untreated or treated as in A. C) Representative images of confocal 
microscopy analysis of p21 (green) in sphere cells, untreated and treated with BMP7v for 48 hrs. 
Nuclei were stained with Toto-3 (blue). 

 

 

BMP7v induces CR-CSCs to exit from quiescence 

We then evaluated the effect of BMP7v on cell cycle distribution. FACS analysis 

revealed that 48 hours of BMP7v treatment, unlike to BMP4, induced a 

significant increase in the percentage of cells in the G2/M phase, with a reduction 

of cells in G0/G1.  

Interestingly, the BMP7v induced cell cycle distribution in sphere cells was 

similar to the baseline SDACs profile (Fig.8A-B). 

To evaluate the effect of BMP7v on proliferation of CR-CSCs, we performed 

PKH26 staining: treatment induced a reduction of PKH26 high cells, confirming 

the induction of proliferation in a time dependent manner (Fig.8C-D). 

These data suggest that, in addition to differentiation induction, BMP7v treatment 

displays an unexpected proliferative effect.  

This cytokine drives different cell subpopulations present in sphere cultures to 

exit from the quiescent state, characteristic of stem cells, thus making them more 

sensitive to standard chemotherapies. 

Taken together, these in vitro results indicate that BMP7v treatment is able to 

reduce stemness of CR-CSCs.  
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Fig.8. BMP7v induces CR-CSCs to exit from quiescence. A) Representative cell-cycle profile 
of sphere cells, untreated or treated with BMP7v for 48 hours, and SDACs. B) Cell-cycle 
distribution of sphere cells treated as in A. C) Representative PKH-26 profile of sphere cells, 
untreated or treated with BMP7v up to 14 days. D) Percentage of PKH-26 high cells treated as in 
C. 

 

 

BMP7v reduces the mesenchymal CR-CSCs traits 

Given the link between CSCs, epithelial-mesenchymal transition (EMT) and 

metastasis, we tested the effect of BMP7v treatment on CR-CSCs invasive 

capacity, using a transwell migration assay: BMP7v drastically reduces CR-CSC 

motility and invasiveness (Fig.9A).  
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We then analysed expression of EMT markers, such as E-caderin, Vimentin and 

beta-catenin: BMP7v suppressed the mesenchymal trait, inducing E-cadherin 

expression and cytoplasmic localization of beta-catenin, while silencing Vimentin 

(Fig.9B). 

Given the role of the Wnt pathway in EMT, a Wnt signaling trascriptional profile 

was performed on CR-CSCs after 48 hours of BMP7v treatment to verify its 

action on regulation of Wnt targets: results revealed a strong regulation of Wnt 

targets involved in stemness and migration.  

BMP7v induced upregulation of Wnt inhibitors such as SFRP2 and Axin2, 

associated with down regulation of stem cell markers, such as SOX2 e Nanog. In 

addition, the treatment reduced expression of migration regulator genes, such as 

Met and MMP2 and 7 (Fig.9C).  

These results confirm the induction of differentiation via the Wnt pathway. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9. BMP7v reduces the mesenchymal CR-CSCs traits. A) Invasion assay of sphere cells, 
untreated or treated with BMP7v for 48 hours at different time points up to 96 hrs. B) 
Representative images of confocal microscopy analysis of E-cadherin, Vimentin and Beta-catenin 
(green) in sphere cells, untreated or treated as in A. Nuclei were stained with Toto-3 (blue). C) 
Wnt target card clustergram on sphere cells untreated or treated as in A. 
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BMP7v in combination with standard chemotherapy reduces CR-CSCs 

tumor growth in vivo 

To evaluate the effects of BMP7v on CR-CSCs tumor growth in vivo, different 

concentrations were administered intraperitoneally (IP) three times a week.  

Three to four weeks after subcutaneous injection of sphere cells, palpable tumors 

were observed in immuno-compromised mice. BMP7v treatment was started at 

different doses listed below: 50, 5, 0.5 and 0.05µg/kg. 

The results showed a reduction in tumor size and a notable necrotic effect 

confirmed by Azan Mallory staining on paraffin embedded xenografts sections: 

these effects were more pronounced in the 50µg/kg group (Fig.10A-C). 
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Based on these findings, we decided to use 50µg/kg in combination with standard 

chemotherapy, to evaluate whether BMP7v could enhance its cytotoxic effect in 

vivo.  

Tumors were obtained injecting Smad4-wt, Smad4-null and Smad4-null PI3K/CA 

sphere cells. They were then exposed to Oxaliplatin plus 5-FU alone or in 

combination with intraperitoneal injection of PBS or BMP7v. 

Combined treatment resulted in a considerable reduction of tumor growth in 

Smad4-wt and Smad4-null, while it was less effective in Smad4 null harboring 

PI3KCA mutation.  

BMP7v alone gave a more pronounced growth delay than standard chemotherapy 

(Fig.10D). 

Histological analysis of xenografts treated with BMP7v plus chemotherapy 

showed an high percentage of dying cells and large areas of fibrosis, highlighted 

by TUNEL staining (Fig.10E). 

BMP7v plus chemotherapy treated tumors showed lower expression of CD133, 

CD166, β-catenin, Lgr5 and Ki67, with a significant increase of CK20 compared 

to control, suggesting anti-proliferative and pro-differentiative effects in vivo 

(Fig.10E-L).  

Our findings confirm the rationale for combining a pro-differentiation agent with 

chemotherapy drugs, supporting the use of BMP7v in colorectal cancer patients. 
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Fig.10. BMP7v in combination with standard chemotherapy reduces CR-CSCs tumor 
growth in vivo. A) Size of subcutaneous tumors following injection of sphere cells. When tumor 
xenografts were palpable immuno-compromised mice were treated intraperitoneally three times a 
week with BMP7v (50, 5, 0.5 or 0.05 ug/Kg) or with PBS as control. B) Percentage of necrosis 
evaluated on paraffin-embedded sections of xenografts, untreated or treated as in A. C) 
Representative Azan-Mallory staining on paraffin embebbed xenografts untreated (PBS) or treated 
as in A. D) Size of subcutaneous CRC xenografts derived from injection of sphere cells. Mice 
were untreated (PBS) or treated intraperitoneally with BMP7v (50ug/Kg), 5-FU plus Oxaliplatin 
alone or in combination with BMP7v. The arrows indicate the starting point of treatment. Data 
were obtained on three different cell lines .E) Immunohistochemical analysis of CD133 and 
TUNEL (dark blue) revealed by AEC (red) on paraffin-embedded sections of xenografts obtained 
as in D. Nuclei are revealed by hematoxylin staining (blue). Arrowheads indicate TUNEL positive 
cells. F) Percentage of CD133+ cells evaluated on paraffin-embedded sections of tumors, untreated 
(PBS) or treated as in D. G) Percentage of TUNEL positive cells evaluated on paraffin-embedded 
sections of tumors untreated (PBS) or treated as in D. H) Immunohistochemical analysis of 
CD166, beta-catenin and Lgr5 revealed by AEC (red) on paraffin-embedded sections of xenografts 
obtained as in D. Nuclei are revealed by hematoxylin staining (blue). Arrowheads indicate CD166, 
beta-catenin and Lgr5 positive cells. I) Immunohistochemical analysis of Ki67 revealed by AEC 
(red) on paraffin-embedded sections of xenografts obtained as in D. Nuclei are revealed by 
hematoxylin staining (blue). Arrowheads indicate Ki67 positive cells. (upper: low magnification; 
lower: high magnification) J) Percentage of Ki67 positive cells evaluated on paraffin-embedded 
sections of tumors untreated (PBS) or treated as in D. K) Immunohistochemical analysis of CK20 
revealed by AEC (red) on paraffin-embedded sections of xenografts obtained as in D. Nuclei are 
revealed by hematoxylin staining (blue). (upper: low magnification; lower: high magnification) L) 
Percentage of CK20 positive cells evaluated on paraffin-embedded sections of tumors, untreated 
(PBS) or treated as in D. 

 

 

BMP7v has a strong anti-angiogenic effect in vivo 

Since BMP7v treatment resulted in a considerable growth delay associated with a 

potent necrotic effect, we investigated further its anti-angiogenic potential. 

Xenografts were exposed to BMP7v or BMP4, another member of the BMP 

family with an anti-tumour activity.  
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Histological examination showed a significant reduction of human CD31 and 

VEGFR2 expression following BMP7v, but not BMP4 treatment (Fig.11A-C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PBS BMP7v
C
D
31

VE
G
FR
2

PC
A 

0

50

100

150

200

250

C
D

31
 M

VD
 (n

um
be

r/m
m

2 )
 

0

50

100

150

200

250

300

350

VE
G

FR
2 

 M
VD

 (n
um

be
r/m

m
2 )

B 

PBS BMP4

C
D
31

VE
G
FR
2

C 



 49 

We also performed an endothelial tube formation assay using endothelial cells 

from the umbilical vein (HUVEC): BMP7v affected the ability to form vessels 

after 48 hrs of treatment, while this was not observed for BMP4 (Fig.11D-F). 

These findings confirm a specific anti-angiogenic effect of BMP7v in colorectal 

cancer xenografts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.11. BMP7v has a strong anti-angiogenic effect. A) Immunohistochemical analysis of CD31 
and VEGFR2 revealed by AEC (red) on paraffin-embedded section of xenografts obtained after 
PBS or BMP7v treatment (50ug/Kg). Nuclei are revealed by hematoxylin staining (blue). B) 
Percentages of CD31 and VEGFR2 expression evaluated on paraffin embedded sections of tumors 
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treated as in A. C) Immunohistochemical analysis of CD31 and VEGFR2 revealed by AEC (red) 
on paraffin-embedded section of xenografts obtained after intra-tumoral injection of PBS or BMP4 
loaded beads. Nuclei are revealed by hematoxylin staining (blue). D) Representative images of 
phase-contrast microscopy of endothelial tube formation assay. Huvec cells, untreated (EGM 
medium as control) or pretreated with BMP7v (100ng/ml) at different time points. E) Measure 
(pxl) of total tube length obtained with Huvec treated as in D. F) Representative images of phase-
contrast microscopy of endothelial tube formation assay. Huvec cells untreated (EGM medium as 
control) or pretreated with BMP4 (2nM) and BMP7v (100ng/ml) at different time points.  

 

 

BMP7v as second-line treatment shows significant anti-tumor activity in 

xenografts refractory to chemotherapy 

To test the activity of BMP7v as second line treatment, first line treatment with 

5FU plus Oxaliplatin was administrated for two weeks. After tumour re-growth, 

mice were treated with: PBS, 5FU+Oxaliplatin, BMP7v or 

BMP7v+5FU+Oxaliplatin, for three weeks. BMP7v alone showed greater efficacy 

compared to combined treatment in tumor xenografts previously treated with 

standard chemotherapy (Fig.12A). 

Hystological examination of xenografts, obtained 13 weeks after injection, 

revealed a strong necrotic effect. This was also confirmed with Azan Mallory 

staining (Fig.12B-C). 

These results further support the possible use of BMP7v in colorectal cancer, 

providing evidence for its efficacy in pre-treated patients. 
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Fig.12. BMP7v shows an anti tumor activity as second line treatment in xenografts 
refractory to chemotherapy. A) Size of subcutaneous CRC xenografts derived from injection of 
sphere cells. Mice were untreated (PBS) or treated intraperitoneally with 5-FU+Oxaliplatin for two 
weeks. After tumor re-growth mice were treated with PBS, BMP7v (50ug/Kg), 5-FU+Oxaliplatin 
alone or combination. B) H&E staining of paraffin-embedded sections of xenografts obtained as in 
A. C) Percentage of necrosis evaluated on paraffin-embedded sections of xenografts untreated 
(PBS) or treated as in A.  
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DISCUSSION AND CONCLUSIONS 

 

Current therapies mostly hit the differentiated cells, sparing the tumorigenic 

population which is responsible for the tumor relapse. Although clinical protocols 

are traditionally directed against the bulk of tumor cell population, increasing 

evidence suggests that curative therapies can be established only by targeting the 

subpopulations of tumor cells with tumorigenic potential. Several reports indicate 

that chemotherapy is more active on differentiated cells and generally ineffective 

against the tumorigenic population. In fact, traditional debulking agents often fail 

to produce long-term clinical remission and tumor relapses as a result of the 

inability to target cancer initiating cells (151). 

The induction of differentiation affecting the self-renewal ability of CSCs 

represents an alternative way to inhibit tumor growth and to sensitize CSCs to 

conventional chemotherapy drugs.  

According to recent publications, the tumor-initiating cells have stem like 

characteristics such as abilities of self-renewal, differentiation and invasion. 

Several research groups have identified tumorigenic populations with stem-like 

features in CRC (28-30, 73, 76, 80). These cellular subpopulation is able to 

promote tumor growth and is considered as an optimal cellular target to obtain 

effective therapies.  

Many reports suggest that the balance between self-renewal and differentiation in 

normal stem cells results deregulated in CR-CSCs. 

Indeed, the activation of Wnt signaling plays a key role in maintaining the normal 

stem cell population in the gut and promoting self-renewal of CR-CSCs (153-156) 

but also the cytokines, released in the microenvironment, contribute significantly 

to maintain the undifferentiated status and clonogenic activity of the tumorigenic 

cells (157). 

Thus, the differentiation therapy could represent a considerable therapeutic option 

for the treatment of colon cancer, inhibiting CSCs self-renewal ability and 

eradicating the tumor-driving cell population. Although this approach does not 

directly kill the cancer cells, it could make the conventional therapies more 

effective in the eradication of the tumor bulk.  
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For years retinoic acid has been used in the treatment and differentiation of 

promyelocytic leukemia, thus validating this concept (158). The pro-

differentiative effect of Bone Morphogenetic Protein 4 (BMP4) has been already 

proposed as a therapeutic option for human glioblastoma and colorectal cancer 

(147, 158-160) 

Moreover these treatments enhanced the antitumor activity of chemotherapeutic 

drugs, whose concomitant administration is able to induce a complete therapeutic 

response, also after treatment interruption. Thus supporting the combined use of 

differentiative and cytotoxic agents for cancer therapy. Accordingly, the induction 

of differentiation, affecting the self-renewal ability of CSCs, represents an 

alternative way to inhibit tumor growth and to sensitize CSCs to conventional 

chemotherapy.  

On the basis of these data, this work proposed to investigate the role of a stable 

BMP7 variant (BMP7v) on CSCs purified from CRC sample, in order to make 

these cells more sensitive to conventional chemotherapy drugs and to develop a 

new treatment protocol easily tested in preclinical models to design a future 

appropriate clinical trials. 

This study identifies, the use of BMP7v, as new potential therapeutic approach 

that activates CRC differentiation program. As previously described, the pro-

differentiation activity of BMPs, is perfectly detectable in normal gut in which 

these molecules are expressed following a decreasing gradient from the intestine 

lumen up to the crypt, thus limiting the stem cell expansion at the bottom of the 

crypts promoting the intestinal epithelial cell differentiation along the upper part 

of the crypts (113, 114).  

The present data show that all CRC specimens analysed, widely express BMP7, 

compared to their normal counterpart and its expression is limited to the 

differentiated progeny of CRC epithelial cells, which constitute the major 

population of the tumor mass. Here we demonstrated that BMP7 is localized 

along the upper part of the crypt, with the exception of the base of the crypt where 

stem cells reside. On the contrary, its expression is undetectable in the CD133+ 

CR-CSCs fraction. BMP7 results exclusively expressed by CD133- cells or in 

their differentiated counterpart, the sphere-derived adherent cells (SDACs). 

Although both CRC sphere cells and SDACs express BMPR1A, BMPR1B and 
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BMPR2. These results suggest a correlation between BMP7 expression and 

differentiation of CRC cells, and therefore a possible role in CSCs differentiation.  

The activation of the BMP signalling pathway was confirmed by the prevalent p-

Smad1,5,8 nuclear translocation following BMP7v treatment, as confirmed by 

analysis of downstream protein targets. Accordingly, BMP7v treatment increased 

PTEN levels inhibiting PI3K/AKT survival pathway confirming its differentiative 

role on CR-CSCs (161). 

BMP7v treatment induced a rapid differentiation of CR-CSCs, morphologically 

evaluated by plastic adherence and acquisition of the typical differentiated 

phenotype, into large and polygonal colonic cells. Consequently, this treatment on 

CR-CSCs reduced the percentage of CD133+ subpopulation increasing the CK20 

expression, a typical markers of epithelial colonic differentiation. 

BMP7v, also reduce the sphere forming capacity, and maintain this capacity also 

after a first step of treatment, showing that this second treatment reduces the 

colony forming efficiency even more drastically. Moreover BMP7v not only 

decreases CR-CSCs self-renewal but also potentiates the effect of standard 

chemotherapy. 

Taken together, these in vitro results indicate that this cytokine drives the different 

cell subpopulations present in sphere cultures to exit from the quiescent state, 

characteristic of stem cells, thus making them more sensitive to standard 

chemotherapies, as showed by cell cycle analysis. The BMP7v treatment in fact 

increased the percentage of cells in the G2/M phase, reducing the cells in G0/G1, 

confirming that BMP7v treatment is able to reduce CR-CSCs stemness trait.  

According to these data the treatment reduces CR-CSC motility and invasiveness, 

underlining the link between CSCs, epithelial-mesenchymal transition (EMT) and 

metastasis, as showed by the analysis of putative EMT markers: BMP7v 

suppressed the mesenchymal trait, inducing E-cadherin expression and 

cytoplasmic localization of beta-catenin, reducing Vimentin expression. 

To confirm the correlation between BMP and Wnt pathways suggested by western 

blotting analysis a Wnt signaling trascriptional profile was performed on CR-

CSCs after 48 hours of BMP7v treatment: BMP7v induced up-regulation of Wnt 

inhibitors such as SFRP2 and Axin2, associated with down regulation of stem cell 

markers, such as SOX2 e Nanog. In addition, the treatment reduced expression of 
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migration regulator genes, such as Met and MMP2 and 7. These results confirm 

the induction of differentiation via the Wnt pathway. 

The clinical results obtained in leukemia, sustain the combination of a pro-

differentiation agent with chemotherapy, suggesting the synergic action of 

BMP7v in combination with conventional drugs used in the management of CRC 

disease. BMP7v in combination with standard chemotherapy reduced CR-CSCs 

tumor growth in vivo as showed by strong reduction of tumor size, and by lower 

expression of CD133, CD166, beta-catenin, Lgr5 and Ki67, with a significant 

increase of CK20 compared to control, suggesting anti-proliferative and pro-

differentiative effects in vivo. 

Our findings confirm the rationale for combining a pro-differentiation agent with 

chemotherapy drugs, supporting the use of BMP7v in colorectal cancer patients. 

Since BMP7v treatment resulted in a notable necrotic effect, paraffin embedded 

xenografts sections were analyzed for CD31 and VEGFR2 expression. 

The histological examination showed a significant reduction of human CD31 and 

VEGFR2 expression following BMP7v treatment, but not BMP4 treatment. This 

anti-angiogenetic effect was confirmed through an endothelial tube formation 

assay. These findings confirm a specific anti-angiogenic effect of BMP7v in 

colorectal cancer xenografts 

BMP7v also showed a significant anti-tumor activity in xenografts refractory to 

chemotherapy, revealing a strong necrotic effect and a greater efficacy compared 

to combined treatment in tumor xenografts previously treated with standard 

chemotherapy. 

These results also support the possible use of BMP7v in colorectal cancer, 

providing evidence for its efficacy also in pre-treated patients.  

Concluding, the clinical benefit obtained by the combination of a 

prodifferentiative agent with chemotherapy led us to propose the combination of 

BMP7v with current standard chemotherapy regimens for CRC further supporting 

the usefulness of CSCs differentiation as a CRC therapy. 
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