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Standard quantum mechanics is viewed as a limit of a cut system with
artificially restricted dimension of a Hilbert space. Exact spectrum of cut
momentum and coordinate operators is derived and the limiting transi-
tion to the infinite dimensional Hilbert space is studied in detail. The
difference between systems with discrete and continuous energy spectra is
emphasized. In particular a new scaling law, characteristic for nonlocalized,
states is found. Some applications for supersymmetric quantum mechanics
are briefly outlined.
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1. Introduction

Recently there has been a further progress in understanding a family
of quantum mechanical systems emerging from the dimensional reduction
of supersymmetric gauge theories first studied in [1, 2]. Resulting models,
even though much simpler than the original field theories, can be rather
complex and with nontrivial solution. In the programme proposed in [3],
the Hamiltonian is diagonalized in the limited Hilbert space providing the
complete spectrum of the system with a cutoff. Then the cutoff is gradually
removed and convergence towards the exact (i.e. the infinite Hilbert space)
spectrum is observed. Interestingly, even for quite complex systems with 15
degrees of freedom the convergence occurs before the size of the basis grows
out of control [4–6].

Above method, which is essentially numerical, raises a number of theo-
retical questions about exact solutions of quantum mechanics in a limited
Hilbert space. Some of them will be addressed in this paper. In the next
section we define the cutoff as the maximal number of harmonic oscillator
quanta, N . Then we solve analytically for the spectrum of the momentum
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and coordinate operators at arbitrary finite N . In Section 4 the asymptotic
behaviour for large N is derived and the new scaling law required to re-
cover the infinite Hilbert space limit is formulated. The universality of the
above scaling and similarity of the whole procedure to the familiar contin-
uum limit in lattice field theories is discussed. It is also shown that present
results prove the assertion of Ref. [3] that the continuous spectrum in quan-
tum mechanics gives rise to the power-like dependence on the cutoff. On the
other hand, it was found numerically, that the eigenenergies of the discrete,
localized states have much faster convergence. This correlation between the
nature of the spectrum and the cutoff dependence is very useful in study-
ing supersymmetric systems where the distinction between continuous and
discrete spectra is an important issue [7, 8].

A general idea of increasing the number of states in a trial wave function
is of course, not new and is closely connected with the classical variational
calculations1. However we are not aware of any systematic studies of the
cutoff dependence based on the exact solutions of cut systems, especially in
the context of contrasting the discrete and continuous spectra.

2. A cut Fock space

Every quantum Hamiltonian can be written in terms of the creation and
annihilation operators of a simple, normalized harmonic oscillator

H(Q,P ) = H(a, a†) , (1)

where

Q =
a + a†√

2
, P =

a − a†

i
√

2
, [a, a†] = 1 . (2)

And similarly for the fermionic degrees of freedom if required. It follows
that a large class of polynomial Hamiltonians has a simple representation in
the eigenbasis {|n〉} of the occupation number operator a†a

|n〉 =
a†

n

√
n!
|0〉. (3)

Apart from the theoretical simplicity, this basis has an important practical
advantage. It is labeled by a discrete index n and consequently is well suited
for numerical applications.

Therefore a straightforward method for numerical solution of any quan-
tum problem consists of: (a) limiting the basis, Eq. (3), to e.g. n ≤ N ;
(b) calculating the finite matrix representation of the Hamiltonian (1) in

1 For some applications to gauge systems see e.g. [9–12].
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such a cut basis; and (c) numerically diagonalizing above finite matrix to
obtain complete spectrum and the eigenstates of the system. Moreover,
changing the cutoff N provides the model independent way to estimate the
systematic errors introduced by limiting the number of allowed quanta.

It is evident that theoretical understanding of the cutoff dependence for
various quantum mechanical systems would further extend applicability of
this approach. In particular, the knowledge of the asymptotic behaviour of
the eigenvalues of a cut Hamiltonian for large N could be used to perform
quantitative extrapolation to the infinite cutoff limit. We begin studying
these questions with the simplest building blocks of any Hamiltonian, i.e.
the P and Q operators.

3. The spectrum of cut momentum and coordinate operators

Standard expressions for the matrix elements of the P and Q operators
in the occupation number basis read

〈n | P | k〉 =
1

i

√

k

2
δn,k−1 −

1

i

√

k + 1

2
δn,k+1 , (4)

〈n | Q | k〉 =

√

k

2
δn,k−1 +

√

k + 1

2
δn,k+1 . (5)

In the Hilbert space, limited to maximum N quanta, P and Q become
(N + 1) × (N + 1) matrices. Hence, the eigenvalues, λ, of e.g. momentum,
are given by the zeros of the following determinant

IN+1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−η
√

1 0 . . .

−
√

1 −η
√

2 . . .

0 −
√

2 −η . . .
. . . . . .

. . . . −η
√

N

. . . . −
√

N −η

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (6)

where η = i
√

2λ. Laplace expansion gives, for the simpler variable Jn =
In/n!, the following recursion relation

(n + 2)Jn+2 + ηJn+1 − Jn = 0 , J1 = −η , J2 =
1

2

(

η2 + 1
)

, (7)

which is closely related to the well known recursion for the Hermite polyno-
mials. We find

In(λ) = 2−
n

2 inHn(−λ) . (8)
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It follows that the spectrum of the momentum in the cut Hilbert space
with maximum N quanta is given by the zeroes of the Hermite polynomials
HN+1(z)

pN
m = z(N+1)

m , where HN+1

(

z(N+1)
m

)

= 0 , m = 1, 2, . . . , N + 1 . (9)

This constitutes the main result of present paper.
Calculations for the coordinate operator Q are very similar. Resulting

eigenvalues, qN
m , are identical

qN
m = z(N+1)

m , (10)

which could have been expected from the duality between P and Q. It is
important that this duality is not violated by our cutoff. Of course, the
eigenvectors of P and Q are different. Since the eigenvalues are symmetric
with respect to the origin, we will use only positive ones. Hence, we introduce
a slightly different enumeration

pN
0 < pN

1 < pN
2 < . . . < pN

m < . . . ≤ pN
N/2 , N − even , (11)

pN
1 < pN

2 < . . . < pN
m < . . . ≤ pN

(N+1)/2 , N − odd . (12)

which will be used in the next section.

4. Continuum limit — scaling

Restricting the infinite Hilbert space by artificially cutting off the basis
of the Fock states has some resemblance to the familiar discretization in a
lattice field theory. In both situations a cutoff makes a problem numerically
tractable and in the end it has to be removed to reach a physical description
of the continuous world. In lattice calculations this is much more delicate due
to the infinite number of degrees of freedom, and must be accompanied with
a nontrivial adjustment (scaling) of bare parameters. Interestingly, similar
phenomenon is observed when we increase the size of the Hilbert space in
our cut quantum mechanics in order to recover standard quantum system.
To see this, consider the large N limit of the spectrum of the momentum
operator derived in the previous section. From the known asymptotics of
the roots of Hermite polynomials [13] we obtain (see Appendix)

pN
m =

πm√
2N + 3

√

1 +
π2m2 − 3

2

3(2N + 3)2
+ O

(

N−4.5
)

, (13)

pN
m =

π
(

m − 1
2

)

√
2N + 3

√

1 +
π2
(

m − 1
2

)2 − 3
2

3(2N + 3)2
+ O

(

N−4.5
)

, (14)
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with m and N as in (11) and (12) respectively. Therefore an infinite N limit
at fixed m is trivial and does not reproduce the spectrum of the P operator in
the infinite Hilbert space. On the other hand varying the “principal quantum
number” m with the cutoff N according to the following prescription

m =

√
2N

π
p , (15)

defines the scaling limit of our quantum system

lim
N→∞

pN
m(N,p) = p , (16)

which reproduces the known spectrum of the momentum for any real eigen-
value p. Because of the above analogy with the lattice approach, the ad-
justment (15) will be called scaling and we will refer to the scaling limit,
Eq. (16), as the continuum limit.

A number of comments is in order here. First, for finite cutoff N , the
N + 1 eigenvalues, Eq. (14), span the interval of the length O(

√
N) and

are separated by the distance O(1/
√

N). When N tends to infinity they
spread out covering the whole real axis and, at the same time, become more
dense approximating any real number p with arbitrary precision. In another
words, limiting the number of quanta can be thought of as regularizing the
system both in the infrared and in the ultraviolet. This means that the
single dimensionless parameter N controls both the continuum limit and
the infinite volume limit at the same time.

Second, the scaling, Eq. (15), is universal, i.e. it applies to the spectrum
of any operator which commutes with P . For example, it was found [14]
that the spectrum of a cut free particle Hamiltonian, H = P 2/2, behaves at
large N as

EN
m =

π2

2

(

m − 1
2

)2

2N + 5
,

EN
m =

π2

2

m2

2N + 5
, (17)

for N even and odd respectively. This implies, together with (15), the
standard spectral relation E(p) = p2/2 in the continuum limit. Note that
the scaling deduced only from the momentum variable was sufficient to derive
the continuum limit of the energy2.

2 Of course, we also needed the solution of the free particle problem in a cut Fock
space.
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Third, this universality should also extend to any scattering problem
in quantum mechanics, that is to less trivial Hamiltonians with continu-
ous spectra, provided the momenta can be defined asymptotically. This
observation is particularly useful for studying nonlocalized solutions of su-
persymmetric systems.

Finally we stress the difference in the cutoff dependence between the
eigenenergies of the localized and nonlocalized states. Results (14) and (17)
prove that for the continuous spectrum the eigenenergies fall as a power of
the cutoff. On the other hand there is a strong numerical evidence that in
the case of the discrete, localized eigenstates the convergence of the eigenen-
ergies is much faster, probably exponential or even stronger. The difference
between the two is so dramatic that it was successfully used to distinguish
between both classes of solutions from the finite N data alone [3–6]. The
scaling (15) applies only to the continuous spectrum. Continuum limit of
the eigenenergies from the discrete spectrum is achieved simply by taking
large N at fixed m.

To conclude this section we derive the form of the large N corrections
to the continuous spectrum. Let us use a slightly more general form of (15)

m =

√
2N

π
p + b , (18)

with arbitrary real b. Inserting Eq. (18) into (14) and regrouping terms
according to their N dependence gives

pN
m = p + π

(

b − 1

2

)

1√
2N

+
1

6
p
(

p2 − 9
) 1

2N

+
π

2

(

b − 1

2

)

(

p2 − 3
) 1

(2N)
3

2

+ . . . . (19)

The parameter b can be used to speed up the convergence. Obviously b = 1/2
is optimal in this case, however this choice is not universal in general. In
fact we readily see this even in our example. For even number of quanta,
Eq. (13), the best choice is b = 0. The same remark applies if one improves

the convergence by replacing
√

2N by, e.g.
√

2N + 3 in (15). Of course, the
limiting value of the momentum is independent of b in agreement with the
universality.
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5. Summary and outlook

Quantum mechanics in a cut Hilbert space is an interesting theoretical
framework admitting a number of exact solutions which, to our knowledge,
have never been obtained before. Apart from its theoretical and pedagog-
ical significance, analytical understanding of the cutoff dependence of the
solutions provides the useful practical tool to study more complex systems.

Scaling found in the spectrum of the cut momentum operator seems to
be a general property of nonlocalized states. It was confirmed in the simple
case of a free particle in one dimension and we are currently extending
this to higher dimensions. Many other applications, with various degree
of complexity, are possible. One of the most interesting is the study of
the scattering states in the family of supersymmetric Yang–Mills quantum
mechanical systems with the flat valleys potentials (SYMQM). Reduced from
the two dimensional space-time (D = 2) theory, SYMQM is essentially the
quantum mechanics of a free particle in three (color) dimensions with a
constraint [6]. Thus it can be readily analyzed with the present method.
The D = 4 system is already nontrivial, revealing both the discrete and
continuum spectrum [3]. Since one can assign a momentum along the valley
to the asymptotic scattering sates, we expect that above scaling should also
work in this case. Recent numerical progress in solving this system in a
cut Hilbert space makes this programme rather feasible now. Finally, in
the most complex D = 10 SYMQM, with its threshold bound state and
the continuum of the scattering states, one can also assign an asymptotic
momentum to these states [15,16]. Hence the momentum scaling found here
should be used in extracting the continuum limit of this model from its cut
formulation.

JW thanks the Theory Group of Pisa University for their hospitality.
This work is supported by the Polish State Committee for Scientific Research
(KBN) under grant no. PB 2P03B09622, during 2002–2004.

Appendix A

Here we will derive the asymptotic form of the zeroes of the Hermite
polynomials Hn for large order n. When n is even they can be obtained
from the following relation [13]

Hn(z) = (−1)
n

2 2n 1

2
n!L

− 1

2
n

2

(z2) , (A.1)

where Lα
n(z2) are the generalized Laguerre polynomials with parameter α.

Then, roots of the Laguerre polynomials are approximated by the first n/2
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roots of the Bessel functions. Let zn
m, t

n

2

m,α and jm,α denote the m-th positive
root of the Hn(z), Ln

2

α(z) and the Bessel function Jα(z), respectively. One

has [13]

t
n

2

m,α =
jm,α

2

4kn

2
,α

(

1 +
2(α2 − 1) + jm,α

2

48kn

2
,α

2

)

+ O(n−5) , (A.2)

where

kn

2
,α =

n

2
+

α + 1

2
. (A.3)

For α = −1
2 , J− 1

2

(z) =
√

2
πz cos(z), hence jα,m = π(m − 1

2), m = 1, 2 . . . , n
2

and kn

2
,α = n

2 + 1
4 . Therefore

(zn
m)2 = t

n

2

m,α =
π2(m − 1

2)2

2n + 1

(

1 +
π2(m − 1

2)2 − 3
2

3(2n + 1)2

)

+ O(n−5) , (A.4)

and the positive roots are

zn
m =

π(m − 1
2)√

2n + 1

√

1 +
π2(m − 1

2 )2 − 3
2

3(2n + 1)2
+ O(n−4.5) . (A.5)

For an odd order, n, analogous relations read

Hn(z) = (−1)
n−1

2 2n(
n − 1

2
)!zL

1

2

n−1

2

(z2) , (A.6)

t
n−1

2

m,α =
jm,α

2

4kn−1

2
,α

(

1 +
2(α2 − 1) + jm,α

2

48kn−1

2
,α

2

)

+ O(n−5) , (A.7)

kn−1

2
,α =

n − 1

2
+

α + 1

2
, (zn

m,α)2 = t
n−1

2

m,α . (A.8)

In this case Jα(z) = J 1

2

(z) =
√

2
πz sin(z), therefore jα,m = πm, m =

0, 1, 2, . . . , n−1
2 , and kn−1

2
,α = n

2 + 1
4 . Then, similar steps as above give

zn
m =

πm√
2n + 1

√

1 +
π2m2 − 3

2

3(2n + 1)2
+ O(n−4.5) . (A.9)
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