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Halloysite clay nanotubes were selectivity modified by adsorbing perfluoroalkylated anionic surfactants
at the inner surface. The modified nanotubes formed kinetically stable dispersions due to the enhanced
electrostatic repulsions exercised between the particles. We proved that the modified nanotubes can be
used as non-foaming oxygen nanocontainers in aqueous media. The gas release from supersaturated dis-
persions can be controlled by external stimuli and system composition. In conclusion, we managed to put
forward an easy strategy to develop smart materials from natural nanoclays, which can endow important
applications like the storage and delivery of gas.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Covalent or non-covalent nanoparticle modification is a well
known strategy to design new target properties. Sustainable nano-
particles are represented by clays available with different shapes,
sizes and surface chemical properties. Most common clay nanopar-
ticles possess a nanolayered morphology, such as kaolin and
montmorillonite. Notwithstanding, there are natural nanoclays
with hollow tubular shape [1,2] of great scientific interest due to
potential applications. Promising nanoclays as nanocontainers
with controlled release properties are imogolite [1]| and natural
halloysite (HNT) [2]. Besides the interesting properties, imogolite
presents a certain toxicity [3]. Halloysite mineral is well known
[4] since 1946 but its application in smart sustainable materials
has been proposed only a few years ago [2]. HNT is abundant, dura-
ble and biocompatible and, furthermore, it is cheap compared to
synthetic nanomaterials with similar morphology. HNT is gener-
ated by rolling-up a kaolin sheet with a still unknown mechanism;
its size ranges between 0.5 and 1 pum in length and between 15 and
100 nm in the inner diameters [2].

The different chemistry of the inner and the outer surfaces makes
HNT a tremendous tool. Being that the external surface is composed
of Si—0-Si groups and the internal surface of a gibbsite-like array of
Al-OH groups, the aqueous acid-base equilibria confer negative and
positive charges, at the outer and inner surfaces respectively, in a
wide pH range [5,6]. Consequently, selective adsorption of ionic
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species may strategically control the charge. The hydrophobic mod-
ification of HNT lumen with anionic surfactant stabilized success-
fully nanotubes in water [7] as a consequence of canceling the
positive charges at the surface due to the entrapment of the anionic
molecule into the HNT lumen generating a large net negative charge.
Nanotube applications have been proposed for controlled release in
healing anticorrosion [8,9], water purification [10], polymer
composites [11,12] and antimicrobial coatings [13]. The covalent
modification of the inner surface generated HNT able to incorporate
more ferrocene than pristine nanoclay [ 14]. To the light of the phase
behaviors of HNT dispersion, those nanoparticles are considered
strategic for fabrication of long-range ordered nano-objects [15].
Thus, development of tube-like materials with tunable properties
is one of the most scientific challenges.

We report the modification of HNT lumen by incorporating per-
fluoroalkylated anionic surfactants. This was done with the intent
at obtaining rather stable colloidal dispersions in water with
enhanced oxygen solubilization ability. Fluorinates are well estab-
lished for chemical and biological inertness, fire extinguishing and
flame retardant materials [16]. Finally, fluorinated biocompatible
surfactants have been proposed as oxygen carriers in biomedical
applications [17].

2. Experimental section

2.1. Materials

Halloysite nanotubes (HNTs) and kaolin are Sigma products.
Perfluorooctanoic acid (PFC8H), Perfluoroheptanoic acid (PFC7H)
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and Perfluoropentanoic acid (PFC5H) from Fluka were crystallized
from carbon tetrachloride and dried at room temperature. Their
sodium salts (NaPFC8, NaPFC7 and NaPFC5) were prepared by
neutralization with an aqueous sodium hydroxide solution. The
products were crystallized twice from an ice-cold solution and
dried in a vacuum oven at 60 °C for at least 4 days before their
use. The structure of the surfactants is given in Chart 8.

Water from reverse osmosis (Elga model Option 3) with a
specific resistivity greater than 1 MQ cm was used.

2.2. Preparation of surfactants functionalized HNTs

To aqueous surfactant solutions (0.1 mol kg~!) 0.02 gcm™> of
HNTs was added. The obtained dispersions were magnetically stir-
red for ca. 1 day. Afterward, they were taken in a vacuum oven at
50 °C and at 100 mbar overnight. The solid was separated by cen-
trifugation and rinsed several times with water until the surface
tension of the supernatant was close to the value for pure water
(ca. 72 mN m™1). This ensures the absence of unbound surfactant.
All of the solids dried at 80 °C were investigated by means of ther-
mogravimetric analysis (TG) to estimate the surfactant loading into
the HNT lumen.

2.3. Methods

{-potential and dynamic light scattering (DLS) measurements
were carried out by means of a Zetasizer NANO-ZS (Malvern
Instruments). The field-time autocorrelation functions were well
described by a single decay, which provides the decay rate (I") of
the diffusive mode. For the translational motion, the collective dif-
fusion coefficient at a given concentration is D = I'/q> where q is
the scattering vector given by 4 nni~!sin(0/2) being n the water
refractive index, /1 the wavelength (632.8 nm) and 0 the scattering
angle (173°).

The functionalized nanotubes were imaged by using a micro-
scope ESEM FEI QUANTA 200F. The measurements were carried
out in high vacuum mode (<6 x 10~ Pa) for simultaneous second-
ary electron, the energy of the beam was 30 kV and the working
distance was 10 mm. Before each experiment, the sample was
coated with gold in argon by means of an Edwards Sputter Coater
S150A to avoid charging under electron beam.

The thermogravimetric analyses were done by using a Q5000 IR
apparatus (TA Instruments) under the nitrogen flow of 25 cm? -
min~! for the sample and 10 cm® min~"! for the balance at the heat-
ing rate of 10 °C min~'. Temperature spanned from ambient to
900 °C. The surfactant:HNT ratio was determined from the residual
mass by taking into account for the water content as reported in
the literature [16,12].

The densities (#1x10%gcm™3) and speed of sound
(0.1 m s~!) of the liquid dispersion were determined at 25.000
+0.001 °C by using a density and sound velocity meter (DSA
5000 M, Anton Paar).

The specific volume of pristine or modified HNTs (z,) was
calculated as follows

v =1/d —10°(d — dy)/(Cs x d x dy) (1)

where d and d, are the dispersion and water densities, respectively;
Cs is the concentration of solid material into the dispersion in g/
100 g of solvent. The isentropic compressibility coefficients of the
dispersions (8) were obtained as 100/(u? x d) being u the ultrasonic
velocity of the dispersion. The specific isentropic compressibility
(ks) was calculated using the following equation.

ks = vsph + 10%(B — o) /(Cs x do) (2)

where By is the isentropic compressibility coefficients of water and
the other symbols have the same meaning as above.

The sedimentation volume of pristine and modified HNTs was
determined by using tubes of borosilicate glass with an inner
diameter of ca. 2.3 mm and length of ca. 125 mm. The tubes were
filled with the dispersion and left to equilibrate in vertical position.
Two phases were observed, an upper transparent phase and a low-
er milk-like phase. The transparent upper phase is water according
to the density value. On this basis, the concentration of either HNTSs
or functionalized HNTs in the lower phase (Cip) was determined as
Cip = Gs/Ryp.1, Where Cs is the stoichiometric initial concentration of
material in water, Ryp.7 is the Vi p/Vr ratio being V and Vip the total
and the lower phase volumes, respectively. The tubes were imaged
and R;p.1 was estimated from the height of the meniscus in the cap-
illary by using an image analyzer software (Image] 1.43u).

The oxygen desaturation curves were obtained by using a
HD22559.2 apparatus (Delta Ohm). Water, HNT and modified
HNT aqueous dispersions (ca. 15 cm?) were saturated with oxygen
by bubbling the pure gas for ca. 1 h. The oxygen concentration was
registered every 2 min. The experiments were carried out under
static conditions and under magnetic stirring at 1250 rpm. The
oxygen concentration was normalized for the solubility of the
gas in water, [O;]sar, at the experimental conditions (25 °C and
1 atm).

3. Results and discussion

The alumina inner surface of the nanotube was selectively mod-
ified with perfluorinated anionic surfactants rendering the total
charge of the nanotube significantly changed. The as prepared hy-
brid nanotubes exhibit an enhancement of stability in water and a
core to successfully entrap oxygen in aqueous media.

3.1. Physico-chemical characterization of functionalized Halloysite
nanotubes

The amount of surfactant adsorbed onto the HNT (Table 1) was
estimated from the thermogravimetric analysis from the residual
mass by taking into account for the water content as reported in
the literature [16,12]. These values are far below the maximum
loading ability of HNTs being that the hollow cavity represents
ca. 10% of the nanoclay volume. By assuming an adsorbed surfac-
tant monolayer and considering 760 m? g~ ! for the occupied area
of NaPFC8 at the alumina/water interface [19], one calculates the
surfactant loading of 0.90 wt% that is in straightforward agreement
with the experimental value (Table 1). These calculations cannot
be extended to NaPFC7 and NaPFC5 because, to the best of our
knowledge, no adsorption data at the alumina/water interface
are available; nevertheless, it is expected a behavior rather compa-
rable in terms of area per molecule if an extended chain configura-
tion is considered [19]. From experimental loading data one can
conclude that NaPFC7 and NaPFC5 did not fully cover the HNT
lumen.

Table 1
Surfactant loading, diffusion coefficient and (-potential for HNT/surfactant hybrid
materials®.

Surfactant loading D° x 102 {-potential
HNT 1.5; 0.94° —-21; -19.6°
HNT/NaPFC5 0.29 1.2 27
HNT/NaPFC7 0.62 1.0 -29
HNT/NaPFC8 0.86 0.90 -32

3 Units are: surfactant loading, wt%; D°, m?s~!

loading, 4%; D°, 5%; {, 4%.
> From Ref. [7].

; ¢{, mV. Errors are: surfactant
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Fig. 1. Scanning electron micrographs of HNT/NaPFC5 (left hand side) and HNT/NaPFC8 (right hand side).

The SEM micrographs (Fig. 1) showed that the tubular shape of
halloysite is preserved after the adsorption of perfluorinated
surfactants and the characteristic lengths are comparable to those
observed for the pristine HNT samples in agreement with the
monolayer formation [18]. The dried samples did not show any
orientation of the anisotropic particles ruling out preferential
interactions. This aspect is fundamental as far as the aqueous
dispersions stability is concerned.

To shed more light to this aspect, the translational diffusion
coefficient and the charge of the hybrid materials were determined
in dilute aqueous dispersions. The measurements were carried out
at various contents of the dispersed material but the concentration
effect was negligible. The diffusion coefficient (D°) and the {-poten-
tial (¢) extrapolated at infinite dilution are reported in Table 1. The
data show that the hybrid materials did not aggregate in water and
they diffuse as single nanotubes. The {-potential data (Table 1)
indicate that the net negative charge of the nanotubes is raised
up by the surfactant adsorption in agreement with the neutraliza-
tion of the positive charges of the inner surface.

To definitely rule out the presence of aggregates and to evi-
dence eventual particle-particle interactions, the specific volume
(vsp) and the isoentropic compressibility (ks) of HNT and HNT/NaP-
FC8 dispersed in water were determined (Fig. 2). Both v, and k, are
linearly dependent on the concentration of the material and can be
fitted according to the Mc-Millan-Mayer approach

ysp ="+ BVCS kS =k° +BkCS (3)
where v° and k° are the specific volume and compressibility at infi-
nite dilution, respectively, while B, and By are the particle-particle
interaction parameters for volume and compressibility, respec-
tively. Within the experimental errors, the properties extrapolated
at infinite dilution do not reflect differences between HNT and the
hybrid material (Table 2). By using the surfactant loading from Ta-
ble 1, the v° value for NaPFC8 (0.458 cm? g~ ') [20] and HNT, one can
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Fig. 2. Specific volume and isoentropic compressibility for aqueous dispersion of
HNT (o) and HNT/NaPFC8 hybrid materials (a) as a function of concentration.

Table 2
Volume and compressibility data®.
HNT HNT/NaPFC8
ve 0.388 +0.002 0.380 + 0.002
B, (1.0£0.2) x 107 (33202)x 104

ke —(5.57 £0.07) x 10~
By (1.62+£0.08) x 1078

—(5.7+0.3) x 107
(5.6+0.5)x 108

2 Units are: v°, cm® g~ '; k°, cm® g~ ! bar™; B,, cm® g2 kg; By, cm® g2 kg bar 1.

calculate v for the composite material by means of the rule of mix-
tures. As a result, the change in v° for HNT/NaPFC8 with respect to
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the value for HNT is predicted to be less than 0.1% in agreement
with the experimental findings. As concerns the particle-particle
interaction parameters it is reported [21] that hydrophobic forces
provide negative values for B, while the electrostatic interactions
render the water molecules less compressible [21] so that, B, and
By are expected to be positive. Therefore one may deduce that the
nanoparticle-nanoparticle electrostatic interactions are enhanced
in the hybrid material in agreement with the {-potential results.

3.2. Sedimentation volume of pristine and functionalized Halloysite
nanotubes

The sedimentation of the clay nanotubes assumes a key role in
understanding the colloidal stability. To quantitatively explore
such a phenomenon, concentrated dispersions of pristine and func-
tionalized HNT in water were prepared and left to equilibrate in a
glass tube. After 1week, two phases were clearly identified;
namely, a bottom milk-like phase and an upper transparent phase.
The systems remained unaltered for 6 months at least. The lower
phase is the sedimentation volume and its value increased with
the initial total concentration of the material as examples shown
in Fig. 3. For most concentrated samples, the upper transparent
phase was not observed at all. It is noteworthy that such a peculiar
sedimentation was not observed for kaolin, which possesses the
same chemical composition as HNT but a sheet-like morphology.
In such a case a complete sedimentation even at 8 wt%, the maxi-
mum concentration investigated for HNT, was observed. Different
morphologies confer different properties to the particles.

The sedimentation volume is a very complex parameter; never-
theless, at least in water, it is controlled by the repulsive forces
exercised between particles [22]. For instance, the electrostatic
repulsions are caused by the double layer surrounding each parti-
cle and the particle charge. Consequently, if the particles repel to
each other they remain independent until they reach the closest
packing, which will represent the concentration in the sedimenta-
tion volume. If the particles do not strongly repel to each other,
they are sticking together generating a smaller sedimentation
volume.

Fig. 4 shows the dependence of R;p.t on the stoichiometric con-
centration of the nanotubes. For all of the investigated systems, we
observed a linear increase in Rip. up to the limit of 1, beyond
which it is constant. These data indicate that the sedimentation
does not take place over the concentrated regime regardless of

HNT/NaPFC5 C,=2.0 wt%

C, (Wt%)= 1.00 1.96 293 475 741 HNT HNT/NaPFC8

Fig. 3. Optical images of sedimentation volume in glass tubes. The tube length is
125 mm.
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Fig. 4. Dependence of the ratio between the volume of lower phase and total
volume on stoichiometric concentration of the dispersed material.

the presence and the nature of the surfactant. From the inverse
of the positive slope of the linear trends shown in Fig. 4, we
calculated the concentrations of the lower phase (C;,), which are
reported in Table 3. Such values are a sort of critical concentration
above which the dispersion is stable because the highest packing of
the nanotubes is approached and shorter distances between the
nanoparticles are hindered by the electrostatic repulsions. The

Table 3
Critical concentration of the lower phase for HNT and HNT/surfactant hybrid
materials in water®.

Cip
HNT 6.3
HNT/NaPFC5 5.4
HNT/NaPFC7 43
HNT/NaPFC8 3.8; 4.5°

@ Units are: Cjp, wt%. Error for Cjp is less than 3%.
> In KCl 0.1 mol kg~".
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Cip is highly altered by the presence of the anionic surfactant (Ta-
ble 3) that is in agreement with the large net charge of the hybrid
HNT compared to pristine HNT.

Although a quantitative interpretation of this phenomenon
from a microscopic view-point might be very challenging we
thought it would be interesting to compare the experimental Cj,
with the computed value. This was done by assuming a simple cu-
bic model and a contact distance given by the average length of the
nanotubes (see Fig. 5). Briefly, when the concentration generates
some overlapping, the rotation of each individual nanoparticle be-
comes restricted and the cylinders are entangled [23]. From such a
geometrical model, one obtains the critical volume fraction ¢~ for
cylinders

@ =R /L? (4)

where R and L are the external radius and the length of the nano-
tubes (Fig. 5). By introducing in Eq. (4) the average outer radius
(73nm) and the length (770 nm) of HNT [18], the ¢* value of
0.028 was obtained. By taking into account for the specific volume
of HNT (Table 2) the Cj, value of 6.9 wt% was calculated. An excel-
lent agreement between the computed and the experimental (Ta-
ble 3) values of pristine nanotubes was found. On this basis one
can state that the sedimentation volume of HNTs is driven by
hard-cylinder interactions, and the aqueous dispersion looks stable
when the contact distance between nanoparticles is approached.

As concerns the hybrid materials, {-potential data evidenced an
increase in the net charge in the modified HNT. Therefore, the par-
ticle-particle repulsive interactions shift to longer range increasing
the closest average distance between the functionalized nanoparti-
cles. This description explains the C;, decrease for functionalized
HNTs. It is noteworthy the straight correlation between Cj, and
the amount of loaded surfactant into the hybrid material (Fig. 6).
This reveals that each mole of adsorbed surfactant neutralizes an
equivalent number of positive charges of the nanotubes inner sur-
face generating a linear increase in the net negative charge of HNT
and therefore longer range interactions. To highlight the signifi-
cance of the electrostatic forces on the sedimentation behavior,
0.1 molkg~! of KCl was added to the 2.97 wt% NaPFC8/HNT
dispersion. The determined C;, increases in agreement with the
reduction in the mean distance between particles generated by
the salt screening effect, as expected by the DLVO theory, for which
higher ionic strength screens electrostatic repulsions due to the
contraction of the double layer width [24].

Fig. 5. Sketch representation of the simple cubic model for the interpretation of the
sedimentation volume.
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Fig. 6. Critical concentration as a function of the surfactant loading for HNT hybrid
materials.

3.3. Hybrid HNT/surfactant: non-foaming nanoreservoir for oxygen
storage

The nanotubes with highly hydrophobic cores might allow
encapsulation of molecules of interest within fields like nanotech-
nology, drug delivery and gas storage. These prepared hybrid
materials can be promising as oxygen nanoreservoir in aqueous
media being that fluorinated solvents are able to solubilize large
amount of gas. To explore this perspective, aqueous dispersions
of both HNT and HNT/NaPFC8 (2.0 wt%) were saturated with
oxygen and left to equilibrate with air under two very different
situations, i.e. vigorous stirring (1250 rpm) and static conditions.
For comparison purposes, experiments in pure water were also
carried out. In case of fluorinated surfactant based HNT, foam
was not generated during the gas bubbling as well as during stir-
ring conditions in contrast to solution containing conventional
fluorinated micelles. As concerns the results collected under
stirring (Fig. 7A), an induction time is required before the O, con-
centration starts to monotonically decrease to reach the equilib-
rium. The induction time follows the order water < HNT < HNT/
NaPFC8 (Table 4). Moreover, the time dependence of the O,
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Fig. 7. Oxygen concentration as a function of time in water (A), in aqueous
dispersions of HNT (a) and HNT/NaPFC8 (e). Data collected under magnetic stirring
at 1250 rpm (A) and under static conditions (B).
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Chart 8. Structure of the fluorinated surfactants.

Table 4
Parameters for oxygen release from supersaturated systems?.
Induction time ti2

Under stirring condition
Water 12 31
Water/HNT 14 42
Water/HNT/NaPFC8 22 68
Under static condition
Water 11 37
Water/HNT 83 242
Water/HNT/NaPFC8 126 >400

? Units are min for induction time and t;,. Error is + 2 min.

concentration in the aqueous phase is rather smooth in the pres-
ence of HNT/NaPFC8. From the curves in Fig. 7A the time required
for the O, concentration to halve its initial value (t;2) was calcu-
lated and reported in Table 4. The t;, value for HNT/NaPFC8 (twice
that for pure water) shows that the hybrid material behaves like an
0, reservoir that releases the gas in water over time to contrast the
desaturation of the aqueous dispersion resulting an efficient tool in
retarding the O, desaturation.

The key role played by the nanotubes on the oxygen release un-
der static situation is impressive (Fig. 7B). The kinetics of oxygen
release from water is essentially unchanged compared to the result
under stirring as the t;), values prove (Table 4). On the contrary,
both HNT and HNT/NaPFC8 are efficient in keeping the supersatu-
ration state. Nevertheless, after 6 h the HNT dispersion released ca.
50% of O, while the hybrid nanotubes showed an oxygen loss of ca.
10%. This peculiar condition is well described by both the induction
and the t;, values that follow the order water < HNT <« HNT/NaP-
FC8 (Table 4). The strong enhancement of oxygen entrapment abil-
ity of the modified lumen is generated by the presence of only 0.86
wt% of surfactant, which corresponds to the concentration value of
5 x 107> mol kg ! that is two order of magnitude smaller than the
sodium perfluorooctanoate critical micellar concentration
(0.05 mol kg~ 1) [25].

In conclusion, the presence of a fluorinated cavity generates
excellent performances of the hybrid material in incorporating

oxygen. In response to external stimuli (namely stirring rate) the
material exhibits purposefully oxygen release.

4. Conclusions

We prepared hybrid nanotubes by selectively adsorbing
perfluorinated anionic surfactants. These nanomaterials were
highly stable (at least for six months) in water due to the key role
played by the electrostatic repulsions. This kinetics stability makes
them of interest for applications. The peculiar hollow tubular mor-
phology hydrophobized with perfluorinated chains endows their
use as nanocontainers to entrap apolar compounds. We proved that
these nanohybrid materials are excellent reservoirs for oxygen in
water and exhibit gas release under controlled situations in
response to external stimuli. In conclusion, we provided an easy
processing and facile surface modification to prepare sustainable
and biocompatible materials promising for gas delivery
applications.
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