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Abstract

Lack of type VIl collagen (C7) disrupts cellular proteostasis yet the mechanism remains undescribed. By
studying the relationship between C7 and the extracellular matrix (ECM)-associated proteins thrombospon-
din-1 (TSP1), type Xl collagen (C12) and tissue transglutaminase (TGM2) in primary human dermal fibro-
blasts from multiple donors with or without the genetic disease recessive dystrophic epidermolysis bullosa
(RDEB) (n=31), we demonstrate that secretion of each of these proteins is increased in the presence of C7.
In dermal fibroblasts isolated from patients with RDEB, where C7 is absent or defective, association with the
COPII outer coat protein SEC31 and ultimately secretion of each of these ECM-associated proteins is
reduced and intracellular levels are increased. In RDEB fibroblasts, overall collagen secretion (as determined
by the levels of hydroxyproline in the media) is unchanged while traffic from the ER to Golgi of TSP1, C12
and TGM2 occurs in a type | collagen (C1) dependent manner. In normal fibroblasts association of TSP1,
C12 and TGM2 with the ER exit site transmembrane protein Transport ANd Golgi Organization-1 (TANGO1)
as determined by proximity ligation assays, requires C7. In the absence of wild-type C7, or when ECM-asso-
ciated proteins are overexpressed, C1 proximity and intracellular levels increase resulting in elevated cellular
stress responses and elevated TGFf signaling. Collectively, these data demonstrate a role for C7 in loading
COPII vesicle cargo and provides a mechanism for disrupted proteostasis, elevated cellular stress and
increased TGFB signaling in patients with RDEB. Furthermore, our data point to a threshold of cargo loading
that can be exceeded with increased protein levels leading to pathological outcomes in otherwise normal

cells.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction is caused by mutations in the gene encoding type
VIl collagen (C7) [1]. RDEB is characterized by skin

The rare and devastating genetic skin disease  and mucosal fragility, chronic wounds, extensive tis-
recessive dystrophic epidermolysis bullosa (RDEB)  sue fibrosis, and the eventual development of life-
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threatening skin cancers [2,3]. C7 is the largest col-
lagen molecule and the major component of anchor-
ing fibrils, supramolecular structures that aid
adhesion between the epidermal layer of the skin
and underlying dermis [4]. In addition to supporting
epidermal-dermal adhesion, C7 also plays important
signaling roles in the skin and other tissues and
recent work has described increased TGFpB signal-
ing and altered proteostasis as a result of absent or
dysfunctional C7 found in patients with RDEB
[5—12]. While published studies have provided
potential mechanisms for increased TGFB signaling
in RDEB, no mechanism for the observations of dis-
rupted vesicle traffic and global changes to ECM
composition have been proposed.

Like all collagens, the procollagen form of C7 is
synthesized and processed in the endoplasmic retic-
ulum (ER), and in turn is transported in a coat protein
Il complex (COPII)-dependent manner to the Golgi
[13]. Now decade old work identified a specialized
COPII secretory mechanism capable of transporting
cargo presumed larger than standard COPII vesicle
diameters of 60-90nm [14,15]. These so-called
COPII large carriers were reported to be facilitated
by Transport ANd Golgi Organization-1 (TANGO1),
a transmembrane protein located at ER exit sites
and described as essential for C7 export from der-
mal fibroblasts [14]. Subsequent work has shown
that TANGO1 promotes cargo loading by interacting
with both the cargo and the inner coat of COPII
vesicles (SEC23 and SEC24), delaying the recruit-
ment of the outer coat proteins (SEC13 and SEC31)
until cargo is loaded [16,17]. Given that pro-collagen
C7 is around 400nm in length and much larger than
other collagens such as type | collagen (C1) which
has been shown to be secreted independent of
TANGOT1 in dermal fibroblasts [14], the existence of
large carriers provides a plausible explanation for
transport of bulky cargo. However, existence of large
carriers has not been observed in all experimental
systems used to address ER to Golgi transport and
much remains unknown with regards to molecular
mechanisms required to sort, correctly modify and
distribute proteins through the ER-Golgi system and
in different cell types [18,19]. Indeed, while work in
dermal fibroblasts demonstrate a specific role for
TANGO1 in C7 secretion, independent of C1, stud-
ies in other cellular systems suggest a wider role for
TANGO1 in secretion [20,21].

Disruption to cellular proteostasis in dermal fibro-
blasts has been reported in RDEB through the use of
mRNA and elegant proteomic studies [6,7,10,11]. Loss
of collagen VII has been associated with perturbed
vesicular traffic, with increases in COPI and COPI|
components, as well as reduced autophagic flux, indi-
cating alterations to cellular stress responses in RDEB
fibroblasts [10]. Two proteins with substantial influence
on the tissue microenvironment that have been shown
to directly bind C7 in normal fibroblasts and are

disrupted in RDEB are thrombospondin-1 (TSP1) and
tissue transglutaminase (TGM2) [5,10]. TGM2 levels
are shown to be reduced in RDEB patients and associ-
ated with diminished adhesion, perturbed autophagy
and reduced cross-linking of the ECM [10]. However,
the association between reduced TGM2 and perturbed
autophagic flux is based on separate observations in
murine and other cellular systems [22,23] without dem-
onstration of a direct role for TGM2 in RDEB beyond
binding C7 [10]. In contrast, TSP1, a large homotrimeric
glycoprotein with a complex and extensive interactome
[24], facilitates an array of diverse roles in multiple tis-
sue microenvironments and pathologies [25], and is
significantly upregulated in RDEB correlating with dis-
ease severity [5—8]. One prominent role for TSP1 is
activation of transforming growth factor-beta (TGFB)
signaling revealed by the overlapping phenotypes of
thbs1 -/- and tgfb1 -/- mice studies [26] and by studies
identifying binding between TSP1 and the TGFR latent-
associated protein (LAP) complex facilitating release of
extracellular matrix-bound TGFB ligand [27,28]. We
have previously demonstrated that absence of C7
leads to increased bioavailability of TSP1 in the dermal
microenvironment  concomitant  with  increased
TGFB signaling [5].

Here we use primary dermal fibroblasts isolated
from multiple donors with (n=15) or without (n=16)
RDEB to determine the mechanism behind the rela-
tionship between C7 and ECM-associated protein
secretion. We describe the close proximity of TSP1,
TGM2 and type XlI collagen (C12) with two separate
collagen molecules, C1 and C7, in the context of
COPII secretion and eventual exit from the cell. We
demonstrate that proximity of ECM-associated pro-
teins with TANGO1 requires C7. In the absence of
wild type C7, ECM-associated protein secretion is
reduced along with a concordant increased proxim-
ity with C1, increased ER stress, and elevated
TGFB signaling. We also show that C7-associated
secretion in normal cells has a threshold of capacity
which, when exceeded, leads to concurrent cellular
stress and TGFB signaling.

Results

Wild-type C7 directs ECM protein secretion in
dermal fibroblasts

Our previous work using recombinant HSV-1
virus, which transiently delivers high levels of C7 to
dermal fibroblasts, implicated a potential role for C7
in TSP1 secretion [5]. The direct effect of C7 on
TSP1 secretion had been previously unobserved
using retroviral delivery of C7 where low transduc-
tion efficiencies require antibiotic selection over a 2-
3 week period by which time TGFB signaling and
TSP1 expression, a TGFpB target, had diminished
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[7]. In agreement with a role for C7 in TSP1 secre-
tion, primary fibroblasts isolated directly from RDEB
patients showed a greater ratio of intracellular to
extracellular TSP1 compared with primary normal
dermal fibroblasts (Figure 1A). This difference
between RDEB and normal fibroblasts was reversed
after expression of full length C7 in RDEB fibro-
blasts, identifying TSP1 secretion is altered by the
absence of functional C7 (Figure 1A). This observa-
tion extended to two other ECM-associated proteins
shown to be altered in RDEB, tissue transglutami-
nase (TGM2) and type Xl collagen (C12)
(Figure 1B).

To evaluate the relationship between TSP1,
TGM2, C12 (referred to herein as ECM-associated
proteins) and the COPIl secretory pathway, we
examined the close proximity between each individ-
ual protein and SEC31, the COPII outer coat protein
indicative of COPII vesicle maturation, using proxim-
ity ligation assay (PLA), a method to detect protein-
protein associations within 40nm in situ [29]
(Figure S1A). In RDEB fibroblasts, SEC31 expres-
sion, SEC31 — SEC23 co-localization, and overall
collagen secretion (as determined by hydroxyproline
levels) was not affected by the absence of C7
(Figure S1B & C), but co-localization between ECM-
associated proteins and SEC31, measured by PLA,
was: proximity between TSP1 and SEC31, TGM2
and SEC31, and C12 and SEC31, were all signifi-
cantly reduced in RDEB fibroblasts compared with
normal and re-expression of C7 restored SEC31
proximity (Figure 1C), indicating that co-localization
of TSP1, TGM2 and C12 with SEC31 is regulated by
C7. TSP1 was in close proximity with both TGM2
and C12 in normal fibroblasts and this proximity was
reduced in RDEB fibroblasts (Figure S1D). Taken
together, these observations suggest that COPII
secretion of ECM-associated proteins in dermal
fibroblasts is modulated by C7. Furthermore, secre-
tion of TSP1 and co-localization between TSP1 and
SECS31 reduced with increasing disease severity in
primary RDEB fibroblasts (Figure 1D, 1E and
Table 1), implying that impaired SEC31 proximity
and protein secretion correlates with RDEB patient
phenotype. Taken together, these observations sug-
gest that COPII secretion of ECM-associated pro-
teins in dermal fibroblasts is in part C7 dependent,
and correlates with RDEB disease severity.

TANGO1 association with TSP1, TGM2
and C12 is dependent on the presence of
C7

We next investigated the relationship between C7,
ECM-associated proteins and TANGO1, since
TANGO1 is reported to mediate both C7 and C12
secretion in dermal fibroblasts [14,30]. Similar to C7,

TSP1 co-localized with TANGO1 in normal dermal
fibroblasts but was significantly reduced or did not
co-localize in RDEB fibroblasts (Figure 2A and
Figure S2A). To investigate whether TANGO1 is
important for SEC31 proximity and secretion, we
silenced TANGO1 using siRNA in both normal and
RDEB fibroblasts and analyzed TSP1, TGM2 and
C12 proximity with SEC31. Proximity between TSP1
and SEC31 was significantly diminished after silenc-
ing TANGO1 in normal fibroblasts, but this reduction
was not observed in RDEB fibroblasts (Figure 2B).
siRNA knock down of TANGO1 resulted in
decreased secretion of TSP1, TGM2 and C12 in
normal dermal fibroblasts without significant change
in RDEB (Figure 2C). siRNA knock down of C7 also
reduced TGM2 and C12 secretion in normal cells
(Figure 2D). To control for any off-target effects of
lipid transfection we compared TSP1 secretion with
or without siRNA mock transfections and saw no
changes to TSP1 (Figure S2B). Finally, TGM2-
TANGO1 PLA and C12-TANGO1 PLA is reduced in
RDEB and restored after C7 expression (Figure 2E).
Overall, these results identify that TSP1, TGM2 and
C12 proximity with TANGO1 is dependent on C7 in
dermal fibroblasts and that in the absence of
TANGO1 or functional C7, secretion is reduced.

ECM proteins associate with collagen |
in the absence of C7 or when ectopically
expressed

Since TSP1 is secreted in RDEB fibroblasts and is
shown to activate TGFB through extracellular binding
of TGFB-LAP in RDEB patients [5], we hypothesized
that secretion of TSP1 in the absence of C7 likely traf-
fics through a separate mechanism. Because type |
collagen (C1) is reported to be secreted in a
TANGO1-independent manner in dermal fibroblasts
[14], we investigated a possible relationship between
ECM-associated proteins and C1 in RDEB. We first
confirmed that siRNA knockdown of TANGO1 did not
affect C1 secretion in RDEB (Figure S2C) and that
C1 secretion was not significantly altered, as mea-
sured by the ratio of intracellular to extracellular pro-
tein (Figure S2D), in agreement with no change to
global collagen levels in RDEB (Figure S1C). No
detectable PLA signals were observed between C1
and C7 (Figure S2E) and confocal microscopy con-
firmed that these proteins show a lower co-localiza-
tion correlation when compared with SEC31
(Figure S2F). The lack of C1 and C7 proximity is not
a result of differential antibody binding since C1-
SEC31 PLA and C7-SEC31 PLA are readily detected
in normal dermal fibroblasts (Figure S2E). We used
PLA to assess the proximity of ECM-associated pro-
teins and C1, beginning with TSP1, and observed
that in normal dermal fibroblasts, C1 showed very
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Figure 1. Wild-type C7 directs ECM-associated protein secretion. (A). Left: Immunoblot of type VII collagen (C7),
and TSP1 from total cell lysates (intracellular; IC) and conditioned media (extracellular; EC) from primary normal human
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little proximity with TSP1 compared to RDEB fibro-
blasts where C1 and TSP1 demonstrated strong PLA
signals (Figure 3A). PLA between C1 and TSP1 was
significantly reduced in RDEB fibroblasts after
expression of recombinant C7 (Figure 3A), confirm-
ing that TSP1 — C1 proximity increases in the
absence of C7. Next, we used siRNA knockdown of
C1 and observed a significant reduction in TSP1
secretion in RDEB fibroblasts demonstrating that in
the absence of functional C7, TSP1 secretion is in
part dependent on C1 (Figure 3B). Using a similar
approach and comparing C1 knock-down with C7
knockdown in normal fibroblasts we show a reduction
in TSP1 secretion after C1 knock-down and a further
decrease in TSP1 secretion with C7 knockdown
(Figure 3C), suggesting that C7-dependent secretion
is the primary pathway to export TSP1 in normal fibro-
blasts but both secretory pathways can be utilized. In
agreement with this idea, siRNA silencing of both
TANGOT1 and C1 in normal dermal fibroblasts led to
the lowest level of TSP1 secretion compared to indi-
vidual knockdown (Figure 3D). Collectively, these
data suggest that TSP1 can traffic via two indepen-
dent pathways. We next investigated if the same was
true for TGM2 since levels of secreted TGM2 are
reported to be significantly reduced in RDEB com-
pared with normal [10]. We readily detected PLA
between TGM2 and C1 in RDEB and this PLA signal
was absent in normal and abolished in RDEB after
re-expression of C7 (Figure 3E). Finally, and to deter-
mine whether ectopic overexpression of TSP1 could
saturate C7-mediated TSP1 secretion in normal fibro-
blasts and lead to an association of TSP1 with C1,
we expressed recombinant TSP1 in normal fibro-
blasts using a transient CMV driven system.
Increased TSP1 in normal fibroblasts led to an
increase in TSP1 — C1 proximity (Figure 3F) in the
absence of changes to TSP1 — TANGOT1 proximity
(Figure 3G). Increased TSP1 in normal dermal fibro-
blasts also lead to reduction in C12 secretion in the
absence of changes to C1 suggesting that saturation

of the C7-mediated pathway reduces efficiency of
this pathway (Figure 3H).

Taken together, these results indicate that ECM-
associated proteins are primarily exported via a C7-
dependent pathway while traffic associated with C1
proximity is accessible for export and increased
when C7 is absent or when ECM-associated pro-
teins are increased, presumably as a result of satu-
rating the C7-dependent pathway.

C7 binding promotes ECM-associated
protein — SEC31 proximity and
increased secretion

We next examined whether binding to C7 pro-
moted ECM-associated protein secretion and prox-
imity to SEC31 in RDEB fibroblasts by expressing a
mutant version of C7 lacking the reported TSP1
binding domain, the fibronectin lll-like repeats 6 and
7 [31] (Figure 4A). We previously demonstrated
binding between C7 and TSP1 using surface plas-
mon resonance, PLA and immuno-precipitation [5].
Here, using immuno-precipitation, we confirmed that
the mutant C7 associated with TANGO1 but failed to
show strong association with TSP1 (Figure 4B).
Mutant C7 was efficiently secreted (Figure 4B) but
failed to promote close proximity between TSP1 and
SEC31 (Figure 4C), TSP1 secretion (Figure 4D), or
a significant reduction in TGFB signaling (as indi-
cated by phosphorylated SMAD3) compared with
wild type C7 in RDEB fibroblasts (Figure 4D). Mutant
C7 was able to induce TANGO1 — TGM2 PLA and
abrogate TGM2 — C1 PLA in RDEB fibroblasts to
the same extent as wild-type C7 (Figure S3A), con-
firming that lack of C7-TSP1 association directly
results in the TSP1 secretory defect observed in
RDEB fibroblasts. In agreement with these data we
confirmed that both mutant and wild type C7 precipi-
tated a complex containing TGM2 (Figure S3B).
These data demonstrate that C7 — TSP1

fibroblasts (NHF) and primary RDEB patient fibroblasts (RDEBF). Quantification graph showing ratios of extracellular to
intracellular TSP1 densitometry relative to GAPDH from 2 separate primary fibroblast populations. Mean + SEM from rep-
licate experiments (n=3), ***: p<0.001. Right: Immunoblot of intracellular and extracellular TSP1 from NHF and RDEBF
with recombinant wild-type C7 expression. Graph shows densitometry ratios of extracellular to intracellular TSP1 from
immunoblot quantification. Mean + SEM from replicate experiments (n=3), **: p<0.01. (B). Immunoblot of C7, type XlI
collagen (C12) and transglutaminase 2 (TGM2) from cell lysate (IC) and conditioned media (EC) from NHF, RDEBF and
RDEBF expressing recombinant wild-type C7. Quantification graphs showing ratios of extracellular to intracellular TGM2
and C12 densitometry relative to GAPDH. Mean + SEM from replicate experiments (n=3), *, p<0.05, **, p<0.01 (C).
Proximity Ligation Assay (PLA) between TSP1/SEC31, TGM2/SEC31 and C12/SEC31. 30 cells were counted in each
experiment. Scale bar: 20pm. Graphs show mean + SEM from replicate experiments (n=3), *: p<0.05, **: p < 0.01, ***:
p<0.001, *** p<0.0001. (D) Immunoblot of intra- and extra-cellular TSP1 of RDEBF from three different patients with
increasing disease severity (see Table 1 for full details). Samples were run on the same blot as 1A and quantified relative
to NHF. Quantification graph showing ratios of extracellular to intracellular TSP1. Mean + SEM from replicate experi-
ments (n=3), *: p<0.05, **: p < 0.01, ***: p<0.001. (E). Left: PLA between TSP1 and SEC31 measured in primary NHF
and three RDEB patient fibroblasts with different mutations and disease severity: top panels show NHF and generalized
(intermediate) RDEB while bottom panels show severe generalized RDEB (see Table 1 for full details). 20 cells were
counted in each experiment. Scale bar: 20 wm. Data are shown as mean + SEM from replicate experiments (n=3). **: p
< 0.01, ***: p<0.001, ****, p<0.0001.
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Table 1. Patient cells used in this study.

Patient Cell Name COL7A1 Mutation Figure Reference

Breast reduction BR23 Wild type Figure S1C

Breast reduction BR28 Wild type Figure 2A, 5C, 5D

Breast reduction BR31 Wild type Figure S1C

Breast reduction BR47 Wild type Figure 3E, 3F, S1C

Breast reduction BR49 Wild type Figure 3G, S1B

Breast reduction BR52 Wild type Figure 2A, 2B, 3C, 3D

Breast reduction BR59 Wild type Figure 1C, S1C, S2B, S2E S4B

Breast reduction BR71 Wild type Figure S2F

Breast reduction BR77 Wild type Figure 3H, 5C

Breast reduction BR79 Wild type Figure S2C

Breast reduction BR81 Wild type Figure S1B, S2D

Breast reduction BR84 Wild type Figure 5B

Breast reduction BR87 Wild type Figure 1A, 3H, 5D, S1D

Breast reduction BR90 Wild type Figure 1E, S2A, S2B, S3B

Breast reduction BR91 Wild type Figure 1A, 1B, 2C, 2E

Breast reduction BR92 Wild type Figure 2D, 3A, S1C, S2A

Severe RDEB RDEB13 p.G2073D/p.R578X Figure 1D, 1E

Severe RDEB RDEB70 c.425 A>G, p.K142R / c.425 A>G, p. Figure 1A, S1B
K142R

Severe RDEB RDEB75 N/A Figure 2A

Intermediate RDEB ~ RDEB79 €.2471dupG / ¢.2471dupG Figure 1A

Intermediate RDEB  RDEB80 ¢.2471dupG / ¢.2471dupG Figure S1C, S2A

Severe RDEB RDEB83 c.C4373T:p.P1458L / ¢.5772+1delG Figure S2B, S2C

Severe RDEB RDEB84 €.8709del11/ G2899del11_fs. / Figure S1B
€.8709del11/ G2899del11_fs.

Intermediate RDEB ~ RDEB85 €.2044C>T:p.R682X /c.6101G>C:p. Figure 1D, 1E, 2A, S1C, S3C
G2034A

Intermediate RDEB ~ RDEB86 N/A Figure 2B

Severe RDEB RDEB103 N/A Figure 5A, 5C, S1C, S1D, S4

Severe RDEB RDEB104 N/A Figure S2B, S4B

Severe RDEB RDEB118 €.1732C>T:p.R578X / c.7474C>T: p. Figure 2C, 3B, 3D, S1C, S2A
R2492X

Intermediate RDEB  RDEB119 ¢.5565_5568-8delinsA / ¢.6527insC:p. Figure 1D, 1E, 5A, S1C, S2C
G2177WfsX113

Severe RDEB RDEB121 €.1732C>T: p.R578X / c.7786delG: p. Figure 1B, 1C, 2E, 3A, 3E, S3A,
G2596VfsX33

Severe RDEB RDEB123 €.6527insC: p.G2177WifsX113 / Figure 5B, S1A, S2A, S4

Severe RDEB

RDEB121 WT C7

€.6527insC: p.G2177WfsX113
€.1732C>T: p.R578X / c.7786delG: p.

Figure 1A, 1B, 1C, 2E, 3A, 3E, 4B, 4C,

G2596V{sX33

Severe RDEB RDEB121 mutant C7
G2596V{sX33

Severe RDEB RDEB121 antisense C7

G2596VfsX33

¢.1732C>T: p.R578X / c.7786delG: p.

€.1732C>T: p.R578X / ¢.7786delG: p.

4D, S2E, S2F,S3A, S3B
Figure 4B, 4C, 4D, S3A, S3B

Figure 4B, 4C, 4D

association facilitates loading of TSP1 into TANGO1
mediated COPII vesicles and absent C7 — TSP1
association leads to reduced TSP1 secretion,
increased TSP1-C1 proximity, and increased
TGFB signaling. Given our previous work confirming
TSP1-C7 immuno-precipitation with surface plas-
mon resonance we infer that this association is a
result of direct binding between C7 and TSP1.

Intracellular levels of ECM-associated
proteins correlate with increased
TGFp activation and increased cellular
stress response in RDEB fibroblasts

Since intracellular levels of TSP1 correlate with
increased p-SMADS levels in RDEB fibroblasts

(Figure 4D) and ER stress has previously been
implicating in driving TGFB signaling [32—35], we
examined cellular stress response markers in RDEB
fibroblasts with or without knockdown of TSP1 and
showed that reducing the level of TSP1 in RDEB
fibroblasts reduced the level of the ER stress marker
Glucose Regulated Protein 78 (GRP78) (Figure 5A).
Further interrogation of the three main ER stress
response pathways could not differentiate specificity
in this regard; TSP1 knockdown reduced PERK,
ATF6-alpha and IER1-alpha in RDEB fibroblasts
(Figure S4). Next, and to demonstrate that ER stress
and elevated levels of GRP78 correlate with
increased TGFp signaling in dermal fibroblasts, we
treated normal and RDEB fibroblasts with the ER
stress inducing chemicals thapsigargin and tunica-
mycin, demonstrating that both agents increased p-
SMADS and GRP78 levels (Figure 5B). In order to
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confirm whether TGFB induction by ER stress was
dependent on increases of TGFB1 ligand, we exam-
ined TGFB1 levels and nuclear pPSMAD3 in the pres-
ence of tunicamycin and the TGFBR1 inhibitor
SB431542, and demonstrated that induction of
TGFpB signaling in this context is independent of
increases in TGFB1 (Figure 5C). Finally, to confirm
that intracellular levels of TSP1 correlate with
TGFB activation, we repeated these experiments
using overexpression of TSP1 in the presence of
SB431542 showing that indeed, intracellular TSP1
activates TGF signaling (Figure 5D). In contrast to
treatment with tunicamycin, overexpression of TSP1
led to increases in TGFB1 levels and SB431542
was unable to completely blunt pPSMADS3 as was the
case for vector control with SB431542 (Figure 5D).

Discussion

Collectively, the data presented here support a
model in normal dermal fibroblasts where C7 acts as
a scaffold to load ECM-associated proteins via
TANGOT1 into large COPII carriers (Figure 6A, left
panel). In RDEB fibroblasts, where full length, wild-
type C7 is absent, proteins are trafficked through an
alternate pathway associated with close proximity to
C1 (Figure 6A, right panel). In normal dermal fibro-
blasts when TANGO1-C7 loading of COPII vesicles
becomes saturated, protein traffics through an alter-
nate C1-associated pathway (Figure 6B) leading to
increased ER stress, and increased TGFp signaling
(Figure 6C).

Our model does not preclude trafficking through
both pathways under normal, homeostatic condi-
tions. Indeed, recent work by Rosini and colleagues
identify co-localization of C1 and TSP1 in vesicle-
like structures as well as proximity of C1 and TSP1
in normal dermal fibroblasts under normal culture
conditions [36]. In this study (Rosini et al.), the
authors demonstrate an association of TSP1 with
C1, both intracellularly and extracellularly, and iden-
tify the highly conserved KGHR sequence of the col-
lagen triple-helical domain, present in fibrillary
collagens, as one of a number of collagen binding

sites for TSP1 [36]. Prior work has also identified
binding of TSP1 to collagen types |-V [37] but inter-
estingly, collagen type V showed 10-fold stronger
binding compared with collagens I-IV and has only
one KGHR site while collagens I-Ill have two [37].
Our data show strong association of TSP1 to the full
length, FN6/7 domain-containing C7 but does not
rule out a weaker interaction with mutant, FN6/7
deleted C7 (Figure 4) presumably mediated through
amino acid sequences separate to both FN6/7 and
KGHR, as C7 does not contain a KGHR motif. Fur-
ther work is needed to determine whether TSP1-C1
binding is necessary for intracellular co-localization
of TSP1 and C1, and TSP1 secretion, and whether
this relationship extends to other collagens.

It is also important to note the limitations of our
study since much of our investigation utilizes PLA
and protein-protein interactions can potentially
inhibit antibody binding thereby preventing PLA
even where proximity exists. However, we are confi-
dent in our data since PLA is altered consistently
comparing protein manipulation, either over-expres-
sion with retrovirus, over expression via lipid trans-
fection, or siRNA knockdown using lipid
transfection, and conclusions are confirmed in pri-
mary cells from multiple separate donors, giving
concordant results (n=31). It is clear to us that com-
position of COPII vesicles as determined by PLA dif-
fers with or without presence of C7. However, we
are not tracking labelled proteins in real-time moving
through normal cells and this would be the next step
in validating our observations and rejecting the pos-
sibility, however slight, that retroviral expression,
siRNA knockdown, and cellular response to C7 defi-
ciency in RDEB all result in blocking formation and/
or loading of TANGO1-dependent ER exit sites.
Given the extent of the data presented we find this
possibility highly unlikely.

Similarly, a number of studies in the literature
identify TANGO1 facilitating C1 secretion and the
TANGO1 knockout mouse shows perturbed colla-
gen glycosylation, secretion, maturation, and ECM
deposition yet collagens are still secreted [38]. Stud-
ies in drosophila suggest that absence of TANGO1
leads to larger proteins “clogging up” the secretory

with siRNA against TANGO1 (siTANGO1) or scrambled siRNA (siMock). Scale bar: 20 pm. Graph shows mean+ SEM
signal intensity from 30 cells counted from replicate experiments (n=3), **: p < 0.01, ***: p<0.001 ns: not significant. (C):
Immunoblot of TANGO1, C12, TSP1 and TGM2 from total cell lysates (IC) and conditioned media (EC) from primary NHF
and RDEBF populations treated with siMock or siTANGO1. Graph showing C12, TSP1 and TGM2 secretion levels mea-
sured by immunoblot quantification of C12 (cell media)/C12 (cell lysate), TSP1 (cell media)/TSP1 (cell lysate) and TGM2
(cell media)/TGM2 (cell lysate), with mean + SEM from replicate experiments (n=2). **: p<0.01, ****: p<0.0001, ns: not
significant. (D) Immunoblot of C7, TANGO1 from total cell lysate as well as C12 and TGM2 from total cell lysates (IC) and
conditioned media (EC) isolated from NHF treated with siMock, C7 siRNA (siC7) or siTANGO1. Graphs show C12 and
TGM2 secretion levels measured by immunoblot quantification of C12 (cell media)/C12 (cell lysate) and TGM2 (cell
media)/TGM2 (cell lysate), with mean + SEM from replicate experiments (n=3). *: p<0.05, ***: p<0.001. (E) PLA showing
proximity between TGM2 and TANGO1, as well as C12 and TANGO1 in primary NHF, RDEBF and RDEBF overexpress-
ing C7. Scale bar: 20 pm. Quantification graph shows mean + SEM signal intensity of 30 cells from each replicate experi-
ment (n=3), *: p<0.05, **: p<0.01, ***: p<0.001.
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machinery and when larger proteins are also
removed secretion improves [39]. More recently
data report that of the two human isoforms of
TANGO1, the long (TANGO1L) and short (TAN-
GO1S) isoforms, it is TANGO1S that has a major
impact on global secretion, including C1, while delet-
ing TANGO1L has minimal effect on global secretion
[20]. Since we have not deleted TANGO1 and only
used siBRNA depletion further work is needed to
determine the role of TANGO1L and TANGO1S in
the context of C7 and secretion of ECM-associated
proteins.

In keeping with its involvement in a diverse range
of biological functions (including cell death, signal-
ing, cytoskeleton rearrangements, enzymatic activi-
ties, G-protein and non-enzymatic biological
functions), traffic of TGM2 to both the plasma mem-
brane and the external environment has been
shown to be via multiple pathways in multiple differ-
ent cellular models under various stimuli [40—42].
So-called unconventional secretion, independent of
the classical ER-Golgi pathway and associated with
the endosomal pathway, has been highlighted
recently, and historic observations suggest that
TGM2 is short lived in the ER and Golgi [43], again
in cellular systems different to primary dermal fibro-
blasts. Here, our data show a clear role for C7 and
TANGOT1 in secretion of TGM2 in dermal fibroblasts
and, taken together with published work, highlight
tissue-specific mechanisms of secretion since C7 is
not ubiquitously expressed. This is in keeping with
both TSP1, since platelets do not express C7, as
well as differential expression of C12, a FACIT (fibril
associated collagen with intermittent repeats) colla-
gen with a small collagenous region that interacts

with fibrillar collagens through its C-terminal region
[44]. TANGO1 mediated secretion of C12 was previ-
ously observed in Caco-2 cells [30], which are not
known to express C7 and together our data suggest
that in separate tissues, in this case human colon,
other proteins are able to scaffold cargo and further
work is required to fully dissect the control and sort-
ing of cargo into COPII vesicles.

While multiple mechanisms for TGM2 traffic exist
[42], our data provide a mechanism for reduced
TGM2 in the dermal microenvironment of RDEB and
provide a plausible explanation for disruption to
autophagic flux previously identified [10]. We favor
the hypothesis that disruption to TANGO1-mediated
ECM-associated protein traffic in the absence of C7
provides a likely explanation to overall proteostasis
perturbation in RDEB rather than a specific focus on
TGM2. Indeed, accumulation of proteins within the
ER-Golgi network is known to lead to cellular stress
response, altered autophagy and increased TGFB
signaling [35,45].

Previous studies have reported a role for thrombo-
spondins in mediating ER stress, including analysis
of transgenic thrombospondin-4 (TSP4) expression
[46] as well as cardiac specific overexpression of
TSP1 [47]. The data presented here, in primary
human dermal fibroblasts, suggest a role for
increased TSP1 and perturbed ER-Golgi traffic in
inducing all three major ER stress pathways (Figure
S4). In contrast, studies of cardiac overexpression
of thbs1 leads to cardiac atrophy specifically through
PERK-ATF4 regulated autophagy [47]. Studies in
thbs4 transgenic mice, and follow up work in vitro,
describe a role for TSP4 in mediating a protective
stress response, through activation of Atf6éa and

each replicate experiment (n=3), ***: p<0.0001. (B) Left: Immunoblot of C1, and TSP1 from total cell lysates (IC) and
conditioned media (EC) from primary RDEBF treated with scramble siRNA (siMock) or C1 siRNA (siC1). Right: Graph
shows TSP1 secretion levels measured by immunoblot quantification of TSP1 (cell media)/TSP1 (cell lysate), with
mean + SEM from replicate experiments (n=3). ***: p<0.001. (C) Left: Immunoblot of C1 and C7 from total cell lysate as
well as TSP1 from total cell lysates (IC) and conditioned media (EC) isolated from NHF treated with siMock, siC1 or C7
siRNA (siC7). Right: Graph shows TSP1 secretion levels measured by immunoblot quantification of TSP1 (cell media)/
TSP1 (cell lysate), with mean + SEM from replicate experiments (n=2). ***: p<0.001, ****: p<0.0001. (D) Left: Immuno-
blot of C1 from conditioned media and TANGO1 from total cell lysate as well as TSP1 from total cell lysates (IC) and con-
ditioned media (EC) isolated from NHF treated with siMock (first column), siC1, TANGO1 siRNA (siTANGO1) or
combination of both siC1 and siTANGO1. Right: Graph shows TSP1 secretion levels measured by immunoblot quantifica-
tion of TSP1 (cell media)/TSP1 (cell lysate), with mean + SEM from replicate experiments (n=3). *: p<0.05, **: p<0.01,
****: p<0.0001. (E) Left: PLA showing proximity between TGM2 and C1 in primary NHF, RDEBF and RDEBF with recom-
binant C7 expression. Scale bar: 20 um. Right: Graph shows mean + SEM signal intensity, 30 cells were counted from
each replicate experiment (n=3), ****: p<0.0001. (F) Left: PLA showing proximity between TSP1 and C1 in primary NHF
transiently transfected with an empty vector (NHF+Mock) or CMV-driven TSP1 vector (NHF+TSP1). Scale bar: 20 pm.
Graph shows mean+ SEM PLA signal intensity, 30 cells were counted from each replicate experiment (n=3), ****:
p<0.0001. Right: Immunostaining with anti-TSP1 antibody confirms transfection of TSP1. Scale bar: 20 pm. (G) Left:
PLA between TSP1 and TANGO1 in NHF transiently transfected by empty vector (NHF+Mock) or CMV-driven TSP1 vec-
tor (NHF+TSP1). Scale bar: 20 pm. Right: Graph shows mean+ SEM PLA signal intensity, 30 cells were counted from
each replicate experiment (n=3), ns: not significant. (H). Left: Immunoblot of TSP1, C7, C12 and C1 from both IC and EC,
pSMADS3 and SMADS3 from IC after being transiently transfected with empty plasmid (pUC19) or TSP1 containing pUC19
vector (TSP1). GAPDH serves as loading control. Right: Graphs show mean+ SEM of TGFB activation by quantifying
the ratio of pPSMAD3/SMAD3, and the secretion levels of TSP1, C7, C12 and C1 calculated by IC/EC ratios from replicate
experiments (n=3). *: p<0.05; ns: not significant.



236

Collagen VIl maintains proteostasis in dermal fibroblasts by scaffolding TANGO1

NC1 domain

Nine consecutive
fibronectin Il
domains

C7 binding (NC1)

Type Il
(EGF-like)

Type |

(Properdin-like) (calcium-binding)

PLA (TSP1+SEC31)

2 5

Relative intensity
°
@«

RDEBF+C7 WT

7= | RDEBF+C7 Mutant

RDEBF+Control 0.0

Triple-helical domain NC2 domain G

VWFA2— Triple-helical region ‘@’ Collagen Vi

s

RDEBF

3
e oS S
R “9933 0% e
VN\\@,@“ ;Lﬁ‘\m ;L%" pa
<1 [

Anti-C7[ g e | —290kDa
ANt-TANGO1[ 5 MM |—230 kDa
| @& ] —100kpa

IP (FLAG)

Anti-TSP1

C7 (EC —290 kDa

[ = .
c7(0)[__mm M |—290 kDa

Input
TANGO1

—230 kDa

TSP-1

RDEBF

*
o0 oo
ps\\‘ee cl \N(c,‘l W

&

c7

-4

p

pSMAD3 / GAPDH

&

PN
[y
&

&
P‘\‘\(f

Figure 4. Binding between C7 and TSP1 promotes TSP1 secretion. (A) Schematic showing the structure of full-
length C7 and TSP1. The reported TSP1 binding domains (FN6FN7) are indicated by the red rectangle. (B) Co-immuno-
precipitation pulling down proteins using FLAG-tagged C7 demonstrating binding TSP1/C7 and TANGO1/C7. Proteins
were detected by immunoblot with indicated antibodies. 5% of the total lysate was used for input and GAPDH was used
for loading control. (C) Left: PLA between TSP1 and SEC31 measured in RDEBF after expression of recombinant wild-
type C7, mutant C7 (AFN6FN7) or antisense C7 (control). Scale bars: 20 um. Right: Graph shows mean + SEM PLA sig-
nal intensity, 30 cells were counted from each replicate experiment (n=3), ****: p<0.0001, ns: not significant. (D) Left:
Immunoblot of C7 and p-SMADS from total cell lysate, and TSP1 from total cell lysates (IC) and conditioned media (EC)
from primary RDEBF after expression of antisense C7, recombinant wild-type C7, or mutant C7. Right: Graph shows
mean + SEM p-SMAD3 densitometry normalized to GAPDH from replicate experiments (n=3), *: p<0.05, ns: not signifi-

cant.

GRP78 in cardiomyocytes [46,48]. Since TSP1 and
TSP4 share structural homology [49], it is conceiv-
able that increased TSP1 in dermal fibroblasts acts
similarly to TSP4 in mediating a protective stress-
response through interaction with ATF6« [48]. Con-
ceptually, we favor the idea that perturbed trafficking
induces ER stress with parallels to overexpression
of thbs1 in murine cardiac tissues [47] but acknowl-
edge that further studies are required to fully dissect
the relationship between TSP1 and ER stress in der-
mal fibroblasts.

A direct link between ER stress and
TGFB signaling has previously been reported
[33,35] and evidence for a direct role of ER stress in
promoting the fibrotic reaction is clear [32,34]. Here
we are adding data in support of intracellular, auto-
crine mechanisms driving extracellular ECM disrup-
tion and future work will assess the utility of
inhibitors of organelle stress, such as 4-phenylbuty-
ric acid, for targeting both TGFB signaling and
fibrotic ECM deposition in RDEB [35,45]. The role of
TSP1 in this context is intriguing since much of the
prior work has focused on the ability of extracellular

TSP1 bind to the latent-associated complex and
release TGFB ligand [25] while here we demonstrate
a clear, intracellular role for TSP1 in TGFB activa-
tion. Our data raise the intriguing possibility that ER-
stress induced TGFB signaling is independent from
increases in TGFB ligand and potentially canonical
receptor-ligand binding but confirmation of this
requires extensive work with receptor ligand dele-
tion/ mutants and will be followed up with future stud-
ies.

In addition to TGM2 and TSP1, a handful of other
proteins have been shown to be stable binding part-
ners of C7 and of these only LH3 is reported to be
secreted from the cell [10,50]. Although slight
increases in extracellular LH3 were observed in
RDEB fibroblasts after C7 overexpression, these
were not significant and we were unable to observe
PLA between SEC31 and LH3 (Figure S5A and
S5B). These data are in agreement with LH3 associ-
ating with type IV collagen in post-Golgi vesicles in
kidney epithelia cells [51].

Although RDEB is clearly a group of monogenic
diseases with 100% penetrance and a defined set of
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clinical criteria associated with individual disease
sub-types, there is clear evidence of genetic modi-
fiers as individual patients with the same mutations
in the causative gene, COL7A1, can have very dif-
ferent disease severity and a number of potential
genetic modifiers have been suggested [9,52,53].
While little consensus on the key mediators of dis-
ease severity has been reached, what is clear is that
the TGFp signaling pathway plays a role in moderat-
ing disease severity as all genetic modifiers identi-
fied to date impact TGFB signaling in one way or
another [5,9,53,54]. Furthermore, since multiple
mechanisms exist for activation of TGFpB signaling
and a number of these have been demonstrated to
be active in RDEB cells [54] we are not proposing a
single mechanism contributing to disease severity.
Rather, we are adding a further mechanism for dis-
ease modification highlighting ER to Golgi traffic and
ER stress as potential nodes of disease modifica-
tion, which can be activated both through inability of
C7 to ftraffic TSP1 but also indirectly through
increased TSP1 expression as a result of elevated
TGFB signaling, since TSP1 is a TGF} target.

In conclusion, we report a role for C7 in ECM-associ-
ated protein traffic and describe a mechanism for acti-
vation of cellular stress response through increased
intracellular protein levels, leading to TGFR activation.
This mechanism is in addition to extracellular binding
of TSP1 to LAP previously described [5] and would
presumably also be prominent in chronic wounds found
in patients with RDEB. Finally, our work highlights intra-
cellular protein accumulation and consequential cellular
stress response as a possible driver of carcinogenesis,
since the recent overlap in gene expression profiling of
RDEB SCC and head and neck SCC centers on a par-
tial epithelial to mesenchymal transition (p-EMT) phe-
notype identified from single cell sequencing
experiments and highlighting increased TSP1 in the
tumor microenvironment [55,56].

Experimental procedures

Cell culture

The cells used in this study were isolated from skin
biopsies taken as routine surgical or diagnostic pro-
cedures. Informed written consent was obtained from
each patient and this study was performed in accor-
dance with the Helsinki declaration. The cells were
cultured at 37°C with 5% CO2, in Dulbecco’s modi-
fied essential medium (DMEM, Corning cellgro, Medi-
atech, Inc Manassas, VA) which was supplemented
with 10% fetal bovine serum (FBS, PEAK Serum, Cat
PS-FB1, Colorado, USA) and 150uM L-ascorbic acid
(catalog no. 013-12061, Wako). Normal and RDEB
fibroblasts were used up to passage 7.

Antibodies

Table S1 details all antibodies used in this study.

Proximity Ligation Assay

Proximity ligation assay was performed using Duo-
link in sifu Red Starter kit Mouse/Rabbit Non-haz
(Du092101, Sigma-Aldrich, St. Louis, MO) according
to the manufacturer’s protocol. Normal dermal human
fibroblasts or RDEB fibroblasts were plated onto cov-
erslips (Fisherbrand, Catlog No. 22293232) in 24-well
plates (Corning, RED No. 3524) at 0.5 x 10° cells/
well. After 48 hours, cells were fixed by 4% parafor-
maldehyde, permeabilized by 0.1% Triton X-100 for
10 minutes and blocked for 20 minutes at 37°C and
then incubated with appropriate antibodies overnight
at 4°C. After amplification of the signal, the slides
were mounted and analyzed with a confocal micro-
scope (Nikon A1R Microscope). Controls containing
only a single primary antibody (omitting the paired

experiments (n=3), *: p<0.05. (B) Left: Immunoblot of GRP78, total SMAD3 and p-SMAD3 from total cell lysate isolated
from primary NHF and RDEBF populations treated with DMSO (control), 0.5,.M Thapsigargin or 5u.g/ml Tunicamycin.
Right: Graph shows mean+ SEM p-SMAD3 densitometry normalized to total SMADS from replicate experiments (n=3),
*: p<0.05, **: p<0.01. (C). Upper row: Immunoblot showing total lysate levels of GRP78, pPSMAD3, SMAD3 and TGFB in
NHF treated by DMSO, TGFB recombinant protein, SB431542, TGFB recombinant protein + SB431542, Tunicamycin,
Tunicamycin + SB431542. Graphs show mean + SEM p-SMADS relative to total SMAD3, TGF expression relative to
GAPDH from replicate experiments (n=3), *: p<0.05, ***, p<0.001, ****, p<0.0001. Middle row: ELISA showing TGF-31
secretion, DMEM serves as the baseline control (left graph). *: p<0.05, **: p<0.01. Immunoblot (middle) showing
GRP78, pSMAD3, SMAD3 and TGFB in RDEBF treated by DMSO. SB431542, Tunicamycin and
Tunicamycin + SB431542. Graph (right) shows mean+ SEM p-SMAD3 relative to total SMAD3 from immunoblot. ***,
p<0.001. Bottom row: Confocal images showing DAPI (blue) and pSMAD3 (red) in NHF treated with DMSO, SB431542
and SB431542+Tunicamycin. Scale bars: 10 um. Quantification graph shows mean + SEM nuclear signal intensity from
20 cells imaged in each replicate experiment (n=3), *: p<0.05, ns: not significant. (D). Left: Immunoblot showing TSP1,
pSMAD3, SMAD3 and TGFB expression in NHF from total lysate after transfection with empty vector (PUC19),
PUC19 + SB435142, TSP1 vector and TSP1 + SB431542. Graph below shows mean+ SEM of pSMADS3 relative to
SMAD3 from replicate experiments (n=3). *: p<0.05, **: p<0.01. Bottom row: Confocal images (middle) showing TSP1
(green) and pSMADS (red) in NHF transiently transfected with empty vector and treated with DMSO (Control+DMSO) or
SB431542 (Control+ SB431542), and NHF transiently transfected with TSP1 and treated with DMSO (TSP1+DMSO) or
SB431542 (TSP1+SB431542). Quantification graph (right) shows mean + SEM nuclear signal intensity from 20 cells
imaged in each replicate experiment (n=3) *: p<0.05, ***, p<0.001, ****, p<0.0001.
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Figure 6. Model of ECM-associated protein secretion
and intracellular accumulation in dermal fibroblasts.
(A) In normal dermal fibroblasts, C7 acts as a scaffold to
load the ECM-associated proteins TSP1, TGM2 and C12
via TANGO1-—dependent carriers (left panel) while in
RDEB dermal fibroblasts, where full length wild-type C7 is
absent, ECM-associated proteins are trafficked through an
alternate pathway associated with close proximity to C1 via
TANGO1-independent carriers (right panel). (B) In normal
cells when ECM-associated proteins increase to levels
where the TANGO1-C7-TSP1 loading of TANGO1-depen-
dent carriers is saturated, excess TSP1 traffics through an
alternate, C1 associated pathway. (C) In situations where
TSP1 is increased, intracellular TSP1 saturates both
TANGO1 and C1-associated secretory pathways leading
to increased ER stress and increased TGFp signaling.

primary antibody in each case) confirmed specificity
and absence of secondary PLA signals in each case.

Immunohistochemistry

Normal human fibroblasts or RDEB fibroblasts
were plated on coverslips (Thomas Scientific, 6661-
K40) in 6-well plates (Thermo Scientific, Catlog No.
140675) at 0.5 x 10° cell/well. After 48 hours, cells
were fixed by 4% paraformaldehyde and blocked by
3% fetal bovine serum in 0.1% Triton X-100 for half
hour at room temperature. Primary antibodies used
were Collagen VIl (Sigma Prestige, HPA042420,
Rabbit, 1:50 dilution), Thrombospondin-1 (Santa
Cruz, sc-59887, mouse, 1:50 dilution), SEC23
(Abcam, ab99552, goat, 1:100 dilution), SEC31
(Santa Cruz, sc-376587, mouse, 1:50 dilution),
pSMAD3 S423/S425(Rockland, 600-401-919, Rab-
bit, 1:50 dilution), Calreticulin (Life Span Bioscience,
LS-B5223-125, Sheep, 1:50 dilution) and Collagen |
(SouthernBiotech, 1310-01, goat, 1:50). Cells with
primary antibodies were incubated for 2 hours at
room temperature. Secondary antibodies, Alexa
Fluor 594 goat anti-rabbit (1:800) (Invitrogen,
Eugene, OR), Alexa Fluor 488 goat anti-mouse
(1:250) (Invitrogen, Eugene, OR), Alexa Fluor 647
donkey anti-goat (Invitrogen, Eugene, OR) and
Alexa Fluor 488 donkey anti-sheep (1:250) (Invitro-
gen, Eugene, OR), were applied for 1 hour at room
temperature. Coverslips were mounted on the slides
with DAPI Fluoromount-G (SouthernBiotech, #0100-
20) and analyzed by confocal microscopy (Nikon
A1R Microscope).

Small Interfering RNA (siRNA) Knockdown

For siRNA knockdown of TSP1, 2 x 10° fibro-
blasts were plated in 10-cm petri-dishes (Thermo
Scintific, Catlog No. 130182). The next day, the cells
were transfected with SMARTpool: ON-TARGET-
plus THBS1 (Catalog no. L-019743-00-0005,
5nmol), COL7A1 (L-011017-00-0005, 5nmol),
COL1A1 (L-010502-00-0005, 5nmol), ON-TARGET-
plus nontargeting control (L-001810-10-05, Dharma-
con, Lafayette, CO) or MIA3 (TANGO1) (sc-78818,
10nM, Santa Cruz Biotechnology), using Lipofect-
amine 3000 (Catlog no. L3000001, Life Technolo-
gies). After 6 hours of transfection, the cells were
recovered with DMEM (Corning Cellgro) supple-
mented with 10% fetal bovine serum (FBS) (Catlog
no. PS-FB1, Peak Serum). Cells were analyzed
48 hours after transfection.

Drug treatment

SB431542 was purchased from Selleckchem
(S1067, 10mM), Tunicamycin (sc-3506A, 5mg) was
purchased from Santa Cruz Biotechnology and
Thapsigargin (T9033-.5MG, 0.5mg) was purchased
from Milipore Sigma and Human TGF recombinant
protein (Cell signaling, #75362S, 20u.g). For the ER
stress measurement, cells were treated with 10uM
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SB431542, 5ug/ml of tunicamycin, 0.5,M thapsigar-
gin or DMSO and recovered with DMEM supple-
mented with 10% FBS after 5h treatment. Cells were
harvested 24h after drug treatment. For TGF induc-
tion and inhibition, cells were treated with 10pM
SB431542 or 5ng/ml TGFB1 recombinant protein
and harvested 48h after treatment.

Recombinant TSP1 expression

For recombinant TSP1 expression 1 x 10° fibro-
blasts were plated in 6-well plates (Thermo Scien-
tific, Catlog No. 140675). The next day, the cells
were transfected with THBS-1-bio-His (500ng/well)
or empty pcDNAS3.1 vector (500ng/well) using Lipo-
fectamine 3000 (Catlog no. L3000001, Life Technol-
ogies). After 6 hours of transfection, the cells were
recovered with DMEM (Corning Cellgro) supple-
mented with 10% fetal bovine serum (FBS) (Catlog
no. PS-FB1, Peak Serum). Cells were analyzed
48 hours after transfection.

Recombinant wild-type C7, mutant C7 and
antisense C7 by retroviral transduction

Full-length, mutated, and antisense COL7A1
(full length COL7A1 ORF in 3-5’ orientation) were
cloned into the pBabePuro vector and tagged at
the C-terminus by 3xFLAG. Phoenix-Ampho cells
[57] were transfected with retroviral constructs
(full-length, mutated and antisense COL7A1 con-
structs) using Lipofectamine 3000 (Catlog no.
L3000001, Life Technologies). After 48h, the
virus-containing supernatant was harvested, fil-
tered, concentrated by using Concentrator (Retro-
X Concentrator, Catlog no. 631456, Takara) over-
night at 4°C and used to infect target normal
human or RDEB fibroblasts (1 x 10°) in the pres-
ence of polybrene (8.g/ml). Two days post-infec-
tion, stable cells were selected by growth in 2ug/
mL puromycin.

Protein quantification

Protein concentration in cell lysate was measured
with the Pierce bicinchoninic assay Protein Assay kit
(Thermo Fisher Scientific).

Co-immunoprecipitation

Primary RDEB fibroblasts stably transduced with
3xFLAG-tagged wildtype or mutant COL7A1 were
lysed in RIPA buffer supplemented with protease
and phosphatase inhibitors. After saving 5% of the
total cell lysate for input, the extracts were subjected
to immunoprecipitation with anti-FLAG Immunopre-
cipitation Kit (FLAGIPT1-1KT) from Millipore-Sigma,
according to manufacturer’s instructions. For immu-
noprecipitating C7, the lysates were incubated with

anti-FLAG M2 affinity gel (Millipore-Sigma, A2220)
overnight on a rotor, washed three times with 1X
washing buffer, mixed with 25u.L loading buffer con-
taining 5% 2-mercaptoethanol and prepared for
immunoblotting.

Immunoblotting

Cells were lysed in RIPA buffer supplemented
with protease and phosphatase inhibitors and fol-
lowed by 5-minute centrifugation at 4°C. 35-ug pro-
tein samples were loaded on 8% acrylamide gels.
Primary antibodies were used at the following dilu-
tions: TSP1 (sc-59887, Santa Cruz Biotechnology,
Mouse, 1:1000 or ab85762, Abcam, rabbit, 1:2000)
or (ab85762, Abcam, rabbit, 1:2000), TGM2 (sc-
48387, Santa Cruz, mouse, 1:1000) or
(GTX111702, GeneTex, rabbit, 1:1000), Collagen
XIl (sc-166020, Santa Cruz, mouse, 1:1000), C7
(234192-500UL, Milipore-sigma, Rabbit, 1:1000),
C1 (1310-01, SouthernBiotech, Goat, 1:1000),
TANGO1 (HPA055922, Milipore-sigma, Rabbit,
1:2000), GRP78 (sc-13539, Santa Cruz, Rat,
1:1000), p-SMAD3 (600-401-919, Rockland, Rabbit,
1:2000), polyclonal rabbit antibody raised against
the NC1 domain of type VIl collagen (1:8000), p-
SMADS3 Ser213 (PA5-12694, Thermo Fisher, Rab-
bit, 1:3000), total SMAD2/3 (sc-133098, Santa Cruz,
mouse, 1:2000), TGFB (18978-1-AP, Proteintech,
rabbit, 1:1000), LAMB1 (sc-374015, Santa Cruz,
mouse, 1:1000), ATF6a (ab122897, Abcam, mouse,
1:2000), XBP1s (12782, cell signaling, rabbit,
1:1000), elf2a (5324, cell signaling, rabbit, 1:1000),
p-elf2a Ser51 (3398, Cell Signaling, rabbit, 1:1000),
SEC31 (sc-376587, Santa Cruz, Mouse, 1:1000),
and GAPDH (sc-365062, Santa Cruz, Mouse,
1:3000). Resolved proteins were transferred onto
nitrocellulose membrane with a BioRad Trans-Blot-
Turbo, blocked in 5% milk or 5% FBS (for phosphor-
ylated proteins) dissolved in 0.1% Tween and incu-
bated overnight with primary antibodies. After
incubation with secondary antibody (Santa Cruz Bio-
technology), membrane was incubated with ECL
Western blotting substrate (Thermo Fisher Scien-
tific) and exposed to FluorChem imaging system
(FluorChem E system). For protein loading, 5p.g of
protein was loaded for GAPDH and Collagen I. 10-
25p.g of protein was loaded for TSP1, pSMADS3,
SEC31 and GRP78. 15-30ug of protein was loaded
for Collagen VII and Collagen XII. 40.g of protein
was loaded for TGM2 and TANGO1. Intracellular
(IC) proteins were extracted from cell lysates and we
used GAPDH as our loading control. Conditioned
cell media (extracellular or EC) were collected and
loaded in equivalent volumes to the cell lysates for
measuring extracellular proteins. All individual
Figure panels resolve IC or EC isolations from the
same culture.
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ELISA for detecting TGF-31

TGF-B1 secretion was determined using a com-
mercially available Quantikine® ELISA kit (DB100B,
R&D Systems, USA). 5 x 10° normal fibroblasts or
RDEB fibroblasts were cultured in 6mL of medium
for 48h, in the presence and absence of TGF-B1
(5ng/ml), SB (10pM) and tunicmycin (5pg/ml)
(media was removed 5h after tunicamycin treatment
and cells were recovered with fresh media). 1mL of
the resultant cell culture supernatant was then
removed and centrifuged at 1000 g for 5 minutes.
Sample supernatants were then subjected to TGF-
B1 activation via a 10 minute incubation following
the addition of 20 uL 1 N HCI. Samples were then
neutralized with 20 pL 1.2 N NaOH/0.5 M HEPES.
The ELISA was then completed according to manu-
factures specification, with sample TGF-B1 concen-
trations determined at 450 nm using a FlexStation 3
plate reader (Molecular Devices, USA), as com-
pared to a TGF-B1 standard curve. Resultant sam-
ple concentrations are presented relative to the level
of active TGF-g1 found in an FBS containing
medium.

Total collagen assay

Fibroblasts were seeded at 100,000 cells/well in a
six-well plate, and incubated with 3mL of 150u.M L-
ascorbic acid treated 10% FBS DMEM media for
seven days. We used the perchlorate-free total col-
lagen assay kit by BioVision (Catalog #: K406-100)
to measure collagen in the media and cell layer
(cells and extracellular matrix). We used 50u.L of the
media and scrapped off the cell layer in 50 pL of
PBS. We used 10M NaOH to hydrolyze at 120°C for
two hours to ensure complete hydrolysis followed by
an equal volume of 10M HCI to neutralize. We mea-
sured the absorbance of the plate at 560 nm in the
FlexStation 3 plate reader.

Nuclear protein extraction

RDEB fibroblasts were lysed according to the NE-
PER® cytoplasm/nuclear protein extraction kit proto-
col (ThermoFisher # 78833). In brief, cells in the
CER buffer reagent were centrifuged at
16,000 x g for 10 minutes and the cytoplasmic frac-
tion collected. The pellet was then re-suspended in
the NER buffer, centrifuged for 5 minutes at
16,000 x g and the nuclear protein supernatant was
collected. Equal amount of proteins were loaded to
10% SDS-polyacrylamide gel for immunoblotting.

Quantitative-PCR
Total RNA was isolated using the TRIzol

method (Fisher Scientific, Waltham, MA) accord-
ing to the manufacturer’s instructions. RNA

extractions were quantified using a NanoDrop
One (Fisher Scientific, Waltham, MA) and 1.5 pg
RNA was used for cDNA synthesis using Super-
Script Il First-Strand Synthesis System (Invitro-
gen, Life Technologies, Carlsbad, CA). For
gPCR, SYBR Select Master mix (Life technolo-
gies, Carlsbad, CA) was used and cDNA samples
were diluted 1:10 to serve as a template. We
used the QIAgility robot (Qiagen) for pipetting the
samples and the Rotor-Gene Q for the cycler
(Qiagen). Experiments were performed in dupli-
cate due to highly accurate robot pipetting. The
primers we used were from Integrated DNA Tech-
nologies (designed by OriGene)
including: GAPDH Forward Sequence
GTCTCCTCTGACTTCAACAGCG, Reverse
Sequence ACCACCCTGTTGCTGTAGCCAA.
TGF-B1 Forward Sequence TACCT-
GAACCCGTGTTGCTCTC, Reverse Sequence
GTTGCTGAGGTATCGCCAGGAA. TGM2 For-
ward Sequence TGTGGCACCAAG-
TACCTGCTCA, Reverse Sequence
GCACCTTGATGAGGTTGGACTC.

Plasmids and cloning of C7

THBS-1-bio-His was a gift from Gavin Wright
(Addgene plasmid # 53417; http://n2t.net/addg
ene:53417; RRID: Addgene_53417). To generate
3xFLAG-tagged pBabePuro-COL7A1, we subcl-
oned partial COL7A1 from pBabePuro-COL7A1
between the Hindlll and Bglll restriction sites into
a pUC19-like cloning plasmid. This was followed
by amplification by PCR with primers containing
FLAG sequences: 5- TGGCAGTGTTGGTCCCA-
GAGG — 3’ and 5" - CGCCACTGTGCTGGC-
GAATTCGGCTTGTTAACT -
CACTTGTCGTCGTCGTCCTTGTAGTC-
GATGTCGTGGTCCTTGTAGT -
CACCGTCGTGGTCCTTGTAGTCGTCCTGGG-
CAGTACCTGTCCC — 3'. The PCR product was
digested with Bglll and Hapl and the resulting
DNA fragment containing FLAG sequences was
ligated back into the pUC19-like plasmid. Lastly,
the PCR product in pUC19-like vector was ligated
back to pBabePuro-COL7A1 between Hindlll and
Bglll sites to generate pBabePuro-COL7A1-
3xFLAG.

To delete Fn6Fn7 domains from wild-type
COL7A1, we also subcloned partial 3xFLAG tagged
COL7AT1 into with the pBabePuro vector backbone
between two Agel sites to the pUC19-like cloning
plasmid. This was followed by amplification by PCR
to delete the Fn6Fn7 domains with 5’- ACGC-
CAGGGTTTTCCCAGTC —3’ as the forward primer
and 5’- CGCCTCAGCGAGTGCTCCCCGCGCTG-
CACCACGTGAAGCGTCCCCAGGGCTGGCG-
GAGCCTCAGGCGGCGTAGTGACAACAATGGA-
GACGTCCGTTCGAGCCACGATGAC — 3’ as the
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reverse primer. The PCR product was digested with
Ndel and BbvCl and the resulting DNA fragment
without the Fn6Fn7 domains was ligated back into
the pUC19-like plasmid. Lastly, the subcloned
pUC19-like plasmid was digested and ligated back
to pBabePuro-COL7A1-3xFLAG between two Agel
restriction sites to generate pBabePuro-COL7A1
AFn6Fn7-3xFLAG.

Statistics

Unless specified, all experiments were indepen-
dently performed three times. Significance was
determined by GraphPad Prism using a two-tailed
Student’s t-test if the normality assumption was met
or Mann-Whitney U-test if otherwise. P< 0.05 was
considered significant and represented with a *,
p<0.01 was represented with **, p<0.001 was rep-
resented with *** and p<0.0001 was represented
with ***,
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