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1. Introduction

Spaces of linear maps acting on a rigged Hilbert space (RHS, for short)

D ⊂ H ⊂ D×

have often been considered in the literature both from a pure mathematical point of view [23,24,29,31] and for their
applications to quantum theories (generalized eigenvalues, resonances of Schrödinger operators, quantum fields . . . )
[8,13,12,15,14,16,26]. The spaces of test functions and the distributions over them constitute relevant examples of rigged
Hilbert spaces and operators acting on them are a fundamental tool in several problems in analysis (differential operators
with singular coefficients, Fourier transforms) and also provide the basic background for the study of the problem of the
multiplication of distributions by the duality method [25,28,35].

Before going forth, we fix some notations and basic definitions.
Let D be a dense linear subspace of Hilbert space H and t a locally convex topology on D, finer than the topology

induced by the Hilbert norm. Then the space D× of all continuous conjugate linear functionals on D[t], i.e., the conjugate
dual of D[t], is a linear vector space and contains H, in the sense that H can be identified with a subspace of D× . These
identifications imply that the sesquilinear form B(·,·) that puts D and D× in duality is an extension of the inner product
of D; i.e. B(ξ,η) = 〈ξ |η〉, for every ξ,η ∈ D (to simplify notations we adopt the symbol 〈·|·〉 for both of them). The space
D× will always be considered as endowed with the strong dual topology t× = β(D×,D). The Hilbert space H is dense
in D×[t×].

We get in this way a Gelfand triplet or rigged Hilbert space (RHS)

D[t] ↪→ H ↪→ D×[
t×]

, (1)

where ↪→ denotes a continuous embedding with dense range. As it is usual, we will systematically read (1) as a chain of
inclusions and we will write D[t] ⊂H ⊂D×[t×] or (D[t],H,D×[t×]) for denoting a RHS.
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Let L(D,D×) denote the vector space of all continuous linear maps from D[t] into D×[t×]. In L(D,D×) an involution
X �→ X† can be introduced by the equality

〈Xξ |η〉 = 〈X†η|ξ〉, ∀ξ,η ∈ D.

Hence L(D,D×) is a *-invariant vector space. As we shall see, L(D,D×) can be made into a partial *-algebra by selecting an
appropriate family of intermediate spaces (interspaces) between D and D× and, for this reason, this paper is a continuation
of the study on the spectral properties of locally convex quasi *-algebras or partial *-algebras on which several results of a
certain interest have been recently obtained, see e.g. [3,7,6,9,10,17,32,33].

The problem we want to face in this paper is that of giving a reasonable notion of spectrum of an operator X ∈
L(D,D×); where reasonable means that it gives sufficient information on the behavior of the operator. Indeed, we pro-
pose a definition of resolvent set which is closely linked to the intermediate structure of interspaces that can be found
between D and D× , as it happens in many concrete examples: a spectral analysis can be performed each time we fix one
of these families. Actually, the definition of resolvent set we will give depends on the choice of a family F0 of interspaces.
This is not a major problem if we take into account the problem that originated the spectral analysis of operators in Hilbert
spaces. If, for instance, A ∈ B(H) (the C*-algebra of bounded operators in Hilbert space H), looking for the resolvent set
of A simply means looking for the λ’s in C for which the equation

Aξ − λξ = η

has a unique solution ξ ∈H, for every choice of η ∈H, with ξ depending continuously on η.
The same problem can be posed in the framework of rigged Hilbert spaces. For instance, between S(R), the Schwartz

space of rapidly decreasing C∞ functions, and S×(R), the space of tempered distributions, live many classical families of
spaces like Sobolev spaces, Besov spaces, Bessel potential spaces, etc. Let us call F0 one of these families. Then, finding
solutions of the equation

Xξ − λξ = η,

with X ∈ L(S(R),S×(R)) should be intended in a more general sense: there exists a continuous extension of X to a space
E ∈ F0 where solutions of our equation do exist. The fact that ξ ∈ E means that the solution satisfies regularity conditions
milder than those needed for ξ to belong to S(R).

Rigged Hilbert spaces are a relevant example of partial inner product (Pip-) spaces [5]. A Pip-space V is characterized
by the fact that the inner product is defined only for compatible pairs of elements of the space V . It contains a complete
lattice of subspaces (the so-called assaying subspaces) fully determined by the compatibility relation. An assaying subspace
is nothing but an interspace, in the terminology adopted here. The point of view here is however different: we start from a
RHS and look for convenient families of interspaces for which certain properties are satisfied. Nevertheless, we believe that
an analysis similar to that undertaken here could also be performed in the more general framework of Pip-spaces, but this
problem will not be considered here.

The paper is organized as follows. In Section 2 we collect some basic facts on rigged Hilbert spaces and operators on
them. In Section 3 we introduce the resolvent and spectrum of an operator X ∈ L(D,D×). This definition, as announced
before, depends on the choice of a family F0 of interspaces living between D and D× and the crucial assumption is that the
operator X extends continuously to some of them. Section 4 is devoted to elements of L(D,D×) that can be considered also
as closable operators in Hilbert space. In particular, we give an extension of Gelfand theorem on the existence of generalized
eigenvectors of a symmetric operator X ∈ L(D,D×) having a self-adjoint extension in the Hilbert space H. We will prove,
under the assumptions that D =D∞(A), where A is a self-adjoint operator in H having a Hilbert–Schmidt inverse, that the
operator X has a complete set of generalized eigenvectors without requiring, as done in Gelfand theorem, that X leaves D
invariant. Moreover, it is shown that these generalized eigenvectors all belong to a certain element of the chain of Hilbert
spaces generated by A. Finally, in Section 5 we collect some examples.

2. Notations and preliminaries

For general aspects of the theory of partial *-algebras and of their representations, we refer to the monograph [4]. For
reader’s convenience, however, we repeat here the essential definitions.

A partial *-algebra A is a complex vector space with conjugate linear involution ∗ and a distributive partial multiplica-
tion ·, defined on a subset Γ ⊂ A×A, satisfying the property that (x, y) ∈ Γ if, and only if, (y∗, x∗) ∈ Γ and (x · y)∗ = y∗ · x∗ .
From now on, we will write simply xy instead of x · y whenever (x, y) ∈ Γ . For every y ∈ A, the set of left (resp. right)
multipliers of y is denoted by L(y) (resp. R(y)), i.e., L(y) = {x ∈ A: (x, y) ∈ Γ } (resp. R(y) = {x ∈A: (y, x) ∈ Γ }). We denote
by LA (resp. RA) the space of universal left (resp. right) multipliers of A. In general, a partial *-algebra is not associative.

The unit of partial *-algebra A, if any, is an element e ∈A such that e = e∗ , e ∈ RA∩ LA and xe = ex = x, for every x ∈A.
Let D[t] ⊂H ⊂D×[t×] be a RHS and L(D,D×) the vector space of all continuous linear maps from D[t] into D×[t×].
To every X ∈ L(D,D×) there corresponds a separately continuous sesquilinear form θX on D ×D defined by

θX (ξ,η) = 〈Xξ |η〉, ξ,η ∈ D. (2)
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The space of all jointly continuous sesquilinear forms on D × D will be denoted with B(D,D). We denote by LB(D,D×)

the subspace of all X ∈ L(D,D×) such that θX ∈ B(D,D).
We denote by L†(D) the *-algebra consisting of all X ∈ L(D,D×) such that XD ⊆D and X†D ⊆D.
Let D[t] ⊂H ⊂D×[t×] be a rigged Hilbert space and E[tE ] a locally convex space such that

D[t] ↪→ E[tE ] ↪→ D×[
t×]

. (3)

Let E× be the conjugate dual of E[tE ] endowed with its own strong dual topology t×
E . Then by duality, E× is continuously

embedded in D× and the embedding has dense range. Also D is continuously embedded in E , but in this case the image
of D is not necessarily dense in E× [4, Example 10.2.21], unless E is endowed with the Mackey topology τ (E,E×) =: τE ;
in which case we say that E is an interspace. If E , F are interspaces and E ⊂F , then τF is coarser than τE .

Let E , F be interspaces. Let us define

C(E,F) := {
X ∈ L

(
D,D×)

: ∃Y ∈ L(E,F), Y ξ = Xξ, ∀ξ ∈ D
}
,

where L(E,F) denotes the vector space of all continuous linear maps from E[τE ] into F [τF ]. It is clear that X ∈ C(E,F)

if and only if it has a continuous extension XE : E[τE ] → F [τF ]. In particular, if X ∈ C(E,F), then X ∈ C(E,D×). The
continuous extension of X from E into D× clearly coincides with XE . Obviously, if X, Y ∈ C(E,D×), then (X + Y )E =
XE + YE .

If X ∈ C(E,F) then XE ∈ L(E,F), hence there exists a Mackey continuous linear map X‡
E :F× → E× such that

〈XEξ |η〉 = 〈
X‡
Eη

∣∣ξ 〉
, ∀ξ ∈ E, ∀η ∈ F×.

Since the sesquilinear form which puts all pairs (E,E×) in duality extends the inner product of D, it follows that X‡
E is an

extension of X† to F× with values in E× . Hence X† ∈ C(F×,E×). Interchanging the roles of X and X† (and recalling that
every interspace carries its Mackey topology) we obtain

X ∈ C(E,F) ⇔ X† ∈ C
(
F×,E×)

. (4)

Moreover, a simple comparison of topologies shows that if E , F are interspaces and Y ∈ L(E,F), then there exists
X ∈ L(D,D×) such that X = Y �D .

Let now X, Y ∈ L(D,D×) and assume there exists an interspace E such that Y ∈ L(D,E) and X ∈ C(E,D×); it would
then be natural to define

X · Y ξ = XE (Y ξ), ξ ∈ D.

However, this product is not well defined, because it may depend on the choice of the interspace E [21,22].

Definition 2.1. A family F of interspaces in the rigged Hilbert space (D[t],H,D×[t×]) is called a multiplication framework
if

(i) D ∈ F;
(ii) ∀E ∈ F, its conjugate dual E× also belongs to F;

(iii) ∀E,F ∈ F, E ∩F ∈ F.

Definition 2.2. Let F be a multiplication framework in the rigged Hilbert space (D[t],H,D×[t×]). The product X · Y of two
elements of L(D,D×) is defined, with respect to F, if there exist three interspaces E,F ,G ∈ F such that X ∈ C(F ,G) and
Y ∈ C(E,F). In this case, the multiplication X · Y is defined by

X · Y = (XF YE )�D
or, equivalently, by

X · Y ξ = XF Y ξ, ξ ∈ D.

Actually, the product so defined does not depend on the particular choice of the interspaces E,F ,G ∈ F but it may
depend (and it does!) on the choice of F. For a more detailed analysis see [4,20].

As shown in [4, Theorem 10.2.30], we have

Theorem 2.3. Let F be a multiplication framework in the rigged Hilbert space (D[t],H,D×[t×]). Then L(D,D×), with the multipli-
cation defined above, is a (non-associative) partial *-algebra.
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3. Inverses and resolvents

Let us consider an element X ∈ L(D,D×). We denote by R(X) the range of X . If X is injective and R(X) = D× , then
there exists a linear map X−1 : D× → D such that X X−1 = ID× and X−1 X = ID . If X−1 is continuous, then its restriction
to D is a bounded operator and it leaves D invariant. Conditions for the continuity of X−1 are given in [19, Sect. 38].

The next proposition shows that, even though it is natural, the notion of invertibility considered above is too restric-
tive.

Proposition 3.1. Let D[t] ↪→H ↪→D×[t×] be a rigged Hilbert space and X ∈ L(D,D×) a linear bijection. Then there exists a triplet
of Hilbert spaces HX ↪→H ↪→H×

X such that D ⊆HX and D× ⊆H×
X .

Proof. Since X is a bijection, the linear operator X−1 : D× → D is well defined. Then we can introduce an inner product
on D× by〈

ζ
∣∣ζ ′〉

X = 〈
X−1ζ

∣∣X−1ζ ′〉, ζ, ζ ′ ∈ D×. (5)

By (5) it follows easily that X is an isometry of D[‖ · ‖] onto D×[‖ · ‖X ] so it extends to a unitary operator of H onto
the Hilbert space completion H×

X of D×[‖ · ‖X ]. Since the embedding of H into H×
X is continuous, the conjugate dual

(H×
X )× =:HX of H×

X , with respect to the inner product of H contains D as dense subspace. �
Since the existence of global inverses of operators of L(D,D×) is a so strong condition, one may try to exploit the

intermediate structure between D and D× for a more appropriate definition of the inversion procedure.
The fact that, once fixed a multiplication framework F, L(D,D×) becomes a partial *-algebra [Theorem 2.3] suggests,

say, an algebraic definition: Y ∈ L(D,D×) is the inverse of X ∈ L(D,D×) if

X · Y and Y · X are well defined and X · Y ξ = Y · Xξ = ξ, ∀ξ ∈ D. (6)

This equality, however, does not define Y uniquely, because of possible lack of associativity.
Let X ∈ L(D,D×) and F0 a family of interspaces. Assume that there exist E,F ∈ F0 such that X ∈ C(E,F). If the

extension XE is bijective from E into F , then X−1
E exists. If X−1

E is continuous from F onto E , then its restriction to D
is automatically continuous from D[t] into D×[t×]; i.e. X−1

E �D ∈ L(D,D×) and, moreover, X−1
E �D ∈ C(F ,E). If this is the

case, and if F0 is a multiplication framework, then (6) holds. So that X−1
E �D is the algebraic inverse of X . The converse may

fail to be true. For this reason there is no need, in what follows, to consider F0 as a multiplication framework.

Remark 3.2. By (4) we know that X ∈ C(E,F) if, and only if, X† ∈ C(F×,E×); we denote by X†
F× the continuous extension

of X† to F× . Assume in particular that E , F are Hilbert spaces and X ∈ C(E,F). Then, if XE has a continuous inverse,
X†
F× also has a continuous inverse and ((XE )−1)† = (X†

F×)−1.

Remark 3.3. Assume that there exists a second pair E ′ , F ′ , such that X ∈ C(E ′,F ′) and XE ′ has a continuous inverse
X−1
E ′ from F ′ onto E ′ . If F0 is a multiplication framework, then E ∩ E ′ ∈ F0 and D is dense in E ∩ E ′ with the projective

topology [4, Proposition 10.2.24]. But X−1
E and X−1

E ′ need not have the same restriction to D, unless L := XE (E ∩ E ′) is an
interspace of F0 and X ∈ C(E ∩ E ′,L).

Definition 3.4. Let X ∈ L(D,D×) and λ ∈ C. We say that λ is a generalized eigenvalue of X if there exists an interspace E
such that X has a continuous extension XE from E[tE ] into D×[t×] and XE − λIE is not injective. Any nonzero vector
ξ ∈ N(XE − λIE ) ⊂ E is called a generalized eigenvector. If E = D we say that λ is an eigenvalue of X and elements of
N(XD − λID) are called eigenvectors.

Remark 3.5. If X − λID has a global inverse (X − λID)−1 : D× → D and X ∈ C(E,F), for some E,F ∈ F, with D � E , then
there exists ζ ∈ E \ {0} such that (XE − λIE )ζ = 0. Indeed, let ξ ′ ∈ E \ D, then, (XE − λIE )ξ ′ = (X − λID)ξ for a unique
ξ ∈D. Hence (XE − λIE )(ξ ′ − ξ) = 0, with ξ ′ − ξ �= 0. This implies that λ is (also) a generalized eigenvalue.

Example 3.6. Let S := S(R) be the Schwartz space of rapidly decreasing C∞ functions and S× := S×(R) its conjugate dual
(tempered distributions) and consider the very familiar example of the operator p = −id/dx ∈ L(S,S×). It is clear that p
has no eigenvalues in S . But, since p ∈ L†(S), has a continuous extension p̃ to the whole of S× . For every λ ∈ R, the
function fλ(x) = eiλx is an eigenvector of p̃ corresponding to the eigenvalue λ. Thus, every real number λ is a generalized
eigenvalue of p.

This is just an example of a more general situation: every symmetric operator A on a nuclear rigged Hilbert space D ⊂
H ⊂ D× , having a self-adjoint extension to H and invariant in D possesses a complete set of generalized eigenvectors [18,
Ch. IV, Sect. 5, Theorem 1]. We will come back to this point in Section 4.
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Definition 3.7. Let X ∈ L(D,D×) and F0 be a family of interspaces. The F0-resolvent set of X , �F0 (X), consists of the set of
complex numbers λ satisfying the following conditions:

There exist E,F ∈ F0, with E ⊆F , such that

(i.1) X ∈ C(E,F) and (XE − λIE )E =F ;
(i.2) (XE − λIE )−1 exists and it is continuous from F [τF ] onto E[τE ].

The set σF0(X) := C \ �F0(X) will be called the F0-spectrum of X .

Remark 3.8. The assumption of continuity in condition (i.2) can be omitted if we suppose that E , F are Banach spaces; in
this case, in fact, the inverse mapping theorem guarantees the continuity of (XE − λIE )−1.

Remark 3.9. If the topology of D is equivalent to the initial Hilbert norm, then D× = H and, in this case, X ∈ L(D,D×)

if and only if X ∈ B(H). The unique possible interspace is H itself. Hence the spectrum of X coincides with the usual
spectrum defined in B(H).

A crucial point in the previous definition is that there could exist different couples of interspaces for which the require-
ments of our definition are true. This point requires a careful analysis, which will be performed later.

In order to study the F0-resolvent of an operator X ∈ L(D,D×) it is useful to introduce the notion of regular point of X ,
in analogy with what is usually done for operators in Hilbert spaces. We will do this by supposing that F0 is a family of
interspaces whose elements are Hilbert spaces. In this case, we will prefer the notation B(E,F) to L(E,F) as a remainder
of the fact that its elements are bounded operators from E into F . The norm of the Banach space B(E,F) will be denoted
by ‖ · ‖E,F .

Let now E,F ∈ F0 and X ∈ B(E,F). The inverse of X , when it exists, is, clearly, the unique Y ∈ B(F ,E) such that

XY = IF , Y X = IE .

The set of all invertible elements of B(E,F) will be denoted by G(B(E,F)).

Definition 3.10. A complex number λ is called an F0-regular point for X ∈ L(D,D×) if there exist E,F ∈ F0, with E ⊆ F ,
and cλ,dλ ∈ R+ such that:

cλ‖ξ‖E �
∥∥(X − λI)ξ

∥∥
F � dλ‖ξ‖E , ∀ξ ∈ D. (7)

The set of regular points of X will be denoted by π(X).

Clearly, λ ∈ π(X) if and only if there exist E,F ∈ F0, such that (X − λI) ∈ C(E,F) and both (X − λI) and its extension
(XE − λIE ) to E are injective.

If X ∈ C(E,F), we denote by πE,F (X) the set of λ ∈C for which (7) holds, with E , F fixed. It is clear that λ ∈ πE,F (X)

if, and only if, the extension XE − λIE of X − λI to E satisfies

cλ‖ξ‖E �
∥∥(XE − λIE )ξ

∥∥
F � dλ‖ξ‖E , ∀ξ ∈ E . (8)

Definition 3.11. Let X ∈ L(D,D×) and λ ∈ πE,F (X). We call dE,F
λ (X) := dimR(XE − λIE )⊥ (the orthogonal being taken

in F ) the defect number of X at λ w.r. to E , F .

Let X ∈ C(E,F). Then, when F ′ runs over F0, we have:

• if F ⊂F ′ ⇒ dE,F
λ (X) � dE,F ′

λ (X);

• if F ′ ⊂F and R(XE − λIE ) ⊂F ′ ⇒ dE,F
λ (X) � dE,F ′

λ (X);
• if F and F ′ are not comparable, then there is no a priori relation between the corresponding defect numbers.

On the other hand, if E , F are fixed and E ′ runs over F0,

• if E ′ ⊂ E ⇒ dE,F
λ (X) � dE

′,F
λ (X);

• if E ⊂ E ′ and R(XE ′ − λIE ′) ⊂F ⇒ dE,F
λ (X) � dE

′,F
λ (X);

• if E and E ′ are not comparable, then there is no a priori relation between the corresponding defect numbers.

Proposition 3.12. Let E,F ∈ F0 , X ∈ C(E,F) and λ ∈ C.

(i) λ ∈ πE,F (X) if and only if (XE − λIE ) has a bounded inverse (XE − λIE )−1 defined on R(XE − λIE ) ⊆F .
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(ii) R(XE − λIE ) =R(X − λI), for each λ ∈ πE,F (X).
(iii) If λ ∈ πE,F (X), then R(X − λI) is closed in F .

Proof. (i) follows easily from (8).
(ii): Let η be in the closure of R(X − λI) in F . Then there is a sequence (ξn)n∈N of vectors ξn ∈ D such that ηn =

(X − λI)ξn → η in F . We have

‖ξn − ξm‖E � c−1
λ

∥∥(X − λI)(ξn − ξm)
∥∥
F = ‖ηn − ηm‖F .

Hence (ξn) is a Cauchy sequence in E and so it is convergent. Let ξ = limn→∞ ξn . Then Xξn = ηn + λξn → η + λξ . By the
definition of XE it follows that XEξ = η + λξ , so that η = (XE − λIE )ξ ∈ R(XE − λIE ). Thus R(X − λI) ⊆ R(XE − λIE ).
Using once more the definition of XE , it follows easily that R(XE − λIE ) ⊆R(X − λI) and, thus, the equality holds.

(iii): It follows from (ii). �
Proposition 3.13. The set of the regular points of X ∈ L(D,D×) is an open subset of C.

Proof. Let λ0 ∈ π(X). Then there exist E,F ∈ F0, E ⊆F , such that λ0 ∈ πE,F (X). Let λ ∈C and suppose that |λ−λ0| < cλ0 .
Then for ξ ∈D, we have, on one hand,∥∥(X − λI)ξ

∥∥
F �

∥∥(X − λ0 I)ξ
∥∥
F − |λ − λ0|‖ξ‖E �

(
cλ0 − |λ − λ0|

)‖ξ‖E .

On the other hand∥∥(X − λI)ξ
∥∥
F �

∥∥(X − λ0 I)ξ
∥∥
F + |λ − λ0|‖ξ‖F

�
∥∥(X − λ0 I)ξ

∥∥
F + cλ0‖ξ‖E � (dλ0 + cλ0)‖ξ‖E .

Hence λ ∈ πE,F (X). This in turn implies that π(X) is open. �
With minor modifications of a classical argument (see, e.g. [30, Proposition 2.4]) one obtains the following

Proposition 3.14. Let X ∈ C(E,F). Then the defect number dE,F
λ (X) is constant on each connected component of the open set

πE,F (X).

Since the map X ∈ C(E,F) → XE ∈ B(E,F) is a topological isomorphism, it can be more convenient to study certain
properties in B(E,F) rather than in C(E,F). We begin with the notion of resolvent in B(E,F).

Definition 3.15. Let E,F ∈ F0 with E ⊆F . For A ∈ B(E,F) we define

�E,F (A) := {
λ ∈C: (A − λIE )−1 exists in B(F,E)

}
.

If λ ∈ �E,F (A) we put RE,F
λ (A) := (A − λIE )−1.

Let X ∈ L(D,D×) and suppose that X ∈ C(E,F), with E,F ∈ F0 with E ⊆ F . Then we put �E,F (X) := �E,F (XE ) and

RE,F
λ (X) := (XE −λIE )−1, if λ ∈ �E,F (X). It is clear that λ ∈ �E,F (X) if and only if λ ∈ πE,F (X) and (XE −λIE ) is surjective

in F . For consistency of notations we put �E,F (X) = ∅ if X /∈ C(E,F). With this convention, one has

�F0(X) =
⋃

E,F∈F0

�E,F (X). (9)

Remark 3.16. If F0 is stable under duality (i.e., E ∈ F0 if and only if E× ∈ F0), then by Remark 3.2 it follows that λ ∈ �E,F (X)

if and only if λ ∈ �F×,E×(X†). This, in turn, implies that �F0(X) = �F0 (X†).

Theorem 3.17. Let E,F ∈ F0 . The set G(B(E,F)) of all invertible elements of B(E,F) is open.

Proof. Let A ∈ G(B(E,F)) and B ∈ B(E,F). We can write A+ B = A(IE + A−1 B) and if we choose B such that ‖A−1 B‖E,E <

1, then IE + A−1 B ∈ G(B(E,E)), since B(E,E) is a Banach algebra, and then A + B ∈ G(B(E,F)). �
Theorem 3.18. Let E,F ∈ F0 . The map A ∈ G(B(E,F)) → A−1 ∈ B(F ,E) is continuous.
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Proof. Let A, B ∈ G(B(E,F)), then∥∥A−1 − B−1
∥∥
F,E = ∥∥B−1(B − A)A−1

∥∥
F,E

= ∥∥(
B−1 − A−1)(B − A)A−1 + A−1(B − A)A−1

∥∥
F,E

�
∥∥B−1 − A−1

∥∥
F,E‖B − A‖E,F

∥∥A−1
∥∥
F,E + ‖B − A‖E,F

∥∥A−1
∥∥2
F,E .

If we take ‖B − A‖E,F such that (1 − ‖B − A‖E,F‖A−1‖F ,E ) � 1
2 , then ‖A−1 − B−1‖F ,E can be made arbitrarily small. �

Remark 3.19. Let A, B ∈ B(F ,E), with E ⊆ F . Let us define A0 := A�E . Then A0 ∈ B(E,E). The product A · B is defined by
A · Bη = A0(Bη), for every η ∈F and

‖A0 B‖F,E � ‖A0‖E,E‖B‖F,E .

In particular, if A ∈ B(F ,E), with E ⊆F , the n-th power A(n) of A is defined by

A(2) := A0 A, and A(n) = A0 A(n−1)

and one has∥∥A(n)
∥∥
F,E � ‖A0‖n−1

E,E ‖A‖F,E . (10)

Lemma 3.20. Let A, B ∈ B(E,F), with E ⊆F . The following resolvent identities hold:

RE,F
λ (A) − RE,F

λ (B) = Rλ(A)E,F (A − B)RE,F
λ (B), ∀λ ∈ �E,F (A) ∩ �E,F (B);

RE,F
λ (A) − RE,F

λ0
(A) = (λ − λ0)RE,F

λ (A)RE,F
λ0

(A), ∀λ,λ0 ∈ �E,F (A).

Theorem 3.21. Let E,F ∈ F0 and A ∈ B(E,F). The following statements hold:

(i) �E,F (A) is open;
(ii) the function λ ∈ �E,F (A) → (A − λIE )−1 ∈ B(F ,E) is analytic on every connected component of �E,F (A).

Proof. (i): Put h(λ) = A − λIE . Then �E,F (A) = h−1(G(B(F ,E))) and so it is open, since h is clearly continuous.
(ii): If λ → μ, (A − λIE )−1 → (A − μIE )−1, due to the continuity of the inversion. Since E ⊂ F and IE : E → E ⊂ F

is continuous, we have ‖B�E‖E,E � ‖B‖F ,E , for every B ∈ B(F ,E). Thus, ‖(A − λIE )−1
�E − (A − μIE )−1

�E ‖E,E → 0 as λ → μ.
Hence,∥∥(A − λIE )−1

�E (A − μIE )−1 − (A − μIE )−1
�E (A − μIE )−1

∥∥
F,E

�
∥∥(A − λIE )−1

�E − (A − μIE )−1
�E

∥∥
E,E

∥∥(A − μIE )−1
∥∥
F,E → 0,

as λ → μ. Finally, we get

lim
λ→μ

(A − λIE )−1 − (A − μIE )−1

λ − μ
= lim

λ→μ

(
(A − λIE )−1

�E (A − μIE )−1)
= (A − μIE )−1

�E (A − μIE )−1,

in the norm of B(F ,E). �
By (i) of Theorem 3.21 and by (9), we get

Proposition 3.22. Let X ∈ L(D,D×) and F0 be a family of interspaces. Then, �F0 (X) is open.

Adopting the notations of Remark 3.19 we have

Proposition 3.23. Let X ∈ L(D,D×), E ⊂F and λ0 ∈ �E,F (X). Then there exists δ > 0 such that, for every λ ∈C with |λ−λ0| < δ,
λ ∈ �E,F (X) and

RE,F
λ (X) =

+∞∑
n=0

(λ − λ0)
n RE,F

λ0
(X)(n+1),

where the series converges in the operator norm of B(F ,E).
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Proof. We already know that �E,F (X) is an open set; thus there exists r > 0 such that the disk |λ − λ0| < r is contained

in �E,F (X). Let δ = min{r,‖(RE,F
λ0

(X))0‖−1
E,E }, hence λ ∈ �E,F (X) and∥∥∥∥∥

k+p∑
n=k+1

(λ − λ0)
n RE,F

λ0
(X)(n+1)

∥∥∥∥∥
F,E

=
∥∥∥∥∥

k+p∑
n=k+1

(λ − λ0)
n(RE,F

λ0
(X)

)(n)

0 RE,F
λ0

(X)

∥∥∥∥∥
F,E

�
∥∥∥∥∥

k+p∑
n=k+1

(λ − λ0)
n(RE,F

λ0
(X)

)(n)

0

∥∥∥∥∥
E,E

∥∥RE,F
λ0

(X)
∥∥
F,E .

Since ‖(λ − λ0)(RE,F
λ0

(X))0‖E,E < 1, the series

+∞∑
n=0

(λ − λ0)
n RE,F

λ0
(X)(n+1)

converges in the operator norm of B(F ,E).
Using the second identity in Lemma 3.20, we finally obtain, in standard way,

RE,F
λ (X) =

+∞∑
n=0

(λ − λ0)
n RE,F

λ0
(X)(n+1). �

Lemma 3.24. Let λ ∈ �E,F (X), E,F ∈ F0 , E ⊆F . Then

(i) λ ∈ σE,F ′(X), for every F ′ ∈ F0 , F ′ �F ;
(ii) if E � E ′ ⊆F and X ∈ C(E ′,F), then λ is an eigenvalue of XE ′ and, hence, λ ∈ σE ′,F (X).

Proof. (i) is straightforward. As for (ii) the proof is similar to that given in Remark 3.5. �
Recalling that, if B ∈ B(E,F), then B�D ∈ L(D,D×), it is natural to give the following

Definition 3.25. Let E,E ′,F ,F ′ ∈ F0 and B ∈ B(E,F), C ∈ B(E ′,F ′). We say that B and C are equivalent, and write B ≡ C ,
if B�D = C�D .

For fixed E,F ∈ F0, with E ⊆F , X ∈ C(E,F) the function

λ ∈ �E,F (XE ) → (XE − λIE )−1 ∈ B(F,E)

is analytic on �E,F (XE ). Thus, if we define (X − λI)−1
(E,F)

:= (XE − λIE )−1�D , for every λ ∈ �E,F (XE ), (X − λI)−1
(E,F)

∈
L(D,D×).

Moreover, the function

λ ∈ �E,F (XE ) → (X − λI)−1
(E,F) ∈ L

(
D,D×)

is analytic if L(D,D×) is endowed with the inductive topology τin defined by the family of Banach spaces {B(E,F);
E,F ∈ F0}.

Let us fix E ∈ F0. If λ ∈ �E,F (X), for some F ∈ F0, E ⊆F , then this F is unique. Hence, the function fE defined by

fE (λ) = (X − λI)−1
(E,F), if λ ∈ �E,F (X) (11)

is a single valued function, analytic on every connected component of every open set �E,F (X).
More in general, when E , F run over F0 we get a whole family of resolvent functions and several different situations

are possible.
If λ0 ∈ �F0(X), then λ0 ∈ �E,F (XE ) for some E,F ∈ F0, E ⊆ F . Then there exists an open disk Dr = {λ: |λ − λ0| < r} ⊂

�E,F (XE ) and the function λ ∈ Dr → (XE − λIE )−1 is analytic on Dr . But it may happen that λ0 ∈ �E ′,F ′(XE ′) for another
couple E ′,F ′ ∈ F0, E ′ ⊆F ′ . The corresponding resolvent function λ → (XE ′ − λIE ′)−1 is analytic in some open disk Dr′ , but
(XE − λIE )−1 and (XE ′ − λIE ′)−1 need not be equivalent on Dr ∩ Dr′ .

Lemma 3.26. Let λ0 ∈ �E,F (XE ) ∩ �E ′,F ′ (XE ′) for some E,E ′,F ,F ′ ∈ F0 . Let us assume that E ⊂ E ′ . The corresponding resolvent
functions are equivalent on some open neighborhood of λ0 and they are direct analytic continuations of each other.



G. Bellomonte et al. / J. Math. Anal. Appl. 411 (2014) 931–946 939
Proof. If E ⊂ E ′ , then F ⊂ F ′ and (XE ′ − λIE ′)−1 is an extension of (XE − λIE )−1. Indeed, since XE − λIE ⊆ XE ′ − λIE ′ ,
their inverses coincide on (XE −λIE )E =F . This implies that (XE ′ −λIE ′)−1 ≡ (XE −λIE )−1 in the sense of Definition 3.25
and the corresponding resolvent functions are direct analytic continuation one of the other. �
Proposition 3.27. Let λ0 ∈ �E,F (XE ) ∩ �E ′,F ′ (XE ′) for some E,E ′,F ,F ′ ∈ F0 . If there exist G and G′ in F0 such that G ⊆ E ∩ E ′
and λ0 ∈ �G,G′(X), then the functions λ → (XE − λIE )−1 and λ → (XE ′ − λIE ′)−1 are analytic continuations of each other in some
open connected set containing λ0 .

Proof. One can apply the reasoning of Lemma 3.26 to (XE − λ0 IE )−1 and (XG − λ0 IG)−1 or to (XE ′ − λ0 IE ′ )−1 and (XG −
λ0 IG)−1. Then, the functions λ → (XE − λIE )−1 and λ → (XG − λIG)−1 are equivalent in some open disk Dr and they
are direct analytic continuation one of the other. The same happens of course for the functions λ → (XE ′ − λIE ′)−1 and
λ → (XG − λIG)−1. Thus the functions indexed by E and E ′ are analytic continuations of each other (but they need not be
direct analytic continuation one of the other). �
Remark 3.28. Let us finally examine the general situation. Let λ0 ∈ �E,F (XE )∩�E ′,F ′ (XE ′) for some E,E ′,F ,F ′ ∈ F0. Since
D is dense in E ∩E ′ , for the Mackey topology, then (XE −λ0 IE )�(E∩E ′)(E ∩E ′) = (XE ′ −λ0 IE ′ )�(E∩E ′)(E ∩E ′) =L⊆F ∩F ′ .
The equality L = F ∩F ′ does not hold in general. (XE − λ0 IE )−1 is well defined in F and then also in L. The same holds
for (XE ′ − λ0 IE ′ )−1 but these operators need not be equivalent.

If λ0 ∈ �F0(X), we denote by (X − λ0I)−1 the collection of all resolvent operators corresponding to λ0 and by λ ∈
�F0(X) → (X − λI)−1 the multivalued resolvent function described above. For each fixed E ∈ F0, the function fE , defined
in (11), can be viewed as a single valued branch of λ → (X − λI)−1. In Example 4.2 we shall see a concrete realization of
this situation.

4. Hilbert space operators

Let X ∈ L(D,D×) and assume that both X and X† map D into H. Then X can be viewed as a closable operator in H.
Let X be its closure and �H(X) its usual resolvent set. We denote by HX the Hilbert space obtained by endowing D(X)

with the graph norm. If HX ,H ∈ F0 then X ∈ C(HX ,H) and �HX ,H = �H(X); so that σF0(X) ⊆ σH(X) (this implies, in
particular that, if X is bounded, σF0(X) is compact). As we will see below, however, σH(X) and σF0(X) need not coincide.

4.1. Rigged Hilbert spaces generated by symmetric operators

Let A be a self-adjoint operator in Hilbert space H. The space D =D∞(A), endowed with its natural topology t A , defined
by the seminorms pn(ξ) = ‖Anξ‖, n ∈ N, generates in canonical way a RHS, with D a Fréchet space. For every n ∈ N we
denote by Hn the Hilbert space obtained by endowing D(An) with its graph norm ‖ · ‖n := ‖(I + A2n)1/2 · ‖ and by H−n the
space obtained by completing H with respect to the norm ‖ · ‖−n := ‖(I + A2n)−1/2 · ‖. Put H0 := H. Then, the family of
spaces {Hn; n ∈ Z} is totally ordered; namely,

· · ·Hn+1 ⊂ Hn ⊂ · · · ⊂ H = H0 ⊂ · · · ⊂ H−n ⊂ H−n−1 · · · .
Let us put S = A�D and take F0 = {Hn; n ∈ Z}. The operator A (or its extension by duality denoted by the same

symbol) maps Hn in Hn−1, ∀n ∈ Z continuously; hence S ∈ C(Hn,Hn−1), for every n ∈ Z. Let us denote by �H(A) the usual
resolvent of A. For shortness, we will put �n,m(S) := �Hn,Hm (S).

Proposition 4.1. Let A be a self-adjoint operator, D and F0 as above. Then �F0 (S) = �H(A).

Proof. Let λ ∈ �n,n−1(S), n � 0. Then, (A − λI)−1 ∈ B(Hn−1,Hn), indeed∥∥(A − λI)−1ξ
∥∥

n � C‖ξ‖n−1, ∀ξ ∈ Hn−1

i.e. ∥∥Rn(A − λI)−1ξ
∥∥ � C‖Rn−1ξ‖, ∀ξ ∈ Hn−1,

where Rn = (I + A2n)
1
2 . Then∥∥(A − λI)−1 Rnξ
∥∥ � C‖Rn−1ξ‖ � C‖Rnξ‖, ∀ξ ∈ Hn.

This implies that (A − λI)−1 is bounded w.r. to the norm of H on the subspace RnHn , and, since Rn is invertible with
bounded inverse, it follows that λ belongs to the usual resolvent, �H(A), of A. Let μ ∈ �−n+1,−n(S), n � 0. Then, by
Remark 3.16, μ ∈ �n,n−1(S). The first part of the proof then shows that μ ∈ �H(A). This, in turn, implies that μ ∈ �H(A).
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Let now λ ∈ �H(A); then (A − λI)−1 ∈ B(H). Now we want to prove that λ ∈ �n,n−1(S), ∀n � 1. Since (A − λI)−1 maps
Hn into Hn−1 and it is clearly injective, we only need to prove the surjectivity. Let η ∈ Hn−1 ⊆ H and ξ ∈ D(A) be such
that (A − λI)ξ = η, then necessarily ξ = (A − λI)−1η ∈Hn .

Finally, it is easy to see that �n,m(S) = ∅ if m �= n − 1.
In conclusion, �F0 (S) = �H(A). �
The situation becomes more involved if S is a symmetric operator possessing many self-adjoint extensions. In this case

in fact, we have to deal with a true multivalued resolvent function.

Example 4.2. Let S be a closed symmetric operator with equal and finite defect indices. Again we put

D∞(S) =
⋂
n�0

D
(

Sn)
and, also in this case, D∞(S) is dense in H [29, Proposition 1.6.1]. If S ′ is a self-adjoint extension of S , we clearly have

D
(

Sn) ⊂ D
(

S ′ n), ∀n � 1

and then

D∞(S) ⊂ D∞(
S ′).

Let assume that S has a family {Sα}α∈I of self-adjoint extensions. We put Hα,n = D(Sn
α) endowed with the graph norm as

before and consider

F0 = {Hα,n; α ∈ I, n ∈N}.
Then S ∈ C(Hα,n,Hβ,m) if and only if α = β and m � n − 1. By the previous result, it follows that

�Hα,n,Hα,n−1(S) = �H(Sα).

Hence �F0(S) = ⋃
α∈I �H(Sα).

Let Sα and Sβ be two different self-adjoint extensions of S; then the essential spectra σess(Sα) and σess(Sβ) are equal [36,
Theorem 8.18], while the point spectra σp(Sα) and σp(Sβ) are different, in general.

A well-known concrete example is provided by the differential operator on an interval of the real line. Let us consider,
in fact,

D
(

S∗) =
{

f ∈ L2([0,1]): f (x) = f (0) +
x∫

0

g(t)dt; g ∈ L2([0,1])},

D(S) = {
f ∈ D

(
S∗): f (0) = f (1) = 0

}
,

D(Sα) = {
f ∈ D

(
S∗): f (1) = α f (0), α ∈C with |α| = 1

}
and S∗ f := −ig .

Then S is closed and symmetric but not self-adjoint, Sα is a self-adjoint extension of S for every α ∈ C with |α| = 1.
The point spectrum of S is empty and its whole spectrum is σ(S) = C; as for the Sα ’s, one has σp(Sα) = {arg(α) + 2kπ,

k ∈ Z} = σH(Sα). Hence

�F0(S) =
⋃

α: |α|=1

�H(Sα) =
⋃

α: |α|=1

(
C \ {

arg(α) + 2kπ, k ∈ Z
}) =C.

It is worth remarking that the result �F0(S) = C does not change if we take as I a proper subset J of the unit circle
{α ∈ C; |α| = 1} consisting of at least two different (modulo 2π ) points.

Now we consider the “global” resolvent multivalued function

λ ∈ �F0(S) → (S − λI)−1 = {
(Sα − λI)−1}.

Let us first introduce some notation. We recall that the operator S has defect indices (1,1). For every λ ∈ C \ R, the
subspace Mλ of solutions of the equations

S∗Φλ = λΦλ,

has dimension 1.
It is easily seen that Φλ(x) = K eiλx .
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The Krein formula [1], allows us to compute(
(Sα − λI)−1 − (Sβ − λI)−1)g = μ(λ)〈g|Φλ〉Φλ, (12)

where μ(λ) �= 0 and the functions λ → μ(λ) and λ → Φλ are analytic in �H(Sα) ∩ �H(Sβ).
This formula shows that, in general, (Sα − λI)−1 and (Sβ − λI)−1 are not analytic continuations of each other, since the

r.h.s. in (12) is zero if and only if Sα = Sβ . More precisely, in our case

((
(Sα − λI)−1 − (Sβ − λI)−1)g

)
(x) =

(
1

α − eiλ
− 1

β − eiλ

)
iei(x+1)λ

1∫
0

g(τ )e−iλτ dτ

which vanishes if and only if α = β .

Example 4.3. Let us consider the operator H0 = − d2

dx2 . Our aim here is to provide a family of intermediate spaces for H0 and
find the corresponding resolvent. Of course, there are several possible domains D such that H0 (or, better, its restriction
to D) can be considered as an element of L(D,D×). Let us examine shortly two cases.

(1) First, we take D = S := S(R). In this case, H0 is the so-called free Hamiltonian of quantum mechanics and the simplest
Schrödinger operator. It is easily seen that H0 ∈ L(S,S×) (more precisely, H0 ∈ L†(S)) and it is essentially self-adjoint
on S; its closure, H := H0, is defined on the Sobolev space W 2,2(R). As discussed at the beginning of Section 4.1,
a natural choice for the family F0 consists in taking the scale of Hilbert spaces generated by H . This is, actually, a chain
of Sobolev spaces; i.e., F0 = {W 2m,2(R)[‖ · ‖m]; m ∈ Z} (as before, ‖ · ‖±n := ‖(I + H2n)±1/2 · ‖, with n ∈ N). Hence, by
Proposition 4.1,

σF0(H0) = σH(H1) = R+ ∪ {0}.
(2) A second case of interest arises if we impose a boundary condition by taking, for instance, D := Sy := { f ∈ S: f (y) = 0},

y ∈R, with the topology induced by S . This domain is used when perturbing the free Hamiltonian with a δ-interaction
centered at y [2]. The domain of the closure H of H0 is W 2,2

y (R) = { f ∈ W 2,2(R); f (y) = 0}. As shown in [2, Theo-
rem 3.1.1], the operator H is no longer self-adjoint; it has, in fact, defect indices (1,1) and, for each α ∈ R, it possesses
a self-adjoint extension Hα . The domain of Hα is

D(Hα) = {
g ∈ W 1,2(R) ∩ W 2,2(R \ {y}): g′(y+) − g′(y−) = αg(y)

}
.

As for the spectrum, we have

σH(Hα) =
{
R+ ∪ {0} if α � 0,

R+ ∪ {−α2

4 ,0} if α < 0,

since for α < 0, −α2

4 is an eigenvalue of Hα .
Then, proceeding as in Example 4.2, we get that

�F0(H0) =
⋃
α∈R

�H(Hα) = C \ {
R+ ∪ {0}}

where F0 = {Hα,n; α ∈ I, n ∈ N} (with Hα,n = D(Hn
α) endowed with the graph norm, as before). Hence, also in this

case, we get

σF0(H0) = R+ ∪ {0}.
4.2. Generalized eigenvalues and generalized eigenvectors

As announced in Section 3, we consider now the problem of the existence of a complete set of generalized eigenvalues
of a self-adjoint operator H and give a slight improvement of Gelfand theorem on this subject.

Let A be a self-adjoint operator with A � I in Hilbert space H. Let us assume that A−1 is a Hilbert–Schmidt operator.
Let us take, as in Section 4.1, D = D∞(A) and F0 = {Hn, n ∈ Z} the chain of Hilbert spaces generated by the powers of A
(in this case, the graph norm of Hn can be equivalently taken as ‖ · ‖n = ‖An · ‖). Since D is a Fréchet space, LB(D,D×) =
L(D,D×) and, for every X ∈ L(D,D×), there exists n ∈ N such that X ∈ C(Hn,H−n). Hence, we can define an operator
X0,n in the following way

D(X0,n) = {ξ ∈ H∩Hn: Xξ ∈ H},
X0,nξ = Xξ, ξ ∈ D(X0,n).

In general, D(X0,n) is not dense in H and may reduce to the null subspace only.
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Theorem 4.4. Let X ∈ L(D,D×) be symmetric, with D = D∞(A) where A is a self-adjoint operator with A � I , in Hilbert space H,
whose inverse A−1 is Hilbert–Schmidt. Assume that X ∈ C(Hn,H−n), for some n ∈ N, and that X0,n is densely defined and essentially
self-adjoint. Then X has a complete set of generalized eigenvectors.

Proof. Let {E(λ)} be the spectral family of X0,n and ζ a unit vector in H. Put σ(λ) = 〈E(λ)ζ |ζ 〉. Then σ defines a measure
on R and almost everywhere with respect to σ there exists the derivative

dE(λ)ζ

dσ(λ)
=: χ(λ).

As shown in [18, Ch. IV, Sect. 4.3, Theorem 1], χ(λ) is a continuous linear functional on D. This set of functionals is
complete in the sense that, for every vector ξ ∈ M(ζ ), the closed subspace generated by {E(λ)ζ ; λ ∈ R}, one has [18,
Ch. IV, Sect. 4.3, Theorem 2]

ξ =
∫
R

〈
χ(λ)

∣∣ξ 〉
χ(λ)dσ(λ) and ‖ξ‖2 =

∫
R

∣∣〈χ(λ)
∣∣ξ 〉

χ(λ)
∣∣2

dσ(λ). (13)

We want to prove that χ(λ) ∈ H−n . We denote by � the interval [α,β] containing the point λ and by E(�) the operator
E(β) − E(α). Assume that the interval � contracts to the point λ. Then, for every φ ∈D, we have〈

χ(λ)
∣∣φ〉 = lim

�

〈
E(�)ζ

σ (�)

∣∣∣∣φ〉
= lim

�

〈
A−n E(�)ζ

σ (�)

∣∣∣∣Anφ

〉
.

Now, we observe that ‖E(�)ζ/σ (�)‖ = 1; hence by the compactness of A−1, there exists a subnet {E(�′)ζ/σ (�′)} such
that A−n E(�′)ζ/σ (�′) converges in H. This implies that∣∣〈χ(λ)

∣∣φ〉∣∣ � C
∥∥Anφ

∥∥ = C‖φ‖n, φ ∈ D.

Thus χ(λ) extends to a continuous conjugate linear functional on Hn . We denote this extension by the same symbol. Since
X ∈ C(Hn,H−n), denoting by X(n) the corresponding extension we get, for every φ ∈ D, in complete analogy to [18, Ch. IV,
Sect. 5.2, Theorem 1],〈

X(n)χ(λ)
∣∣φ〉 = 〈

χ(λ)
∣∣Xφ

〉
= lim

�

〈
E(�)ζ

σ (�)

∣∣∣∣Xφ

〉
= λ

〈
χ(λ)

∣∣φ〉
.

Hence χ(λ) is an F0-generalized eigenvector. The final step of the proof consists in decomposing H into an orthogonal sum
of subspaces of the type M(ζα), as in [18]. �
Remark 4.5. We recall a well-known situation where Theorem 4.4 can be applied. This is the case where X ∈ C(H1,H−1)

and [A0, X] ∈ C(H1,H−1) (here [A0, X] denotes the commutator of A0 := A�D ∈ L†(D) and X which is well defined since
A0 has a continuous extension Â0 to D× and, therefore, one can define [A0, X]ξ = Â0 Xξ − X A0ξ , ξ ∈D).

Then by the commutator theorem [27, Sect. X.5], X0,n is densely defined and it is essentially self-adjoint on every core
for A.

Remark 4.6. Once a notion of spectrum is at hand, it is natural to pose the question as to whether other aspects of
the beautiful spectral theory for operators in Hilbert space extend to the different environment we have considered here.
Thus, one first asks oneself if a given operator X = X† ∈ L(D,D×) gives rise to a resolution of the identity in a possibly
generalized sense. Some hints come from the previous discussion on generalized eigenvectors and eigenvalues we have done
in this section. However, in the case considered here, for instance in Theorem 4.4, we have, since from the very beginning,
a well-behaved operator X and both the resolution of the identity {χ(λ); λ ∈ R} of the rigged Hilbert space obtained in (13)
and the measure σ are determined by the spectral family of the essentially self-adjoint operator X0,n . In the general case,
we conjecture that it is not possible to associate a resolution of the identity to a symmetric element of L(D,D×). These
operators in fact can be so far from being Hilbert space operators (see, for instance the example in Section 5) as to make
impossible the use of the powerful tools at our disposal in a Hilbert space theory. Thus, a first step in the direction of getting
more results on the existence of a resolution of the identity should consist in considering operators with a sufficiently large
restriction to the central Hilbert space H. We hope to consider this problem in a future paper.

Remark 4.7. In the language of quantum mechanics the resonant spectrum of the Hamiltonian operator H of a physical system
(a self-adjoint operator in Hilbert space) consists of complex nonreal generalized eigenvalues when the operator (or, more
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precisely, a restriction of it) is considered as acting in a rigged Hilbert space. The smallest space D of the rigged Hilbert
space is determined by physical conditions (outgoing boundary conditions, labeled observables, etc.) [15,12,5] so that the
whole construction depends on the model under consideration. There are several nonequivalent definitions of the resonant
spectrum (some of them are discussed also in [5, Sect. 7.2.2, 7.2.3]) but it mostly stems out from the spectrum of some
extension of H , in the very same spirit of what we have done in this paper. The resonant (Gamow) states are eigenvectors
of the extension H× of H to D× (which certainly exists if HD ⊆ D). These eigenvectors certainly do not belong to H
since H can only have real eigenvalues; thus they are true objects in D× . As shown before, we can perform some spectral
analysis of H by choosing a convenient family of interspaces F0. The resonant spectrum however is not contained in σF0 (H)

if F0 contains D(H), considered as Hilbert space with its graph norm, and H. Indeed, in this case, σF0(H) ⊆ σH(H) ⊆ R.
However, the complex eigenvalues can certainly be found in one of the sets σE,F (H) that determine the spectrum σF0 (H),
if the family of interspaces F0 is sufficiently rich. This situation shows that the whole family of spectra {σE,F ; E,F ∈ F0}
should be taken into account in order to get enough information on H .

5. Examples

The following examples give some motivations to the ideas developed in the paper.

Example 5.1. Let S and S× be as in Example 3.6. The operator Mδ defined by Mδ : S → S× , with

〈Mδ f |g〉 = 〈δ f |g〉 = 〈
δ
∣∣ f ∗g

〉 = f (0)g(0)

is the multiplication operator by the Dirac δ distribution. It is easily seen that Mδ ∈ L(S,S×). We want to determine the
spectrum of Mδ . First we look for eigenvalues, i.e. for all λ ∈ C such that (Mδ − λI) f = 0 has nonzero solutions.

If λ is an eigenvalue and f is an eigenvector, then

〈Mδ f |g〉 = λ〈 f |g〉, ∀g ∈ S;
i.e.,

f (0)g(0) = λ〈 f |g〉. (14)

If we take f = g we obtain | f (0)|2 = λ‖ f ‖2
2, hence λ � 0.

It is clear that λ = 0 is an eigenvalue. The corresponding eigenspace S0 := { f ∈ S, f (0) = 0}. This subspace is closed
in S with its usual topology, but it is dense in L2(R) with respect to its norm.

If λ > 0, from (14), we get∣∣ f (0)g(0)
∣∣ = λ

∣∣〈 f |g〉∣∣ � λ‖ f ‖2‖g‖2, ∀g ∈ S.

If we choose gn(x) = n√
π

exp{−n2x2/2}, n ∈N, then ‖gn‖ = 1 and we should have

n√
π

∣∣ f (0)
∣∣ � λ‖ f ‖, n ∈N;

then f (0) = 0. This in turn implies that λ = 0, a contradiction. Hence, 0 is the unique eigenvalue of Mδ .
Thus, if λ ∈ C \ {0}, the operator Mδ − λI is injective. It is easy to check that the range R(Mδ − λI) is the following

subspace of S×

R(Mδ − λI) = {
f (0)δ − λ f ; f ∈ S

}
.

There are no values of λ for which this space contains L2(R). So that (Mδ − λI)−1 cannot be defined on the whole S× .
Let us consider as F0 the family of Sobolev spaces W k,2(R) and their duals; i.e., F0 = {W k,2(R), k ∈ Z}, where

W 0,2(R) = L2(R). From now on we shorten W k,2(R) as W k,2, etc.
If k > 0, Mδ has a continuous extension to W k,2 denoted by M(k)

δ and defined by〈
M(k)

δ f
∣∣g

〉 = 〈δ f |g〉 = f (0)g(0), ∀ f , g ∈ W k,2.

The continuity of every function in W k,2 ensures that the right hand side of the previous equality is well defined. It is easily

seen that M(k)
δ has no nonzero eigenvalues. By [11, Theorem VIII.7], every f ∈ W k,2 is bounded and then one has, for some

C > 0, ∣∣〈M(k)
δ f

∣∣g
〉∣∣ = ∣∣ f (0)g(0)

∣∣ � ‖ f ‖∞‖g‖∞ � C‖ f ‖k,2‖g‖r,2.

This implies that M(k)
δ f ∈ W −r,2 for every r > 0. Hence Mδ ∈ C(W k,2, W −r,2), for every k, r > 0. Since R(M(k)

δ − λI), λ ∈ C,
never contains L2, it follows that �k,−r(Mδ) = ∅, where, for short, �k,−r(Mδ) = �W k,2,W −r,2 (Mδ). On the other hand, Mδ /∈
C(W k,2, W r,2) ∪ C(W −k,2, W −r,2), k, r > 0 since, otherwise δ should be a regular distribution. In conclusion, σF0(Mδ) = C
and 0 is the unique eigenvalue.
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More generally, one can consider the distribution C = ∑
n∈Z δn , where 〈δn| f 〉 = f (n), the so-called δ-comb, and the

operator MC defined on S by

〈MC f |g〉 = 〈
C
∣∣ f ∗g

〉 = ∑
n∈Z

f (n)g(n).

The series on the r.h.s. converges for every f , g ∈ S . Every n ∈ Z is an eigenvalue with corresponding eigenspace Sn =
{ f ∈ S; f (n) = 0}. If we take again F0 = {W k,2, k ∈ Z}, one finds, also in this case, by an argument similar to the previous
one, that σF0(MC ) = C.

Example 5.2. Let us consider the operator MΦ of multiplication by a tempered distribution Φ:

〈MΦ f |g〉 = 〈
Φ

∣∣ f ∗g
〉
, f , g ∈ S.

As shown in [34], MΦ ∈ L(S,S×).
To begin with, let us first consider the case Φ = Φh , where Φh is the regular tempered distribution defined by a mea-

surable slowly increasing function h; this means that there exists m ∈ N∪ {0} such that∫
R

∣∣h(x)
∣∣(1 + |x|)−m

dx < ∞.

The action of MΦh is given by

〈MΦh f |g〉 = 〈
Φh

∣∣ f ∗g
〉 = ∫

R

h(x) f (x)g(x)dx, f , g ∈ S

and MΦh ∈ L(S,S×).
The eigenvalue equation

MΦh f − λ f = 0, f ∈ S (15)

has nonzero solutions in S if, and only if, h(x) = a, for almost every x ∈ R, with a ∈ C and λ = a. In this case, σ(MΦh ) =
σp(MΦh ) = {a}.

The operator (MΦh − λI)−1 exists for every λ /∈ h(R), the closure of the essential range of h. The operator (MΦh − λI)−1

can be identified with the operator of multiplication by the function g = (h − λ)−1. Clearly, (MΦh − λI)−1 is defined on the
subspace

M := {
Φ ∈ S×; Φ is regular and Φ = Φ(h−λ) f , f ∈ S

}
.

Since M� S× , then �S,S×(MΦh ) = ∅.
Let us consider as F0 the family of Sobolev spaces W k,2(R) and their duals as in Example 5.1.
For shortness we put �W k,2,W m,2(MΦh ) := �k,m(MΦh ), k,m ∈ Z.

Let us assume that h ∈ L∞(R). Then, for every f ∈ W k,2, g ∈ S∣∣〈MΦh f |g〉∣∣ � ‖h‖∞‖ f ‖2‖g‖2 � ‖h‖∞‖ f ‖k,2‖g‖r,2, ∀k, r ∈N. (16)

Hence, for every f ∈ W k,2, MΦh f is a continuous linear functional on every W r,2, r � 0 and, by (16), MΦh ∈
C(W k,2, W −r,2), for every k, r ∈ N. The operator (MΦh − λI)−1 is defined on the subspace

Mk,r := {
Φ ∈ W −r,2; Φ is regular and Φ = Φ(h−λ) f , f ∈ W k,2}.

Then, we have the following situation:

k = 0, r = 0: In this case �0,0(MΦh ) =C \ h(R);
k > 0, r = 0: The operator MΦh − λI is not onto, hence �k,0(MΦh ) = ∅;
k > 0, r > 0: Mk,r � W −r,2 and �k,−r(MΦh ) = ∅.

It remains to check the cases of indices both positive or both negative. For this, let us assume that h ∈ L∞ \ W 1,2
loc . In this case

MΦh /∈ C(W p,2, W q,2) with p,q > 0, since, if hf ∈ W q,2 then h ∈ W q,2
loc ⊂ W 1,2

loc . By duality there cannot be a continuous ex-
tension of MΦh belonging to C(W p,2, W q,2) with p,q < 0, since, otherwise, we would have MΦh

∈ C(W −q,2, W −p,2). Finally,

we notice that no continuous extension of MΦh belonging to C(W −p,2, W q,2) with p,q > 0 may exist, since, otherwise, from
W p,2 ⊂ W −p,2 it would follow MΦ g ∈ W q,2, for every g ∈ W p,2 and this is excluded. In conclusion, �F0 (MΦ ) =C \ h(R).
h h
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Let us finally examine a case where h is not bounded but slowly increasing. For instance, h(x) = x, x ∈ R. We consider
again as F0 the chain of Sobolev spaces considered above. First we notice that every real number λ is an F0-generalized
eigenvalue: indeed, the distribution δλ , the Dirac delta centered at λ, is in W −1,2 and one has〈

(Mx − λI)δλ

∣∣ f
〉 = 〈

δλ

∣∣(x − λ) f
〉 = λ f (λ) − λ f (λ) = 0, ∀ f ∈ W 1,2.

Since, for every r � 0∣∣〈Mx f |g〉∣∣ � ‖xf ‖2‖g‖2 � ‖xf ‖2‖g‖r,2, ∀ f ∈ S, g ∈ W r,2,

Mx f is, for every f ∈ S , an element of W −r,2, but Mx /∈ C(W k,2, W −r,2), k > 0. Moreover, Mx /∈ C(W k,2, W r,2), for k, r � 0,
since this would imply that the operator of multiplication by x, regarded as an operator in L2 should be everywhere
defined on W k,2 and this is not true. By a duality argument we can also exclude that Mx ∈ C(W −r,2, W k,2) and Mx ∈
C(W −r,2, W −k,2), r,k > 0. Thus in this case σF0(Mx) = C.

The situation changes if we include in F0 the extreme spaces S and S×: in this case the spectrum coincides with the
usual spectrum σH(Mx) of Mx since Mx ∈ C(S, L2) and Mx is essentially self-adjoint on S .

Example 5.3. As it is well known, the Hermite functions defined by φ0(x) = π−1/4e−x2/2 and

φn(x) = (
2nn!)−1/2

(−1)nπ−1/4ex2/2
(

d

dx

)n

e−x2

constitute an orthonormal basis of L2(R). If f ∈ S , then f has the expansion

f =
∞∑

n=0

cnφn, with sup
n

|cn|nm < ∞, ∀m ∈N (17)

and the series converges in the topology of S . The space of sequences {cn} satisfying, for a given m ∈ N,

sup
n

|cn|nm < ∞,

will be denoted by sm . We will indicate with s the so-called space of rapidly decreasing sequences; i.e., s = ⋂
m∈N sm .

An element F ∈ S× can be represented as

F =
∞∑

n=0

bnφn, with |bn| � M(1 + n)s, for some M > 0, s ∈N, (18)

the series being weakly convergent.
Let now {an} be a sequence of complex numbers such that

∀{cn} ∈ s, ∃m ∈N such that sup
n

|an||cn|
(1 + n)m

< ∞. (19)

Then

f =
∞∑

n=0

cnφn �→ A f :=
∞∑

n=0

ancnφn

defines a linear map from S into S× . Since S is a reflexive Fréchet space, it is sufficient to check that A is continuous from
S[σ(S,S×)] into S×[σ(S×,S)]. Continuity follows immediately from the fact that the map

A† : f =
∞∑

n=0

dnφn �→ A† f :=
∞∑

n=0

andnφn, {dn} ∈ s,

is the adjoint of A. Hence A ∈ L(S,S×). A natural choice of F0 consists in taking the spaces Sm whose elements are all
F ∈ S× for which the expansion (18) has coefficients in sm and their duals S×

m . It is easy to check that every an is an
eigenvalue of A. Thus, if λ /∈ {an, n ∈ N}, the sequence { 1

an−λ
} is bounded. For these values of λ, the operator (A − λI)−1

maps Sm into Sm (and S×
m into S×

m ) continuously. Hence σF0(A) = {an, n ∈ N}.
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