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Some relationships between the calculus of Newton, 

Bombelli’s Algebra and Leibniz. 
 

Nicla Palladino* 

 

 

Abstract: In this paper we develop some relationships between the 

approximation method Rafael Bombelli used to find the square root of an integer 

number in his Algebra (1572), Leibniz’s “hidden calculus” in infinitesimal 

algorithms (Nova Methodus, 1684) and Newton’s procedures of extraction more 

arithmetico of the root of a binomial: these procedures lead to the series 

development of a binomial root that Newton used in integral calculus (ca. 1666). 

 

Riassunto: Nell’articolo, vengono confrontati alcuni procedimenti di 

approssimazione, dovuti a Rafael Bombelli per calcolare la radice quadrata di un 

numero (Algebra, 1572) con il “calcolo nascosto” degli algoritmi infinitesimali di 

Leibniz (Nova Methodus, 1684) e, ancora, con procedure per l’estrazione della 

radice di un binomio concepite da Newton: queste ultime conducono agli sviluppi 

in serie di binomi che Newton adoperò per il calcolo integrale. 

 

1. THE SQUARE ROOT AND METHODS OF 

APPROXIMATION. 
 

It is possible to find direct and recursive methods for calculating square 

roots of integer numbers since the second century. Bombelli, in his 

Algebra, and Newton, in Arithmetica Universalis, exposed Claudius 

Ptolemy’s method that has been used for calculating both exact and non-

exact square roots. 

Newton proposed a graphic scheme (“a danda lunga”, which means all 

passages included) for calculating the square root following Ptolemy’s 

method1. The extraction of the square root of 22178791 is one of the two 

examples given by Newton [Newton 1707, pp. 32-33]: 

 

                                                
*I Trav. Ianniello, 7. Frattamaggiore (NA). E-mail: nicla.palladino@unina.it 
1 Ptolemy’s method is nearly equal to methods that we can read nowadays in 
arithmetic manuals for the first level middle school. 
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€ 

22.17.87.91 | 4709, 43 etc.   
  16                   87 × 7 = 609
     617               9409× 9 = 84681
     609               94184× 4 = 376736
       88791          941883× 3= 2825649
       84681 
         4110.00
         376736  
           34264.00
           2825649 
             600751...
              .............

 

 

Bombelli also explained Ptolemy’s method in the first “libro” of his 

Algebra [Bombelli 1966, pp. 34-35].2 He showed the extraction with an 

example: how to calculate the square root of 5678, by the “a danda lunga” 

procedure: 

 

“If we would to find the side3 of 5678, we have to do as follows. Let us draw 

the a line so far that it is possible to insert another number below, and  over the 8 

make a point. Then we leave a blank going to the left and over the 6 make another 

point. If the number is more large, we have to make other points, leaving blanks 

beetwen the ciphers. And then, going on from the left to the right, we have to take 

the ciphers until the first point, that are 56, and put then under the a line. Let us 

find the closest square number in 56, that is not smaller than 56, and that is 49; its 

side is 7 and put 7 under 6, where is the first point, over the a line and put two 7s  

at the side of the scheme. Let us draw the e line  and make the sum, that is 14, and 

the product, that is 49; put 49 under 56, draw the b line and make di difference4 

that is 7; the first part is ended. 

Going on, if we put 7, that is between the 6 and the 8, over the a line, and it 

becomes 77. 

We have to find how many times 14, that is under the e line,  is in 77, and that 

is 5; let us put 5 next to 14, and becomes 145, put another 5 under 145, and make 

the sum (drawing the f line) that is 150; and put another 5 under the 8, where is 

another point, and put the 8 under the b line next to 77, and becomes 778; under 

778 put the product of 145 by 5 that is 725, and make the difference (drawing the c 

line) that is 53, and under 53 draw the d comma5, and under that put 150, that is 

under the f line, and it becomes 53/150. The extraction is ended, that is the 

                                                
2 This point is maybe less known because Bombelli’s Algebra is not easy to read (the 
first edition was published in Bologna, by G. Rossi, 1572, in three chapters): he used 
the Millecinquecento Italian language that is not always easy to understand. 
3 That is the square root. 
4 Bombelli used the verb “cavare”, that is “to take out”. 
5 Bombelli used the term “virgula” that is “comma”, but let us read “line”. 
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approximate side of 5678, that is 75 and 53/150 that are different by the square of 

the “rotto”6, that is 2809/22500”.7 

 

Bombelli showed the corresponding graphic scheme and concluded 

saying that the approximate square root of 5678 is 75 plus 53/150 and the 

difference between 5678 and 

€ 

75+
53
150

 

 
 

 

 
 
2

 is 2809/22500;8  

 

   

€ 

      7

e  7
145

f  5
150

       
  

€ 

56
.

78
.

  7  5    a
56
49       b
  778
  725   c
    53   d
  150  

 

Original Bombelli’s scheme for the 
square root of 5678. 

Reproduction of Bombelli’s 
scheme. 

 

                                                
6 I.e. the square of the remainder (of the unit). 
7 “Se si haverà a trovare il lato (come sarebbe di 5678), facciasi come si vede qui da 
sotto. Tirisi la linea a tanto lontana, che sotto il numero ci capisca un altro ordine di 
caratteri, e sopra l’8 si faccia un punto, e poi venendo a man sinistra, lassando un 
carrattero nel mezo, e sopra il 6, si faccia un altro punto, e se il numero fosse 
maggiore, si seguitarà di fare li punti; ma interponendo un punto da un carrattero 
all’altro, e fatto questo, si ricomencia dall’altro capo a man sinistra andando verso la 
destra, e si pigliano gli caratteri, che sono fino al primo punto, e si pongono sotto la 
linea a, il qual’è 56. Fatto questo, si trova un numero quadrato, e il più prossimo, ma 
che non sia maggiore di 56, il quale sarà 49, che il suo lato è 7, il qual 7 si mette 
sotto il 6, sopra la linea a, sopra del quale è il primo punto, e dui altri 7 si pongono 
da canto, sotto li quali si tira la linea e poi si somma, che fanno 14, et il produtto 
delli detti dui 7 l’uno nell’altro è 49, il quale si mette sotto il 56, e si tira la linea b e 
si cava di 56 resta 7, et è finito fino al primo punto. E per seguire avanti; se gli 
aggionge il 7, che è sopra la linea a fra il 6, e l’8, e farà 77. Hora si veda quante 
volte entra il 14, ch’è sotto la linea e nel 77, che vi entra 5; il qual 5 si mette al pari 
del 14, e dirà 145, et un altro 5 si mette sotto quello, e si sommano (tirando la linea 
f) e fa 150, et il medesimo 5 si mette sotto l’8, sopra il qual è l’altro punto, e l’8 si 
mette sotto la linea b al pari del 77, e fa 778; sotto il quale se gli mette il produtto di 
145 nel 5, che vi è sotto, ch’è 725, e si cava l’uno dell’altro (tirando la linea c) e 
resta 53, sotto il quale si tira la virgula d, e se li mette sotto il 150, che è sotto la 
linea f che dirà 53/150, et è finita la estrattione, over il lato prossimo di 5678, che 
sarà 75, e 53/150 che solo saranno differenti tanto, quanto è il quadrato del rotto, 
cioè 2809/22500.” 
8 In fact 

€ 

75+
53
150

 

 
 

 

 
 
2

= 75( )2 + 2 ⋅75 ⋅ 53
150

+
53
150
 

 
 

 

 
 
2

= 75( )2 + 53+
53
150
 

 
 

 

 
 
2

= 5625+ 53+
2809
22500

= 5678+
2809
22500

. 
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We can able to show the same example according to the modern 

schemes (as also Newton wrote): 

 

  

€ 

56.78   |  75,3 etc.   
  49           145× 5 = 725
    778       1503× 3= 4509
    725             
      5300...
      ...........  

 

 

Recursive methods (for non-exact square root) give an approximation 

for the square root of a integer number by using, just so, recursive 

algorithms which lead to the expected approximation of the value of the 

square root with a smaller number of operations (compared with Ptolemy’s 

method): this is the method expressed by the fundamental rule – it could be 

called mother rule, preluding to modern recursive algorithm – which 

Bombelli himself explained in the first “libro” of the Algebra [Bombelli 

1966, page 39]. 

By translating to modern notation the “paradigmatic example” of 

Bombelli for calculating the square root of 13, that rule works as follows: 

The closest square to 13 is 9, whose root is 3 (he considered “the closest 

square number” which is not over the original number) and then he put 

€ 

13 = 3+ x , 

where x is the “rotto” – that is, the remainder – of the unit and therefore 

€ 

0 < x < 1; by squaring both the members of the equation, he obtained 

13 = 9 + 6x + x2, 

from which 

4 = 6x + x2          (*) 

and            

4 = x (6 + x).         (**) 

By neglecting x2 in (*), he had 

€ 

x =
4
6

=
2
3
.  

Therefore the first approximation expressed with a “rotto” was 

€ 

13 = 3+
2
3

. 

Bombelli replaced x in the brackets in (**) with 4/6, looking for a better 

approximate value, and obtained 
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€ 

4 = x 6+
4
6

 

 
 

 

 
 ; 

from this 

€ 

x =
4

6+
4
6

=
3
5

; 

therefore the new approximation was 

€ 

13 = 3+
4

6+
4
6

= 3+
3
5

. 

By using letters instead of numbers (passing from logistica numerosa – 

like Bombelli – to logistica speciosa – like Viète –), the procedure becomes: 

 

€ 

n = a 2 + r = a + x  

€ 

a2 + r = a + x( )2  

€ 

a 2 + r = a 2 + 2ax + x 2 

€ 

r = 2ax + x 2       (*) 

€ 

r = x 2a + x( )       (**) 

By neglecting x2 in (*)

€ 

x =
r
2a

 

and:               

€ 

a2 + r = a +
r
2a

. 

By replacing x in (**) with 

€ 

x =
r
2a

: 

€ 

r = x 2a +
r
2a

 

 
 

 

 
  

from which:        

€ 

x =
r

2a +
r
2a

. 

Therefore:          

€ 

a2 + r = a +
r

2a +
r
2a

 

 
If we again replace the last value of x in (**), the square root will be 

approximated how much we want, by repeating the same procedure as follows: 
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€ 

13 = 3+
4

6+
4

6+
4
6

= 3+
20
33

 

and so on. 

This procedure leads to the infinite continued fraction method. It inspired 

Pietro Antonio Cataldi (1552-1626) for the idea of the continued fraction, 

which is also useful to represent the square root of a number and to calculate 

its approximate value ad libitum9. 

Bombelli’s idea, improved by Cataldi with full consciousness, gave 

infinite continued fraction the “ontological status” of equivalent entity by 

which it was possible to express a non-exact square root. 

A symbolically compacted representation of 

€ 

13 , in terms of continued 

fraction, can be provided with modern notation by the general formula: 

€ 

13 = 3+ xn  

where 

€ 

xn =
4

6+ xn−1
 with 

€ 

x0 = 0, n = 1, 2, ... 

 

Bombelli “sealed” his method, which has been explained previously, and 

classified it with the significance of mother rule, by the phrase: 

 

“[…] so it is possible to see where the others rules were born”.10 

 

He formerly had given some early recursive rules for calculating 

approximate values of the square root of the numbers 13 (a number which is 

“very far” from being a perfect square) and 8 (a number which is “almost” a 

perfect square). The rules differ each other for some details, as it is possible 

to see from his quotes and from the schemes shown. The way to explain the 

rules used by Bombelli does not let immediately see the possibility to get to 

a continued fraction. It is very important that Bombelli declared to have 

“found with basis” their justification. The “basis” is the mother rule. 

                                                
9 Cataldi explained the infinite continued fraction method in his Trattato del modo 
brevissimo di trovare la radice quadra delli numeri, et regole da approssimarsi di 
continuo al vero nelle radici de’ numeri non quadrati, published in Bologna by 
Bartolomeo Cochi in 1613. 
10 “[...] sicché si vede donde nascano le [altre] regole dette di sopra [sul modo di 

formare il rotto]”. 
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The first quote follows; it shows how calculate the rule for 

€ 

13  with 

respective schemes expressed in modern notation (where n = a2 + r and a2 is 

the greatest square number held in n and r the difference between n and a2): 

 

   […] presuposto che si 
voglia il prossimo lato di 
13,  

[...] if we want to find the 

approximate side of 13, 

€ 

13  

€ 

n  

che sarà 3, e avanzerà 4, 
that is 3, and 4 remains, 

€ 

32 + 4 = 3 

€ 

a2 + r = a  

il quale si partirà per 6 
(doppio del 3 suddetto) ne 
viene 2/3, e questo è il 
primo rotto, che si ha da 
giongere al 3, che fa 3

€ 

2
3

, 

ch’è il prossimo lato di 13, 
perché il suo quadrato è 
13

€ 

4
9

, ch’è superfluo 4/9,  

that we divide for 6 (dual 
3) and the result is 2/3 that 
is the first rotto, that we 
have to add to 3 and the 
result is 3

€ 

2
3

, that is the 

approximate side of 13, 
because is square is 13

€ 

4
9

 

that is larger for 4/9, 

€ 

32 + 4 =

= 3+
4
6

= 3+
2
3

 

€ 

a2 + r = a +
r
2a

 

ma volendosi più 
approssimare, al 6 doppio 
del 3 se gli aggionga il 
rotto, cioè li 2/3, e farà 
6

€ 

2
3

, e per esso partendosi 

il quattro, che avanza dal 9 
fino al 13, ne viene 3/5, e 
questo si giunge al 3, che 
fa 3

€ 

3
5

, ch’è il lato 

prossimo di 13, di cui il 
quadrato è 12

€ 

24
25

, ch’è più 

prossimo di 3

€ 

2
3

, 

if we want better 
approximate, we have to 
add the rotto to 6, i.e. 2/3, 
and it is 6

€ 

2
3

, ad we divide 4 

by 6

€ 

2
3

 and remains 3/5 that 

we add to 3

€ 

3
5

, that is the 

approximate side of 13. His 
square is 12

€ 

24
25

, a better 

approximation, 

€ 

32 + 4 =

= 3+
4

6+
4
6

= 3+
3
5

 

€ 

a2 + r =

= a +
r

2a +
r
2a

 

ma volendo più prossimo, 
si aggionga il rotto al 6 fa 
6

€ 

3
5

, e con esso si parta pur 

il 4, ne viene 20/33, e 
questo si aggionga, come 
si è fatto di sopra al 3 fa 
3

€ 

20
33

, ch’è l’altro numero 

più prossimo, perché il suo 
quadrato è 13

€ 

4
1089

, ch’è è 

troppo 4/1089, e volendo 
più prossimo … [Bombelli 
1966, p. 38]. 

but if we want to go on, we 
have to add the rotto to 6 
and it is 6

€ 

3
5

, then we divide 

4 by 6

€ 

3
5

 and the result is 

20/33 that we add to 3. The 
result is 3

€ 

20
33

 that is a better 

approximation because is 
square is 13

€ 

4
1089

 that is 

larger for 4/1089, and if we 
want approximate... 

€ 

32 + 4 =

= 3+
4

6+
4

6+
4
6

= 3+
20
33  

€ 

a 2 + r =

= a +
r

2a +
r

2a +
r
2a

 

  … … 
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Bombelli well described his rule into the sixth application and wrote this 

fondamental observation: 
  

“And so going on, it is possible to approximate to imperceptible thing”.11 

 

  

The two pages of Bombelli’s Algebra with his method for 

€ 

13 . 

 

The method has an iterative form: 
 
 

for i=0, 1,... 
and a+r(i) is the result. 
 

The second quote, where Bombelli shows the rule for 

€ 

8 , and respective 

schemes follow: 

 

   […] per trovare il 
suo lato,  

 

[...] if we want to find 
the approximate side of 8, 

€ 

8  

€ 

n  

                                                
11 “E così procedendo si può approssimare a una cosa insensibile”. 

€ 

r(0) = 0;

r(i +1) =
n − a 2

2a + r(i)
;
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si cavarà 4 maggior 
numero quadrato, e 
resterà 4,  

let us subtract 4, the 
largest square number, and 
4 remains,  

€ 

8 = 22 + 4 = 2  

€ 

n = a 2 + r = a  

che partito per il 
doppio di 2, lato del 
numero quadrato, ne 
verrà 4/4, che sarebbe 1, 
il quale gionto col 2 fa 3.  

then we divide 4 by 2 
twice, side of the square 
number, and the result is 
4/4, i. e. 1, that added to 2, 
is 3. 

€ 

22 + 4 = 2+
4
4

=

= 2+1= 3
 

€ 

a2 + r = a +
r
2a

 

Et in questo caso 
quadrisi il 3 fa 9, del 
quale cavatone 8 numero 
di cui se ne ha a pigliare 
il lato, resta 1, e questo si 
parte per 6, doppio del 3, 
ne viene 1/6 il qual rotto 
si cava del 3, e resta 2

€ 

5
6

 

per il lato prossimo di 8, 
il quadrato del quale è 
8

€ 

1
36

, ch’è 1/36 

superfluo, 

Let us find the square 
of 3 that is 9; from 9 
subtract 8 and the result is 
1 and divide 1 by 6, twice 
3, and the result is 1/6 and 
its rotto we subtract from 
3 and 2

€ 

5
6

 remains, and its 

square is 

€ 

1
36

 that is bigger 

for 1/36, 

€ 

22 + 4 =

= 3− 3
2 − 8
6

= 3− 1
6

=

= 2+
5
6

 

€ 

a 2 + r =

= a +
r
2a

 

 
 

 

 
 +

−
a +

r
2a

 

 
 

 

 
 
2

− a 2 + r( )

2 a +
r
2a

 

 
 

 

 
 

 

e volendosi più 
approssimare: aggiongasi 
a 2

€ 

5
6

 il 3 fa 5

€ 

5
6

, e per 

questo si parta quel 1 
detto di sopra, ne viene 
6/35 che levato di 3 resta 
2

€ 

29
35

, e questo sarà l’altro 

lato più prossimo, e 
volendosi più 
approssimare … 
[Bombelli 1966, p. 38]. 

and if we want to find a 
better approximation, we 
have to add 3 to 2

€ 

5
6

 and 

the result is 5

€ 

5
6

, and then 

divide 1 by it, and we 
have 6/35. If we subtract 
3, it remains 2

€ 

29
35

 and it is 

the closest side, and if we 
eant to find a better 
approximation... 

 

€ 

a 2 + r =

= a +
r
2a

 

 
 

 

 
 +

−
a +

r
2a

 

 
 

 

 
 
2

− a 2 + r( )

2 a +
r
2a

 

 
 

 

 
 −

a +
r
2a

 

 
 

 

 
 
2

− a 2 + r( )

2 a +
r
2a

 

 
 

 

 
 

 

  … … 

 

Bombelli observed, for concluding the exposition of this other rule: 

 

“And going on, one is able to approximate how much he wants”.12 

 

                                                
12 “E procedendo si approssimarà quanto l’huomo vorrà”. 
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The two pages of Bombelli’s Algebra with his method for 

€ 

8 . 

 
The method also has an iterative form: 

 
 

for i=0, 1,... 
where a+r(i) is the result. 

 

It is useful looking, starting from the first steps, for a perfect 

correspondence among the approximate values at any step, by means of each 

of three rules (mother rule and the last two rules explained). Bombelli, as 

able calculator, would have noticed this fact but, as able mathematician, 

would have understood soon the importance that in these cases we have to 

consider the definitive character of this succession of steps (where the 

calculations lead to do an indefinite number of steps; “quanto l’huomo 

vorrà” he wrote). 

It is useful to do another important consideration: in the mother rule, for 

the approximation (included in the procedure here explained) of 

€ 

13  and 

€ 

8 , Bombelli used an empirical observation – its origin is very ancient: the 

€ 

r(0) = 0;

r(i +1) =
a +

r
2a

 

 
 

 

 
 
2

− n

2 a +
r
2a

 

 
 

 

 
 − r i( )
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first approximate value, 3+4/6 (for 

€ 

13 ), is also given by the arithmetic 

mean between 3 (a) and 13/3 (n/a).13 

This empirical observation dates back to the Babylon, even if, in the 

historical-mathematician literature, it is always attributed to the Pythagorean 

Archytas of Tarentum (428-365 B.C.) or to Heron of Alexandria (ca. 10-85 

A.D.) or, even, to Newton (but it appears nowhere in the Arithmetica 

Universalis where it seems reasonable looking for it). This latter ascription is 

in fact misleading, because, as the reader can see afterwards, it seems to be 

based on the fact that in other works (which will be mentioned afterwards), 

Newton suggested an algorithm for calculating the square root of a binomial 

of 

€ 

a2 + x 2( ) -form in order to obtain the development in series of 

€ 

a2 + x 2  

(where, as it could be noticed, at first two terms of development in series we 

could arrive also through the calculation of the arithmetical mean) to make 

then the necessary termwise integration in order to calculate the surface 

included “under the curve” of 

€ 

y = a2 + x 2  form. 

We know that Babylonian mathematicians used a method of 

approximation in order to find the non-exact square root of a natural number; 

a confirmation of their method comes out by studying the YBC 7289 tablet of 

the Yale University Babylonian Collection (see the following figure). This 

tablet dates back to the pre-Babylonian period of the Hammurabi dynasty 

(1800-1600 B.C.); a square with its diagonals is drawn and some numbers in 

cuneiform characters are impressed on the table. 

 

 
The YBC 7289 tablet. 

 

This method is connected to the investigation of the relation between the 

diagonal and the side of a same square, on “Pythagorean theorem” basis and 

                                                
13 The arithmetic mean between a and n/a, i.e. between a and 

€ 

a2 + r
a

, is 

€ 

1
2
a +

a2+r
a

 

 
 

 

 
 =

2a2 + r
2a

= a +
r
2a

. 
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consists of calculating two rounded values of the square, one by excess and 

the other one by defect, and taking the arithmetic mean between these two 

values as subsequent approximation. 

It is possible to calculate, for example, an approximate value of the root 

of 2, by using the Babylonian method.14 

For 

€ 

2 , the value 1 (the square of 1 is the closest to 2) is chosen as first 

approximation and the consequent relation is: 

€ 

1 ⋅ (2 :1) = 2  

which expresses the product between the rounded down value of the square 

root (i.e. 1) and the rounded up one (i.e. 2:1). The mean between these two 

values is the second approximation: 

€ 

2 =
1
2
1+ 2( ) = 1+

1
2

=
3
2

. 

Being 

€ 

3
2
 

 
 
 

 
 
2

=
9
4

= 2+
1
4

> 2 , 

the approximation found, 3/2, is a value by excess of 

€ 

2 . 

By repeating the same procedure, we have: 

€ 

3
2
⋅ 2 : 3

2
 

 
 

 

 
 = 2  

that is 

€ 

3
2
⋅
4
3

= 2 ; 

in this way we obtain 4/3. It is the rounded down value of 

€ 

2 : let us match 

it with 3/2, that is the rounded up value. It follows that a subsequent 

approximation is given by the arithmetic mean of the preceding values, 3/2 

and 4/3, and therefore: 

€ 

2 =
1
2
3
2

+
4
3

 

 
 

 

 
 =

3
4

+
2
3

=
17
12

= 1,416 . 

 

It could be noticed that repeating only two times the mean procedure of 

the Babylonian comes out a good approximation of the square root of 2. 

                                                
14 The Babylonian method is explained in Heron’s Metrica, as Paul Tannery (1843-
1904) revealed in [Tannery 1894]. Here the calculation is expressed by decimal 
fractions, although the Babylonian used sexagesimal fractions (see [Neugebauer 
1974, pp. 52-53]): this was their ordinary numeration system. 
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The described procedure can be expressed in modern terms by using the 

following formula (which nowadays, according to different considerations, 

several scholars ascribe to Newton): 

€ 

n =
1
2
n
a

+ a
 

 
 

 

 
  

where a is, at the first step, the closest approximation of the value of the 

square root of n; it is necessary replace in the following steps each time a 

with the result obtained calculating the second member of the preceding 

formula. The procedure ends when a result coinciding with its immediately 

previous comes out. 

The preceding formula could be indexed in order to better underline the 

iterative nature of the procedure. Let us define the rounded generic value of 

the square root of n as 

€ 

xi ; we obtain: 

€ 

n = xi =
1
2

n
xi−1

+ xi−1
 

 
 

 

 
  

where i = 1, 2, 3, … and x0 is the first chosen approximation. 

It could be noticed that it is possible to get to the same formula by 

arguing as follows: if we want to calculate 

€ 

n , let us put 

€ 

x = n , 

that can be written as 

€ 

x 2 = n , 

or else 

€ 

x ⋅ x = n , 

that is 

€ 

x =
n
x

. 

Let us suppose that x0 is a first approximation of the value of 

€ 

n ; from 

the previous relation follows that 

€ 

n
x0

 is also an approximation. Therefore the 

arithmetic mean of these two approximations gives a value x1 that is closer to 

€ 

n  than x0: 

€ 

x1 =
1
2
x0 +

n
x0

 

 
 

 

 
 . 

By using the value x1 just obtained, and by repeating the same reasoning, 

it is possible write: 

€ 

x2 =
1
2
x1 +

n
x1

 

 
 

 

 
 
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and so on, until the desired approximation is obtained: 

€ 

xi =
1
2
xi−1 +

n
xi−1

 

 
 

 

 
 , 

for i = 1, 2, …, where x0 is the first chosen approximation. 

An intermediate observation can be just made: by applying the arithmetic 

mean used in the Babylonian age, for Bombelli was helpful resigning himself 

of the scientific dignity of the “mother rule”. 

By reasoning according to Bombelli’s method, we have: 

€ 

n = a + x  

where a is the value whose square is the closest number to n, without going 

over it; by squaring both members we obtain: 

€ 

n = a2 + 2ax + x 2 ; 

by neglecting x2 at the first approximation, we have: 

€ 

x =
n − a2

2a
; 

and then: 

€ 

n = a + x = a +
n − a2

2a
=
a
2

+
n
2a

=
1
2
a +

n
a

 

 
 

 

 
 . 

 

 

2. NEWTON AND THE EXTRACTION OF ROOT. 
 

Sometimes happens to read the misleading assertion that the algorithm of 

extraction of square root, usually ascribed to Newton, is in the Analysis per 

Quantitatum Series etc. [Newton 1723] and in his work La Méthode des 

Fluxions [Newton 1740], which are works imagined in the first decades of 

the second half of the XVII century.15 

Newton, in the De Analysi and in the treatise La Méthode des Fluxions, 

developed in power series particular functions like 

€ 

y =
a2

b+ x
 and 

€ 

y = a2 + x 2  (see [Newton 1723, pp. 6-7] and [Newton 1740, pp. 5-6]). He 

                                                
15 The first one was published around the 1669 with the temporary title De Analysi per 
aequationes numero terminorum infinitas and was printed for the first time in 1711 in 
Analysis per Quantitatum Series, Fluxiones ac Differentias; the second one was 
published around the 1671 with the temporary title Methodus fluxionum et serierum 
infinitorum and was printed for the first time in 1736, in English, with the title The 
Method of Fluxions and Infinite Series and, then, in French – 1740 – and in Latin – 
1742 
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executed the so-called long division or “Mercator’s division”, for functions 

of the first kind, which Mercator made public in his Logarithmotechnia in 

1668; Newton used the method that he called of extraction of the root for 

functions of the second kind. 

Newton however wanted to underline the structural connection between 

these two “symbolic” methods. In the Epistola prior (13th June 1676 

[Gerhardt 1971, 1, p. 100]), which he sent to Leibniz via Oldenburg 

(secretary to the Royal Society of London), Newton wrote: 

 

 Fractiones in infinitas series reducuntur per divisionem et quantitates 

radicales per extractionem radicum, perinde instituendo operationes istas in 

speciebus istis ac institui solent in decimalibus numeris.16 
 

He made a calculation for the extraction of the square root of 

€ 

a 2 + x 2( )  – 

an algorithm more arithmetico (solent in decimalibus numeris; i.e. in the 

same way through which operating with decimal numbers is usual) – 

represented in the scheme that follows (we added only the indication of I, II, 

etc. partial difference): 

 

 

  

€ 

a 2 + x 2   a +
x 2

2a
−
x 4

8a 3
+

x 6

16a 5
−
5x 8

128a 7
+ 7x10

256a 9
 etc.

 

 
  

 

I part. diff. 

     II part. diff. 

          III part. diff. 

               IV part. diff. 

  

€ 

a 2

0 + x 2

        
x 2 +

x 4

4a 2

0− x 4

4a 2

             
−
x 4

4a 2
−
x 6

8a 4
+

x 8

64a 6

0   +
x 6

8a 4
+

x 8

64a 6

                        
+
x 6

8a 4
+

x 8

16a 6
−

x10

64a 8
+

x12

256a10

0−   5x 8

648a 6
+

x10

64a 8
−

x12

256a10

                          etc.

 

 

                                                
16 “Fractions are reduced to infinite series by division and radical quantitaties by 
extraction of the roots, by carrying out those operations in the symbols just as they are 
commonly carried out in decimal numbers”. 
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The final result of the development in series of the square root of 

€ 

a2 + x 2( )  is reported on the right (after the round bracket) of the scheme. 

We think that the first term of development, that is a, is obtained simply 

by extracting the square root of a2; the first partial difference between the 

radicand 

€ 

a2 + x 2  and a2 is x2. 

Newton could have obtained the second term of development (

€ 

x 2

2a
), 

according to an intuition: by dividing 

€ 

x 2 (I part. diff.) by a and multiplying 

the result by 1/2. 

The second partial difference is obtained by subtracting the product of 

€ 

x 2

a
 (appeared in the preceding step) by a (I term of development) plus the 

square of 

€ 

x 2

2a
 (II term of development) from x2. The result is 

€ 

−
x 4

4a2
. 

Newton could have obtained again the third term of development, that is 

€ 

−
x 4

8a3
, by dividing 

€ 

−
x 4

4a2
 (II part. diff.) by a and then multiplying the result 

by 1/2. The third partial difference is obtained by subtracting the product of 

€ 

−
x 4

4a3
 (appeared in the preceding step) by a (I term of development) plus the 

product of the same 

€ 

−
x 4

4a3
 by 

€ 

x 2

2a
 (II term of development) plus the square 

of the third term of development, from 

€ 

−
x 4

4a2
. The result is 

€ 

x 6

8a4
−

x 8

64a6
. 

The fourth term of development, that is 

€ 

x 6

16a5
, would be obtained by 

Newton by dividing

€ 

x 6

8a4
 (let us pay attention: he considered only the first 

term of the third partial difference and neglected the other ones) by a and 

then multiplying the result by 1/2. 

The fourth partial difference is obtained by subtracting the product of 

€ 

x 6

8a5
 (appeared in the preceding step) by a (I term of development) plus the 

product of the same 

€ 

x 6

8a5
 by 

€ 

x 2

2a
 (II term of development) plus the product of 

the same 

€ 

x 6

8a5
 by 

€ 

−
x 4

8a3
 (III term of development) plus the square of the 
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fourth term of development, from 

€ 

x 6

8a4
−

x 8

64a6
. The result is 

€ 

−
5x 8

64a6
+

x10

64a8
−

x12

256a10
. 

The fifth term of development, that is 

€ 

−
5x 8

128a7
, would have been obtained 

by Newton by dividing 

€ 

−
5x 8

64a6
 (he considered also here only the first term 

of the fourth partial difference and neglected the other two) by a, and it 

results 

€ 

−
5x 8

64a7
; then he multiplied this result by 1/2. 

And so on. 

It is possible to read it according to this other manner in order to make the 

recursive nature of this algorithm more explicit: 

Given  

€ 

y = a2 + x 2 , 

the recursive rule becomes: 

€ 

ai =
I° Di−1( )
2a0

 

€ 

Di = Di−1 −
I°(Di−1)
ao

⋅ao +
I°(Di−1)
ao

⋅a1 + ...+ I°(Di−1)
ao

⋅ai−1 + ai
2

 

 
 

 

 
  

with  

     

€ 

a0 = a 2 = a
D0 = a 2 + x 2 − a0

2 = x 2
 

and where I° is a function that sets only the first term of the sum. 

 

Newton, or else anyone before him has got to this algorithm of the square 

root, probably has been encouraged in pushing forward the steps of the 

algorithm (thing that it is possible that will have happened to Bombelli too, 

convincing him of the scientific dignity of the mother rule) by the 

observation that we could arrive at the first two terms of development in 

series also through the calculation of the arithmetical mean (calculation 

which had been done by the Babylonian, as just said), if 

€ 

a2 + x 2( )  is 

explained under the form 

€ 

a2 + r( ) .  

The peculiarity of this algorithm is represented by the fact that “some 

quantities are neglected”, and it is scientifically “allowed” to do it: in this 

aspect there is the substantial difference between the calculation leading to 
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the extraction of the non-exact square root before and after the appearance of 

the method adopted by Newton. 

It seems that Newton did not underline that some quantities, definable as 

“infinitesimals of superior order”, were neglected in the symbolic procedure. 

Neglecting such quantities had been noticed clearly by Bombelli while 

Leibniz, in conceiving the rules of differentiation (proposed in the article 

Nova Methodus…, [Gerhardt 1971, 5, pp. 220-226] published in 1684), 

revealed later “to have neglected” anything, in his correspondence with 

philosophers and mathematicians [Palladino 1995]. 

It is perhaps useful to remember that from the epistolar correspondence of 

Leibniz derives what can be called a “hidden calculation” which supports his 

rules of differentiation stated without any comment in the Nova Methodus. It 

is possible to make Leibniz’s procedure clear (which is structurally equal to 

Bombelli’s procedure adopted in the mother rule – and Bombelli’s algebra is 

well known by Leibniz, as we can see by glancing at Matematische Schriften 

of this latter). 

Leibniz considered an equation like 

€ 

y = x 2  

and substituted y with 

€ 

y + dy  and x with 

€ 

x + dx , where 

€ 

dx  and 

€ 

dy  are 

“infinitesimally little” increments; he obtained: 

€ 

y + dy = x + dx( )2  

€ 

y + dy = x 2 + 2xdx + dx( )2 . 

He annulled y and x2 because they compensate each other (

€ 

y = x 2); 

therefore: 

€ 

dy = 2xdx + dx( )2  

and subsequently he neglected 

€ 

dx( )2  because it was “still more little” 

than 

€ 

dx , obtaining: 

€ 

dy = 2xdx . 

Therefore the differential ratio was 

€ 

dx
dy

=
1
2x

 

that was useful for him for calculating the subtangent t in a point of the 

curve 

€ 

y = x 2 . 

Starting from Bombelli and getting to Newton and Leibniz, the 

procedures of approximation, used for a limited number of steps and 
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connoted by an “alchemistical spirit”, assumed more modern scientific 

dignity: the approximation become “controlled” and “unified” because a new 

idea of the infinite in mathematics and his correspondent control were 

growing. 

 

 

3. NEWTON BETWEEN THE ALGORITHM OF 

EXTRACTION OF THE ROOT AND THE FORMULA OF THE 

BINOMIAL. 
 

We could underline an interesting relationship between the method of 

Newton for searching 

€ 

a2 + x 2 , and the “binomial formula” which allows to 

obtain the development in series of the expression 

€ 

a2 + x 2( )r  with r rational 

number (in particular with r=1/2). What kind of interactions, if are they? 

And, if interactions are, which of two algorithms did support the other one? 

Newton, in the Epistola posterior (of the 24th October 1676 [Gerhardt 1971, 

1, p. 124]) that he sent to Leibniz, wrote that the general rule for reducing 

the root in infinite power series was thought before having formalized the 

rule for the extraction of the root of a binomial of the 

€ 

a2 + x 2( )  form: 

 

 Sic itaque innotuit mihi generalis reductio radicalium in infinitas series per 

regulam illam, quam posui initio epistolae prioris, antequam scirem extractiones 

radicum17.  

 

We want to report a quote of the Epistola prior [Gerhardt 1971, 1, pp. 

100-101]) where Newton revealed his theorem which had a fundamental role 

in all his treatises of infinitesimal Calculus of the XVIII century: 

 

 Quamquam Dni. Leibnitii modestia, in excerptis, quae ex Epistola ejus ad me 

nuper misisti, nostratibus multum tribuat circa speculationem quandam infinitarum 

serierum, de qua jam coepit esse rumor: nullus dubito tamen quin ille, non tantum 

(quod asserit) methodum reducendi quantitates quascunque in ejusmodi series, sed et 

varia compendia, fortè nostris similia, si non et meliora, adinvenerit. Quoniam tamen 

                                                
17 “So then the general reduction of radicals into infinite series by that rule, wich I laid 
down at the beginning of my earlier letter became known to me, and that before I was 
acquainted with the extraction of the roots”. 
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ea scire pervelit, quae ab Anglis ea in re inventa sunt, et ipse ante annos aliquot in 

hanc speculationem inciderim: ut votis ejus aliqua saltem ex parte satisfacerem, 

nonnulla eorum quae mihi occurrerunt, ad te transmisi. 

 Fractiones in infinitas series reducuntur per divisionem, et quantitates radicales 

per extractionem radicum, perinde instituendo operationes istas in speciebus istis ac 

institui solent in decimalibus numeris. Haec sunt fundamenta harum reductionum; 

sed extractiones radicum multum abbreviantur per hoc Teorema: 

 

€ 

P + PQ}
m
n = P

m
n +

m
n
AQ +

m − n
2n

BQ +
m − 2n
3n

CQ +
m − 3n
4n

DQ + etc.  

 

 Ubi P + PQ significat quantitatem, cujus radix vel etiam dimensio quaevis vel 

radix dimensionis investiganda est, P primum terminum quantitatis ejus, Q reliquos 

terminos divisos per primum, et m/n numeralem indicem dimensionis ipsius P + PQ 

sive dimensio illa integra sit, sive (ut ita loquar) fracta, sive affirmativa, sive 

negativa18.  

By reading the two Epistolae and Newton’s mathematical manuscripts, 

we thought that the steps approaching to the idea of the binomial formula 

have been the following ones. 

As Newton himself underlined in his Epistola posterior, he wanted to 

generalize the development in series of powers of binomials like 

€ 

1− x 2( )0 , 

€ 

1− x 2( )1, 

€ 

1− x 2( )2 , … These series are useful to find the surfaces included 

between the arcs of the curves represented by the functions 

€ 

y = 1− x 2( )
0
, 

€ 

y = 1− x 2( )
1
, 

€ 

y = 1− x 2( )
2
, ... and the x axis. Newton desired to find similar 

                                                
18 “Though the good sense of Mr Leibniz, in the extracts from his letter you have 
lately sent me, pays great tribute to our countrymen [English mathematicians] for 
their researches on infinite series which we are discussing about: yet I have no doubt 
that he has discovered not only a method for reducing any quantities whatever to 
such series, as he asserts, but also various shortened forms, perhaps like our own, if 
not even better. Since, however, he very much wants to know what the English have 
discovered in this subject, and since I myself fell upon this theory some years ago: I 
have sent you some of those things which occurred to me in order to satisfy his 
wishes, at any rate in part. 
Fractions are reduced to infinite series by division and radical quantities by 
extraction of the roots, by carrying out those operations in the symbols just as they 
are commonly carried out in decimal numbers. These are the foundations of these 
reductions; but extractions of square roots are shortened very much by this theorem: 

€ 

P + PQ}
m
n = P

m
n +

m
n
AQ +

m − n
2n

BQ +
m − 2n
3n

CQ +
m − 3n
4n

DQ + etc.  

where P + PQ is the quantity whose root, or even any power or the root of a power, is 
to be found; P is the first term of that quantity, Q is the remaining terms divided by the 
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surfaces for functions where the same binomial was raised to a rational 

exponent as follows: 

                  

€ 

y = 1− x 2( )
1
2 , 

€ 

y = 1− x 2( )
3
2 , 

€ 

y = 1− x 2( )
5
2 , etc. 

Concerning this, he noted that by integrating termwise the developments 

related to the exponents 0, 1, 2, etc., he obtained, respectively, 

  

€ 

x;    x − 1
3
x 3;    x − 2

3
x 3 +

1
5
x 5;    x − 3

3
x 3 +

3
5
x 5 − 1

7
x 7;   etc   

or also: 

  

€ 

x − 0
3
x 3;    x − 1

3
x 3;    x − 2

3
x 3 +

1
5
x 5;    x − 3

3
x 3 +

3
5
x 5 − 1

7
x 7;   etc   

In order to find the series corresponding to the integrations of binomials, 

with rational exponent, he thought to insert or interpolate new series 

between the first and the second series, between the second and the third 

series, between the third and the fourth series, etc.; he gave the first two 

terms of every new series:  

€ 

x −

1
2
x 3

3
, 

€ 

x −

3
2
x 3

3
, 

€ 

x −

5
2
x 3

3
, etc.. 

These terms were created on the basis of a “first analogy”: Newton 

detected that all the series calculated by starting from binomials with integer 

exponents (0 included) had x as first term and 
  

€ 

0
3
x 3;   1

3
x 3;   2

3
x 3;   3

3
x 3, etc. 

as second term; the progression 0, 1, 2, 3, etc., given by numerators of  

  

€ 

0
3
x 3;   1

3
x 3;   2

3
x 3;   3

3
x 3, etc. 

coincided with the n expressing the exponent of the binomial 

€ 

1− x 2( ) . The 

idea was that the same correspondence could hold when the exponents were 

rational and not only integer, i.e. 1/2, 3/2, 5/2, etc. 

Newton had to determine the string of terms, after the second ones, for 

each of the series originated by binomials with rational exponents. He made 

also this step through a second analogy, which is here explained. 

The series originated by binomials with integer exponents (0 included, 

and then, 1, 2, 3, etc.) have the denominators of the coefficient of x (which 

are 1; 1, 3; 1, 3, 5; 1, 3, 5, 7; …) increasing by the arithmetic progression, 

while the numerators increase according to “Pascal triangle” (this was 

                                                                                                              
first; and m/n is the numerical index of the power of P + PQ, whether that power is 
integral or (so to speak) fractional, whether positive or negative”. 
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generally also called “Tartaglia’s triangle” and “Oughtred’s analytic table” 

by Newton) as follows: 

  

€ 

1
1  1
1  2  1
1  3  3   1
1  4  6   4   1
1  5  10  10   5   1
1  6  15  20   15  6   1
...          ...             ...   

 

 

The “Triangle” can be disposed according to another particular 

configuration (which is more useful for the next considerations): 

 

  

€ 

1   1   1    1   1    1    1    1    ...
0   1   2   3   4   5    6     7     ...
0   0   1   3   6   10  15   21   ...
0   0   0   1   4   10  20   35   ...
0   0   0   0   1    5   15   35   ...
0   0   0   0   0    1    6    21   ...
0   0   0   0   0    0    1    7     ...

 

 

The law of formation, as appears in this “triangle”, is such that the 

element of place (i, j), where i is the index of line and j is the index of 

column, is obtained by adding the element of place (i – 1; j – 1) with the 

element of place (i; j – 1). 

The same law of formation is “algebraically” exposed in the table that 

follows, where a, b, c, d are generic numbers: 

 

€ 

0
2

 

€ 

2
2

 

€ 

4
2

 

€ 

6
2

 

€ 

8
2

 … 

a a a a a … 

b b + a b + 2a  b + 3a  b + 4a  … 

c c + b  c + 2b + a  c + 3b + 3a  c + 4b + 6a  … 

d d + c d + 2c + b d + 3c + 3b + a d + 4c + 6b + 4a … 

 

Newton extended the interpretation of this table from the traditional 

Pascal triangle to a triangle where there are also new inserted columns, 
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corresponding to the mentioned fractional exponents 1/2, 3/2, 5/2, etc.19 The 

table becomes: 

 

€ 

0
2

 

€ 

1
2

 

€ 

2
2

 

€ 

3
2

 

€ 

4
2

 

€ 

5
2

 … 

a a a a a a … 

b b+a b+2a  b+3a b+4a b+5a  … 

c c+b  c+2b+a  c+ 3b+3a  c+4b+6a  c+5b+10a  … 

d d+c d+2c+b d+3c+3b+a d+4c+6b+4a d+5c+10b+10a … 

 

Therefore we have this latter tabulation (“algebraical”) readapted, or 

dilated to make spaces in the “pores” to the new insertions. If the same 

dilatation is done on the “arithmetical” tabulation, corresponding to the last 

ones here considered, let us note that the first line of terms, starting from the 

“heading line” made of 0/2, 1/2, 2/2, 3/2, etc., has all the squares filled with 

the number 1 (see the following table), while the second one is formed by 

the string 0/2, 1/2, 2/2, 3/2, etc.  

In this way, the squares under the columns with “fractional headings” 

1/2, 3/2, 5/2, etc., remain “uncovered” like in the figure: 

 

€ 

0
2

 

€ 

1
2

 

€ 

2
2

 

€ 

3
2

 

€ 

4
2

 

€ 

5
2

 … 

1 1 1 1 1 1 … 

0 

€ 

1
2

 1 

€ 

3
2

 2 

€ 

5
2

 … 

0  0   1  … 

0  0  0  … 

 

Consequently, let us consider, for example, the third line and let us try to 

fill the uncovered squares with appropriate numbers. We have to use the 

numbers made explicit in the other squares of the same line, by equalizing 

                                                
19 This is an typical approach of the “heroic period” which saw the birth of the 

infinitesimal calculus: it is an approach done by analogy, which has played an 
important rule in the development of the mathematical sciences. 
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each of these numbers with the corresponding literal expression present in 

the “readapted general tabulation”; therefore we are able to write the 

equations: 

  

€ 

c = 0
c + 2b+ a = 0
c + 4b+ 6a = 1

 

 
 

 
 

 

 

that are useful to “cover” the resting “blank” spaces of the third line. 

By counting, we obtain: 

  

€ 

c = 0;   b = −
1
8
;   a =

2
8

 

and therefore: 

  

€ 

 c + b = −
1
8
;   c + 3b+ 3a =

3
8
;    c + 5b+10a =

15
8

; … 

The table becomes: 

 

€ 

0
2

 

€ 

1
2

 

€ 

2
2

 

€ 

3
2

 

€ 

4
2

 

€ 

5
2

 … 

1 1 1 1 1 1 … 

0 

€ 

1
2

 1 

€ 

3
2

 2 

€ 

5
2

 … 

0 

€ 

−
1
8

 0  

€ 

3
8

 1 

€ 

15
8

 … 

0  0  0  … 

 

By progressing similarly, we can “cover”, ad libitum, how many squares 

we want. In addition to this, Newton discovered, what he underlined in the 

Epistola posterior, that it is possible make these “coverings” without solving 

systems of equations, but proceeding – as Leibniz said – with cogitatio 

caeca, that is through the automaticity which gives the infinite product 

€ 

m − 0
1

×
m −1
2

×
m − 2
3

×
m − 3
4

×
m − 4
5

× ..., 

where m has the value of the heading number of the column. 

If m=1/2, limiting the product at the first two factors, we obtain -1/8, 

while limiting it at the first three factors, we obtain 1/16, etc. 

It is possible to make these products explicit by the form  



 25 

€ 

m
k
 

 
 
 

 
 =

m(m −1)(m − 2)...(m − k +1)
k!

, 

with m rational number and k integer, and it is known as “binomial 

coefficient”. It gives all the numbers constituting either the columns with 

“entire heading” and those with “fractional heading”. 

Therefore, the generalized triangle (complete with the inserted columns) 

is as the following table shows: 

 

  

€ 

1     1      1       1       1        1       1    ...

0     1
2

     1      3
2

       2       5
2

      3     ...

0    - 1
8

    0      3
8

       1      15
8

     3     ...

0    1
16

    0    - 1
16

      0     5
16

      1    ... 

...                        ...                       ...

 

 

For example, it is possible to use the coefficients of the second column 

of the table in order to obtain the series: 

 

€ 

x −

1
2
x 3

3
−

1
8
x 5

5
−

1
16

x 7

7
−

5
128

x 9

9
+ ... 

 

which expresses the surface of the circular segment. 

Newton considered again the developments of binomials under square 

roots (which had been the starting point of his reflection, studying Wallis’ 

works) and noted that they can be obtained simply by omitting the 

denominators 1, 3, 5, 7, …, from the terms of the “series expressing the 

surfaces” (Epistola posterior [Gerhardt 1971, 1, p. 124]): 

 

“ […] et ad hoc nihil aliud requiri quam omissionem denominatorum 1, 3, 5, 7, 

etc. in terminis exprimentibus areas”. 

 

Consequently: 

€ 

1− x 2( )
1
2 = 1− 1

2
x 2 − 1

8
x 4 − 1

16
x 6 − 5

128
x 8 − ... 
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In this way Newton was able to calculate the power of a binomial for 

every exponent (“dimension”), integer, fractional positive or negative. Also 

the “formula of the binomial coefficients”, ascribed to Newton, derives from 

this and will have later an autonomous life. 

Newton proceeded to a check in order to “test” the lawfulness of the 

operation (“[…] ut probarem has operationes” – Epistola posterior [Gerhardt 

1971, 1, p. 124]) which allowed him the passage from the “series of the 

surfaces” to the “series of the curve”: he multiplied, amid the cases 

considered as paradigmatic examples, the development 

€ 

1− 1
2
x 2 − 1

8
x 4 − 1

16
x 6 − 5

128
x 8 − ... by itself (by means of the “long 

multiplication”) and obtained just . 

After obtaining (Newton wrote “demonstrated”) the certainty of his 

conclusion (that is the development in series of the square root of the 

binomial 

€ 

1− x 2) he added – Epistola posterior once more, p. 125– to begin 

to try if, viceversa, those series, which give the roots of the binomial 

€ 

1− x 2 , 

could be extracted with the arithmetical method. The attempt was successful, 

and he gave, as an example, the scheme of the operation of the square root 

(here already explained by us, sub species of the square root of 

€ 

a2 + x 2( ) , 

with more annotations): 

  

€ 

1− x 2      1- 1
2

 

 
 x 2 − 1

8
x 4 − 1

16
x 6 etc.

    1         

    0− x 2

        − x 2 +
1
4
x 4

            0    − 1
4
x 4

                  −  1
4
x 4 +

1
8
x 6 +

1
64

x 8

                      0     − 1
8
x 6 − 1

64
x 8

 

 

Newton gave this scheme without any explanations regarding the 

“hidden calculus” which he used in the execution of the algorithm. 

Let us note that it is possible to get to a result of this form also by using 

the “binomial formula” applied to 

€ 

a2 + x 2 . 
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If we want to develop in series 

€ 

a2 + x 2 , through the “binomial 

formula”  

 

€ 

a + b( ) r =
r
i
 

 
 
 

 
 

i=0

n

∑ ar−ibi =
r
0
 

 
 
 

 
 ar +

r
1
 

 
 
 

 
 ar−1b+

r
2
 

 
 
 

 
 ar−2b2 +

r
3
 

 
 
 

 
 ar−3b3 + ...,, 

 

with r fractional, 

€ 

r
i
 

 
 
 

 
 =

r r −1( ) r −1( ) ⋅ ...⋅ r − i +1( )
i!

 and where 

€ 

r
i
 

 
 
 

 
  is the 

binomial coefficient, we obtain: 

 

€ 

a 2 + x 2 = a 2 + x 2( )
1
2 =

=
1
2
0

 

 

 
 

 

 

 
 
a 2( )

1
2 x 2( )0 +

1
2
1

 

 

 
 

 

 

 
 
a 2( )

1
2
−1 x 2( )1 +

1
2
2

 

 

 
 

 

 

 
 
a 2( )

1
2
−2 x 2( )2 +

1
2
3

 

 

 
 

 

 

 
 
a 2( )

1
2
−3 x 2( )3 + ...

Since

 
 

€ 

1
2
0

 

 

 
 

 

 

 
 

= 1,  
1
2
1

 

 

 
 

 

 

 
 

=
1
2

,  
1
2
2

 

 

 
 

 

 

 
 

=

1
2

1
2
−1

 

 
 

 

 
 

2!
= −

1
8

,  
1
2
3

 

 

 
 

 

 

 
 

=

1
2

1
2
−1

 

 
 

 

 
 

1
2
− 2

 

 
 

 

 
 

3!
=

1
16

, 

 
1
2
4

 

 

 
 

 

 

 
 

=

1
2

1
2
−1

 

 
 

 

 
 

1
2
− 2

 

 
 

 

 
 

1
2
− 3

 

 
 

 

 
 

4!
= −

5
128

, ..., 

 

 

we obtain: 

€ 

a 2 + x 2 = a +
x 2

2a
−
x 4

8a 3 +
x 6

16a 5 −
5x 5

128a 7 + ... 

 

 

4. IS THERE A RELATION OF PRIORITY BETWEEN THE 

TWO NEWTONIAN ALGORITHMS? 
 

Newton added (Epistola posterior [Gerhardt 1971, 1, p. 125]) the 

following consideration, which aroused the surprise of some scholars: 

 

 His perspectis neglexi penitus interpolationem serierum, et has operationes 

tanquam fundamenta magis genuina solummodo adhibui. Nec latuit reductio per 

divisionem, res utique facilior. 
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That is, the acquired knowledge of the development in series of powers 

of the roots of the binomial  made him completely leave the “method 

of interpolation of the series” (and so the “binomial formula”) and he put as 

“more genuine” basis only this operation of extraction of root (for the new 

calculus he just thought of). He added that he had not let out the 

development in series done through the division (“long”), a proceeding of 

easy execution. 

Previously, in the same Epistola posterior, Newton specified to have got 

to the development of the root of a binomial (for example 

€ 

1− x 2 ) before 

knowing (… antequam scirem extractionem radicum) the algorithm, more 

arithmetico, of extraction of the root. 

Newton tried to complete Wallis’ project; he wanted to “square” not only 

the figures under arcs of curves of the form 

€ 

1− x 2( )0 , 

€ 

1− x 2( )1, 

€ 

1− x 2( )2 , …, 

but also those ones produced by the same binomials when the exponent was 

a fractional number, and in trying to give an answer to this problem he used 

the “binomial formula” which he found before having possessed the 

algorithm more arithmetico of the extraction of square root, as he said. He 

could stopped there but, even if he brought many innovations in the 

mathematic sciences (he was the author), he was however prisoner of the 

tradition: he needed an algorithm more arithmetico which could be put as 

basis of his theory of the series, and also other authors tried in the more 

geometrico the certainty of their argumentations, even Baruch Spinoza in his 

Ethica ordine geometrico demonstrata, published posthumous in 1677. 

About the succession of his discoveries (at first the “binomial formula” 

and then the algorithm of extraction of the root and immediately afterwards 

that ones of the “long division”) it is credible that it was just like Newton 

himself indicated. More precise informations are also necessary. The more 

arithmetico algorithm (that we can define “algebraical algorithm”) of 

extraction of root, presented by Newton, implies many passages (even if the 

comprehension of them is favourished by the fact that the procedure is of 

recursive form), which lead to neglect the “powers of superior order or 

dimension. Without the support of the “binomial formula”, the attempt to 

find the algorithm more arithmetico of the root perhaps would have been 

very hard. 
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At the conclusion of this interpretative line, we could wonder why 

Newton gave – Epistola posterior – more emphasis to the success obtained 

in connection to the algorithm more arithmetico of extraction of root than to 

the “binomial formula”. A possible answer could be that Newton himself 

probably realized that the “binomial formula”, admirable aesthetically, is the 

fruit of risky formal manipulations and it is not provided with the maximum 

of the “authenticity”, or “rigour”, which, in comparison with his time, could 

be asked to a scholar and accepted by the resting members of the community 

of the experts of the mathematic sciences. 
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