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SUMMARY. The paper deals with the optimal design of a base isolation system for a given 

structure subjected to seismic loads. In particular, an appropriate minimum displacement seismic 

protection device optimal design formulation is proposed for an assigned elastic perfectly plastic 

steel frame constrained to behave in conditions of elastic shakedown. The chosen base isolation 

device is constituted by elastomeric isolators. Suitable combinations of fixed and seismic loads are 

considered. According to the unrestricted shakedown theory, the seismic input is given as any load 

history appertaining to a suitably defined seismic load admissibility domain. The relevant dynamic 

structural response is obtained by means of a modal analysis making reference to the non-

classically damped structural model. Some numerical applications conclude the paper. 

1 INTRODUCTION 

In last decades an ever increasing attention has been paid to seismic actions causing the worst 

effects either on civil or manufacturing or infrastructure structures. Therefore, the safeguard of 

such structures is the first goal to be achieved in the structural engineering framework. Two main 

objectives belong to this framework: the first one is to avoid the partial or global collapse with the 

corresponding human, social and economic outcomes; the second one, mainly devoted to high 

cardinal structures (such as hospitals, schools and so forth), requires a minimal structural 

efficiency both during and after the earthquake. In order to achieve the last objective it is required 

to design the structure in such a way that its response under the expected seismic event guarantees 

its usability. For elastic plastic structures the latter requirement can be obtained if the structural 

design imposes an elastic shakedown behaviour under the expected seismic actions. Clearly, a new 

structure can be easily designed to possess such behaviour, but usually resulting in an over-

dimensioning with respect to the serviceability loading conditions. From the other hand the 

designer will face higher difficulties in upgrading an existing structure. In the latter case the more 

convenient strategy seems to be the adopting of appropriate seismic protection devices. Two main 

strategies are available: the first one is that of stiffening the structure by introducing suitably 

disposed cross bracing elements; the second one is that of reducing the amount of seismic energy 

coming out from the ground to the overhanging structure. In the first strategy the structure floor 

drifts are reduced as well as the stresses on the beams and pillars (see, e.g. [1]). The second 

strategy is regarded as very effective and mainly consists in inserting suitable devices (base 

isolation systems) between the soil foundations and the structure able to increase the first natural 

period of the isolated system making the structure less sensitive to seismic actions. 

This effect can be obtained alternatively adopting a passive control, an active control or a semi-

active control. In passive control devices the mechanical characteristics do not change depending 

on those of the seismic action, while in active control ones it is possible (see, e.g., [2-4]). To 
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author’s knowledge, the base isolation system based on passive devices is one of the most efficient 

and economic technique. Recent approaches devoted to the design of passive devices take into 

account for the randomness of the seismic actions (see, e.g., [5]). 

The optimal design of a base isolation system can be formulated in different ways [3-6]. As an 

example, the isolating device can be designed searching for the minimum drift of a chosen 

structure floor within an admissible range for the protecting device stiffness, or searching for the 

minimum base isolation system displacement according to fixed maximum structural drifts. Aim 

of the present paper is the formulation of an appropriate minimum displacement protection device 

design problem for an assigned structure constrained to elastically shakedown. 

In the present case, the seismic loads are unknown; further, the shakedown theory is related to 

the structural analysis under cyclic or repeated loads belonging to an admissible domain. To this 

aim in the paper reference is made to the so-called unrestricted shakedown theory [7]. According 

to such theory an appropriate seismic load domain is generated through the definition of a suitable 

number of dynamic basic load conditions. The relevant dynamic structural response is obtained by 

means of a modal analysis making reference to the non-classically damped structural model being 

the relevant structure provided by a base isolation system. Some examples related to plane steel 

frames conclude the paper. 

2 STRUCTURE AND LOADING MODEL DEFINITIONS 

Let us consider the plane frame plotted in Fig. 1a, constituted by Navier’s beam type elements 

provided with a base isolation system constituted by viscoelastic devices disposed under each 

pillar. The purely elastic behaviour of each isolation device is described by the relation 

 

 iso iso iso

x, j j x, jF k u ,  1 2 isoj , ,...,n , (1) 

 

with iso

x , jF , iso

jk , iso

x , ju  horizontal force, shear stiffness, horizontal displacement related to the - thj  

device, ison  being the number of the relevant isolation devices. Therefore, the described devices 

totally prevent vertical displacements and rotations of the constrained cross section elements and 

they result elastically flexible with regard to the horizontal displacements (Fig. 1b). 

 

a)       b) 

Figure 1: a) plane frame provided with a base isolation system; 

b) assumed elastic model for the base isolation devices. 



If no dynamic actions are present, the classical formulation of the static linear elastic analysis 

problem for plane frames constituted by 
bn  beam type elements, Nn  standard nodes (with three 

degrees of freedom) and ison  elastically flexible external nodes, is given as follows: 

 

 d Cu ,         * Q Dd Q ,          CQ F  (2a,b,c) 

 

where (Fig. 2) d , Q  and *
Q  are the displacement, generalized stress and perfectly clamped 

generalized stress vectors of the beam element extremes of dimension 6 bn , respectively, D  is 

the frame internal (square block diagonal) stiffness matrix with order 6 bn . 

 

 
Figure 2: Plane frame: displacement and force vector components and reference systems. 

 

Furthermore, iso

Nu u u  and iso

NF F F are frame nodal displacement and nodal force 

vectors of dimension 3iso Nn n  ; C  is the compatibility matrix with order  6 3b iso Nn n n     

and its transpose C  is the related equilibrium matrix. The solution to problem (2) is given by: 

 

 1 *ˆ u K F ,        1* * *ˆ    Q DCu Q DCK F Q  (3a,b) 

 

in terms of structure node displacements and element generalized stresses, respectively, with K̂  

frame external square stiffness matrix of order  3iso Nn n   obtained by K CDC  with 

iso

jj jj jK̂ K k   for 1 2 isoj , ,...,n , and * * F F CQ  equivalent nodal force vector. 

Making reference to seismic actions, let us consider the relevant frame provided by viscoelastic 

isolation devices, just subjected to an horizontal ground acceleration  ga t . The model to be used 

for the elastic dynamic analysis can be deduced by the frame model already utilized in eqs. (2-3). 

With this aim, at first, let us reorder the elements of vector u , i.e. 

 

 1

T

d t r u E u u u  (4) 



with 1E  appropriate reordering matrix, tu  horizontal displacement components and ru  remaining 

displacement components, where the apex T denotes the transpose of the relevant quantity. 

Analogously, matrix K̂  must be reordered: 

 

 1 1

tt tr

d

rt rr

ˆ 
K K

K E KE
K K

 (5) 

 

with trivial meanings of the utilized symbols and being 1 1 E E I , with I  identity matrix. 

Furthermore, in order to describe the classical frame model, the equality of the horizontal 

displacements at the same floor must be imposed, i.e. 

 

 2t u E s  (6) 

 

where 2E  is an appropriate condensation matrix of order  iso N fn n n  , with fn  number of 

floors (including the base isolation floor), and 
T

b sss s  is the (horizontal) displacement vector 

related to the frame floors (dynamic degrees of freedom), with bs  base isolation displacement and 

ss  structural floor displacement vector with respect to the base isolation level. 

Finally, it is usual to model the isolated structure as the superimposition of a classical  1fn   

floors clamped frame over the base isolation level as represented in Fig. 3. On the ground of such 

representation the dynamic equilibrium equations can be written in the following form: 
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or, explicitly: 

 

 tot b s s s b b b b tot gm s a s k s m a    τ M s  (8a) 

 s s b s s s s s s sr r s s gs a     M τ M s A s K s K u M τ  (8b) 

 rs s rr r K s K u 0  (8c) 

 

where: 
 1

1

fn

tot b i
i

m m m





    is the total mass of the isolated structure, bm  being the mass of the 

base isolation level; sM  is the mass matrix of the clamped frame; sτ  is the influence vector of the 

over frame; ba  is the damping coefficient related to the base isolation device; 
1

ison
iso

b j
j

k k


   is the 

total stiffness of the base isolation devices; sA  is the damping matrix related to the clamped frame. 

The following relations hold: 
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Figure 3: Isolated frame structural model. 

 

Finally,  bs t ,  s ts  and  bs t ,  s ts  represent the velocity and the acceleration vectors of 

the base isolation system and of the over frame structure, respectively, the over dot meaning time 

derivative of the relevant quantity. From (8c) one obtains 
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and eqs. (8a,b) can be rewritten in the following compact form: 
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It is worth noting that the base isolation system damping coefficient ba  can be computed once 

assigned the relevant isolation system damping coefficient b  and once evaluated its stiffness: 

 

 b
b

tot

k

m
  ;      2b tot b ba m    (12a,b) 

 

with b  natural frequency related to the base isolation system. 

Furthermore, it must be observed that the mass, damping and stiffness matrices in equation 

(11) do not satisfy the Caughey-O’Kelly condition [8] namely, the relevant system is not a 

classically damped one. As a consequence, the elastodynamic analysis can be effected as 

synthetically described in the following. 



As known, eq. (11) can be reformulated in the following way: 
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The solution of the system (13) together with the corresponding initial conditions provides the 

structural response in terms of floor horizontal displacements and allows to determine (see, e.g. 

[9]) the natural frequencies and the damping ratios related to the non-classically damped system. 

Once these last are known the complete frame node displacement vector and the related element 

generalized stress vector due to the dynamic actions can be determined. 

In the present context, the interest is focused in the determination of the characteristic of the 

isolation device which guarantees the shakedown of the structure. Since the real seismic load 

history is not known, reference must be made to a suitably defined admissible load domain. The 

definition of such a domain is made referring to the unrestricted dynamic shakedown theory [7]. 

Following this theory the seismic acceleration  ga t  is expressed as the superposition of a 

discrete set of single-frequency wave components  ijψ τ : 
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being T the duration of the seismic action, ij  some arbitrary coefficients required to satisfy the 

admissibility conditions (15b) [10] and 

 

      0

1
1 2 int 1 cos sin

2

j

ij i i

j
c E    

              
 1 2 3 4j , , ,  (16) 

 

where 0c  is a parameter related to the maximum power of the seismic input and  E   a suitable 

defined envelope function [7]. In equation (16) the intensity of the - thi  single-frequency wave 

component is related to the power spectral density, here modeled by the well-known Kanai-Tajimi 

filter, of the considered earthquake corresponding to - thi  structural natural mode [7]. 

Finally, an appropriate elastic plastic model for the structure is adopted as shown in Fig. 4a. In 

particular, beams and columns are considered as purely elastic elements and at their extremes are 

located rigid perfectly plastic hinges where the mechanical resistance limit is verified. The domain 

which describes the rigid perfectly plastic behaviour of the cited hinges can be represented just in 

terms of bending moments or it can take into account also the influence of the axial forces (as 

known, especially for steel frame structures constituted by quite slender elements, it is usual to 

neglect the shear force influence). In the first case, adopted in the present context and certainly 



reliable during the initial phase of structure dimensioning, the hinge dimensionless domain is 

constituted by a segment with extremes 1  and 1  (Fig. 4b), being yM  the full plastic bending 

moment of the relevant cross section. 

 

a)               b) 
Figure 4: a) elastic plastic structural scheme; b) rigid plastic domain of the typical hinge. 

3 OPTIMAL DESIGN PROBLEM FORMULATION 

Making reference to the isolated elastic perfectly plastic frame structure as above described, 

according to the assumed loading model, let it be subjected to fixed mechanical loads and seismic 

loads. The minimum displacement base isolation system design problem formulation, with 

constraints on the elastic shakedown, can be written as follows: 
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where, besides the already defined symbols,  S

k tu  and  S

k tQ ,  k I m  with m  number of 

basic load conditions, are the purely elastic response to the - thk  seismic action, S

φ , S

φ  are the 

plastic potential vectors related to the elastic shakedown limit (apex S), pG  is an appropriate 

equilibrium matrix which applied to element nodal generalized stresses provides the bending 

moments acting upon the plastic nodes of the elements, 0 1S   and 1S   are scalar load 

multipliers suitable to define the chosen load combination, 1

p p
ˆ   S DCG K G CD D  is a time 

independent symmetric structural matrix which transforms the plastic activation intensities into the 

plastic potentials, 0

S
Y  are the fictitious plastic activation intensity vectors related to the elastic 

shakedown limit and R  is the relevant plastic resistance vector. The problem is solved by 

searching for the minimum base isolation system displacement within the admissible domain for 

base isolation stiffness, i.e. the domain which characterize the safe shakedown behaviour for the 

structure. 

4 NUMERICAL APPLICATIONS 

The minimum displacement design of the base isolation device for the steel frame in Fig. 5 has 

been obtained referring to the previously proposed formulation. The design problem (17) has been 

solved utilizing a suitable MATLAB direct search subroutine. The frame is constituted by square 

box cross section elements with 250 mm  and constant thicknesses as listed in Table 1. 

Furthermore, the following geometrical and material characteristics have been assumed: 

1 7 00 mL . , 2 4 00 mL . , 4 00 mH . , Young modulus 210 GPaE  , yield stress 

235 MPay  . The rigid perfectly plastic hinges are located at the extremes of all elements and 

an additional hinge is located in the middle point of the longer beams. 

 

Table 1. Thicknesses (mm) of the frame. 

El. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

t 16 16 16 16 19 16 19 24 19 34 19 40 16 16 16 16 

El. 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

t 16 16 16 19 23 29 36 40 16 16 16 16 18 30 16 16 

 

The structure is subjected to a fixed uniformly distributed vertical load on the beams, 

0 40 kN mq   and to seismic actions. The seismic masses are equal at each floor: 

235 88 kNs mm . . The equivalent damping coefficient of the base isolation system has been 

assigned 0 10b .  . In the case under examination the ground acceleration ga  has been 

characterized by the following Kanai-Tajimi parameters: 0 65g .  , 19 rad sg   and 

0 0 0050S . . The adopted load combinations are defined by an assigned fixed load multipliers 



0 0 8S .   and to an imposed minimum seismic load multiplier 1S  . 

The optimal base isolation displacement has been found 103mmbs   related to a base 

isolation stiffness 0 81kN mmbk .  and to a shakedown load multiplier 4 88S .  . It is worth 

noting (Fig. 6a,b) that the minimum value of the seismic load multiplier is reached for 

3 78kN mmbk .  and 121mmbs  , but the searched displacement decreases on decreasing the 

base isolation stiffness till its minimum with a great safety margin with respect to the shakedown. 

 
Figure 5 – Frame under examination. 

1 CONCLUSIONS 

The present paper has been devoted to the optimal design of a base isolation system for a given 

structure subjected to seismic loads. In particular, an appropriate minimum displacement seismic 

protection device optimal design formulation is proposed for an assigned elastic perfectly plastic 

steel frame constrained to behave in conditions of elastic shakedown. The overhanging structure 

has been assumed as a plane steel frame subjected to a suitable combinations of fixed and seismic 

loads and the selected isolation system is an elastomeric isolator. 



The main problem to be solved when facing the proposed design is that, in the case of real 

seismic actions, the load history is not known but a suitably defined admissible load domain is 

required in order to perform the shakedown behaviour design. In order to achieve this aim, in the 

paper reference has been made to the unrestricted dynamic shakedown theory. 

 

 a)         b) 

Figure 6: a) shakedown multiplier as function of the base isolation stiffness (♦ 1S  ); 

b) base isolation displacement as function of the base isolation stiffness (■ 103mmbs  ). 

 

The dynamic structural response is obtained by means of a modal analysis making reference to 

the non-classically damped structural model. Some numerical applications conclude the paper 
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