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a b s t r a c t

Non-local models of thermal energy transport have been used in recent physics and engineering applica-
tions to describe several ‘‘small-scale’’ and/or high frequency thermodynamic processes as shown in
several engineering and physics applications. The aim of this study is to extend a recently proposed
fractional-order thermodynamics ([5]), where the thermal energy transfer is due to two phenomena: A
short-range heat flux ruled by a local transport equation; a long-range thermal energy transfer that rep-
resents a ballistic effects among thermal energy propagators. Long-range thermal energy transfer
accounts for small-scale effects that are assumed proportional to the product of the interacting masses,
to a distance-decaying function, as well as to their relative temperature. In this paper the thermodynamic
consistency of the model is investigated obtaining some restrictions on the functional class of the
distance decaying function that rules the strength of the long-range thermal energy transfer. As the
distance-decaying function is assumed in the form of a power-law decay a novel temperature equation
involving multidimensional spatial Marchaud a-order derivatives (0 6 a 6 1) of the temperature field
in the body is obtained. Some analytical and numerical solutions of the fractional-order temperature
equation have been provided in the paper to show the capabilities of the proposed model and the
influence of model parameters.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years the use of new complex and very performing
materials has became common in engineering and physical
applications as well as in the border sciences as biophysics and
biomechanics. In all these cases the presence of a complex, often
multi-scale objects are involved and the need for accurate temper-
ature description is no more fulfilled by classical thermodynamics.
In this regard, several authors begun to use non-local version of the
transport equations in terms of integral models [1,2] or, alterna-
tively, by the introduction of gradients of the state variables in
the transport equations. These approaches are very similar to the
integral and gradient models of non-local elasticity [3]. Indeed
the main drawbacks of these models relies in the lack of physical
picture associated to long-range thermal energy transport show-
ing, consequently, severe drawbacks in the positions of Neumann
boundary conditions for all the applications where the Kapitza
effect is significant affecting the temperature distribution due to
phonon propagations away from thermal sources [4].
Very recently a new, non-local model of thermal energy trans-
port in rigid bodies with a precise physical description of the ther-
mal energy exchange has been proposed in the context of
fractional-order non-local thermodynamics [5]. The basic idea be-
yond the long-range thermal energy transport is that the scale of
heat propagation among non-adjacent locations of the solid is dif-
ferent of order of magnitudes by the thermal energy exchange
among adjacent locations of the body. The long-range transport
among non-adjacent location of the body is assumed proportional
to the relative temperatures among the exchanging portions of the
body, to the product of their interacting masses and to a proper
distance-decaying function that accounts for the strength of ther-
mal exchanges among locations x and y. As a power-law with real
exponent is chosen, it has been proved that, in 1D case, the temper-
ature equation involves the so-called Marchaud fractional deriva-
tive of order a 2 [0,1].

Integro-differential operators, representing real order deriva-
tives and integrals, have been introduced more and more often in
several contexts of science and engineering [6] since they are capa-
ble to interpolate among the well-known integer-order operators
of classical differential calculus proved to be a very powerful tool
to study temporal and spatial evolutions of complex systems close
to critical points. In this context several applications to polymers,
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gels, foams and glassy materials have been provided yet at the
beginning of the nineties [7–9] whereas wider use of fractional dif-
ferential calculus in other fields of physics and mechanics may be
found by the end of the nineties of the last century [10–13]. Beside
the interpolation features of fractional-order operators another
interesting capability of real-order derivatives is related to the
long-tails of operators. This feature is widely used in the context
of viscoelasticity to describe the not too slow but not too fast either
behavior of relaxation test on polymeric materials [14] and biolog-
ical tissues [15]. The long-memory features of fractional operators
has been set, in a spatial context, to formulate a non-local stress–
strain relation [16] that is related to integral model of non-local
elasticity [17] as it has been recently shown [18].

The use of power-law kernels in the integral model of non-local
thermodynamics yields a fractional model of thermal energy trans-
fer in rigid as well as in elastic bodies [19–21] often used to de-
scribe thermal energy transfer in nano-systems[22,23]. In such
cases fractional models aim to capture, also, the well-known sec-
ond-sound effect [24–27] involving also the presence of fractional
time derivatives of the temperature field [28,29].

In this paper the authors aim to introduce a general framework
of non-local thermal energy transport assessing the thermody-
namic restriction of the distance-decaying function class for heter-
ogeneous bodies. The choice of the distance decaying function in
the class of power-laws, for homogeneous rigid body, yields the
temperature equation in terms of the multidimensional Marchaud
fractional derivatives assuming that, also the presence of local
transport equation is significative in the thermal phenomenon.
Analytical solutions as well as numerical results about tempera-
ture distributions are conveniently reported in the paper.

2. A physical picture of long-range thermal energy transfer in
rigid bodies

The presence of non-local thermal energy transport in several
physical applications at small scale is usually due to the Kapitza
phonon transport effect in close vicinity of the boundaries. A pos-
sible perspective of such an effect may be faced in the context of
long-range thermal energy transport as proposed in [5] in the con-
text of 1D fractional-order calculus. In this paper we consider an
isotropic solid body at rest encapsulated in a subset V � R3. We de-
fine u = u(x; t) as the specific internal energy at location x 2 R3 of
the body and time t and . = .(x) the body density at location x that
is not time-dependent as we assume a closed thermodynamical
system. The absolute temperature of the body is denoted as
T(x, t), whereas CV(x) is the constant volume specific heat. In the
context of non-local thermodynamics we will suppose that, at
location x = (x1,x2,x3) of the body, the internal energy density of
the body may be expressed as .(x)u(x, t) = .(x)[ul(x, t) + unl(x, t)],
where ul(x, t), unl(x, t) are the specific local and the long-range
residual to the internal energy at location x. The rate of variation
of the internal energy, in presence of an energy source .(x)r(x)
reads:

@ð.ðxÞuÞ
@t

¼ @ð.ðxÞulÞ
@t

þ @ð.ðxÞunlÞ
@t

þ .ðxÞrðxÞ ð1Þ

The balance relation reported in Eq. (1) represents the non-local
first principle of thermodynamics and it involves the following dif-
ferent contributions that are related to the local and non-local ther-
mal energy transfer, respectively, as:

1. The classical thermal energy flux among adjacent locations, that
it is related to the divergence r � q of the heat flux density vec-
tor q and that may be expressed for example, in terms of trans-
port equation provided by the Fourier law as in Classical
Irreversible Thermodynamics (CIT), or instead that can be sup-
posed an independent variable, as in Extended Irreversible
Thermodynamics (EIT) [30,31].

2. A non-local energy transfer, due to the contribution of all the
other elements y 2 R3 of the body; This latter contribution rep-
resents the non-local residual energy that is stored at location x
and it is due to the phonon–phonon transport appearing at
smaller (quantic) scales. We will assume that this latter contri-
bution is proportional to the mass densities of the interacting
elements at the locations x and y as:
PðnlÞðx; y; tÞ ¼ vðnlÞðx; y; tÞqðxÞqðyÞdVx dVy ð2Þ
where v(nl)(x,y; t)q(y)dVy is the long-range specific energy per unit
time transferred at locations x by the element at the location y and
q is the mass density that is time-independent.

The balance law of the energy in presence of an energy source
q(x)r(x, t) is provided in the form given by:

@uðx; tÞ
@t

¼ �r � qðx; tÞ
qðxÞ þ

Z
Vy

vðnlÞðx; y; tÞqðyÞdVy þ rðx; tÞ ð3Þ

where the integral at the right-hand side is the non-local heat trans-
fer contribute that is due to the interaction between the particle lo-
cated at position x and all the other particles of the body [26]. The
long-range contribution field, namely function vnl(x,y; t), it is as-
sumed, in the model, isotropic and proportional to the relative tem-
peratures among locations x and y, namely MyT(x, t) = T(y, t) � T(x, t),
in the form:

vðnlÞðx; y; tÞ ¼ jagðkx� ykÞ½Tðy; tÞ � Tðx; tÞ�
¼ jagðkx� ykÞMyTðx; tÞ ð4Þ

with ja a material dependent proportionality coefficient, function
g(kx � yk) is a spatially-decaying function that describes the influ-
ence of thermal sources at location y on the energy density trans-
ferred at location x and kx � yk is the Euclidean Distance among
location x and y.

In some papers a spatial power-law decay for the decaying
function g(kx � yk) is used. This assumption yields a fractional-or-
der heat conduction equation involving Marchaud-type fractional
operators in 1D unbounded domains whereas in 1D bounded do-
mains involves, only, integral contributions to the Marchaud frac-
tional derivatives [5]. This latter consideration yields that the
fractional model of long-range heat transport proposed in for 1D
domain is very attractive to handle non-homogeneous Dirichlet
boundary conditions on the temperature field since non-divergent
algebraic terms at the borders are involved as well as in the posi-
tion of the Neumann boundary conditions. Similar considerations
may also be provided for the thermal energy transfer in three
dimensional bodies since the overall residual of the long-range
thermal energy transport across the border of the solid vanishes as:Z

Vx

Z
Vy

vðnlÞðx; y; tÞqðyÞqðxÞdVydVx ¼ 0 ð5Þ

for any specific class of the specific long-range heat transport in the
form provided by Eq. (4), yielding that the Neumann boundary con-
ditions on the temperature field involves the local contribution to
the heat flux. In this paper, the authors aim to extend the long-
range thermal energy transfer model proposed in 1D domain [5]
to a more general functional class describing the decay of transport
and assessing the thermodynamic restriction that must be fulfilled
by the decaying function used to capture the non-local effects.

The temperature equation corresponding to the use of a Fourier
transport equation qðx; tÞ ¼ �k$Tðx; tÞ for the local contribution
yields an integro-differential temperature field equation as:
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_Tðx; tÞ ¼ kr2Tðx; tÞ
CVqðxÞ

þ ja

CV

Z
Vy

gðkx� ykÞMyTðx; tÞqðyÞdVy

þ rðx; tÞ
CV

ð6Þ

where we assumed that the state function represented by the inter-
nal energy density depends, only, by the absolute temperature as in
classical irreversible thermodynamics u = u(T) and the chain rule of
differentiation has been used as _uðTÞ ¼ CV

_T . The non-local transfer
that we reported in Eq. (3) relies on the assumption of local thermo-
dynamic equilibrium conditions. Indeed the use of Fourier model to
represent local thermal energy fluxes, involves instantaneous prop-
agation of thermal disturbances in the heat conductor without any
second-sound effect. Such an assumption is appropriate for usual
engineering applications but, as thermal energy transport involves
high frequency processes with oscillation periods comparable with
the relaxation times of phonons carrying thermal energy transfer,
then an appropriate extension of Fourier transport equations must
be accounted for (see e.g. [32]). In this case we will consider a
first-order relaxation of thermal energy transfer by means of the
Cattaneo model for local thermal energy exchange [33] that reads:

s _qðx; tÞ þ qðx; tÞ ¼ �krTðx; tÞ ð7Þ

that involves, in presence of long-range thermal energy transfer, a
hyperbolic temperature equation that allows the propagation of
temperature waves. In presence of long-range heat transport, such
a temperature equation is obtained as we introduce the gradient
operator r[�] to both sides of Eq. (7), yielding:

s @
@t
½r � qðx; tÞ� þ ½r � qðx; tÞ� ¼ �kr2Tðx; tÞ ð8Þ

The temperature equation will be obtained replacing the
expression in Eq. (8) into the energy balance equation in Eq. (3),
accounting for _uðTÞ ¼ CV

_T . The field equation describing the tem-
perature distribution in this case is a hyperbolic-type, integro-dif-
ferential equation expressed as:

ðs€Tðx;tÞþ _Tðx;tÞÞ�ja

CV

Z
Vy

gðkx�ykÞ½sMy
_Tðx;tÞ�MyTðx;tÞ�qðyÞdVy

¼k
r2Tðx;tÞ
qðxÞCV

þrðx;tÞþ _rðx;tÞ ð9Þ

The temperature equations for the Fourier and Cattaneo model
of local thermal energy transport, respectively, in Eqs. (6) and (9)
must be supplemented by the Dirichlet and Neumann boundary
conditions as well as by the initial temperature distribution (Fou-
rier) with its first-order time derivative (Cattaneo). The boundary
conditions do not involve the presence of the residual long-range
thermal energy transport since the outgoing net flux of long-range
thermal energy outside the body domain vanishes for the symme-
try of the decaying function in the integral residual as shown in Eq.
(5).
3. Thermodynamic consistency of the long-range thermal
energy transfer model

In this section the thermodynamic consistency of the general-
ized model of long-range thermal energy transport presented in
previous section will be assessed in the context of the second prin-
ciple of thermodynamics either for the Fourier local model as well
as for the Cattaneo local version of thermal energy transfer. The
fulfillment of the second principle provides restrictions on the
functional class of the distance-decaying function that may be used
to describe the long-range thermal energy exchange in the body
domain.
3.1. The Fourier model of local energy transport

The compatibility of the proposed model must be framed in the
context of the second principle of thermodynamic to validate the
physical picture of the fractional-order, long-range, thermal energy
transfer in rigid bodies. To this aim we consider the entropy state
function of the whole body, namely, S(t) that must obey to
Clauses–Planck inequality for a thermodynamical system evolving
from state A ? B, occurring, for any location x, at time instants tA

and tB, respectively:

MSABðxÞ ¼ Sðx; tBÞ � Sðx; tAÞ ¼
Z tB

tA

q_sðx; tÞdt P
Z tB

tA

dQðx; tÞ
Tðx; tÞ ð10Þ

where, we introduced the specific entropy function rate _sðx; tÞ and
dQ is the thermal energy increment of the body. Recalling that, in
a rigid body, s = s(u) and that @s

@u ¼ 1
T, making use of the energy

balance equation in Eq. (3) the right hand side of Eq. (10) may be
written in the form:

_sðx;tÞP� r�qðx;tÞ
qðxÞTðx;tÞþ

rðx;tÞ
Tðx;tÞþ

1
Tðx;tÞ

Z
Vy

qðyÞvðnlÞðx;y;tÞdVy ð11Þ

The observation of Eq. (11) for the specific entropy rate incre-
ment shows that an additional contribution at the right-hand side
is obtained with respect to the classical expression of the Clausis–
Planck inequality. Eq. (11) may be recast in a more convenient
form, introducing the specific entropy rate production r(s)(x, t) P 0
for any thermodynamical process and omitting the dependence on
the time variable for shorten notations, yielding

_sðxÞ þ r � qðxÞ
qðxÞTðxÞ �

rðxÞ
TðxÞ �

1
TðxÞ

Z
Vy

qðyÞvðnlÞðx; yÞdVy ¼ rðsÞðxÞ

P 0 ð12Þ

On the other hand the entropy rate may be expressed at location x
in the form of a balance among the incoming and the out-coming
entropy flux in the unitary time so that:

_sðxÞ ¼ �r � J
ðsÞ
l ðxÞ

qðxÞ þ
Z

Vy

JðsÞnl ðx; yÞdVy þ
rðxÞ
TðxÞ þ rðsÞðxÞ ð13Þ

where we introduced the local and non-local long-range entropy
transfer, respectively, JðsÞl ðxÞ and JðsÞnl ðx; yÞ that are related to the local
and long-range thermal energy transfer, respectively, and contrib-
utes, both, to the evolution of the entropy rate at location x. In
Eq. (13) and in the following derivations we will omit the explicit
dependence on time variable, unless explicitly declared, for short-
ness’ sake.

Eq. (13) may be substituted into Eq. (12) to yield the inequality:

� r�qðxÞ
qðxÞTðxÞþ

1
TðxÞ

Z
Vy

qðyÞvðnlÞðx;yÞdVyþ
r� JðsÞl ðxÞ

qðxÞ �
Z

Vy

JðsÞnl ðx;yÞdVy P0 ð14Þ

In this context the entropy flux is assumed to be a function of state

of the local contribution to the internal energy rate JðsÞl ðxÞ ¼
ulðulÞqlðxÞ and, by similar considerations we will assume that the

long-range entropy transfer is provided as JðsÞnl ðx; yÞ ¼
unlðunlÞ.ðyÞ.ðxÞvðnlÞðx; yÞ. Therefore, the expression reported in Eq.
(14) reads:

ulðulÞ�
1

TðxÞ

� �
r�qðxÞþqðxÞ �rðulðulÞÞ

�
Z

Vy

unlðunlÞ�
.2vðnlÞðx;yÞ

TðxÞ

� �
dVy P0 ð15Þ

The inequality restriction in Eq. (15) leads to the conclusion that the
linear term involving the thermal energy flux q(x) must vanish
yielding the relation:
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ulðulÞ ¼
1

TðxÞ ð16Þ

that, upon substitution into Eq. (15) it yields:

qðxÞ
T2ðxÞ

� rðTðxÞÞ þ
Z

Vy

unlðunlÞ �
1

TðxÞ

� �
.2vðnlÞðx; yÞdVy 6 0 ð17Þ

The inequality in Eq. (17) for the entropy production may be ful-
filled if, for the first term, we assume a linear force-flux relation as:

qðxÞ ¼ �k$ðTðxÞÞ ð18Þ

with k P 0 for the local thermal energy flux, that corresponds to
Fourier relation, whereas, the second term at right hand side must
involve the inverse of a temperature field 1/T for dimensionality
sake. As we assume that the long-range entropy flux function unl(-

unl) = 1/T(y) since JðsÞnl ðx; yÞ represents the entropy flux at location x
exerted by a thermal source at location y, then the integral term
must satisfy the inequality:Z

Vy

TðxÞ � TðyÞ
TðxÞTðyÞ

� �
vðnlÞðx; yÞdVy 6 0 ð19Þ

that is satisfied assuming for the long-range contribution the form
reported in Eq. (4) with kernel g(kx � yk) P 0 "x,y 2 V. Such restric-
tions for the local and non-local thermal energy exchanges are sat-
isfied with the power-law decaying function gðkx� ykÞ ¼ 1

d
1

kx�yknþa,

with d > 0, yielding full compatibility in the framework of the sec-
ond thermodynamic principle of the fractional model proposed in
[5].

3.2. The Cattaneo generalized model of local energy transport

The introduction, of a first-order time lag in the force-flux rela-
tion, as in Eq. (7), requires the introduction of a non-equilibrium
entropy model functionally dependent on the local internal energy
u as well as on the thermal energy flux q as s = s(u,q). As a conse-
quence the local entropy flux must show the functional depen-
dence JðsÞl ¼ JðsÞl ðu;qÞ[32]. In this setting, the chain rule of
differentiation reads for the non-equilibrium entropy rate to:

_s ¼ _sðu;qÞ ¼ @s
@u

� �
q

_uþ @s
@q

� �
u

_q ð20Þ

In the following we will assume to deal with an isotropic body so
that the functional dependence entropy function and local entropy
flux reads s ¼ sðu;q � qÞ ¼ sðu; q2Þ; JðsÞl ¼ JðsÞl ðu;q2Þ and JðsÞl ¼ uðuÞq.
The entropy rate function in Eq. (20) reads:

_s ¼ _sðu; q2Þ ¼ @s
@u

� �
q2

_uþ @s
@q2

� �
u
2q � _q ð21Þ

Substitution of Eq. (21) into the entropy balance equation re-
ported in Eq. (13) yields:

@s
@u

� �
q2

_uþ @s
@q2

� �
u
2q � _qþr� J

ðsÞ
l ðxÞ

qðxÞ �
Z

Vy

JnlðsÞðx;yÞ
qðxÞ dVy�

r
TðxÞ¼rðsÞðxÞ ð22Þ

Replacing the rate of internal energy, with its counterpart in terms
of the local and long-range thermal energy transport in Eq. (4) and
accounting for Cattaneo transport equation in Eq. (7), after straight-
forward manipulations, the following relation is obtained:

@s
@u

� �
q2

�r � q
qðxÞ þ

Z
Vy

qðyÞ vðnlÞðx; yÞ � JnlðsÞðx; yÞ
qðxÞ

" #
dVy

 !

þr � J
ðsÞ
l ðxÞ

qðxÞ þ @s
@q2

� �
u

2q � _q� r
TðxÞ ¼ rðsÞðx; tÞ ð23Þ

The derivative of the entropy function with respect to the internal
energy, that is @s

@u

� �
q2 , represents dimensionally a temperature field
that, under the assumption of first-order dependence on the heat
flux q, it may be assumed coalescing with the absolute temperature
of the body as @s

@u

� �
q2 ¼ 1

TðxÞ yielding Eq. (23) in the form:

� r � q
qðxÞTðxÞ þ

1
TðxÞ

Z
Vy

qðyÞvðnlÞðx; yÞ � JðsÞnl ðx; yÞ
qðxÞ dVyþ

� @s
@q2

� �
u
2q � k

s
rT þ q

s

� �
þr � J

ðsÞ
l ðxÞ

qðxÞ ¼ rðsÞðx; tÞ ð24Þ

Right-hand side of Eq. (24), namely entropy production rate, must
be positive, so that, after some manipulation, the following inequal-
ity reads:

ul �
1

TðxÞ

� �
r � q�

Z
Vy

JðsÞnl ðx; yÞ �
qðxÞqðyÞvðnlÞðx; yÞ

TðxÞ

� �
dVyþ

� 2qðxÞk
s

@s
@q2

� �
2q � ðrTÞ � 2qðxÞ

s
@s
@q2

� �
q2 þ ðrulÞ � q P 0 ð25Þ

where we assumed that JðsÞl ¼ ulðuÞq. In order to fulfill the condition
in Eq. (25) function ulðuÞ ¼ 1

TðxÞ so that we are left with the following
inequality for the remaining terms:Z

Vy

JðsÞnl ðx; yÞ
qðxÞ �

qðyÞvðnlÞðx; yÞ
TðxÞ

 !
dVy

þ 2k
s

q � ðrTÞ þ 2
s

q2
� �

@s
@q2

� �
þ rTðxÞ

qðxÞTðxÞ2
� q 6 0 ð26Þ

that must be fulfilled for any thermodynamic process in the body.
The first term in Eq. (26) is analogous to the integral term rep-

resented in Eq. (17) as we assume for the long-range entropy trans-

fer the expression JðsÞnl ðx; yÞ ¼ unlðuÞqðxÞqðyÞvðnlÞðx; yÞ yielding for
the non-local proportionality function unlðuÞ ¼ 1

TðyÞ to fulfill Eq.

(26) for any thermodynamical process. As a consequence, thermo-
dynamic restrictions on long-range heat fluxes involve consider-
ations similar to those reported in previous section about the
positivity of the decaying function g(kx � yk) P 0 and they have
not reported for brevity. The second term in Eq. (26) satisfies the
inequality sign as:

2qk
s

@s
@q2

� �
þ 1

TðxÞ2

 !
q � ðrTÞ þ 2q

s
@s
@q2

� �
q2
6 0 ð27Þ

that may be fulfilled only as the first-order derivative of the ex-
tended entropy function s = s(u,q2) reads:

@s
@q2

� �
¼ � s

2qk
1

TðxÞ2
ð28Þ

that yields a thermodynamic restriction upon the signs of the ther-
mal conductivity k P 0 as in Fourier transport equation that we
dealt in previous section.
4. The fractional model of long-range heat transport in
homogeneous bodies

The choice of the distance-decaying function of long-range
thermal energy exchange in the body in the functional class of
power-laws is thermodynamically consistent since it yields
g(kx � yk) P 0. In this case the temperature equation contains
the multidimensional Marchaud-type fractional-order derivatives
that represent a generalization of the well-known integer-order
derivatives to real order of differentiation. In this section we will
discuss this latter case in detail showing that the proposed model
of long-range heat transfer represents the generalization to the 3D
case of a previously proposed 1D model of thermal energy transfer.
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4.1. Brief remarks on multivariable fractional calculus

In this section the essential features of fractional calculus will
be shortly discussed. Let us consider a real-valued, Lebesgue inte-
grable function f ðxÞ; x 2 R such that f(x) 2 L1.

The left and right Riemann–Liouville (RL) fractional-order inte-
grals are defined as:

Iaþf
� �

ðxÞ¼ 1
CðaÞ

Z x

�1

f ðyÞ
ðx�yÞa

dy; Ia�f
� �

ðxÞ¼ 1
CðaÞ

Z 1

x

f ðyÞ
ðy�xÞ1�a dy ð29Þ

with a 2 [0,1] and C(�) the well-known Euler–Gamma function.

Da
þf

� �
ðxÞ ¼ 1

Cð1� aÞ
d
dx

Z x

�1

f ðyÞ
ðx� yÞ1�a dy

Da
�f

� �
ðxÞ ¼ 1

Cð1� aÞ
d
dx

Z 1

x

f ðyÞ
ðy� xÞ1�a dy

ð30Þ

As we assume that function f ðxÞ 2 C1ðRÞ with C1ðRÞ the class of
continuous functions with continuous first derivative, then the left
and right RL fractional derivatives coalesces with the Marchaud
(M) fractional operator that is defined as:

Da
þf

� �
ðxÞ ¼ a

Cð1� aÞ

Z x

�1

f ðxÞ � f ðyÞ
ðx� yÞ1þa dy ¼ Da

þf
� �

ðxÞ ð31Þ

for the left M fractional derivative, whereas, the right M fractional
derivative is related to the right RL fractional derivative as:

Da
�f

� �
ðxÞ ¼ a

Cð1� aÞ

Z 1

x

f ðxÞ � f ðyÞ
ðy� xÞ1þa dy ¼ Da

�f
� �

ðxÞ ð32Þ

The definition of RL and M fractional derivatives operating on
functions defined on bounded intervals ½a; b� � R involves integral
terms as well as algebraic contributions as:

Da
aþ f

� �
ðxÞ ¼ f ðaÞ

Cð1� aÞðx� aÞa
þ 1

Cð1� aÞ

Z x

a

f ðyÞ0

ðx� yÞa
dn ð33Þ

Da
b� f

� �
ðxÞ ¼ f ðbÞ

Cð1� aÞðb� xÞa
� 1

Cð1� aÞ

Z b

x

f ðyÞ0

ðy� xÞa
dn ð34Þ

where f ðyÞ0 ¼ df
dy, showing divergence at the boundaries of the con-

sidered domains, unless function f(x) ? 0 faster than xa as x ? a+

and x ? b�, respectively.
Similar considerations hold true also for the M fractional oper-

ators defined on bounded support, yielding:

Da
aþ f

� �
ðxÞ ¼ af ðxÞ

Cð1� aÞðx� aÞa
þ D̂a

aþ f
� �

ðxÞ ð35Þ

Da
b� f

� �
ðxÞ ¼ af ðxÞ

Cð1� aÞðb� xÞa
� D̂a

b� f
� �

ðxÞ ð36Þ

where D̂a
aþ f

� �
ðxÞ and D̂a

b� f
� �

ðxÞ are the integral parts of the trun-
cated M fractional operators defined as:

D̂a
aþ f

� �
ðxÞ ¼ a

Cð1� aÞ

Z x

a

f ðxÞ � f ðyÞ
ðx� yÞ1þa dy

D̂a
b� f

� �
ðxÞ ¼ a

Cð1� aÞ

Z b

x

f ðxÞ � f ðyÞ
ðy� xÞ1þa dy

ð37Þ

Equivalent forms to Eqs. (31) and (32) relative to the M frac-
tional derivatives valid for cases involving a > 1 may be obtained
as we introduce the l-order finite differences of function f(x), with
l = {a} + 1 and l > 1 (see e.g. [34]) yielding:

Da
þf

� �
ðxÞ ¼ � 1

Cð�aÞAlðaÞ

Z 1

0

M
l
�nf

� �
ðxÞ

y1þa dy

¼ 1
vðl;aÞ

Z 1

0

M
l
�nf

� �
ðxÞ

y1þa dy ð38Þ
where we denoted {a} the integer part of the real number a and the
normalization coefficient v(l,a) = �Al(a)C(�a). The fractional finite
difference M

l
�nf

� �
ðxÞ, that appears in the integral term in Eq. (38)

and the normalization factor Al(a) are defined as:

M
l
�yf

� �
ðxÞ ¼

Xl

k¼0

ð�1Þk
l

k

� �
f ðx� kyÞ; AlðaÞ ¼

Xl

k¼0

ð�1Þk�1 l

k

� �
ka

ð39Þ

with a 2 Rþ. The coefficient Al(a) is identically vanishing for integer
values of a = 1, 2, . . ., l � 1 whereas the normalization coefficient
v(l,a) is unbounded as a ? l� and it is finite as a ? l+.

The definitions of Marchaud fractional derivatives applied to
scalar functions of simple scalar variables may be extended to sca-
lar functions of multivariable arguments. This extension became
more readable as we introduce the Riesz (R) potential operator of
function f, dubbed (Iaf)(x) that is defined as:

ðIaf ÞðxÞ ¼ 1
2cosðap=2ÞCðaÞ

Z þ1

�1

f ðyÞ
kx� yk1�a dy

¼
Iaþf
� �

ðxÞ þ Ia�f
� �

ðxÞ
2 cos ap=2ð ÞCðaÞ ð40Þ

with inverse operators, namely the D–Riesz fractional differential
operator, describing the inverse operator of the Riesz integral that
reads as 0 6 a 6 1:

ðIaf Þ�1ðxÞ ¼ ðDaf ÞðxÞ ¼ mðaÞ
Z þ1

�1

f x� yð Þ � f ðxÞ
kyk1þa dy

¼ mðaÞCð1� aÞ Da
þf

� �
ðxÞ þ Da

�f
� �

ðxÞ
� 	

ð41Þ

where m(a) = [2acos(ap/2)C(a)]�1. Mathematical expression re-
ported in Eq. (41) shows that, with the exception of the coefficient
m(a)C(1 � a) the inverse Riesz potential operator coincide with the
sum of left and right Marchaud fractional derivatives. A different,
but equivalent, form of the Riesz fractional operator in Eq. (41)
may be written as we introduce the fractional difference operator
of order l, holding for a P 0 as:

ðIaf Þ�1ðxÞ ¼ ðDaf ÞðxÞ

¼ mðaÞCð1� aÞ
aAlðaÞCð�aÞ

Z 1

0

Dl
þyf

� �
ðxÞ þ Dl

�yf
� �

ðxÞ
y1þa dy ð42Þ

The expression in Eq. (42) may be easily generalized to the case
of fractional generalization of multivariable functions f(x), with
x 2 Rn as the n – fold integral:

ðIaf ÞðxÞ ¼ 1
cnðaÞ

Z
Rn

f ðyÞ
kx� ykn�a dy; a – n;nþ 2; . . . ð43Þ

with the normalization constant cn(a) is defined in [35] (Eqs. (25)
and (26)).

The inverse operator (Iaf)�1(x) = (Daf)(x), termed as the multi-
variable Riesz fractional differential operator,is provided as the n –
fold integral:

ðIaf Þ�1ðxÞ ¼ ðDaf ÞðxÞ ¼ 1
dn;lðaÞ

Z
Rn

M
l
yf

� �
ðxÞ

kyknþa dn ð44Þ

with M
l
yf

� �
ðxÞ the centered finite difference that represents the

extension to higher-dimensional spaces of Eq. (39) defined as:

M
l
yf

� �
ðxÞ ¼

Xl

k¼0

ð�1Þk
l

j

� �
f ðx� kyÞ ð45Þ

and where dn,l(a) is a proper normalization constant, that involves
an explicit dependence of the fractional order a that reads:
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dn;lðaÞ¼bnðaÞ
AlðaÞ

sinðap=2Þ ; bnðaÞ¼
p1þn=2

2aCð1þa=2ÞCðnþa=2Þ
ð46Þ

As it has been shown for the 1D case, the Riesz fractional differ-
ential operator (Daf)(x) may be expressed as the sum of the left and
right fractional operators involving fractional differences and
henceforth, as in Eq. (44), it may be expressed in terms of the Mar-
chaud fractional derivatives in half-spaces, defined as:

ðDaf ÞðxÞ ¼
v

l
�ð�aÞ

dn;�lð�aÞ
1

v
l
�ð�aÞ

Z
Rn
þ

M
�l
þyf

� �
ðxÞ

y1þ�a dy þ
Z

Rn
�

M
�l
�yf

� �
ðxÞ

ð�yÞ1þ�a dy

24 35
¼

v
l
�ð�aÞ

dn;�lð�aÞ
Da
þf

� �
ðxÞ þ Da

�f
� �

ðxÞ
� 	

ð47Þ

with �a ¼ ðn� 1Þ þ a and �l ¼ ðn� 1Þ þ l ¼ �a. Eq. (47) may also be
written, under the assumption 0 6 a 6 1 as (see [35], Eqs. (25)
and (26)):

ðDaf ÞðxÞ ¼ 1
dn;�lð�aÞ

Z
Rn

f ðyÞ � f ðxÞ
kx� yknþa dn

¼
v

l
�ð�aÞ

dn;�lð�aÞ
Da
þf

� �
ðxÞ þ Da

�f
� �

ðxÞ
� 	

ð48Þ

that corresponds, in case of multivariable function fields f(x), to a
relation between the Riesz and the Marchaud differential operators
analogous to that involving scalar variable functions reported in Eq.
(41).

Fractional operators on multivariable fields will be used, in the
following subsections, to model the fractional long-range thermal
energy transfer in a 3D rigid conductor.

4.2. The fractional-order Fourier transport equation

Let us assume that the temperature field is due to a thermal
pulse acting at t = 0 in the entire topological space and let us as-
sume that the distance-decaying function g(kx � yk) involved in
the long-range thermal transfer function vnl(x,y, t) belongs to the
functional class of the power-laws as:

gðkx� ykÞ ¼ 1
dn;�lð�aÞ

1
kx� yknþa ð49Þ

where a 2 R and n 2 N represents the dimension of the topological
space of the body, in our case n = 3. As far as the decaying function
is chosen in the class expressed in Eq. (49), and we assume a homo-
geneous conductor, that is .(x) = .(y) = ., the internal energy bal-
ance reported in Eq. (1) is written in the form:

qCV
@T
@t
¼ �r � qþ q2ja Da

xT
� �

þ qr ð50Þ

where Da
xT is the fractional derivative of order a as in Eq. (48), de-

fined as:

Da
xT ¼ 1

dn;�lð�aÞ

Z
R3

½Tðy; tÞ � Tðx; tÞ�
kx� yk3þa dVy ð51Þ

when Fourier law for the classical local transfer of thermal energy is
used, we obtain:

@T
@t
¼ k

qCV
r2T þ ja

CV
Da

xT
� �

þ r ð52Þ

where k is the (local) heat conductivity while ja is a coefficient,
introduced in Eq. (4) that characterize the strength of the long-
range thermal energy transfer.

The field of temperature distribution ruled by Eq. (52) in a 1D
unbounded rigid body is provided by the solution of the fractional
differential equation as:
@T
@t
¼ k

qCV
r2T þ ja

CV
Da

x T
� �

ð53Þ

where we neglected the presence of localized thermal energy
sources at location x that for the 1D case must be supplemented
by the relevant initial and boundary conditions that reads:

Tðx;0Þ ¼ T0ðxÞ
Tð�1; tÞ ¼ Tð1; tÞ ¼ 0

ð54Þ

Mathematical description of the temperature distribution field in
rigid body may be obtained, in integral form for any distributed heat
sources r(x,t) as we obtain the Greens’ function for a concentrated
temperature distribution T0ðxÞ ¼ T0dðxÞ. In this context the solution
of Eq. (53) is obtained resorting to spatial Fourier transform of both
sides of Eq. (53) yielding a differential equation for the spatial distri-
bution of the temperature field in Fourier space bT ðk; tÞ as:

@ bT
@t
¼ �ðkk2 þ qjakkkaÞ

qCV
T ð55Þ

with initial condition expressed as bT ðk;0Þ ¼ T0. Solution of Eq. (55)
yields the temperature distribution field evaluating the Fourier
integral:

Tðx; tÞ ¼ T0

2p

Z þ1

�1
eikx bT ðk; tÞdk

¼ T0

2p

Z þ1

�1
eikxexp �ðkk2 þ qjakkkaÞ

qCV
t

" #
dk ð56Þ
4.3. The fractional-order Cattaneo temperature equation

The effects of the ballistic energy transport may be highlighted
considering the local transport equation in terms of the Cattaneo
relaxation time. In this case, under the assumption of the previous
section in terms of the temperature distribution field, the govern-
ing equation of the temperature reads:

s€Tðx;tÞþ _Tðx;tÞ�jaðDa½s _Tðx;tÞ�Tðx;tÞ�Þ
CV

 !
¼kr2Tðx;tÞ

qCV
þrþ _r ð57Þ

that represent the 3D extension of the temperature equation re-
ported for the 1D case in [5]. Analytical solutions of the temperature
equation in presence of Marchaud fractional derivatives may be also
obtained with Fourier transform method.

In this section we will confine the analysis of the temperature
distribution to a 1D unbounded domain, neglecting the presence
of internal heat sources rðx; tÞ ¼ _rðx; tÞ ¼ 0, ruled by the initial va-
lue problem:

s €Tðx; tÞ þ _T � ja

CV
ðDa½s _Tðx; tÞ � Tðx; tÞ�Þ

� �
¼ k

qCV
r2Tðx; tÞ ð58Þ

with initial conditions Tðx;0Þ ¼ T0ðxÞ; _Tðx;0Þ ¼ 0 and the regularity
conditions T(�1, t) = 0; T(1, t) = 0. The solution of Eq. (58) may be
obtained with the aid of Fourier transform yielding

d2bT ðj; tÞ
dt2 þ 2AðjÞ d

bT ðj; tÞ
dt

þ BðjÞbT ðj; tÞ ¼ 0

bT ðk;0Þ ¼ T̂0;
_bT ðk;0Þ ¼ 0

ð59Þ

with coefficients in Eq. (59) defined as:

AðjÞ ¼ 1� sKakjka

2s
; BðjÞ ¼ kj2 � sKakjka

s
ð60Þ

and the fractional-order force-flux coefficient Ka reads:
Ka = jcos(ap/2)/.CV. The solution of Eq. (59) is provided as usual
linear combination of exponential functions with coefficients



Fig. 1. Temperature distribution corresponding to long-range heat transport.
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dependent on the initial conditions. In this regard, as we set, as
in previous section, the initial temperature distribution as
T0ðxÞ ¼ T0dðxÞ, the solution reads:

Tðx;tÞ¼ T0

2p

Z þ1

�1

r2ðjÞexp r1ðjÞt½ ��r1ðjÞexp½r2ðjÞt�
r1ðjÞ�r2ðjÞ

exp½ijx�dj ð61Þ

where r1(j) and r2(j) are the solution of the characteristic equation
that are expressed in terms of the coefficients A(j) and B(j) as:

r1ðjÞ¼� AðjÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðjÞ2�BðjÞ

q� �
; r2ðjÞ¼� AðjÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðjÞ2�BðjÞ

q� �
ð62Þ
5. Numerical simulations of temperature distribution in 1D
conductors

In this section we will report some examples of temperature
distributions obtained for the fractional-order temperature equa-
tions for the diffusive and the diffusive-ballistic thermal energy
transport in 1D conductor. In case of a diffusive thermal energy
transport, a closed-form expression for the temperature distribu-
tion in an unbounded domain due to an initial concentrated tem-
perature pulse T(0,x) = T0d(x) has been obtained, under the
assumption of vanishing local contributions (k = 0) as combination
of special functions for rational values of the parameter, respec-
tively. In Fig. 1 we depicted the temperature field T(x, t) for values
of the differentiation order a ¼ 1; 1

2, respectively and with ratio
ja
CV
¼ 1 and T0 = 1. It may be observed that, as a = 1 the Fourier inte-

gral in Eq. (56) reduces to a Cauchy-type temperature function as:
Tðx; tÞ ¼ 2t

t2þx2 whereas, for a = 1/2 a linear combination of Fresnel
integrals, namely, S(x) and C(x) represents the temperature distri-
bution reported in Fig. 1 as:

Tðx;tÞ¼

ffiffiffip
2

p
t Cos t2

4x

h i
1�2C xð Þ tffiffiffiffi

2p
p ffiffiffiffiffi

kxk
p

� �� �
þ 1�2SðxÞ tffiffiffiffi

2p
p ffiffiffiffiffi

kxk
p

� �� �
Sin t2

4kxk

h i� �
kxk3=2 ð63Þ
Fig. 2. Temperature distribution for
In passing we observe that closed-form solutions of the Fourier
integral reported in Eq. (56) may be obtained as linear combination
of special functions for any value of the differentiation order
a 2 Q with Q � R is the set of rational numbers by means of
the series integration theorem.

A parametric study of the influence of the fractional-order
derivative on the temperature distribution due to temperature
pulse may be provided by the observation of Fig. 2 that reports
the pure diffusive local transport, that is with s = 0 and in this case
Eq. (58) reverts to Eq. (53), for different values of the differentia-
tion order a.

The analysis has been conducted assuming a local diffusion
coefficient k

qCV
¼ 90 and long-range transport coefficient ja

CV
and

the initial temperature distribution has been assumed in the form:
T0ðxÞ ¼
T0ffiffiffiffiffiffiffiffiffiffi
2plT

p exp � x
lT

� �2
" #

ð64Þ
with T0 ¼ 100 K and the temperature spread parameter lT ¼
ffiffiffiffiffiffiffiffiffi
200
p

.
The observation of Fig. 2 shows that as far as long-range thermal en-
ergy transfer is involved in Eq. (58) than a faster diffusion of the
temperature pulse is observed with respect to the classical heat dif-
fusion obtained as a = 0.

The presence of time lag s = 0.3 s in thermal energy transport
induces the propagation of a decaying thermal wave that is
strongly influenced by the fractional-order transport involved by
long-range terms. The effect of the fractional differentiation order
in the temperature distribution is reported in Fig. 3 that shows
the presence of a thermal wave propagating in the 1D domain with
a faster decay induced by the long-range diffusive transport. The
presence of the faster decay observed for values of the differentia-
tion order a – 0 is in complete agreement with the presence of a
long-range thermal energy transport, that does not contain any
time lag in the constitutive relation in Eq. (4). Indeed, the long-
range thermal energy transport depends on the relative tempera-
tures only and as a – 0 at any time instant lesser and lesser ther-
mal energy remain concentrated in the solid domain perturbed
by the thermal wave passage.

The effects induced by the time lag s in the temperature distri-
bution of the local and non-local type is showed in Fig. 4 reporting
the temperatures of a 1D domain for different values of the time
lag (s = 0.05 s; s = 0.5 s; s = 1.0 s; s = 2.0 s) and differentiation or-
der a = 1/2 showing that, as time lag increases slower and slower
thermal wave propagation may be observed (pure diffusion).
Fourier-type transport equation.



Fig. 3. Temperature distribution for Cattaneo-type transport equation.

Fig. 4. Temperature distribution for Cattaneo-type transport equation varying the time lag.
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Indeed, values of s = 0 corresponds to unbounded speed of ther-
mal waves propagation and, therefore, small values of the time lag
involves a diffusion predominant thermal energy transport. In this
case the effect of the fractional-order derivatives involved in the
long-range energy transport is similar to the effect involved in pure
diffusion as it may be observed by direct comparison of Fig. 4 with
Fig. 2. On the other hand, as the value of the time lag increases, a
smaller thermal waves may be observed and, in this case, the pres-
ence of the fractional-order terms yields a faster decay of the ther-
mal waves since it contributes to diffuse thermal energy from the
regions perturbed by the thermal waves and the colder ones that
are outside the characteristic region involved by the local thermal
energy propagation.
6. Conclusions

Thermal energy transfer in rigid heat conductor at nano-scales
and/or for high frequency processes have been recently modeled
by suitable extension of Fourier transport equation in terms of
real-order (fractional) derivatives. Such extension relies on the
long-tail properties of power-law kernels that are recently used
to describe the slow spatial and temporal decay of temperatures
observed at mesoscale of complex heterogeneous materials. Indeed
at these scale, the presence of the material structure influences the
thermal energy transport and the use of non-local thermodynam-
ics has became very common introducing the scale effect as
additional contributions to the transport equations.
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In this paper we framed the model in a more general context
assessing the thermodynamic restrictions of the conductors’ func-
tional parameter class that may ensure a positive entropy rate for
any thermodynamical process. Indeed, thermal energy transfer has
been modeled as superposition of two contributions that coexhist
at the considered observation scale: (i) A phonon collision/ballistic
model of thermal energy transfer that is described by means of
Fourier/Cattaneo transport equation and (ii) a phononic small-
scale heat transport accounting for the long-range thermal energy
transfer proportional to the relative temperature among interact-
ing locations, to the product of interacting masses and to A proper,
material-type decaying function. Proper restrictions on the func-
tional class of the distance-decaying function has been reported
in the paper showing that any thermal transfer decaying function
that is strictly positive in the whole conductors’ domain is eligible
in Terms of second principle of thermodynamics.

As we assume that the decaying function belongs to the
functional class of power-laws of the interacting distances then a
fractional-order heat equation with Marchaud-type fractional
derivatives of order a 2 [0,1] In unbounded domains. As, instead,
bounded domains are considered, then only integral terms of Mar-
chaud fractional operator must be retained in the model since no
thermal energy exchange among the interior of The body and the
exterior space surrounding it is directly involved. This aspect is a
peculiarity of the proposed model of long-range thermal energy
transfer that prevent for the ill-conditioning of non-homogeneous
Dirichlet and Neumann boundary conditions always encountered
in integral non-local approaches.

Some numerical applications involving the temperature
distributions and evolution in 1D domains for the Cattaneo and
the Fourier local thermal energy transport have been provided in
the paper to highlight the contribution of the non-local terms in
the temperature wave propagation of Cattaneo model.
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