Risposta Sismica di Edifici Prefabbricati Isolati con Dispositivi Elastomerici

DOVA - WWW WWW

Marcello Cammarata, Nunzio Scibilia Dipartimento di Ingegneria Civile, Ambientale Aerospaziale, dei Materiali (DICAM). Viale delle Scienze, Ed 8,90128 Palermo.

Keywords: Isolamento sismico, strutture prefabbricate, isolatori HRDB.

ABSTRACT

This paper concerns the seismic behavior of precast concrete industrial buildings with an elevation equipped with seismic isolators.

It's examined a building with rectangular plan of m 40x 50. The structure is constituted of columns of square crosssection of 0.6 m, with continuum beams foundation. The desk is made with T section beams for each frame connected by Gerber joints in the main direction and they support precast pre-tensioned tiles with π shape. A plate of concrete is casted of the wing tiles for obtain a connected rigid deck.

At the top of the pillars will be placed rubber bearings having high dissipation capacity (HDRB).

The dynamic behavior of the structure under recorded real strong accelerograms is examined. In this work are considered Friuli, Loma Prieta, Northridge and Kobe accelerograms, dynamic incremental analysis are conducted in order to obtain the response of structure.

The concrete behavior is assumed with Mander law for the pillars, while the beams have a linear elastic behavior. For the isolators a linearized constitutive law, using equivalent stiffness, is assumed.

The design criteria of isolated precast systems are highlight, in detail the use of isolators permit to reduce the dimensions and the reinforcing bars amount of pillars. It is need to connect the precast beams of the deck for obtain a rigid deck motion.

1 INTRODUZIONE

I recenti eventi sismici in Emilia Romagna e Veneto hanno messo in luce la vulnerabilità di edifici industriali, costruiti per lo più con il sistema prefabbricato in cemento armato normale e precompresso, senza particolari accorgimenti atti ad impedire la sconnessione delle strutture sotto l'azione di eventi sismici, perché erroneamente ritenuti di bassa probabilità.

Il comportamento delle strutture prefabbricate in c.a. in zona sismica è stato oggetto di recenti studi (Colombo A. 2008, Toniolo G. Palermo A., Tsionis G. 2008 e Toniolo G., Colombo A. 2010), supportati da prove di laboratorio su elementi in vera grandezza (Toniolo G. Dal Lago B. Lamperti M. 2010).

Su tale argomento il Comité Européen de Normalisation ha formulato una guida specifica sulla base dell'*Eurocode 8*.

Numerosi edifici, alcuni dei quali di recente costruzione, durante i recenti sismi, hanno subito ingenti danni, con perdita di vite umane. Quanto sopra ha indotto gli autori ad affrontare il tema del progetto delle strutture nuove e degli interventi di adeguamento delle strutture esistenti, utilizzando tecniche di isolamento sismico (Cossu M., Sonda D. 2011, De Luca A. Serino, 2009, Foti D., Mongelli 2011, Russo G., Sorace S. 2009).

In precedenti note (Cammarata M., Miragliotta C., Scibilia N., 2012) si è applicata tale tecnica ad

un tipico edificio prefabbricato in c.a. a un piano, il cui schema strutturale è costituito in direzione trasversale da due campate uguali aventi luce in asse alle colonne di m 20.55, mentre in direzione longitudinale presenta cinque campate con luce compresa tra m 9.75 e 10.00 in asse alle colonne.

Tale edificio è stato analizzato sia nella configurazione tradizionale, sia inserendo dispositivi di isolamento alla sommità dei pilastri.

I risultati hanno evidenziato alcune criticità costruttive del sistema indagato, il quale avrebbe richiesto notevoli interventi per rendere l'impalcato idoneo ad essere sostenuto da isolatori.

Pertanto, si è ritenuto interessante cambiare la tipologia costruttiva dell'impalcato di copertura adottandone una che meglio si adatti al sistema isolato.

Nel seguito si descrive tale configurazione e si sviluppano analisi sismiche mediante l'applicazione di analisi dinamiche al passo, considerando l'azione di accelerogrammi registrati.

Sono stati considerati isolatori elastomerici ad alta dissipazione.

2 DESCRIZIONE DELLE STRUTTURE

L'edificio in esame ha dimensioni in pianta di m 50.00 x 40.00 misurate in asse ai pilastri e presenta cinque campate in direzione longitudinale e due in direzione trasversale.

Le strutture verticali sono costituite da 18 colonne prefabbricate con sezione quadrata di lato m 0.60 e lunghezza di m 7.30, incastrate alla base in travi rovesce longitudinali gettate in opera, munite di incavi per l'ancoraggio delle barre di armatura fuoriuscenti dai pilastri.

In direzione trasversale sono disposte travi di fondazione alle estremità dell'edificio e travi di collegamento prefabbricate tra i pilastri intermedi secondo lo schema di figura 1.

L'impalcato di copertura, mostrato in figura 2, è costituito da travi longitudinali in c.a.p. con sezione a T rovescia con base m 0.80 ed altezza di m 0.95, aventi l'anima di spessore m 0.30 ed altezza m 0.70. Nella figura 3 è riportata la sezione trasversale della struttura con l'indicazione delle principali dimensioni.

Lo schema statico delle travi longitudinali è di trave continua, appoggiata sugli isolatori. Sono previsti tre tronchi aventi lunghezza di m 17.20 quello centrale e m 16.90 quelli laterali. L'accoppiamento dei tronchi di trave longitudinale è previsto per mezzo di selle Gerber in grado di sostenere le travi di estremità in fase di montaggio, ubicate in corrispondenza della seconda e della quarta campata. La continuità flessionale dei tronchi sarà realizzata per mezzo di dispositivi di bloccaggio costituiti da viti ad alta resistenza, fissate a boccole preinserite e ancorate con idonee armature (figura 4 a).

Le ali delle travi a T sostengono tegoli a pi greco aventi larghezza di m 2.0 ed altezza di m 0.70, la cui soletta superiore ha spessore di m 0.05, secondo le indicazioni di figura 5.

Il collegamento tra i tegoli e le travi longitudinali è realizzato per mezzo di angolari in acciaio e bulloni (figura 4c).

L'impalcato costituito da elementi prefabbricati è solidarizzato con un getto di completamento in calcestruzzo dello spessore di cm 6, previa disposizione delle armature integrative, atte a garantire la continuità flessionale dei tegoli in direzione trasversale.

Per consentire la formazione di un piano rigido sono previste staffe emergenti dall'estradosso dei tegoli e delle travi.

In tal modo il tegolo può essere considerato come appoggiato nei confronti del peso proprio e del carico indotto dal getto integrativo e come vincolato con appoggio e incastro per i carichi permanenti non strutturali e variabili.

Le fondazioni, i pilastri ed il getto integrativo sono realizzate con calcestruzzo di classe C28/35 e acciaio per cemento armato B450C, mentre gli elementi prefabbricati in c.a.p. sono in calcestruzzo di classe C45/55, acciaio per cemento armato B450C. Per la precompressione si è adottato un acciaio armonico con resistenza ultima di 1860 N/mm². Gli inghisaggi delle barre di armatura fuoriuscenti dai pilastri sono effettuati con malta reoplastica antiritiro avente resistenza di 70 N/mm², tensione di aderenza acciaio-malta di 30 N/mm² e malta-guaina di 6.5 N/mm².

Nella tabella 1 sono riportate le proprietà meccaniche e geometriche dei suddetti elementi strutturali.

Tabella 1. Caratteristiche	degli elementi strutturali
----------------------------	----------------------------

Tipo	Area [mm ²]	Momento di inerzia [mm ⁴]	Peso [kN/m]
Colonne	36.0×10^4	1.08×10^{10}	9.00
Travi	41.0×10^{4}	3.27×10^{10}	10.25
Tegoli	33.7×10^4	1.70×10^{10}	8.42

Le caratteristiche dei materiali adottati sono riportati nella tabella 2, con i relativi coefficienti di sicurezza. Per gli elementi prefabbricati in calcestruzzo il coefficiente γ_m si potrebbe assumere 1.4 in relazione al severo controllo di produzione, possibile in stabilimento (paragrafo 4.1.2.1.1.1).

L'isolamento sismico è ottenuto mediante l'impiego di dispositivi elastomerici posti alla sommità delle colonne.

Al fine di consentire i movimenti relativi tra l'impalcato e le colonne è necessario sconnettere le pareti di tamponamento, vincolando queste ultime alle colonne perimetrali nel tratto inferiore superiore.

L'altezza di tali pannelli nel tratto sommitale è di circa m 1.60, tale da contenere le pendenze richieste dallo smaltimento delle acque meteoriche.

Le strutture, sottoposte ad accelerogrammi registrati, sono analizzate con analisi dinamica al passo, secondo le modalità previste dal paragrafo 7.10.5.3 del D.M. 14/01/2008.

Tabella 2. Caratteristiche meccaniche dei materiali

¹ La resistenza di calcolo di 800 N/mm² per bulloni soggetti a taglio si riduce a 480 N/mm² e per trazione vale 720 N/mm²

Figura 3. Sezione trasversale

Figura 6. Colonna (a) Particolare fondazione (b) particolare sommità (c) armatura

3 DISPOSITIVI DI ISOLAMENTO

Si suppone di utilizzare isolatori elastomerici ad alta dissipazione HDRB di forma circolare, composti da strati di neoprene vulcanizzati a piastre in acciaio (Kelly J. M., 2001).

I dispositivi sono stati scelti dal catalogo di produttori in relazione al carico verticale e al massimo spostamento richiesto.

A tal fine si riportano nella tabella 3 i valori degli sforzi normali alla testa dei pilastri indotti dai carichi verticali, valutati attraverso le aree di influenza.

Tabella 3. Sforzi Normali

Pilastro	1A	1C	2A	2C
Pesi strutturali	405	680	755	1250
Perm. e variabili	210	205	310	440
Totali	615	885	1065	1690

I dispositivi elastomerici sono modellati adottando un legame costitutivo linearizzato, caratterizzato dalla rigidezza secante K_{eff} sostitutivo del legame bilineare espresso dalle rigidezze K_e e K_p , secondo le indicazioni di figura 7.

Per la scelta degli isolatori si valuta il periodo *T* di vibrazione della struttura espresso dalla seguente relazione:

$$T = 2\pi \sqrt{\frac{M}{K_{\rm H}}} \tag{1}$$

Figura 7. Ciclo di isteresi dell'isolatore

essendo M la massa sismica del sistema e K_H la sua rigidezza a taglio che deve tener conto del contributo delle rigidezze della colonna e dell'isolatore, disposte in serie. Essendo la colonna di altezza h incastrata alla base e libera in

sommità la rigidezza della singola colonna diviene:

$$K_{\rm Hi} = \frac{1}{\frac{{\rm h}^3}{3{\rm EI}_{\rm i}} + \frac{l}{K_{eff,i}}}$$
(2)

Per tener conto della riduzione di rigidezza della colonna a causa della fessurazione si potrebbe assume un valore ridotto del modulo elastico $E=0.5E_c$ essendo E_c il modulo elastico del calcestruzzo.

Sono stati scelti dispositivi di isolamento costituiti da strati di elastomero caratterizzato da un valore del modulo di elasticità tangenziale G= 0.8 N/mm^2 e da uno smorzamento viscoso pari al 10%. In particolare 4 dispositivi collocati al di sopra delle 4 colonne interne della fila centrale hanno diametro D=350 mm, mentre i 14 isolatori restanti hanno diametro D=300 mm. Entrambi presentano altezza di 150 mm.

I valori delle rigidezze verticali K_{v} , orizzontali K_{eff} e dello spostamento massimo S sono riportati nella tabella 4.

rabena 4. Caratteristiche degli isolatori					
Isolatore	K_{v}	K _{eff}	S		
	[kN/mm]	[kN/mm]	[mm]		
D 300	1106	1.05	110		
D 350	1477	1.37	120		

Tabella 4. Caratteristiche degli isolatori

4 MODELLI DI CALCOLO

La struttura è stata considerata come telaio spaziale costituito da elementi *beam*, con colonne perfettamente incastrate alla base.

Per le colonne si è adottato il legame costitutivo di Mander; mentre alle travi di impalcato si è attribuito un comportamento elastico lineare.

L'impalcato è stato considerato rigido nel proprio piano, in relazione alla presenza della soletta integrativa.

Gli isolatori sono stati modellati attraverso *link* di lunghezza iniziale nulla, caratterizzati dalle rigidezze $K_v \in K_{eff}$ riportate in tabella 4.

Il bilancio energetico è espresso dalla nota relazione:

$$E_i = E_E + E_K + E_D \tag{3}$$

essendo:

E_i l'energia trasmessa dal sisma alla struttura;

 E_E l'energia assorbita per deformazione elastica;

E_K l'energia cinetica;

 E_D l'energia dissipata per deformazioni plastiche o viscose.

Nei sistemi tradizionali per contrastare l'energia assorbita dal sistema si fa affidamento alla dissipazione, rappresentata dal termine E_D . Essa è dovuta essenzialmente allo sviluppo di deformazioni plastiche che si attivano alla base delle colonne. Mentre, nelle strutture isolate si interviene attraverso la riduzione del termine E_i e l'incremento di E_D .

In relazione alle caratteristiche della struttura, a vantaggio di sicurezza si è assunta una dissipazione del 5%.

La struttura è stata sottoposta all'azione di accelerogrammi registrati in occasione di eventi significativi, selezionati in base a criteri proposti in bibliografia (Iervolino I, Maddaloni G., Cosenza E., 2008). In particolare sono state scelte registrazioni relative a sismi del Friuli, di Kobe, di NorthRidge e di Loma Prieta, caratterizzati dai valori di accelerazione massima a_{max} , velocità massima v_{max} e spostamento massimo δ_{max} riportati in tabella 5, ove è anche indicato il valore del periodo predominante T_{pred} .

Tabella 5. Caratteristiche dei sismi analizzati

Sisma	a _{max} /g	v _{max} [m/s]	δ _{max} [m]	T _{pred.} [s]
Friuli	0.4788	0.312	0.075	0.26
Kobe	0.3450	0.276	0.091	0.16
NorthRidge	0.5680	0.522	0.098	0.26
Loma Prieta	0.363	0.329	0.072	0.38

Si riportano inoltre in figura 8 gli spettri elastici di accelerazione relativi ai quattro sismi considerati, ottenuti con l'ausilio del software *Seimosignal*[®] (Seismosoft Ltd).

Figura 8. Spettri di accelerazione dei sismi analizzati

Tali spettri evidenziano per gli elevati periodi di vibrazione che caratterizzano le strutture isolate, azioni simiche rilevanti per i sismi di Kobe e Loma Prieta. Le analisi dinamiche al passo sono state eseguite con l'ausilio del programma di biblioteca *Sismostruct*[®](Seismosoft Ldt).

Nella figura 9 si riporta il modello di calcolo utilizzato, con evidenziati gli assi di riferimento globale (X longitudinale, Y trasversale, Z verticale).

L'analisi agli autovalori considera 16 modi di vibrare. Il periodo di vibrazione del primo modo e' relativo all'oscillazione in direzione Y, con periodo pari a 2.264 sec.

Figura 9. Modello di calcolo

Il secondo modo presenta spostamenti in X ed ha periodo pari a 2.258 sec, mentre il terzo modo e' caratterizzato da una deformata torsionale con periodo 2.089 sec.

Per ciascuno dei suddetti 3 modi le masse partecipanti in direzione Y, X, e torsionale sono superiori al 98%.

Per tener conto della contemporaneità delle azioni simiche secondo le due direzioni, prescritta dalla normativa, si è considerato agente il sisma secondo la direzione longitudinale X dell'edificio ed il 30% dello stesso sisma in direzione trasversale Y.

Poiché le luci delle travi non superano i 20 m, non si è considerata l'azione del sisma sussultorio.

Con riferimento al terremoto di Kobe la figura 10 mostra l'andamento temporale dell'accelerazione al suolo nell'intervallo 0-25 s.

Mentre nelle figure 11, 12 e 13 si riportano l'andamento temporale degli spostamenti globali dell'impalcato in direzione X e dei momenti flettenti M_x ed M_y al piede di uno dei pilastri della fila centrale, relativo ai primi 10 secondi di analisi del sisma.

Dai suddetti diagrammi si evince che i momenti massimi si raggiungono dopo circa 8 s dall'inizio del sisma.

Si riportano nella tabella 6 i valori delle sollecitazioni massime al piede delle colonne 1A,

1B, 2A e 2B rappresentative dell'intero insieme delle 18 colonne, dedotte dalle analisi dinamiche.

Figura 10. Accelerogramma del sisma di Kobe

Figura 11. Spostamenti in X dell'impalcato in corrispondenza del pilastro 2B, per sisma di Kobe

Figura 12. Momento M_y al piede del pilastro 2B, per sisma di Kobe

Figura 13. Momento M_x al piede del pilastro 2B, per sisma di Kobe

In particolare si osserva che le colonne 1A rappresentano le 4 colonne d'angolo, le colonne 1B le 8 colonne perimetrali interne, le colonne 2A le due colonne esterne della fila centrale e le colonne 2B le 4 colonne interne della fila centrale.

La tabella 6 evidenzia che i massimi valori delle sollecitazioni si verificano per l'azione del terremoto di Kobe.

Per ciascuno dei modelli di calcolo analizzati si riportano nella tabella 7 gli spostamenti massimi $\Delta_1 e \Delta_2$ gli spostamenti relativi δ_1 δ_2 , entrambi in direzione longitudinale, tra le piastre dell'isolatore a contatto con la colonna e con la trave, in corrispondenza di uno dei pilastri centrali (2C, 2D) per i quali gli effetti torsionali sono trascurabili e di uno dei pilastri d'angolo (1A, 1F, 3A, 3F).

Tabella 6. Sollecitazioni, al piede dei pilastr

Р.	Sisma	Ν	My	$M_{\rm x}$	V _{x.}	Vy
		[kN]	[kNm]	[kNm]	[kN]	[kN]
	Friuli		75	29	11	4.0
1 4	Kobe	102	170	46	24	6.5
IA	NorthRidge	493	142	44	21	6.5
	Loma Prieta		74	28.5	9.5	3.4
	Friuli		68	30	10.5	4.2
1B	Kobe	980	155	54	23	7.0
	NorthRidge		138	50	21	6.8
	Loma Prieta		85	22	10.2	3.0
2A	Friuli	975	82	20	11	3.2
	Kobe		170	38	22.5	5.7
	NorthRidge		150	36.2	20.2	5.5
	Loma Prieta		67	30	10.5	3.4
	Friuli		85	26	13	3.7
2B	Kobe	1775	170	47	25	6.7
	NorthRidge		160	48	24	7.0
	Loma Prieta		82	26	12	3.7

Tabella 7. Spostamenti indotti dai sismi $\Delta_1 \in \delta_1$ pilastro centrale - $\Delta_2 \in \delta_2$ pilastro d'angolo

1 11		2 2		0
Sisma	Δ. [mm]	δ ₁ [mm]	Δ ₂ [mm]	δ_2 [mm]
Friuli	16	9	16	13
Kobe	29	18	30	21
NorthRidge	22	17	22	19
Loma Prieta	15	8	15	10

La resistenza di calcolo del solo calcestruzzo delle colonne sottoposte a sforzo normale centrato N* è pari a 5712 kN. Pertanto i valori di N sopra indicati corrispondono a rapporti N/N* pari ai 0.086, 0.172 e 0.311.

Disponendo un'armatura longitudinale di $8\phi 24$ pari alla percentuale di armatura minima $\mu=1\%$ prevista dal D.M. 14/01/2008 per le costruzioni sismiche, si ricavano i domini di resistenza della sezione considerata nel piano M_x-M_y per i rispettivi valori dello sforzo normale N, riportati nelle figure 14, 15 e 16.

Nello stesso grafico sono evidenziati gli stati di sforzo alla base dei pilastri per il terremoto di Kobe.

In particolare si sono considerati i seguenti tre gruppi di valori, espressi in kN e kNm:

N= 493 N= 980 N=1775	$M_x=170$ $M_x=155$ $M_x=170$	M _y =46 M _y =54 M _y =47	
600			
200			
0 0		•	
-200			
-400			
-600	-400 -200 MR3	0 200 4 x [kNm]	100 600

Figura 14. Dominio di interazione della sezione $600 \times 600 \text{ per N/N}^* = 0.086 \text{ e } \mu = 1\%.$

Figura 15. Dominio di interazione della sezione 600x600 per N/N^{*} = 0.172 e u=1%.

Figura 16. Dominio di interazione della sezione 600x600 per N/N^{*} = 0.311 e µ=1%.

5 CONSIDERAZIONI CONCLUSIVE

La presente memoria ha affrontato il tema della possibilità di estendere l'isolamento sismico alle strutture prefabbricate in cemento armato di nuova costruzione.

Alcune di dette strutture, di cui è presente una vasta tipologia realizzativa, hanno subito considerevoli danni in occasione dei recenti eventi sismici, che hanno evidenziato carenze progettuali, soprattutto con riferimento ai vincoli tra gli elementi costruttivi.

Dalle elaborazioni progettuali esaminate negli ultimi lavori di ricerca è emerso che la soluzione più idonea per le travi dell'impalcato di copertura è quella di continuità sui pilastri.

A tal fine si è proposta una configurazione con selle Gerber da solidarizzare con sistemi in grado di ricostituire la continuità flessionale.

In fase di montaggio saranno installati alla sommità dei pilastri dispositivi di vincolo provvisorio atti ad impedire il ribaltamento delle travi fino alla solidarizzazione con i tegoli.

Le analisi sismiche sono state condotte con l'ausilio del programma *Sismostruct*, considerando accelerogrammi registrati.

I risultati dei calcoli hanno consentito di esprimere un giudizio soddisfacente sulla soluzione costruttiva proposta, la quale è in grado di mantenere gli elementi strutturali in campo elastico, pur riducendo le dimensioni e le armature delle colonne.

Pertanto, si ritiene che i risparmi economici conseguiti attraverso dette riduzioni, compensino parte dei maggiori costi dovuti ai dispositivi di isolamento sismico.

La memoria dà anche alcune indicazioni sulle soluzioni da adottare per le pareti prefabbricate al fine di disaccoppiare gli spostamenti dell'impalcato di copertura, a cui vanno vincolati i tratti superiori delle pareti, dagli elementi sottostanti.

In relazione a quanto sopra esposto si ritiene che il sistema proposto, possa costituire una valida base per sviluppare applicazioni costruttive concrete.

Ciò in quanto sono stati superati alcuni aspetti critici emersi nei precedenti studi, nei quali si sono considerate soluzioni con travi ad I appoggiate sulle colonne e tegoli ad esse soprastanti.

BIBLIOGRAFIA

- AASHTO (1999) Guide Specification for Seismic Isolation Design. American Association of State Highway and Transportation Officials, Washington D.C.
- Cammarata M., Miragliotta C., Scibilia N., Isolamento sismico di edifici industriali prefabbricati (2012). Atti del XIX Congresso CTE, 8-10 nov., Bologna, pp. 483-494 ISBN: 978-88-903647-9-2.
- Cammarata M., Miragliotta C., Scibilia N., Seismic Behaviour of Industrial Precast Isolated Buildings (2012). *Meccanica dei Materiali e delle Strutture* Vol. 3, pp. 61-68 ISSN: 2035-679X.
- Cardone D., Dolce M., Gesualdi G. (2009) Lateral force distributions for the linear static analysis of base-isolated buildings. *Bull. Earthquake Eng.* N°7.
- Colombo A. (2008) Progettazione strutturale di un edificio industriale prefabbricato in zona sismica. Da *Progettazione sismica di edifici in calcestruzzo armato* Vol. **2** AICAP.
- Comité Européen de Normalisation (2005) *Eurocode 8*: Design of Structures for Earthquake Resistance.
- Corbi I., Baratta A. (2006) Base isolation for steel structures on stiff and soft soil. *Proceedings of the 5th International Conference on Behavior of Steel Structures in Seismic Areas*, Stessa.
- Cossu M., Sonda D. (2011) Miglioramento di edifici esistenti mediante isolamento sismico. *Atti del XIV Convegno ANIDIS*, Bari.
- De Luca A., Serino G. (2009) *Tecnologie per l'isolamento ed il controllo di strutture ed infrastrutture*. Ed. Polistampa.
- Fardis M. N., Negro P. (2006) Seismic Performance Assessment and Rehabilitation of Existing Buildings. *Proceedings of the International Workshop on the SPEAR Project*, Ispra, Italy.
- Federal Emergency Management Agency 356 (2000) Prestandard and Commentary for the seismic Rehabilitation of Buildings. Washington D. C.
- Federal Emergency Management Agency 368 (2001) Recommended Provisions for Seismic Regulation for New Buildings and Other Structures, Washington D. C.
- Foti D., Mongelli M. (2011) Isolatori sismici per edifici esistenti e di nuova costruzione. ISBN 978-88-579-0100-8 Dario Flaccovio Editore.
- Higashino M., Kani N. (2009) State o the Art of Development and Application of Seismic Isolation and Energy dissipation Technologies for Buildings in Japan. *Proceedings of the Seventh International conference on Earthquake Resistant Structures* (ERES) Cipro.
- Iervolino I., Allin Cornell C., Eeri M. (2005) Record Selection for Nonlinear Seismic Analysis of Structures". *Earthquake Spectra*, Volume 21, No. 3, pages 685-713.
- Iervolino I., G. Maddaloni, Cosenza E. (2008) Eurocode 8 Compliant Real Record Sets for Seismic Analysis of Structures. *Journal of Earthquake Engineering* 12.
 Iervolino I., Cornell C. A. (2009) Sulla selezione degli
- Iervolino I., Cornell C. A. (2009) Sulla selezione degli accelerogrammi nelle analisi non-lineari delle strutture". XI Congresso nazionale "L'Ingegneria Sismica".
- Iervolino I., Maddaloni G., Cosenza E. (2010) A note on selection of time-histories for seismic analysis of

bridges in Eurocode 8. Journal of Earthquake Engineering N° 13.

- JRC Joint Research Center (2012) Design Guidelines for Connections of Precast Structures under Seismic Actions.
- Kelly J. M. (2001) Base Isolation of Structures Design Guidelines. *Holmes Consulting Group ltd.* Wellington, New Zeland.
- Mander J.B., Priestley M.J.N., Park R. (1988) Theoretical stress-strain model for confined concrete *Journal of Structural Engineering*, Vol. **114**, No. 8
- Russo G., Sorace S. (2009) Protezione sismica delle strutture. Tecnologie innovative-Ricerca-Applicazioni. Edizioni CISM Udine.
- Seismosoft Ltd. ,Pavia, Italy, info@seismosoft.com.
- Toniolo G., Palermo A., Tsionis G. (2008) Vulnerabilità sismica degli edifici prefabbricati esistenti: analisi di un edificio critico senza diaframma di copertura. *XVII Congresso CTE* Roma Vol. **2**.
- Toniolo G., Colombo A. (2010) Costruzioni prefabbricate: la lezione appresa dal terremoto d'Abruzzo. *XVIII Congresso CTE Brescia* Vol. **2**.
- Toniolo G., Dal Lago B., Lamperti M. (2010) Verifica sperimentale di connessioni prefabbricate pilastrofondazione soggette a carichi ciclici: risultati preliminari. XVIII Congresso CTE Brescia Vol. 2.
- Vasant Matsagar A., Jangid R.S. (2004) Influence of isolator characteristics on the response of base-isolated structures. *Engineering Structures* n° 26
- D.M. 14/01/2008 Norme Tecniche per le Costruzioni.
- Circolare Ministero Infrastrutture N° 617/2009 sulle Norme Tecniche per le Costruzioni.