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The assessment of PV energy in an urban context is extremely complex because many factors have to be
considered. Moreover, when the purpose is calculating the realistic amount of the electricity demand of a
city that can be covered by the photovoltaic generation, it is necessary to estimate the number of photo-
voltaic systems whose installation is economically advantageous. Such a topic requires an economic anal-
ysis, which is affected by the number of energy and economic parameters involved and the values
assigned to them to perform calculations. Some parameters are perfectly known and unvarying, like
the paid incentives. Adversely, some parameters, like the efficiency degradation of photovoltaic panels,
can only be supposed. Other parameters require some information that is specifically related to each par-
ticular photovoltaic system.

With the aim of estimating the influence of the manifold energy and economic parameters that char-
acterize how photovoltaic penetration develops in urban areas, a specific study was conducted for a city
in the south of Italy. A sensitivity analysis was carried out in order to verify parameters have an irrelevant
influence and what are the parameters whose definition can be a crucial element of the energy and eco-
nomic analysis of photovoltaic systems because dramatically impact on the results.

The presented study represents a valuable help for photovoltaic systems designers and energy deci-
sion-makers because it permits to evaluate the impact of the deviations of the main parameters on the
profitability of photovoltaic systems and the role played by them in the effectiveness of the energy pol-
icies implemented to achieve the required shares of electricity demand coverage.

© 2013 Elsevier Ltd. All rights reserved.

Keywords:

Photovoltaic
Grid-connected PV systems
Energy parameters
Economic parameters

1. Introduction

To fulfil the energy targets, which were decreed by the Euro-
pean Union (EU) with the Directive 2009/28/EC, the renewable en-
ergy sources (RES) have to assure both the adequate electricity
generation and the economic convenience of the investment. These
two concurring requirements always play a crucial role in the rapid
penetration of any new energy technology. Actually, even though
the electrical requirements are fully covered by a photovoltaic
(PV) system, it is reasonable to presume that the returns may be
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not sufficient to offset the initial costs and the disbursements over
the years. Energy and economic aspects are yet more decisive ele-
ments when multi-storey buildings, which are peculiar to the ur-
ban areas, are considered. Because the roof surface of a building
have to be used in equal portions by each co-homeowner, when
the number of floors increases, the electricity generated by each
PV system may result lower than the household electrical demand.
Nevertheless, even PV systems that not satisfy the full energy de-
mand of the flat may be economically convenient as long as the
costs for installation and operation are offset by the incentives
and the reduction in the electricity bills. Unfortunately, the ratio
of the generated PV electricity to the global cost of the facility var-
ies with the size of the PV system and for this reason assessing the
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Nomenclature

Cpy gross energy cover factor of the district (%)

G cash flow at the generic t-th year (€)

Co initial investment cost (€)

Dpqy yearly day electricity demand (kW h)

D; yearly electricity demand of the generic j-th PV system
(kW h)

Dpigne  yearly night electricity demand (kW h)

Drotal yearly electricity demand of the district (kW h)

Epy, yearly electricity generated by the generic j-th PV sys-
tem (kW h)

Epyrotar  yearly electricity produced by all PV systems (kW h)
i weighted average cost of capital (%)

IRR internal rate of return (%)

Npy number of PV systems

NPV net present value (€)

N, life time of the investment (years)

actual economic viability becomes a condition necessary for the
success the project.

The assessment of PV energy in an urban context is extremely
complex because the factors that interact are manifold and hard
to be contextually analysed. Hofierka and Kanuk [1] assessed the
photovoltaic potential in Bardejov, Slovakia, and Vardimon [2] ana-
lysed five Israeli cities (Jerusalem, Tel Aviv, Haifa, Beersheba, Eilat).
Ordéiiez et al. [3] studied the solar energy capacity in Andalusia,
Spain, Izquierdo et al. [4] focused on roof surfaces of all autono-
mous Regions of Spain, and Wiginton et al. [5] and Nguyen et al.
[6] quantified rooftop solar photovoltaic potential of a region of
south eastern Ontario, Canada. Viana et al. [7] assessed the poten-
tial of concentrating solar photovoltaic generation in Brazil, and
Siri et al. [8] analysed the potential of solar electricity generation
in the European Union states. Pelland and Poissant [9] evaluated
the potential of building integrated photovoltaics (BIPV) in Canada.
Kaan and Reijenga [10] presented many examples of PV systems in
order to demonstrate that BIPVs can be aesthetically neutral or
visually attractive elements in architecture. Hachem et al. [11]
showed that a variety of housing unit shapes, densities and site
layouts can be accommodated in ways that compensate for in-
creased energy consumption by increased generation, as well as
by spread of peak generation timing. Strzalka et al. [12] investi-
gated on large scale integration of photovoltaics in a residential
district near Stuttgart, Germany.

Many different techniques were used to estimate the roof col-
lecting surfaces. In several studies on building-integrated solar en-
ergy applications the amount of available area was assumed as an
input data. For city areas, vectorial GIS orthomaps [1,2,4], and ur-
ban maps obtained from Google Earth™ [3]| were used to create
polygon objects representing the building roofs. The estimation
of region areas was performed using the machine leaner functions
and classification algorithms of Feature Analyst, which is an ad-
vanced feature extraction program existing as an extension of Arc-
GIS [5], and the open source Geographical Resource Analysis
System (GRASS) [6]. For continent and subcontinent areas CORINE
Land Cover and GIS databases were also used [7,8].

Even the conversion efficiency of PV systems, which mainly de-
pends on the solar irradiation, the silicon slab operating tempera-
ture, the spectral response and the electrical load has a significant
role in the order of the energy assessments. When the energy
assessments is based on mean constant value of the conversion
efficiency, economical predictions are too optimistic ant they can
lead to the installation of PV systems that disappoint all investor
expectations. With the exception of some researchers [1,2], who
evaluated the power of the PV system using the current-voltage
characteristics of the used PV panels, the conversion efficiency
was often assumed constant or, at most, only changing with the sil-
icon temperature.

The economic aspect related to the feasibility of PV systems re-
quires an accurate analysis based on the evaluation of all costs and
benefits. The deviation of each crucial factor involved in the study

- PV system costs, selling and purchasing power prices, discount
rate, degradation rate in the efficiency of the PV panels, replace-
ment of the PV panels and inverter, maintenance costs, assurance
costs, inflation, incentives, shading factor - biases the convenience
and prospective profit that can derive from investing in sustainable
technologies. Van der Zwaan and Rabl [13] stated that, mainly due
to its high costs, PV electricity was unlikely to pay a major role in
global energy supply and carbon emission abatement before 2020.
Hongbo et al. [14] performed the economic optimisation and sen-
sitivity analysis of PV systems in residential buildings in Japan. Li
et al. [15] examined the economic viability domestic PV systems
in Ireland. Martinez-Cesena et al. [16] proposed the assessment
of the economic convenience of defer investments in PV systems
with the expectation that better PV panels will become available
in the future. A techno-economic analysis of wind-solar hybrid
renewable energy system for urban high-rise application was pre-
sented by Chong et al. [17].

In the last years Italy and other countries, like Spain and Ger-
many, have heavily reduced the incentives to support PV installa-
tions. The shift from the initial generous values, which is connected
to the predicted drop in the PV devices price, does not ensure that
FIT payments will be able to adequately recover the investment
and management costs. The PV policies in Germany, Spain and
Greece were analysed by Liithi [18]. Poullikkas [19] observed that
the economic feasibility of large PV parks in Cyprus, in absence of
appropriate FIT, has a critical value. Celik [20] claimed the need of
economic subsidies in order to propagate the alternative energy
systems. Celik et al. [21] analysed the energy statistics of 15 Euro-
pean Union countries and inferred that subsides and incentives are
vital in promoting solar thermal and PV collectors. Zahedi [22] per-
formed an economical model to determine the accurate FIT in all
states of Australia. Rigter [23] calculated what the level of tariffs
would have to be in China. Danchev et al. [24] showed that the rate
of FIT de-escalation does not guarantee return rate over the time in
Greece. Papadopoulos and Karteris [25] discussed a quantitative
assessment of the FIT introduced in Greece. Campoccia et al. [26]
compared the supporting measures adopted by France, Germany,
Italy and Spain. Dusonchet and Telaretti [27,28] extended the com-
parison to 17 western and 10 eastern European Union countries.
Sivaraman and Horne [29] examined the Australian policy to in-
crease small scale grid-connected PV deployment. Dinger [30] ana-
lysed the PV electricity status, potential ad policies of Spain,
Germany, United States of America, Japan and China.

To correctly assess the viability of the investment, it is also
important to examine the impact of the load mismatch. Myers
et al. [31] assumed that the investment in solar PV in Wisconsin
approached a practical limit due to available solar radiation and
mismatch between demand and electrical generation. Widén
et al. [32] presented a methodology for evaluation of options for
improved load matching. Paatero and Paatero [33] analysed for Lis-
bon and Helsinki climates the effects of a high level of photovolta-
ics connected in the middle voltage distribution network. Denholm
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and Margolis [34] considered the constraint of traditional electric-
ity generation plants to reduce output and accept PV generated en-
ergy. Stodola and Modi [35] faced the problem of evaluating the
maximum deployment that would permit 95% of the annual output
from PV to be utilised without reducing the output of the baseload
plants located in 32 regions of USA.

In this paper the authors deal with the subject by analysing all
energy and economic aspects at the same time. In order to reach
concrete conclusions the analysis focused on a district of a south-
ern Italian city. The influence of all parameters was studied in or-
der to assess the importance of each of them in modifying the
results of the energy and economic analysis of PV systems. The ef-
fects of the parameters were discussed in relation to the minimum
electricity demand coverage (17%) that is the target set by Direc-
tive 2009/28/EC for renewable energy sources in Italy. The study
also considered the consumer’s viewpoint in order to clearly define
the prospective benefits resulting from the installation of domestic
PV systems. The results of the sensitivity analysis with respect to
the variations of the manifold energy and economic parameters
have highlighted what are the aspects that decision makers should
consider to implement effective policies to promote renewables.

2. Photovoltaic potential

The combined analysis of energy and economic aspects is of ba-
sic importance for evaluating real outcomes of investments. To
reach this result it was used a methodology based on the following
steps:

e Architectonic aspects:
- identification of building roof surfaces (flat and slanted);
- estimation of number of floors for each building;
- shape classification of roofs.
e Energy aspects:
- estimation of the electricity produced by the PV systems as
regards to each floor;
- estimation of the electricity consumed by the homeowners;
- estimation of the energy cover factor.
e Economic aspects
- evaluation of costs of the PV systems (investment costs and
costs for maintenance, servicing and insurance against dam-
age) and benefits due to the gains for the avoided bill costs,
the incentives and the sold electricity;
- analysis of cash flows;
- evaluation of the economically effective and ineffective
roofs;
- estimation of the energy cover factor related to the results of
the economic analysis;
- sensitivity analysis for the most significant physical and eco-
nomic parameters.

A definite urban scenario was assumed to calculate the pro-
duced annual PV electricity. In particular, the study was carried
out on a district located in the north-west of Palermo (Sicily - Italy
- Latitude 38.0°N, Longitude 13.4°E), which is shown in Fig. 1. The
methodology and the study case, which are the same that were
fully described by Cellura et al. [36], are briefly summarised.

The buildings, marked by a regular orientation (117° East of
South and 153° West of South), present flat and slanted roofs sub-
divided as follow:

Slanted roofs: 60,145 m? (55.07%).
Flat roofs: 37,902 m? (34.71%).
Terraces: 11,017 m? (10.09%).
Others: 143 m? (0.13%).

surface
109.207m*

Fig. 1. The area of district occupied by buildings.

The accurate survey of the district, which was performed by
means of Google Earth™, permitted to match slanted and flat roofs
with the number of floors of each building.

As it is shown in Fig. 2, most of the roofs cover buildings of four
floors; the majority of the slanted roofs belong to buildings of four
floors whereas most of the flat floors cover buildings of eight floors.
Fig. 3 shows the distribution of number of flats in the district.

The yearly electricity produced by the PV systems potentially
installed on the roofs was calculated according to the roof surface
available for the co-owners of each building. To obtain this figure
the slanted roofs of each building were subdivided in the basic
types of Table 1, which are classified in accordance with their
shapes and the orientations. Fig. 4 summarises the results of the
slanted roofs classification.

The classification of flat roofs of the district was based on the
buildings listed in Table 2. The buildings were selected to be repre-
sentative of five classes obtained by sorting the building by their
roof areas. The results are summarised in Fig. 5.

Percentage distribution of roofs areas vs number of floors
30%

™ Allroofs

25% 1 m Slanted roofs

20% 1~ w Flat roofs
15% 1~
10% 1~

5% 4

Number of floors

Fig. 2. Distribution of roof areas versus number of floors.

Number of flats in the district

180 A
159 B Slanted roofs

150 M Flat roofs
B Slanted+Flat roofs

120 A

90

60

30 A

Number of floors

Fig. 3. Distribution of flats versus number of floors.
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Table 1
Classification of roof shapes.
T2 T3 T4 T5 T8
T9 T10 T11 T12 T13 T16
Slanted roof areas [m?] distribution Flat roof areas [m?] distribution
T15 4Eg; FR4
Tia 3618 8162 9235
3765
T3 & T2
3787 12901
T12
2906 FR2
4267
T11
3298
T10
1683 T9 T4 2690 FR1

78
2296 7 2031
2880 158) 2219 2144

Fig. 4. Surface areas of slanted roofs.

The electricity produced by slanted and flat roofs was estimated
considering that the PV arrays were built with commercial PV pan-
els Kyocera KD210GH-2PU. To size the PV arrays the roof areas
were divided by the number of floors and flats of the buildings
and it was assumed that all flats had a standard surface of
162 m?, which is peculiar to the analysed district. The PV arrays
were accurately sized on the basis of the dimensions of the portion
of roof available for the generic co-owner of the building; the
inverters were selected matching their nominal power with the
size of each PV array.

The electricity calculations were repeated for each type of roof
and each number of floors using PVsyst 5.06 [37]. The result of
each power calculation was divided by the area of the standard flat
in order to evaluate the specific value of electricity production for
square meter to be accredited to any flat located in a building with
any number of floors and type of roof. Such a specific value of elec-
tricity production obviously varied with the number of floors and
roof type. The electricity produced by each building was evaluated
by multiplying the specific value of the electricity production by
the global area of the flats of the building. Eventually, the electric-
ity produced by the entire district was calculated by summing the
electrical energy produced by all buildings of the district.

Table 2
Classification of flat roofs.

3065

Fig. 5. Surface areas of flat roofs.

Because the performance of a PV system also depends on the tilt
angle and azimuth of the collectors, the insolation can be maxi-
mised by using a surface tilt angle that exceeds the latitude of
the location by 10-15° during the winter months; in summer an
inclination of 10-15° less than the site latitude maximises the
insolation [38]. PV systems are commonly mounted at an angle
equal to the latitude of the location, to reach a balance between
winter and summer production [39,40]. To obey to the rules im-
posed by the Italian Authorities in order to respect the aesthetical
and architectonic standards for old buildings, for the slanted roofs
it was also assumed that PV panels were collocated with the same
pitch of the roof surface (approximately 25° above the horizontal).
In Table 3 some results of the energy estimation are listed.

For the flat roofs it was assumed that the panels were oriented
to the south with a pitch of 30°, which is considered the most effi-
cient for the city of Palermo, and installed on the roofs of the build-
ings of Table 2; the shadowing effect due to balustrades, elevator
housings and other obstructions were also considered. In order to
get a significant comparison between the energy generation of flat
and slanted roofs, the PV arrays sized for the roof area of each rep-
resentative buildings of Table 2 were resized in order to harness
the area at disposal of the standard flat (162 m?). The results are
shown in Table 4.

FR1 265 m? FR2 387 m?

FR3 482 m?

FR4 717 m? FR5 1394 m?

® & ¥
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Table 3
Electricity produced by slanted roofs.

Number of floors  Total roofs area (m?)  Electricity produced (kW h/year)

1 64 5266.96
2 934 41,300.53
3 5923 149,476.55
4 23,316 512,594.78
5 10,947 163,643.40
6 8320 78,456.53
7 2658 22,470.96
8 5158 44,347.64
9 2825 10,223.05
Total 60,145 1,027,780.40

Table 4
Electricity produced by flat roofs.

Number of floors  Total roofs area (m?)  Electricity produced (kW h/year)

1 0 0.00
2 0 0.00
3 0 0.00
4 2319 43,090.88
5 320 3014.04
6 3581 45,646.84
7 8011 89,973.85
8 15,911 165,323.55
9 6718 55,099.39
10 1042 7,572.44
Total 37,902 409,721.00

3. Coverage of the electricity demand

To estimate the actual influence of each parameter on the elec-
tricity demand coverage of the district, it is required the calcula-
tion of the following gross energy cover factor Cpy:

NPVE i
Cpy = 21573 g0 — Enoa 10 (1)

Npv ).
Zj:] D} DTotal

whereNpy represents the number of PV systems in the district and
Epy; is the yearly PV generation of the j-th PV system of the district;
the power demand of the j-th flat is D;. Epyrora and Drorqr are the total
yearly PV generation and demand of the district, respectively.
Assuming the data officially issued by TERNA [41], main Italian
electricity transmission grid operator, and ISTAT, Italian National
Institute of Statistics [42], Cellura et al. [36] estimated that the aver-
age electricity consumption of a household living in the standard
apartment of 162 m? corresponds to 5957.3kWh every year.
Fig. 6 shows the results of the calculations performed taking ac-
count of the available roof areas and the number of floors of all
building of the district.

Gross energy cover factors C,, for the whole district

18% 1 _
16% 1~ @ || ™®Slantedroofs : Cpyrotal = 33.7%
[— mFlat roofs : Coy 1ota = 10.2%
| m Slanted+Flat roofs : Cpy o1 = 43.9%

14% A
12% A
10%
8%
6%
4% A
2%
_,—_,_t-'—l

0% -

Htada

Number of floors

Fig. 6. Yearly gross energy cover factors for the whole district, versus the number of
floors.

The results shown in Fig. 6 are definitely too optimistic because
the energy was calculated without taking account of the lack of so-
lar irradiance due to the shadowing of obstructions, possible tech-
nical malfunctioning of the PV systems which is quite likely in a
urban context. Moreover it is reasonable to suppose that the en-
ergy generated by a PV system may be greater than the electricity
demand of the flat, especially for the buildings with one or two
floors. In this condition a part of the electrical production will be
exported to the grid. Because the instantaneous perfect correspon-
dence between demand and generation is quite improbable, a part
of the demanded electricity may be not covered by the PV genera-
tion even if the energy generated is greater than the electricity de-
mand. Such an issue, which is known as load mismatch, requires an
extensive treatment and was exhaustively discussed by the
authors in a different paper [43]. Nevertheless, in this paper, espe-
cially to correctly asses the economical convenience, a minimum
mismatch between generated and consumed electricity was con-
sidered. Actually, the electricity consumed after sunset and before
dawn will be never compensated by the energy produced by a grid-
connected PV system that does not use batteries. To estimate day
and night demands the value of Dpg =5240.8 kW h/year and
Dnighe = 716.5 KW h/year, calculated by Cellura et al., were used.

4. Economic analysis

The economic analysis implies the calculation of all the costs,
profits and the related cash flows. The disbursements are due to
the costs for investment, devices replacement, maintenance and
insurance. The profits are related to the gain for the avoided elec-
tricity bill cost, sold electricity and incentives. In order to avoid
that the temporary financial instability observed in Italy in the last
months of 2011 improperly influenced the results of the economic
analysis, the values of the economic parameters were referred to
August 2011, when the effects of the oscillations of the European
economic system were still moderate.

For the costs of the investment, which were obtained from the
market prices of components, the cost for labour, fitter’s gain and
the value added tax (VAT) were considered. The electricity bills
were calculated considering the difference between the bills corre-
sponding to the electricity demand and those referred the energy
consumed while the PV systems are producing electricity. The elec-
tricity tariffs issued by the AEEG - Italian Authority for electricity
and gas for domestic consumers with an electricity capacity of 3
kW were used. Table 5 lists the data issued for the third trimester
of 2011.

A selling price of 0.103 €/kW h was used to calculate the gain in
selling PV electricity. An income tax of 30.22%, which was esti-
mated on the basis of the average income of the inhabitants of Pa-
lermo, was considered to value the net gain in selling the exported
PV electricity. Table 6 lists the incentives paid in Italy in 2011.

The economic analysis was performed also considering:

e a yearly degradation rate in the efficiency of the PV panels
equal to 1% of the nominal initial value;

e yearly maintenance and management costs estimated to be
1% of the investment cost, for flat roofs, and 2.5% for slanted
roofs;

Table 5
Electricity tariff in Italy.

Energy (€/kW h) Power (€/kW/year) Fixed cost (€/year)

<1800 0.113146 14.53760 5.13400
1800-2640 0.161676
2640-4440 0.216276
>4440 0.261996
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Table 6

Feed-in tariff for electricity generated by PV systems in Italy.
Rated August 2011
power PV systems installed on PV systems not installed on

buildings buildings
[kWp] [€/kW h] [€/kW h]
1-3 0.368 0.327
3-20 0.339 0.303
20-200 0.321 0.291
200-1000 0.303 0.263
1000- 0.280 0.250
5000

>5000 0.269 0.238

¢ a replacement of 1% of the PV panels every year and of all
inverters every five years;

e insurance costs, varying from 184.00 € to 307.00 € for PV
systems with peak-power of 3kWp and 15kWp,
respectively;

e a yearly increasing of 5.17% in the price of electricity;

e a mean selling price of 0.103 €/kW h for the exported PV
electricity;

¢ an inflation rate of 2.05%;

e a current value of 5.20% of the discount rate;

e a VAT rate of 10% for all system devices.

All above economic factors were connected to the cash flows
obtained by adding algebraically all the costs and all the profits re-
lated to the generic year for a lifetime of the investment of
20 years, which is the period of time when incentives are provided
in Italy.

The results of cash flows are commonly expressed by means of
some indicators, such as the net present value (NPV) and the inter-
nal rate of return (IRR), which are calculated with the following
formulas:

Ny Ct
NPV — -C 2
;(m)t 0 (2)
Ny C
G- —— =0 3
0 ;(1+IRR)t 3

where Cj is the initial investment cost, C; is the cash flow, N, is life-
time and i is the discount rate. The use of net present value (NPV)
and the benefit-to-cost ratio (B/C) are recommended when the full
cost of an alternative has to be considered [44]; for accept/reject
investment decisions the internal rate of return (IRR) is commonly
used.

In this paper, in order assess the degree of the economic conve-
nience of the investment the authors used the NPV/PVC parameter,
which is the ratio of the net present value to the present value of
costs of the PV system. This parameter allows a clear and precise
description of the economic behaviour of the PV installation. If
NPV/PVC is positive, then the revenues surpass the disbursements
over the PV system lifetime and the investment will be profitable;
with a NPV/PVC of 20%, if the global disbursements are 100, at the
end of the lifetime the revenues will be 120; if NPV/PVC is —10%,
the revenues will be 90 and the investment is considered unprofit-
able. Moreover, very high values of NPV/PVC indicate that pay-
back period may be quite short. Adversely, a NPV/PVC near to zero
represents a critical situation where the results of the economic
analysis may be abruptly upturned by small variations in the
assessment of costs and benefits.

To assess the actual influence of each energy and economic
parameter the solar potential generated by PV systems has to be

matched with the economic analysis. This procedure permits to fil-
ter the PV electricity generated by PV systems whose installation
resulted economically convenient. In this way, by eliminating the
electricity produced by PV systems that are unprofitable, it is pos-
sible to reckon the amount of PV generation that must be used to
realistically assess the achievement of the demand coverage for
the district. Fig. 7 shows the yearly gross energy cover factors fil-
tered with the economic criterion.

The comparison with Fig. 6 shows the significant reduction of
the gross energy cover factors related to the economic convenience
of the PV installations; the gross energy cover factor of the district
lowers from 43.9% to 31.4%, with a percentage decrement of 28%.

5. Effects of the variation of the energy and economic
parameters

The significant energy and economic parameters used to calcu-
late the energy demand coverage and the related economic benefit
can be sorted by their role in the following way:

(1) Energy parameters, which directly affect the PV potential of
PV systems:
e shading due to surrounding obstructions;
e yearly degradation of PV panels efficiency.
(2) Economic parameters, on which is usually based the assess-
ment of the profitability of PV systems:
e investment costs;
e incentives;
e discount rate;
e price of the purchased electricity;
price of the sold electricity.
(3) Running parameters, whose effects influence the long term
profitability of PV systems:
o inflation rate;
yearly rate of PV devices replacement;
yearly increment in the price of electricity;
maintenance cost;
insurance cost.

The values of some of the above parameters, like the paid incen-
tives or the investment costs, are certain and unvarying because
they were settled by law or can be exactly evaluated. Adversely,
some parameters, like the efficiency degradation of PV panels or
the rise in the price of electricity, can only be supposed. Other
parameters, like the maintenance cost or the shadowing, require
some information that is specifically related to a particular PV sys-
tem and is often unavailable for all PV systems of the district. Some

Filtered gross energy cover factors C,,,
for the whole district

18% 1
16% m Slanted roofs : Cpyrotal = 23.8%
M Flat roofs 1 Coyroral= 7.6%

Slanted+Flat roofs : Cpy 1ora = 31.4%

14% A
12%
10%
8%
6%

_
4%
S | Iljhtli
=M ——
5 6 7 8

0% -
9 10

Number of floors

Fig. 7. Yearly gross energy cover factors for the whole district, filtered by the
economic assessment, versus the number of floors.
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parameters have an irrelevant influence and for this reason a rough
estimate can be sufficient. Adversely, other parameters dramati-
cally impact on the analysis and their definition can be a crucial
element of the energy and economic analysis of PV systems. To
deal with the problem a sensitivity analysis, which can reveal the
parameters that cause the most variation in the results, was carried
out. In particular the study was approached by means of a deter-
ministic sensitivity analysis, which involves varying the parame-
ters over judgmentally determined ranges. Table 7 lists the
analysed parameters and their variation range.

In the following sections the effect of each one of all above
parameters on the gross energy cover factor and NPV/PVC of all
PV systems of the district is analysed. While assessing the influ-
ence of a given parameter, the other parameters were kept to the
realistic values listed in Section 4. The values of Cpy reported in
the graphs were calculated by summing only the electricity pro-
duced by the PV systems of the district that resulted economically
convenient, i.e. with positive values of NPV/PVC. The values of
NPV/PVC in the graphs refer to the global net present values and
the present values of costs of the PV systems considered for the cal-
culation of Cpy. Because the unprofitable PV systems were ex-
cluded, the values of NPV/PVC in the graphs are never negative;
a null value of NPV/PVC means that no PV system was successful
in the economic analysis.

All graphs show some common peculiarities. The gross energy
cover factors slightly vary with the analysed parameter at the
beginning and the end of the range of values assigned to the
parameter; this is particularly evident for the PV systems installed
on flat roofs that are almost insensitive for a large interval of values
of the analysed parameter. There is a narrow span of values in
which Cpy shows a sudden variation, which is clearly detected by
the values of the sensitivity. Only the PV electricity selling price
shows a different behaviour. When the effect of the analysed
parameter is still moderate, the trends of the NPC/CPV regularly
vary with the parameter until a minimum value is reached. Once
such a minimum is passed, almost all NPC/CPV show a swinging
trend that means that the result of the economic analysis may be
critical and unreliable.

The intervals of values where the most significant variations are
observed always contain the values for which the gross energy cov-
er factor of the district reaches the limit value of 17%, which is the
share that Italy must supply from the RES before 2020. Such an
occurrence highlights the criticality of the energy strategies imple-
mented to the RES diffusion and the need of accurately assessing
the actual PV potential.

5.1. Effect of the shading due to the surrounding obstructions

The possibility that the collecting surfaces are shaded by sur-
roundings obstacles has a relevant effect on the electricity demand

Table 7
Parameters range of variation.

Parameter Variation range
Shadowing coefficient (%) 0 30
PV panels efficiency degradation yearly rate (%) 0 4
Investment cost multiplicative factor 0.5 1.5
Paid incentives multiplication factor 0.5 1.5
Discount rate (%) 0 12
Electricity purchase price multiplication factor 0.5 1.5
PV electricity selling price multiplication factor 0 10
Inflation rate (%) 0 8
PV panels replacement yearly rate (%) 0 9
Electricity price yearly increment (%) -6 14
Maintenance yearly cost (%) 0 7
Insurance cost multiplication factor 0 5

coverage. When the solar radiation is deprived of its direct compo-
nent, the electricity generated by PV systems drastically decreases.
Actually, the shape of a site, the layout of a street, distance of
neighbouring buildings and their shapes are all factors that signif-
icantly interact with the effect of shape on solar access [45]. Fig. 8a
clearly depicts this condition: the electricity demand coverage
reaches the limit of 17% when 11.14% of the daily solar radiation
is wasted due to the shading surrounding obstacles. The sensitivity
of the district gross energy cover factor to the shadowing coeffi-
cient in correspondence of this value is —1.53. The highest value
of the sensitivity (—3.50) is reached with a shadowing coefficient
of 12%. PV systems installed on flat roofs seem to be less sensitive
to the shadowing; their contribution begins to fail for values of the
shadowing coefficient greater than 13.5%. When the portion of the
shadowed irradiance surpasses 20%, about 3% of the electricity de-
mand is covered and the sensitivity to the shadowing coefficient
becomes negligible. A shading coefficient of 30% makes ineffective
all PV systems installed in the district.

The economic convenience of the investment is shown in
Fig. 8b. Global NPV/PVC, which was 13.06% with no shadowing,
is lowered to 6.15% when the shadowing coefficient is 11.14%.
About the same relative reduction is suffered by the PV systems in-
stalled on flat and slanted roofs. When the shadowing coefficient
surpasses 12% the NPV/PVC swings around a mean value of
6.06%. For a value of the shading coefficient greater than 27%, no
PV system installed on slanted roofs is economically convenient.

5.2. Effect of the yearly degradation of PV panels efficiency

If the efficiency of PV panels degrades in time, even the value of
the gross energy cover factor of the district will lower. Such a de-
crease also reduces the number of profitable PV systems because
the cash flows are sensitive to the yearly reduction of the benefits
due the decline in the PV generation and the consequent loss of the
gain for the avoided electricity bill cost, sold electricity and
incentives.

As it is shown in Fig. 9a, the gross energy cover factor of the dis-
trict would be 37.45% if the efficiency of the PV panels was con-
stant. Due to the effect on the economic viability Cpy reaches the
limit of 17% when an efficiency degradation of 2.27% is assumed.
Such a value, which is generally much greater than the value de-
clared by manufacturers, may be touched if low quality PV panels
are used. In correspondence of this value the sensitivity is equal to
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Fig. 8a. Values and sensitivity of the gross energy cover factor filtered by the
economic analysis versus the shadowing coefficient.
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Fig. 8b. Values and sensitivity of the NPV/PVC filtered by the economic analysis
versus the shadowing coefficient.

—32.66, which is close to the highest value of —36.26 that is
reached for an efficiency degradation of 2.20%. The PV systems in-
stalled on slanted roofs are very sensitive to the PV panels effi-
ciency and their contribution abruptly lowers when the yearly
degradation of the efficiency surpasses 2.20%.

Fig. 9b shows the economic convenience of the investment. If
the efficiency of the PV panels were constant, global NPV/PVC
would be 18.69%. It lowers to 6.11% if the efficiency degradation
is 2.27%. Beyond this value NPV/PVC swings around a mean value
of 6.78%. No PV system installed on slanted roofs results econom-
ically convenient when the yearly degradation of the PV panels
efficiency is greater than 4%.

5.3. Effect of the cost of the investment

The investment cost is intuitively perceived as a very significant
parameter. The price per peak-watt at standard testing conditions
(solar irradiance of 1000 W/m?, panel temperature of 25 °C, solar
spectrum of mass air 1.5) [46] of the cheapest and the most expen-
sive PV systems respectively installed on slanted and flat roofs are
shown in Fig. 10.
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Fig. 9a. Values and sensitivity of the gross energy cover factor filtered by the
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The price per peak-watt tends to increase with the height of
buildings. Due to the nonlinear dependence from the size of the
PV array, the cost of a PV system installed on a building with eight
or nine floors may double the cost of PV systems installed on build-
ings with two floors. As it is shown in Fig. 10, to examine the effect
of the investment cost a multiplicative factor, varying from 0.5 to
1.5, was used for all PV systems of the district. Such a factor was
multiplied by the nominal costs of the PV systems from which
the values of Fig. 10 were derived.

Observing Fig. 11a it can be inferred that, if the cost of the
investment is kept below 80% of the nominal cost, the gross energy
cover factors is always 40.84%; the PV systems on flat roofs show
an almost constant value of Cpy even if their cost of investment is
20% greater than the nominal one. Cpy reaches the limit of 17%
when the cost of the investment is 13% greater than the nominal
one. In correspondence of this value the sensitivity is equal to
—208.28, which corresponds to a dramatic halving in the gross en-
ergy cover factor of the district. A multiplicative coefficient of 1.4
makes ineffective all PV systems installed on slanted roofs.

The economic convenience of the investment is shown in
Fig. 11b. Global NPV/PVC, which was 19.63% with a multiplicative
factor of 0.5, is lowered to 6.66% when cost of the investment is
13% greater than the nominal one. When the cost of investment
is 10% greater than the nominal one the NPV/PVC swings around

Prices per peak-watt of PV systems
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Fig. 10. Price per peak-watt of PV systems installed on slanted and flat roofs versus
the number of floors.
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Fig. 11a. Values and sensitivity of the gross energy cover factor filtered by the
economic analysis versus the investment cost.

a mean value of 6.30%. For a multiplicative factor greater than 1.4,
no PV system installed on slanted roofs is economically
convenient.

5.4. Effect of the paid incentives

The analysis of the effect of the paid incentives shows that even
if they are reduced to 78% of the incentives paid in August 2011 the
gross energy cover factor of the district reaches the limit value of
17%. Such an assertion has to be cautiously interpreted because
other parameters, like the shading effect or the load mismatch, that
certainly lower the profitability of the PV systems, were given val-
ues that are too optimistic (no shading due to the surrounding
obstacles and all PV electricity used to cover daily and nightly en-
ergy demand Dgqy, Dpigne). As it can be observed in Fig. 12a, when
Cpy is 17% the sensitivity reaches the maximum value of 121.12.
If the incentives were 30% greater than the incentives paid in Au-
gust 2011, the gross energy cover factor of the district would keep
a constant value of 42.52%.

Fig. 12b shows the effect of the paid incentives on the economic
viability of the investment. The global NPV/PVC reaches the mini-
mum value of 5.16% when the multiplication factor is 0.7.
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Fig. 11b. Values and sensitivity of the NPV/PVC filtered by the economic analysis
versus the investment cost.

5.5. Effect of the discount rate

As it is depicted in Fig. 13a, the coverage of the 17% of electricity
demand of the district is ensured when the value of the discount
rate is lower than 7.9%. The sensitivity corresponding to this value
is —8.6. The highest value of the sensitivity (—9.38) is reached with
a discount rate of 7%. PV systems installed on flat roofs seem to be
less sensitive to the shadowing; their contribution begins to fail for
values of the discount rate greater than 9%. A discount rate of 11.5%
makes almost ineffective all PV systems installed on slanted roofs.

The economic convenience of the investment is shown in
Fig. 13b. Global NPV/PVC, which was 31.61% with a null discount
rate, is lowered to 4.93% when the shadowing coefficient is 9%.
When the discount rate surpasses this value the NPV/PVC swings
around a mean value of 6.14.

5.6. The effect of the electricity purchase price

The electricity purchase price has a significant influence be-
cause its escalation increases the benefit for the avoided electricity
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Fig. 13a. Values and sensitivity of the gross energy cover factor filtered by the
economic analysis versus the discount rate.

bill costs. As it is shown in Fig. 14, to examine the effect of the
investment cost a multiplicative factor, varying from 0.5 to 1.5,
was used for all PV systems of the district. Such a factor was mul-
tiplied by the price of electricity listed in Table 5.

Observing Fig. 14a it is possible to infer that, if the electricity
price was 40% higher of the price of Table 5, the gross energy cover
factors would be always 40.59%; adversely, the PV systems on flat
roofs are almost insensitive to the electricity price when the price
is greater than 75% of the values listed in Table 5. Cpy reaches the
limit of 17% when the electricity price is 78% of the nominal one.
In correspondence of this value the sensitivity is equal to 158.75.
A multiplicative coefficient of 0.5 makes ineffective all PV systems
installed on slanted roofs.

The economic convenience of the investment is shown in
Fig. 14b. Global NPV/PVC, which was 32.53% with a multiplicative
factor of 1.5, is lowered to 6.30% when cost of the investment is
80% of the nominal one.

5.7. Effect of the PV electricity selling price

The benefit for selling the electricity produced by a PV system is
erroneously considered one of the major incentives to install a PV
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Fig. 14a. Values and sensitivity of the gross energy cover factor filtered by the
economic analysis versus the electricity purchase price.

system. Unfortunately, homeowners are often induced by unprin-
cipled promoters of RES to make money by installing on their roofs
oversized PV arrays, which surpass the electrical need of the
households, or harnessing the electricity generated by PV systems
located in farmlands. These ventures are rarely destined to be suc-
cessful because the price of the sold electricity is smaller than the
purchase price and the gain is also taxed.

Fig. 15a clearly confirms that the effect of selling PV electricity
is quite irrelevant even if the selling price is decoupled. The gross
energy cover factor that would be 31.10% if the selling price was
zero, becomes 32.04% when the selling price is hypothetically mul-
tiplied tenfold. As it is shown in Fig. 15b, a decoupled price of the
sold PV electricity increases the global NPV/PVC from 13.06% to
16.97% with a relative increment of less than 30%.

5.8. Effect of the inflation rate
The inflation rate is one of the economic parameters that mostly

worry long term investors because they fear that the future dis-
bursements will be more onerous than the budgeted costs. Due

(b) Economically filtered NPV/PVC
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versus the electricity purchase price.



A. Orioli, A. Di Gangi/Applied Energy 113 (2014) 955-969 965

to the importance of this parameter, all future costs considered in
the cash flows were updated with a supposable value of the infla-
tion rate.

As it is shown in Fig. 16a, even small values of the inflation rate
affects the gross energy cover factor. A value of 4.28% makes Cpy
equal to the limit value of 17%. An inflation rate of 7.8%, which is
a probable event during a financial crisis, almost cancels the gross
energy cover factor of the district. The sensitivity in correspon-
dence of an inflation rate of 4.28% is —16.7, which is close to the
highest value (—18.95).

Fig. 16b shows the economic convenience of the investment.
Global NPV/PVC, which would be 19.63% with a null inflation rate,
decreases to the minimum value of 6.0% when the inflation rate is
4.8%. When the inflation rate surpasses 7.2%, no PV system in-
stalled on flat roofs results profitable.

5.9. Effect of the yearly rate of PV devices replacement
The long exposure to bad weather conditions enhances the

probability of damages for the PV devices. For this reason it was as-
sumed the replacement of all inverters every 5 years and the yearly
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substitution of a percentage of the installed PV panels. Whereas
there is a founded information on the lifetime of inverters, the life
expectancy of PV panels is less predictable because may vary for
many reasons that also depends on the technological quality of
the devices and the climatic peculiarities of the site where the pan-
els are placed. The effect of the inflation rate was considered in the
future price of the replaced PV panels. Such an effect should be
counterbalanced by the quick reduction in the prices of the PV pan-
els that has been observed in the recent past and that is destined to
fade in the future. Because it is almost impossible to forecast the
variation in the PV panels prices in the next 20 years, this aspect
was neglected and for this reason the results can be considered
more conservative.

Fig. 17a shows that yearly rate of PV panels replacement
strongly affects the gross energy cover factor of the district that
reaches the limit value of 17% with a replacement rate of 3.20%.
The sensitivity, which measures —15.32, is very close to the highest
value of —15.91. All PV systems installed on slanted roofs become
ineffective for a replacement rate greater than 7%. The PV systems
installed on flat roof seem to be almost insensitive for values of the
replacement rate less than 5.5%.
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The economic convenience of the investment is shown in
Fig. 17b. Global NPV/PVC, which is 16.04% with a null value of
the replacement rate, is lowered to 3.85% when the shadowing
coefficient is 5.5%. A greater relative reduction is suffered by the
PV systems installed on flat roofs. For a value of the shading coef-
ficient greater than 7.5%, no PV system installed on slanted roofs is
economically convenient.

5.10. Effect of the yearly increment in the price of electricity

Due to the ever-increasing need of energy the rise of the elec-
tricity price seems to be relentless; this occurrence makes PV sys-
tems more profitable in the long term assessment. As it is depicted
in Fig. 18a, the electricity demand coverage reaches the limit of
17% when rise of the electricity price is 1.55% every year. The sen-
sitivity of the district gross energy cover factor in correspondence
of this value is 8.63. PV systems installed on flat roofs seem to be
less sensitive to the shadowing; their contribution begins to fail
for values of the yearly increment of the electricity price lower
than 1%.

Fig. 18b shows the economic convenience of the invest-
ment.Global NPV/PVC is 5.95% with a null rise of the electricity
price. Only supposing for the electricity price an unrealistic decre-
ment of 6% it is possible to reset the NPV/PVC.

5.11. Effect of the yearly maintenance cost

As it is depicted in Fig. 19a, if the yearly maintenance cost
reaches 3,84% of the initial investment costs, the electric produc-
tion generated by PV systems of whole district covers 17% of elec-
tricity demand of the district. The sensitivity of the district gross
energy cover factor in correspondence of this value is - 12.57. A
maximum value of the sensitivity of — 25.76 is reached for a yearly
maintenance cost of 4.17% of the initial investment costs. The PV
systems installed on flat roofs abruptly reduce their contribution
when the yearly maintenance cost surpasses 3%.

The related economic convenience is pointed out by Fig. 19b.
The trends of NPV/PVC are quite similar for all kinds of roof. In cor-
respondence of a yearly maintenance cost of 3.84% the global NPV/
PVC reaches a value of 4.80%. All PV systems become unprofitable
when the yearly maintenance cost is 7% of the initial investment
costs.
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Fig. 17a. Values and sensitivity of the gross energy cover factor filtered by the
economic analysis versus the yearly rate of PV panels replacement.
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Fig. 17b. Values and sensitivity of the NPV/PVC filtered by the economic analysis
versus the yearly rate of PV panels replacement.
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Fig. 18a. Values and sensitivity of the gross energy cover factor filtered by the
economic analysis versus the yearly increment in the electricity price.
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Fig. 18b. Values and sensitivity of the NPV/PVC filtered by the economic analysis
versus the yearly increment in the electricity price.
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5.12. Effect of the yearly insurance cost

PV systems may damage the underneath persons and things if
they fall from the roof due to the wind or a structural failure. For
this reason it is appropriate to take out an insurance against these
risks. To examine the effect of the yearly insurance cost a multipli-
cative factor, varying from 0 to 5, was used for all PV systems of the
district. This factor was multiplied by the insurance costs indicated
in Section 4. The coverage of 17% the electricity demand is guaran-
teed even if the insurance costs are almost doubled. Actually, as de-
picted in Fig. 20a, with a multiplication factor of 2.04 the gross
energy cover facto of the district reaches the limit value of 17%.
In correspondence of this value the sensitivity is — 24.36. The sen-
sitivity reaches its highest value of - 35.02 when the multiplicative
factor is 1.88.

Fig. 20b shows the economic convenience of the investment.
Global NPV/PVC, which would be 22.99% with no insurance cost,
sharply decreases to the value of 3.94% when the insurance cost
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Fig. 19a. Values and sensitivity of the gross energy cover factor filtered by the
economic analysis versus the yearly maintenance cost.
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Fig. 19b. Values and sensitivity of the NPV/PVC filtered by the economic analysis
versus the yearly increment in the maintenance cost.
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Fig. 20a. Values and sensitivity of the gross energy cover factor filtered by the
economic analysis versus the yearly insurance cost.
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Fig. 20b. Values and sensitivity of the NPV/PVC filtered by the economic analysis
versus the yearly increment in the insurance cost.

is 3.5 times the nominal value of Section 4. When the multiplica-
tive factor surpasses 4.5, no PV system installed on flat roofs results
profitable.

6. Results and discussion

Table 8 summarises the values of all analysed parameters in
correspondence of which the energy cover factor of the district is
17%. In the table are also listed the corresponding values of NPV/
PVC and of the sensitivity of Cpy and NPV/PVC.

A positive value of the sensitivity of Cpy means that the rise of
the analysed parameter will increase the energy cover factor of
the district. In this case the value of the analysed parameter listed
in Table 8 represents the minimum value that permits to reach
Cpy=17%. The opposite is for a negative value of the sensitivity
of the gross energy cover factor and the listed values are the max-
imum values that should be never surpassed.

As it was predictable, the high values of the sensitivity related
to the investment cost, paid incentives and purchase price of the
electricity, confirm the relevant influence of this parameters. Nev-
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Table 8
Values of the parameters and sensitivities in correspondence of Cpy = 17%.
Parameter Gross energy Investment
cover factor profitability
Cpy  Sensitivity NPV/ Sensitivity
(%) PVC
(%)
Shadowing coefficient 11.14% 17 -1.53 6.15 -0.53
PV panels efficiency 227% 17 —32.66 6.11 1.91
degradation yearly
rate
Investment cost 1.13 17 —208.28 7.60 8.88
multiplicative factor
Paid incentives 0.78 17 121.12 6.01 9.85
multiplication factor
Discount rate 7.90% 17 -8.60 6.23 -1.06
Electricity purchase 0.78 17 158.75 6.44 —4.61
price multiplication
factor
PV electricity selling - 17 - - -
price multiplication
factor
Inflation rate 428% 17 -16.70 6.66 0.63
PV panels replacement 3.20% 17 -15.32 7.65 2.51
yearly rate
Electricity price yearly 1.55% 17 8.63 6.66 0.01
increment
Maintenance yearly cost 3.84% 17 -12.57 4.80 -2.80
Insurance cost 2.04 17 —24.36 6.00 —1.08

multiplication factor

ertheless the values of the parameters listed in the table can be
varied into ranges that are still enough large without the risk of
reaching a value of Cpy less than 7%. A limit value of the shadowing
coefficient of 11.14% represents a condition that is not very far
from the reality especially for the PV systems installed in urban
areas. An inflation rate of 4.28% and a discount rate of 7.90 are a
possible occurrence during a financial crisis. The effect of the var-
iation of the PV electricity selling price is quite irrelevant.

Even if the values of the parameters listed in Table 8 can pro-
vide some useful information about the acceptable range of their
variation, it is appropriate to point out that they refer to the indi-
vidual effect of each single parameter. Because the nature of the
problem is not linear, the values of the listed sensitivities should
not be used to calculate the joint effect of two or more parameters.

Moreover, the showed results are strongly correlated with the
values assumed by the parameters that are kept fixed while the
generic analysed parameter is varied to assess the specific sensitiv-
ity. Some parameters, such as the paid incentives and the sold en-
ergy price, may be influenced by the energy strategies adopted by
each government during the time, whereas other parameters, like
the discount rate and the inflation rate, may vary due to the eco-
nomic situation of each country. Some parameters, such as the effi-
ciency degradation, PV panel replacement and maintenance cost,
are more related to technology aspects, while the investment and
insurance costs are supposed to be strongly influenced by the
promising dissemination of PV systems. The effect of the shadow-
ing coefficient is not related to a specific region because it is more
specifically influenced by the urban context, and the trend of the
energy price increment seems to be destined to keep values that
are quite similar in all industrialised nations. Nevertheless, even
if the results of the present study cannot be considered numeri-
cally valid for PV systems installed on roofs of building located in
regions that are quite different from the Italian city of Palermo,
they can provide some valid and general information on the qual-
itative effects of the economic and energy parameters involved in
the assessment of the effectiveness of PV systems installed in ur-
ban areas.

7. Conclusions

The achievement of the “20-20-20" target charged by the Euro-
pean Union (EU) is strictly linked to the profitability of the PV sys-
tems, especially in the urban areas where the available buildings’
roof surfaces have to be divided into equal portions among several
co-owners. The share of energy from renewable sources in gross fi-
nal consumption of energy in 2020 would be at least 17% of the to-
tal for the Italian case.

The presented study provides a review of the main energy and
economic parameters involved in the assessment of the coverage
of the electricity demand of a district in a South-Italy city and fo-
cused on economic convenience for the homeowners of installing
PV systems. A sensitivity deterministic analysis, in which the ana-
lysed parameters were varied over determined ranges, was carried
out. The effects of the parameters on the gross energy cover factor
of the district and on the ratio of the net present value to the pres-
ent value of costs of all PV systems of the district, were analysed.

After the assessment of the PV potential of the district roof sur-
faces that are suitable for PV systems in accordance with the shape,
orientation and number of floors of the buildings, the authors car-
ried out an accurate economic analysis. The aim was to define the
actual amount of electricity that was produced by economically
advantageous PV systems and, contextually, the level of the eco-
nomic benefits that are generated. The parameters involved in
the study were the shading due to surrounding obstructions, the
yearly degradation of PV panels efficiency, the investment costs,
the paid incentives, the discount rate, the price of the purchased
electricity, the price of the sold electricity. The inflation rate, the
yearly rate of PV devices replacement, the yearly increment in
the price of electricity, the maintenance cost and the insurance
cost. It was analysed the effect of each one of the above factors
and the values that determine the achievement of a given electric-
ity demand coverage and the consequent rate of the economic ben-
efits were calculated.

If the effect of each energy parameter is individually consid-
ered it can be claimed that gross energy cover factor of the ana-
lysed district is greater than 17% if shading due to surrounding
obstructions is less than 11.14% and the yearly degradation of
PV panels efficiency is less than 2.27%. Dealing with the parame-
ters on which the profitability is usually assessed, the study has
shown that the limit value of Cpy is kept if the discount rate is less
than 7.90%, the investment costs do not surpass of 13% the nom-
inal ones used in this analysis. Moreover it is required that the
incentives do not lower under 78% of the values paid in Italy on
August 2011and the purchase price of the electricity is at least
78% of the present one. The inflation rate and the yearly rate of
PV panels replacement should be less than 4.28% and 3.20%,
respectively. A minimum value of 1.55% is required for the yearly
increment in the electricity price. The maintenance cost should
not surpass 3.84% of the investment cost and the cost for insur-
ance should not be more than 2.04 times the nominal values used
in the study. The results also showed that the PV electricity sell-
ing price marginally affects the electricity demand coverage of the
district. This result confirms the opinion that installing PV sys-
tems only to make money by selling the produced electricity
may be a risky investment.

Even if the validity of the presented results is related to the ana-
lysed district, the study can be used by the PV systems designers to
control the impact of the deviation of the main parameters that af-
fect the economic profits connected with the installation of PV sys-
tems. Moreover, the study may help decision-makers to evaluate
the role played by the variation of such parameters in order to
implement effective energy policies that allow the achievement
of the predicted shares of electricity demand coverage.
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